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Many applications in decision making under uncertainty and probabilistic risk assessment require the
assessment of multiple, dependent uncertain quantities, so that in addition to marginal distributions,
interdependence needs to be modelled in order to properly understand the overall risk. Nevertheless, rel-
evant historical data on dependence information are often not available or simply too costly to obtain. In
this case, the only sensible option is to elicit this uncertainty through the use of expert judgements. In
expert judgement studies, a structured approach to eliciting variables of interest is desirable so that their
assessment is methodologically robust. One of the key decisions during the elicitation process is the form
in which the uncertainties are elicited. This choice is subject to various, potentially conflicting, desiderata
related to e.g. modelling convenience, coherence between elicitation parameters and the model, combin-
ing judgements, and the assessment burden for the experts. While extensive and systematic guidance to
address these considerations exists for single variable uncertainty elicitation, for higher dimensions very
little such guidance is available. Therefore, this paper offers a systematic review of the current literature
on eliciting dependence. The literature on the elicitation of dependence parameters such as correlations
is presented alongside commonly used dependence models and experience from case studies. From this,
guidance about the strategy for dependence assessment is given and gaps in the existing research are
identified to determine future directions for structured methods to elicit dependence.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

In decision making under uncertainty it is vital that depen-
dencies between uncertain variables are appropriately modelled,
as otherwise the model may not be fit for purpose. Dependent
uncertainty may arise either directly because variables in the
model are correlated, or indirectly when an uncertainty analysis
of model parameters is carried out to explore model robustness.
Both cases exhibit complex interrelations and dependencies which
need to be considered if assumptions such as independence are not
justifiable.

However, it is often not straightforward to either model
or quantify dependence. In particular whenever no relevant
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historical data are available, the only sensible way to achieve
uncertainty quantification is through eliciting expert judgements.
When performed rigorously, the elicited quantities, often aggre-
gated from multiple experts, offer reliable information for model
quantification. Nevertheless, there are several different broad ap-
proaches and many choices to be made by the analyst, all of which
can affect the elicitation burden for experts and ultimately also the
reliability of the outcome.

While research and reviews that offer guidance exist for meth-
ods addressing the elicitation of univariate quantities (Cooke,
1991; European Food and Safety Authority (EFSA), 2014; French,
2011; Jenkinson, 2005; O’Hagan et al., 2006; Ouchi, 2004), and
while dependence modelling is an active research area (Kurowicka
& Cooke, 2006), little guidance exists about the elicitation of
dependencies. The exceptions are Bayesian (Belief) nets (BNs),
though also for these modelling and elicitation challenges re-
main, as shown later. In fact, developing defensible elicitation pro-
cesses for multivariate quantities is still much under development
despite its fundamental importance for decision as well as risk
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analysis (Moskowitz & Bunn, 1987; Smith & Von Winterfeldt,
2004). Some of the first studies that elicit dependence are Cooke
and Kraan (1996), Keeney and von Winterfeldt (1991), Kunda and
Nisbett (1986), Gokhale and Press (1982) and Kadane, Dickey, Win-
kler, Smith, and Peters (1980). Since then more ways for quanti-
fying multivariate distributions and models through experts have
been investigated, yet on the actual elicitation only little discus-
sion and guidance is available. References that introduce some as-
pects are Daneshkhah and Oakley (2010), Kurowicka and Cooke
(2006), O’'Hagan et al. (2006) and Garthwaite, Kadane, and O’Hagan
(2005). However, a complete and systematic way of comparing dif-
ferent dependence parameters as elicited quantities, and reflecting
their use in dependence models in the form of a literature re-
view has been non-existent so far. Therefore, research and appli-
cations of several dependence measures in models and their elici-
tation methods are presented. With a practical focus, case studies
are discussed whenever available. This paper addresses elicitation
processes for dependence information and aims at providing un-
derstanding of their use in applications. It offers guidance on mak-
ing robust choices about which summary of expert knowledge on
multivariate distributions should be elicited, and how they might
be used within a dependence modelling context, as these are key
decisions within the overall elicitation process. This is achieved by
outlining how much is understood about the complexity of ap-
proaches to dependence modelling and the cognitive assessment
burden for experts.

Throughout this paper we use the word “dependence” in a gen-
eral sense (in contrast to specific association measures) to refer to
situations where there are multiple uncertain quantities and gain-
ing information about one would change uncertainty assessments
for some others. More formally, two unknown quantities X and Y,
are independent (for me) if I do not change my beliefs about X
when given information about Y. For higher dimensions I regard all
quantities independent of one another if knowledge of one group
of variables does not change my belief about other variables. De-
pendence is simply the absence of independence. It is a property
of an expert’s belief about the quantities. This definition relates to
Lad (1996) who reminds us that in a subjective probability con-
text one expert’s (in-) dependence assessment might not be shared
with another expert possessing a different state of knowledge.

The definition of dependence as we use it here relates directly
to the scope of this review. A first comment on the scope is that
the word “dependence” is used in many ways within Operational
Research (OR) and related fields, and it is worth clarifying how its
use here differs from its meaning in other OR contexts. The un-
derlying framework adopted is that of subjective probability (as
aforementioned), which plays a key role within expected utility
maximisation for decision making. Dependence then, refers to the
way we model and assess the probability dependence structure re-
quired for such decision support processes. We do not consider
non-probabilistic representations of uncertainty, nor do we con-
sider approaches to represent dependence between criteria used to
model the preferences of the decision maker as discussed widely
in the multi-criteria decision analysis (MCDA) literature.

The foundations of subjective probability are drawn from a
wide literature, in which Savage (1954) provides one of the most
sophisticated accounts. In this account, probabilities can be as-
sessed through preferences over lotteries, and there are implied
consistency rules for preferences which can be empirically vali-
dated. It is well known that there is a distinction between norma-
tive and empirical validation, so the degree to which researchers
choose to be led by normative or empirical consistency has led to
many different approaches. For instance, Dubois, Prade, and Sab-
badin (2001) provide a theoretical framework which attempts to
tie these strands together in the context of possibility theory, and
the implications of this are discussed in detail by Cooke (2004).

The modelling of dependence between attributes in MCDA is
the subject of a wide literature, and as discussed above, is out-
side the scope of this review. Facilitative approaches within multi-
attribute utility theory provide a variety of models, for which
(whenever possible) problem structuring is used to ensure pref-
erence independence (Von Winterfeldt & Fasolo, 2009; Wallenius
et al.,, 2008), while other approaches have been inspired by issues
such as assessing the range of preferences within a stakeholder
group (Flari, Chaudhry, Neslo, & Cooke, 2011; Neslo & Cooke, 2011),
or trying to model preferences based on a limited number of at-
tributes or limited resolution of attribute measurement. For the
latter, in particular interaction among criteria in complex systems
and dependence of attributes is modelled. This is done for in-
stance to assess the aggregated importance of correlated criteria or
further investigate dependent attributes for predictive modelling.
Common methods in the OR literature are: non-additive aggre-
gation models such as Choquet and Sugeno integrals (Angilella,
Greco, Lamantia, & Matarazzo, 2004; Grabisch, 1996; Marichal,
2004), Robust Ordinal Regression (Figueira, Greco, & Stowinski,
2009; Greco, Mousseau, & Stowinski, 2014) and (Dominance-Based)
Rough Set Approaches which use decision rules in the form of
if [condition] then [consequent] (Btaszczynski, Greco, & Stowinski,
2007; Greco, Matarazzo, & Stowinski, 2001; 2004).Another inter-
esting approach in this regard is Abbas (2009) who constructs
a multi-attribute utility function through a copula, a dependence
model that is introduced later for modelling probabilistic depen-
dence. A frequently considered empirical area for MCDA-based ap-
proaches is financial portfolio optimisation (Ehrgott, Klamroth, &
Schwehm, 2004).

A last comment on the scope is that while we discuss the cog-
nitive complexity of assessing dependence in various ways, such as
already considered by Kruskal (1958), and while insights from psy-
chological studies are mentioned, corresponding research streams
for causal and association judgements are not reviewed exhaus-
tively. Normative and descriptive models for causal reasoning or
mental conceptualisation of correlations, which origin is often at-
tributed to Smedslund (1963), are found for instance in Mitchell,
De Houwer, and Lovibond (2009), Gredebdck, Winman, and Juslin
(2000), Beyth-Marom (1982) and Allan (1980). An overview and
introduction to these areas is given in Hastie (2016) and Shanks
(2004).

The paper is organised as follows. Section 2 discusses the ex-
tent to which findings from eliciting univariate quantities apply to
the elicitation of multivariate ones in order to provide the reader
with an indication for the scope of the overall topic. Section 3 in-
troduces the modelling context which shows how modelling and
eliciting dependence are related. This offers an overall structure
to the research problem. Then, Section 4 discusses how elicita-
tion is approached for quantifying various dependence models.
Section 5 presents dependence parameters that are commonly
elicited together with its implications for experts’ assessment bur-
den before Section 6 briefly reviews findings on mathematical
aggregation of dependence assessments. Section 7 provides an
overview of the empirical contributions in the literature based on
which Section 8 formulates directions for future research and con-
cludes the paper. We refer to Appendix B (Supplementary mate-
rial) whenever a technical term needs a more detailed explanation,
however the original references should be considered for an ex-
tended introduction.

2. Generalisations of univariate elicitation processes for
eliciting dependence

Structured processes for the elicitation of dependence follow
historically from findings made when eliciting univariate quanti-
ties. In the early days of uncertainty modelling, formal processes



C. Werner et al./European Journal of Operational Research 258 (2017) 801-819 803

for eliciting univariate uncertainties, such as marginal probabilities,
were developed to ensure a methodologically robust approach to
parameter quantification in the face of lacking relevant historical
data. From these, methods to elicit dependence followed given the
need of accounting for relationships between uncertainties. Cooke
(2013) discusses the historical development of expert judgement in
uncertainty analysis and its achievements in more detail.

This development is not surprising as univariate quantities are
(typically) more intuitive to experts and their specification is re-
quired (at least implicitly) prior to eliciting dependent distributions
for two or more uncertain quantities.

In this section we discuss some main foci of structured ex-
pert judgement studies and evaluate the extent to which findings
for univariate quantities are generalisable in the multivariate case.
This discussion outlines where in a process adjustments are nec-
essary when eliciting multivariate uncertainty and therefore pro-
vides an indication for the scope of dependence elicitation. Given
the overall focus of the paper, we outline only the relevant consid-
erations for the elicited dependence parameters and the aggrega-
tion of judgements. However, it should be noted that an elicitation
process is much more complex and other decisions in it, such as
how to design the statistical training for experts prior to an elici-
tation, might vary as well considerably when eliciting multivariate
uncertainty.

Already the earliest expert judgement studies for univariate
quantities have shown that assessment outcomes can differ greatly
depending on the use of directly or indirectly elicited query for-
mats (Spetzler & Stael von Holstein, 1975). As a result, an exten-
sive literature on heuristics and biases is available on the mat-
ter of framing elicitation questions and choosing a form for the
query variable. Further, recommendations are made on the theo-
retical suitability of the elicited format, e.g. objections are made to
non-observable quantities (Kadane & Wolfson, 1998). For eliciting
multivariate quantities on the other hand, the same conclusions
are not readily applicable. As will be seen, the effect of direct and
indirect elicitation approaches is less well-understood and findings
are often conflicting. The objection to non-observable quantities is
less clear and indeed we show later that eliciting non-observable
quantities performs well in terms of empirical accuracy and math-
ematical coherence. Similarly, for heuristics and biases only some
extensions for the multivariate case exist, such as “illusory correla-
tion” (Chapman & Chapman, 1969), stemming from the availability
bias, and “confusion of the inverse”, originating with the represen-
tativeness bias (O'Hagan et al., 2006) (for both see Appendix B).
While these findings indicate an overlap for the existence of com-
mon biases, a lack of empirical research on the effect of framing
for multivariate elicitation does not allow for generalisable conclu-
sions.

Once the dependence information has been elicited in the form
of some dependence parameter (which is thoroughly addressed in
the following sections), a well-researched topic for univariate un-
certainty, which generalisation would be desirable for multivariate
elicitation, is the use of scoring rules. Roughly, a scoring rule is a
numerical evaluation of a probability assessment based on obser-
vations. In expert judgement studies, they are typically used for
two reasons, first to present an incentive for truthful assessment
and second to measure the quality of an assessment after the elic-
itation, usually to inform a weighted combination of the judge-
ments. In other words, they are used to define desirable properties
of the assessment itself and they serve as a reward structure when
evaluating an assessment. While an incentive is given by using
(strictly) proper scoring rules which ensure that experts achieve
their maximal expected score if and only if stating their true be-
lief, a main property of measuring the quality of an assessment is
its calibration, i.e. the statistical accuracy after observing an event
of interest. Suppose an expert provides a probability distribution

R— P g

Fig. 1. Schematic representation of modelling and elicitation context.

P over a set of n mutually exclusive events i. Then, after observ-
ing the events of interest, we can construct the sample distribu-
tion S with S(i) equal to the number of times that i is observed
divided by n. While it appears reasonable to state at first thought
that an expert is not well calibrated if S # P, this might be false if
we suppose that true values represent independent samples from
a random variable with distribution P. In this case, P relates to “re-
ality” but we will never have S =P due to statistical fluctuations.
Loosely, an expert is therefore said to be well-calibrated if the true
values of the uncertain quantities can be regarded as independent
samples of a random variable with distribution P (Cooke, 1991).

When evaluating experts’ performance, we have to distinguish
between scoring rules for individual variables and scoring rules
based on sets of assessments together with sets of realisations. The
first, assigning scores to each individual assessment and summing
these scores over a set of variables, is often suggested in the lit-
erature for the purpose of rewarding, yet it is not a sensible ap-
proach. A main issue is that the resulting scores cannot be inter-
preted in a meaningful way without knowing the number of quan-
tities assessed and their overall sample distribution. This is due to
the possible additive decomposition of these types of scores into
a “calibration” and “resolution” term (DeGroot & Fienberg, 1983).
Resolution measures how well experts partition the variables into
statistically distinct categories while not considering whether the
distributions assigned to these categories correspond to the ex-
perts’ assessment. This becomes problematic when high resolu-
tion overpowers low statistical accuracy. A more detailed presen-
tation of this drawback and some intuitive examples are given in
Cooke (1991); 2014). Therefore, scoring rules for average probabil-
ities are highly encouraged for evaluating and combining experts.
While some main properties of scoring rules are applicable in the
multivariate case, others cannot be readily used.

Jose, Nau, and Winkler (2009) discuss (for the univariate case)
the inclusion of order information (requiring an ordered state
space). Ordered events allow for rewarding that takes account of
nearness to an event’s realisation. In the multivariate case the lack
of natural ordering means that this approach is not possible. Fur-
ther, Jose, Nau, and Winkler (2008) discuss a wide class of scor-
ing rules, called generalised divergence scores, that allow for any
baseline distribution (rather than a uniform by default), and which
reward according to a measure of distance between the assessed
distribution and the baseline distribution. Of interest for multivari-
ate elicitation is the derivation of a weighted scoring rule that is
closely related to the Hellinger distance which is a measure of di-
vergence that has been used in the calibration of experts’ multi-
variate assessments (Section 6).

3. Guide to modelling and elicitation context

The main purpose of eliciting dependence is to quantify a mul-
tivariate stochastic model when this cannot be done wholly by
conventional statistical estimation (which, in our view is a com-
mon situation). This section discusses broad approaches to depen-
dence modelling in order to provide a clear structure for the next
sections by highlighting the link between dependence modelling
and expert judgement. Fig. 1 shows this general view on the mod-
elling context with three different broad approaches to assessing
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dependence and illustrates the relationships between model input
and output variables.

In this general context, S represents the vector of stochastic
variables in the model, and T the vector of output variables which
depends deterministically on S. R represents another set of auxil-
iary variables used to evaluate the uncertainty on S. The solid ar-
rows show deterministic relationships between the variables, and
hence the direction in which uncertainty can be propagated.

It is not uncommon for there to be dependence between the
output variables T. This can arise simply as a result of the func-
tional dependence represented in arrow a, even if the stochastic
variables in S are modelled as being stochastically independent.
In many applications, however, it is not appropriate to model the
variables in S as independent, and so we should find a way to
model and assess dependence in S.

Approach a. In Approach (a) we model the dependence relations
between the variables in S directly. The main techniques are BNs,
copulas, parametric families of multivariate distributions (e.g. the
multivariate Gaussian distribution), and Bayes Linear methods. We
provide examples for each method in the next section. Having as-
sessed the dependence and hence having specified the distribu-
tion of the variables in S, uncertainty is then propagated through
the model (arrow a) to the output variable (or variables) T. As we
shall see later, direct assessment of dependence on the variables
S is most predominant in the literature. However, two other ap-
proaches are also important and worth discussing.

Approach b. In Approach (b) we introduce a new set of auxiliary
variables R, which are not directly part of the model variables
(though may in practice have some overlap with the variables S).
The variables R are chosen so that their uncertainty is easier to
quantify—in particular one might choose these variables so that
they can be considered stochastically independent, with the de-
pendence in the variables S arising as a result of the complex rela-
tionship between the “explanatory” variables R and those in S. This
is shown in Fig. 1 as arrow b. This approach is of interest partic-
ularly when change of variables methods (frequently used in mul-
tivariate statistics) can be used to simplify the variable set from S.
A common model type used in this context is a regression model
and an example of introducing and assessing auxiliary variables is
given in Section 4.2.

Approach c. In Approach (c) we “calibrate” the uncertainties on S
through considering some set of output variables T on which the
uncertainties can be assessed. Obviously, to be useful, this would
have to be a different situation than the one in which the overall
model is to be used (see dashed node inside T), as we would oth-
erwise be simply directly assessing the uncertainty in the variables
of interest. This calibration of uncertainties relies on the backwards
propagation of uncertainty from T back to S, shown by arrow c. The
dotted arrow is used to indicate a key difference with the solid
arrows a and b. In general, more than one distribution on S will
forward-propagate to the given distribution on T, that is, the in-
verse problem has no unique solution (or even worse, it has no
solution). Other criteria (such as max entropy) are then used to
select a unique inverse. That solution then defines a dependence
structure on S, which can be propagated back through arrow a
to look at other output contexts. This is called Probabilistic Inver-
sion (PI) (Cooke, 1994; Kraan & Bedford, 2005; Kurowicka & Cooke,
2006) and we show an example in Section 4.3.

This approach is of interest when the dependence structure in S
is difficult to determine directly, but must satisfy reasonable condi-
tions on output variables that are easier to understand and hence
easier to quantify.

A common theme in the latter two approaches is the model
boundary. In both cases we choose to extend the model to in-
clude other input or output variables in addition to those which
are strictly necessary for direct modelling. Indeed it may happen
that the auxiliary variables represent simplifications of more com-
plex issues which are insufficiently understood to be included ex-
plicitly in the model but which are known to collectively impact
the behaviour of the system significantly. An example of this is
the modelling of common cause events in risk analysis (Bedford
& Cooke, 2001) where the range of underlying causes is too wide
to be modelled individually, but which together have a substantial
effect in inducing dependencies in the overall system behaviour.

We illustrate the dependence structures shown in Fig. 1 with
the following simplified project risk management example which
shows how choices can be made in the various modelling con-
texts. We are managing a project which has an overall cost (model
output variable T). The cost is determined by individual activities
with associated costs (variables in S) that are of importance for the
project completion. If we want to model the stochastic dependence
between activities in order to obtain information about the overall
cost, a first option is to do so directly by specifying the dependen-
cies directly between the cost elements. The dependence models
used here are part of modelling context a. If modelling the depen-
dence between the individual activities directly does not produce a
satisfactory model output, we have the choice to include explana-
tory variables (R) that help us to understand the relationship bet-
ter. For instance, we can include factors like environmental uncer-
tainties if we belief that our project’s activity costs are (partly) in-
fluenced by them. The techniques used here are part of modelling
context b. Recall that we are choosing to extend the model which
relates to the earlier discussion on the model boundary. The rea-
son for modelling dependency in this way is because it may be
easier to consider the impact of certain factors explicitly rather
than implicitly when only using approach a. If the model output
resulting from the inclusion of additional factors is still not satis-
factory, we might choose to model some systemic impacts of the
project. For instance, factors like the availability of qualified staff
might be present and result in a subtle dependence relationship,
leading to the distribution for the overall cost (the model output
variables T) being incorrectly assessed. With methods used in c,
we would have a separate assessment of the distribution (or at
least for features of this distribution) for the overall cost which
would lead to a changed model for the joint distribution of the
activity costs (modelling context a or b). We could also consider
modelling a more complex situation in which we manage several
projects. In this case, the overall cost becomes multivariate instead
of univariate (i.e. T becomes a vector of variables). Then, we can
use methods (from c) that allow propagating our uncertainty from
one project about which we have information backwards in order
to make inference about the distribution of the activities (S) and
hence the distribution for overall costs (T). The common objective
is to find a good model for the uncertainties relating S and T. Con-
ceptually, we can only ever specify part of the required informa-
tion for this model, so that in practice our model is always under-
specified (though this point is often not appreciated because mod-
ellers often adopt low-dimensional parametric families of models
early on). Approaches b and c provide complementary approaches
to specify further information about the model.

4. Dependence models and expert judgement

Before presenting and reviewing dependence parameters as
elicited quantities explicitly, in this section we first discuss expert
judgement for common dependence models. This includes main
challenges when using experts to quantify models as well as the
applicability of elicited forms for a satisfactory representation of
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Fig. 2. Example Bayesian network with one child and three independent parents.

the experts’ information in the model. We present the modelling
aspects first given that decisions here precede and strongly affect
the choice of which dependence parameter to elicit. In accordance
with the earlier framework (see Fig. 1), BNs and copulas together
with probabilistic and non-probabilistic parametric models are in-
troduced for context (a), regression models for (b) and Probabilistic
Inversion for (c).

4.1. Elicitation for direct modelling

4.1.1. Bayesian (belief) networks

In (a), a common way of integrating high dimensional uncer-
tainty in a probabilistic model is by specifying a multivariate dis-
tribution for the random variables through the product of marginal
and conditional probabilities. A common modelling framework is
a BN (Darwiche, 2009; Pearl, 2000). A random variable is de-
scribed by a node in the graph while arcs represent the qualita-
tive dependence relationships amongst variables. The direct prede-
cessors/successors of a node are called parents/children, and the
BN is specified (for example) by determining for every child node
its conditional probability distribution given the states of its par-
ent nodes. Hence, it is composed of a directed acyclic graph with
marginal distributions for source nodes and conditional distribu-
tions for child nodes given the parents. A simple example BN to be
used throughout this review is shown in Fig. 2.

When using expert judgement, French (2011) views eliciting
BNs as an obvious approach for obtaining dependence information.
However, while more has been written about eliciting the qualita-
tive dependence structure (the arrows in the BN) (Henrion, 1989;
Nadkarni & Shenoy, 2004), eliciting dependence quantitatively has
been recognised as a main issue when constructing BNs (Druzdel
& Van Der Gaag, 2000; Renooij, 2001). Identified difficulties are the
elicitation for high dimensional models and the assessment burden
due to an exponentially growing number of probabilities to assess
(in discrete BNs). Therefore, some alternative modelling approaches
have been developed to be used in conjunction with expert judge-
ment methods.

While in the low dimensional, discrete case, experts pro-
vide information in form of conditional probabilities to populate
conditional probability tables, in higher dimensions this is in-
tractable and too time-consuming. An alternative approach is to
model continuous distributions and to elicit dependence informa-
tion through (un-) conditional rank correlations. These models are
known as non-parametric BNs for which a review of applications
can be found in Hanea, Napoles, and Ababei (2015). For these,
Morales Napoles, Kurowicka, and Roelen (2008) developed a way
of eliciting conditional exceedance probabilities for higher dimen-
sions to derive the required rank correlations. This method is de-
tailed in the next section when discussing elicited forms of depen-
dence parameters explicitly.

In order to address the reduction of the assessment burden (in
the discrete case), one way is to reduce the number of necessary
assessments. For instance, Wisse, van Gosliga, van Elst, and Barros
(2008) propose piecewise linear interpolation (see Appendix B) in
order to reduce the overall number of required assessments for a
full conditional probability table. Their method elicits conditional

probabilities which are discussed in the next section as an elicited
form. Another method that reduces the number of required assess-
ments is through assumptions on the causal interpretation of a BN.
The assumptions on the causal interpretation originate with noisy-
OR gates (Pearl, 1988) which use an underlying parametric distri-
bution that reduces necessary assessments logarithmically (see Ap-
pendix B). The functional OR relationship denotes how individual
parent nodes are combined for a common effect and assumes that
they are independent of each other with respect to their causal
effect on the child nodes. Thus, the presence of one parent node
suffices to produce an effect on the child independently of other
parents (with a certain probability—hence noisy rather than de-
terministic). A leaky noisy-OR gate includes a background proba-
bility that represents the influence of non-modelled causes. From
this, Zagorecki and Druzdzel (2004), building onto Druzdzel and
Van Der Gaag (1995), introduce the elicitation of leaky and non-
leaky noisy-OR parameters as alternatives to conditional probabil-
ities. They use parameters introduced by Henrion (1989) and Diez
(1993) and a potential framing (for the BN in Fig. 2) is:

“What is the probability that X is present when Y, is present and
all other causes of X (addition for leaky case: including those not
modelled explicitly) are absent?”

In an experimental setting, Zagorecki and Druzdzel (2004) elicit
leaky and non-leaky noisy-OR parameters together with con-
ditional probabilities. An artificial dependence relation between
three parents and one child node was determined (causes for anti-
gravity of an unknown type of rock) and in a small simulation,
participants could choose the influence (strength level of presence
or absence) of each cause and observe what happens as an effect
(anti-gravity or not). Then they assessed the conditional probabil-
ity distribution with each assessment method, i.e. non-leaky and
leaky noisy-OR parameters and a direct conditional probability as-
sessment. The leaky noisy-OR parameter was assessed as most ac-
curate (in terms of Euclidean distance to empirical distribution)
while conditional probability was found least accurate. The authors
claim that with an increasing number of nodes their method offers
a clear advantage over conditional probability elicitation as the lat-
ter will become unmanageable. More generally, noisy-OR methods
belong to the group of canonical models (Pearl, 1988). For these,
assumptions on the underlying probabilistic relationship are made
so that a conditional probability table can be generated algorith-
mically given parameters that are assessed by experts and which
only grow linearly with the number of parent nodes. Usually the
parameters refer to conditional assessments which are made about
a number of combinations of the states of the parent nodes. An
alternative to the aforementioned noisy-OR method is the noisy-
MAX method (Diez, 1993). Within the same group of methods is
also the ranked nodes approach (Fenton, Neil, & Caballero, 2007).
Briefly, ranked nodes are random variables with discretised ordi-
nal scales which are typically assessed by experts through verbal
descriptors of the scale.

The usage of verbal classifiers to assess BNs has also been pro-
posed more generally to counteract a high assessment burden.
Here, the influence of a node is simply determined verbally rather
than numerically. For instance, van der Gaag, Renooij, Witteman,
Aleman, and Taal (1999) use a scale containing both, numerical and
verbal anchors, and Mkrtchyan, Podofillini, and Dang (2015) con-
clude (in a review on the use of expert judgement for BNs in hu-
man reliability assessment) that the use of verbal labelling for in-
ferences in BNs is common. We discuss verbal elicitation of depen-
dence explicitly in the next section.

A last way to facilitate judgement is by providing graphical sup-
port. Hinninen, Banda, and Kujala (2014) provide experts with the
pie chart probability tool available in GeNle Bayesian Network Soft-
ware to adjust assessments. Probability masses are determined and
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the resulting distribution is graphically visible immediately. This
procedure is repeated until the experts feel comfortable with their
assessments.

As shown in Section 7, the use of expert judgement for BNs is
considered in a variety of empirical areas given the popularity of
this dependence model itself.

4.1.2. Copulas

In certain situations of context (a), a multivariate distribution
can also be modelled by a copula rather than by the “marginal-
and-conditional approach” (Clemen & Reilly, 1999), presented for
BNs before. While an extensive introduction to copulas can be
found in Durante and Sempi (2015) and Joe (2014), recall first that
for a continuous random variable X with distribution function Fy,
the random variable U = F; (X) is uniformly distributed. If we have
two continuous random variables X and Y, then the distribution
of the vector (Fx(X), Fy(Y)) is supported on the unit square and
has uniform marginals. Any such distribution is called a (bivariate)
copula. This construction can be reversed: Any set of univariate
distribution functions combined with a copula represents a mul-
tivariate distribution as a result of Sklar (1959). The notion of a
copula is easily extended to greater than two dimensions.

Often a one-parameter copula family is used, Cy (u, v), that can
be indexed by a parameter 6 related to a rank correlation such as
those of Spearman or Kendall (see Appendix B). In fact, both can
be expressed in terms of the copula: Spearman’s correlation is

pe =12 // C(u, v)dudv — 3
[0,1]2

and Kendall’s 7 is

rc=4/f C(u,v)dudv — 1
[0.1]2

Within a chosen family of copulas (see Appendix B), expert elici-
tation can be used to determine the correlation and hence specify
the dependence. Whenever the family is uncertain, information on
how copulas differ for upper or lower tail concentration, i.e. tail
(in-)dependence (see Appendix B), needs be elicited additionally.
For this, upper (or lower) asymptotic tail dependence is of interest.
The asymptotic upper tail dependence parameter is defined as:

X, Y) = lirRP(Y > E W)X > - '(u))

when a limit Ay € [0, 1] exists. In this case, X and Y are defined
as dependent in the upper tail when Ay > 0, whereas whenever
Ay =0, they are tail independent (Joe, 2014). In other words, for
the former case, it is more likely to observe high values for Y
given high values for X. Following naturally from the concept of
tail dependence, the tail concentration function distinguishes vari-
ous copula formats and is defined for any u in (0, 1) as Ay = P(U >
u,V > v)/(1 —u). For the (upper) tail, it leads to the tail depen-
dence coefficient in form of Ay = (1 —2u+C(u,u))/(1 —u).

The review results presented in Section 7 show limited experi-
ence for expert judgement within a copula modelling framework.
One reason might be that copulas are distinguished on the one
hand by measures of association such as rank correlations, but on
the other hand also by its behaviour along the dependence func-
tion as indicated by its family. This constitutes a great deal of com-
plexity to be integrated into an elicitation method. However, both
types of information are highly important given that two differ-
ent copula families exhibit a very different behaviour even for the
same rank correlation (as shown in Appendix B). This is particu-
larly crucial for copula families that model extreme joint depen-
dence through asymptotic upper/lower tail dependence (as consid-
ered in the first elicitation approach presented below) in contrast
to tail independent ones. At this point, it is important to note that
the use and elicitation of measures of association related to tail

dependence depends (obviously) on whether one is interested in
capturing tail dependence explicitly or whether another measure
might serve the modelling purpose better, given the increased cog-
nitive complexity for experts to assess tail dependence.

Some proposed methods that aim at a sensible representation
of an expert’s understanding of dependence in form of a copula
are outlined in the following. Arbenz and Canestraro (2012) de-
compose the asymptotic upper tail dependence coefficient (pre-
sented above) and query its components from experts before
combining it again. They consider this as a non-asymptotic ap-
proximation of Ay(X, Y). The elicitation is as follows: in a first
step, all non-negligible causes for X to be “extremely large” de-
noted as events j, j=1,2,...,J, are listed. Then, experts assess
P(event j|X = “extremely large”), so the likelihood that the chosen
event is present if X is in the tail of its distribution. Lastly, ex-
perts are queried P(Y = “extremely large”|event j), i.e. the probabil-
ity that the corresponding event affects Y with the implied magni-
tude. All assessments are then combined by Ay (X,Y) ~ ijﬂ P(Y =
“extremely large”|event j)P(event j|X = “extremely large”). The pro-
posed framing is:

“Given that an extremely bad outcome is observed in X, what
is your estimate of the probability that Y will experience an ex-
tremely bad outcome?”

According to the authors (whose experts were actuaries) this
method was perceived as cognitively easy.

Another option that is being researched further by several co-
authors of this review but has not been published so far is query-
ing conditional exceedance probabilities for chosen quantiles from
experts to fit a parametric copula. This is done by plotting elicited
values for each considered quantile together with candidate copula
choices and after a first “eyeballing” use conventional goodness-
of-fit tests for the distance to parametric families. Fig. 3 shows
simulated conditional exceedance probabilities for several para-
metric copulas with given rank correlations. With the assessment
of the probability that Y exceeds its uth quantile given that X ex-
ceeds its uth quantile for a certain number of thresholds u, a sen-
sible copula choice that represents the experts’ beliefs can be es-
timated. We address the details of eliciting conditional exceedance
probabilities in the next section.

As a non-standard parametric alternative, Meeuwissen and Bed-
ford (1997) discuss using a minimally informative copula with
given rank correlation. A copula is modelled by asking experts
to provide a dependence constraint between two random vari-
ables, and taking the copula which is minimally informative with
respect to the uniform (independent) copula. This is further de-
veloped in Bedford, Daneshkhah, and Wilson (2016) and Bedford
(2002). Here, experts assess the expectation of functions for the
two underlying variables. From that a (min inf) joint probability
is constructed which satisfies the expected value constraint. An
advantage is that in this approach it is easier to relate a cop-
ula parameter to an observable quantity than it is for common
parametric families. An example is given for the dependence of
failure times between machine components. Minimal informative-
ness also served as motivation for Kotz and Van Dorp (2010) who
consider a sub-family of generalised diagonal band (DB) copulas
which require a dependence parameter. It is specified by experts
through conditional exceedance probabilities (given the median
value). Van Dorp (2005) regards DB copulas as advantageous when
using expert judgement as a dependence parameter that relates to
its one copula parameter can be defined. We will introduce this
dependence parameter in the next section when we address forms
of elicited dependence parameters explicitly.

Besides some empirical work in maintenance optimisation
(Bunea & Bedford, 2002), the majority of experiences for elicit-
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Fig. 3. Conditional exceedance probabilities at uth quantiles (rank correlations: 0.2—
0.9).

ing copulas, such as the first approach presented above, comes
from banking and insurance (Arbenz & Canestraro, 2012; Bocker,
Crimmi, & Fink, 2010; Regis, 2011; Shen, Odening, & Okhrin, 2015),
an area in which the popularity of copulas has increased lately
(Genest, Gendron, & Bourdeau-Brien, 2009). Here, expert judge-
ment is typically used to assess conditional and joint probabilities
of (extreme) loss events. These studies might be helpful for other
areas where copulas are gaining increased interest, such as hydrol-
ogy (Genest & Favre, 2007).

4.1.3. (Probabilistic) parametric models: multivariate distributions
Another way to model dependence in (a) is by specifying a mul-
tivariate distribution. For an introduction and overview of the dis-
tributions discussed here, see Balakrishnan and Nevzorov (2004).
As a main challenge when eliciting a multivariate distribution
is that its full specification would be cognitively too complex for
experts, we should impose a structure on the distributional choice.
While for univariate distributions it might be sufficient to assume
a minimal structure such as a continuous and smooth cumula-
tive distribution function which can be specified satisfactorily by
a few quantile assessments (O’Hagan et al., 2006), in higher di-
mensions this is still unreasonable for practical use. Rather, a para-
metric multivariate distribution that represents an expert’s belief
sufficiently is a necessary assumption. Then, an expert’s opinion is
fully specified by determining a few parameters. While any distri-
butional assumptions have to be in agreement with the experts,
they should be as well in accordance with the modelling purpose.
For instance, it should be suitable for its use in a specific deci-
sion problem for which a distributional form is predetermined or
its use as a prior in a Bayesian modelling framework. The latter
offers a probabilistic framework to complement the lack of data
for some common statistical dependence models. Prior beliefs of
experts (see Appendix B) for given parameters are updated once

observations are available. A prior is chosen so that it can be most
easily updated (O'Hagan et al., 2006). Generally, this is a different
elicitation situation/purpose than using expert judgements to ob-
tain beliefs about uncertainties without the inclusion of future ob-
servations (what is done in most of the literature reviewed here),
but this is not of importance for us as with regards to dependence
elicitation both methodologies have similar challenges. Hence, both
methodologies contribute to the findings presented here.

In the literature on eliciting parameter information for quanti-
fying a multivariate distribution, mainly multivariate normal (Al-
Awadhi & Garthwaite, 1998, 2001; Dickey, Lindley, & Press, 1985;
Garthwaite & Al-Awadhi, 2001), or t (Al-Awadhi & Garthwaite,
2001; Kadane et al., 1980) and Dirichlet distributions (Chaloner
& Duncan, 1987; Elfadaly & Garthwaite, 2013; Zapata-Vazquez,
O’Hagan, & Soares Bastos, 2014) are considered. A method that
specifies a multivariate distribution in a more flexible way (as
shown below) is given in Moala and O’Hagan (2010).

For the common parametric assumption of a multivariate nor-
mal or t distribution, the elicitation aims at quantifying the mean
vector, i, and the covariance matrix, X. Instead of determining
the variables of interest directly, even though this has been at-
tempted through interactive graphical methods (Chaloner, Church,
Louis, & Matts, 1993), typically hyperparameters that follow from
distributional assumptions on the form of y and X and therefore
specify (or index) the multivariate distribution of interest are de-
termined. In other words, the values of the hyperparameters re-
flect the available subjective prior knowledge about the unknown
model parameters. This is typically based on specifying hierarchi-
cal priors assuming exchangeability (see Appendix B) for the joint
distribution in question. The variables of interest are then con-
ditionally independent given the hyperparameters. This is known
as Bayesian hierarchical modelling (see Appendix B) which is a
common way to restructure dependence in order to elicit param-
eters as univariate quantities. Typically, the hyperparameters con-
sist of means, scale parameters, degrees of freedom and the spread
matrix which (whenever possible) are elicited through univariate
quantities and conditional medians of observable variables. Percy
(2002, 2004) presents how the specification of suitable prior dis-
tributions can be simplified and how values of hyperparameters
can be elicited from experts through quantiles of predictive prior
distributions for a variety of common distributions in the reliabil-
ity context of mathematical modelling of maintenance. While we
explain this approach below (for Dirichlet distributions), it is note-
worthy here that a main advantage is that observable quantities
can be used. Further, he proposes to elicit fewer quantiles than un-
known hyperparameters and use interaction of experts for further
adjustments.

A different problem for which a multivariate distribution needs
to be specified is whenever an event can take one of k possible
outcomes (k > 2) and the probability of the ith outcome, p;, is
elicited from experts. This might be denoted as eliciting the opin-
ion about a “set of proportions” (Zapata-Vazquez et al., 2014). As
the sum of all p; must equal 1, p; cannot be assessed in isolation.
Further, with k > 2, a multinomial distribution models the overall
outcome given that we have independent trials and the probability
of each outcome is the same in each trial. The commonly chosen
parametric distribution is then a Dirichlet distribution, the conju-
gate prior distribution of a multinomial one (O’Hagan et al., 2006).
One of the earliest approaches in Chaloner and Duncan (1987) uses
an elicitation strategy based on predictive distributions. When con-
sidering a specified number of draws from the population of inter-
est, the expectation of the number that belongs to a category is
in fact p;. Given that, they ask their experts for the joint modes
of the predictive distribution. Other methods assess the Dirich-
let distribution by imaginary observations, i.e. by determining the
extent to which experts change their belief given an observation
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from a draw (O'Hagan et al., 2006). More recently, Zapata-Vazquez
et al. (2014) proposed a refinement to acknowledge the strong as-
sumptions of a Dirichlet distribution (due to the small number of
parameters that determine its form) and therefore make use of
over-fitting. Loosely, they ask experts for more assessments than
(strictly) necessary to fit a distribution in order to reject the choice
of a Dirichlet distribution if it is inappropriate.

A more flexible method that avoids experts’ belief to fit a single
pre-specified parametric family is presented in Moala and O’Hagan
(2010). While the focus of the elicitation is laid on the analyst who
seeks to identify the probability density function for a multivari-
ate vector, the posterior distribution is based on the prior distri-
bution as specified by an expert. In order to ensure flexibility on
the parametric assumptions, the analyst’s prior belief is a Gaussian
process which allows the multivariate distribution to take a vari-
ety of forms given the experts’ assessments. The elicited parame-
ters are univariate quantities and a small number of joint probabil-
ities, unless the elicitation of the latter can be reduced to querying
univariate information as well, depending on assumptions for the
multivariate vector’s probability space.

Given that dependence information for quantifying paramet-
ric multivariate distributions is (mainly) elicited through univariate
quantities, experimental studies show a similar performance to ex-
pert judgement studies with univariate variables of interest. For in-
stance, (conditional) medians are regarded as cognitively easy and
reliable to assess (Al-Awadhi & Garthwaite, 2006). Empirical find-
ings on the elicitation of multivariate distributions are scarce how-
ever which is why no indication for a particular application area
can be given (Section 7).

4.14. (Non-probabilistic) parametric models: Bayes linear methods

An alternative to eliciting distributional (prior) beliefs for
Bayesian models in (a) is the Bayes linear method (BLM) (Goldstein
& Wooff, 2007). It differs by using expectation as basis and is
able to represent more complex problems through adjusting beliefs
by linear fitting. Without distributional assumptions all required
parameters are first and second moments (Farrow, 2003). Hence,
eliciting dependence information concerns beliefs about the co-
variance of parameters (rather than joint probabilities). While not
much experience on the actual elicitation is found in the literature,
Revie, Bedford, and Walls (2010, 2011) and Revie (2008) address
expert judgement for BLM specifically. The dependence model con-
sidered is Y = X + R where X is the explanatory variable of Y.
R represents the unexplained uncertainty between X and Y (with
no correlation between X and R) and « is used to measure the
strength of the relationship between X and Y. As a pragmatic way
to elicit covariance information, the elicitation of quantiles is pro-
posed whereas the relation between these and the moments needs
to be derived. A possibility is through Pearson and Tukey (1965),
further developed in Keefer and Bodily (1983), who propose elicit-
ing from three to five percentiles to obtain means and variances.
Hence, with the 5th, 50th and 95th quantiles specified as xggs,
X0.5, X0.95 for an uncertain variable X, the mean is derived by uy =
0.63xg 5 + 0.185[X( 05 + X0.95] and the variance by U)% = ((xg 95 —
X0.05)/(3.29 — 0.1(A/0g))? with A =Xgg5 + X005 — 2X05 and o =
((X0.95 — X0.05)/3.25)2.

In Revie et al. (2010) five elicitation techniques are compared. A
first one is the direct elicitation of cross-moments which is omit-
ted here given that it is discussed in the next section as a com-
monly elicited form. For the remaining methods we assume that
the mean and variance of X and Y have been elicited beforehand.
In the direct calculation approach, experts assess their updated be-
lief of E(Y) after the observation that E(X) increased hypothetically.
While « can be computed, for the uncertain variable R the experts’
5th, 50th and 95th quantiles are elicited through:

“Given that X is known to be X with complete certainty, what are
the 5th, 50th and 95th quantiles of Y?”

It follows that E(R) and var(R) can be calculated as shown
before and then E(Y) = «E(X) + E(R), var(Y) = o2var(Y) + var(R)
and cov(X,Y) = avar(X). For the adjusted expectation method, ex-
perts are asked to re-assess their belief about X based on the true
value of Y. When defining the true value as y, the new belief for
E(X) is Ey(X) = Xy with observed y. The covariance can then be
calculated as cov(X,Y) = ((Ey(X) —E(X))/(Y —E(Y)))var(Y). The
value of o is again computed and defines the values an expert
can assess for coherence reasons. The adjusted uncertainty ap-
proach works in the same way as adjusted expectation, with the
only difference that the variance of X is updated based on an ob-
servation of the true Y. With the adjusted variance denoted as
vary (X), the adjusted covariance is then derived using cov(X,Y) =
/ (var(X) —vary (X))var(Y).

In an experimental setting of the same study, experts were
presented with the pairs of variables for life expectancy between
males and females (in the same country), height and weight of
male students, as well as mean time to failure between vehicles.
All experts were familiar with basic statistical summaries, but not
with BLM. The different techniques were compared for accuracy,
incoherence and intuitiveness. Thereby, adjusted uncertainty was
the only method that exhibited incoherent assessments and also
had more inaccurate results with far more assessments of nega-
tive or no correlation when all empirical data was positively cor-
related. Direct calculation on the other hand had the best perfor-
mance in terms of accuracy and no incoherent assessments. Direct
correlation and adjusted expectation barely showed any differences
for experts’ performance. However, over 15% of the responses were
deemed inconsistent.

While this is the first and only such complete attempt to explic-
itly focus on the actual elicitation of covariance in BLM, some main
references for empirical studies with documented expert judgment
approaches are Gosling et al. (2013), Revie, Bedford, and Walls
(2011), Bedford, Denning, Revie, and Walls (2008), Farrow, Gold-
stein, and Spiropoulos (1997) and O’Hagan, Glennie, and Beardsall
(1992).

4.2. Elicitation for indirect modelling with auxiliary variables

4.2.1. Regression models

A common dependence model in context (b) is a regression
model. For recent overviews, see Ryan (2008) and Weisberg (2005).

Recall that here information on the dependence is modelled in-
directly by restructuring the natural input. Technically restructur-
ing is done using variable transformation techniques. Beliefs about
parameters are then elicited while being formulated as univariate
query variables. Similar to quantifying parametric multivariate dis-
tributions, elicitation here is typically done for prior beliefs in a
Bayesian methodology.

The parameter of interest is a regression coefficient, 8. The like-
lihood function p(Y|X, B) relates observed data Y to regression co-
efficients B and covariates X. Experts then specify the prior distri-
bution for p(8) typically through hyperparameters which are the
mean and the variance of the regression coefficient (James, Choy,
& Mengersen, 2010). Eliciting moments of regression coefficients
directly however might be cognitively too complex given that ex-
perts would need to understand the effect that a change of co-
variate X has on Y. Therefore, the literature on eliciting priors for
regression models proposes indirect approaches. For these, experts
provide a probability of the response value based on specified val-
ues of the explanatory variables or vice versa. From this, prior elic-
itation methods for linear models, normal (Kadane et al., 1980) and
multiple (Garthwaite & Dickey, 1991), piecewise-linear (Garthwaite,
Al-Awadhi, Elfadaly, & Jenkinson, 2013) as well as logistic
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regression models (O’Leary et al.,, 2009) have been developed. For
the latter, experts typically assess conditional means, E(Y|X, B)
(Bedrick, Christensen, & Johnson, 1996; James et al, 2010) for
a probability of presence, p;, with binary responses for observa-
tion i modelled as logit(p;) = Bo + B1xi1 + BaXio + ... + Bjxi j + €
(O’Leary et al., 2009). For instance, Choy, O’Leary, and Mengersen
(2009) elicit the probability of presence for a certain wallaby type
at a specified location with fixed habitat characteristics in habitat
modelling. Depending on distributional assumptions for the prob-
ability of presence (such as a Beta distribution) the mode rather
than an arithmetic average or median might be elicited due to the
potential skewness of the distribution.

In a similar manner, parameters can be elicited for (multiple)
linear regression models. Garthwaite and Dickey (1991) propose a
model of the form:

E(Y|x1,X2, ... Xi) = (B1x1, Baxa, ... BiX;)

where again B denotes the regression coefficient and E(Y|xq, X3,
.., X;) is the expected (average) value of Y when X; =x{,X; =
X2, ..., X; = x;. Experts then specify the prior distribution of 8 by
assessing hyperparameters. To do so, the authors introduce design
points, values at which a prediction is made after hypothetical data
are given. Likewise, Kadane et al. (1980) elicit fractiles for a pre-
dictive distribution with specified values at design points, using a
bisection method (see Appendix B).

Regression elicitation is further explored in Choy et al. (2009),
O’Leary et al. (2009) and Al-Awadhi and Garthwaite (2006).
O'Leary et al. (2009) present three different elicitation methods
with graphical support, similarly to Al-Awadhi and Garthwaite
(2006) who use an interactive graphics method as well. Empirical
studies for expert judgement in regression modelling are mainly
found in the area of ecology for which e.g. Choy et al. (2009) sum-
marise various approaches.

4.3. Elicitation for modelling propagation of output

4.3.1. Probabilistic inversion

In modelling context (c), a common situation is that input pa-
rameters of a dependence model are not observable. Therefore, a
direct quantification of these variables is not sensible and methods
such as PI (Cooke, 1994; Kurowicka & Cooke, 2006) are used. Its
aim is to take the distribution representing the uncertainty on cer-
tain observables and translate it on the uncertainty of target vari-
ables. While the distribution can come from historical data, PI can
be used as well as a method for transforming expert assessments
of some observable model outputs into uncertainties on parame-
ter values. A motivation for PI (that was never published as such)
originated in the development of expert judgement methods and
uncertainty analysis in the nuclear sector (for a historical overview,
see (Cooke, 2013; Kraan & Cooke, 1997)) where experts refused to
assess transfer coefficients directly. Similarly, Kraan and Bedford
(2005) elicit outputs of a power law that models spread of lat-
eral plume in atmospheric dispersion in form of oy (x) = Ayx%v. The
output oy(x) denotes the lateral (indicated as y) spread at wind-
speeds x and is determined by the dispersion coefficients A and B.
Instead of querying the joint distribution on (A, B), which would
require experts to consider all possible effects of this relationship
through the model, they are asked to quantify uncertainty on the
output at various downwind distances through a univariate elici-
tation method. In addition to modelling plume spread, the same
paper discusses a case study in banking. Empirical findings of the
method are however lacking which is why no indication of specific
application areas can be given.

5. Forms of elicited dependence parameters

This section reviews the proposed forms of dependence param-
eters for elicitation, i.e. association measures or summary types of
an expert’s joint distribution that are used in an elicitation ques-
tion. As well, the corresponding framing of elicitation questions is
presented. In addition to outlining the main elicited forms, an eval-
uation regarding desirable properties is given whenever possible.
Chosen desiderata allow for guidance on the suitability of elicited
dependence parameters from different perspectives.

Desiderata for elicited dependence parameters

A first perspective concerns theoretical feasibility whereas a
common desideratum for expert judgement is that the elicited
forms are observable and physically measurable. This allows as-
sessments to be credible and defensible (Cooke, 1991). With a
similar objective, a rigorous foundation in probability theory is
desirable.

A further perspective considers the assessment burden for ex-
perts. In this regard Kadane and Wolfson (1998) emphasise prac-
ticality, i.e. that experts feel comfortable at assessing uncertainty
while their opinion is captured to a satisfactory degree. For the for-
mer, query variables should be kept intuitively understandable. For
the latter, queried information should be linked as directly as pos-
sible to the specific dependence model of interest, ensuring that an
expert’s assessment is satisfactorily reflected in the final output of
the model. As variables are often transformed into some other pa-
rameter than the one that populates a dependence model (e.g. due
to a potential reduction in the assessment burden), it is important
to measure and control the degree of resemblance between the re-
sulting assessments (through the model) and the dependence in-
formation as specified by the expert (Kraan, 2002). Note that the
transformation of dependence parameters is typically based on as-
sumptions about the underlying bivariate distribution. For instance,
when transforming a product moment correlation coefficient into
a rank correlation, this is straightforward under the assumption of
bivariate normality. However, positive definiteness is not guaran-
teed which relates to the next desideratum, that of mathematical
coherence. Coherence means that the outcome should be within
mathematically feasible bounds. For dependence measures, ensur-
ing positive definiteness of a resulting correlation matrix might
be a potential issue and methods that adjust experts’ judgements
might be necessary (Lurie & Goldberg, 1998). Yet, whether an ex-
pert agrees with this adjustment or not determines their confi-
dence in the final assessment. Another solution to incoherence is
to fix possible bounds for the assessment a priori, even though
this can severely decrease the intuitiveness of the assessment. A
last desideratum is to calibrate assessments on statistical accuracy.
This means, we would like to test experts’ performance (in terms
of statistical accuracy) against empirical data (if available), often to
inform the weighting for mathematically combining judgements.

While no elicited dependence parameter meets all desiderata,
their consideration supports comparison and allows a better guid-
ance in terms of suitability within certain modelling situations.

At a broad level, a distinction for elicited quantities can be
made between probabilistic and statistical approaches (Clemen &
Reilly, 1999; Kraan, 2002; Morales Napoles et al., 2008). When-
ever possible the presented findings are categorised into one of the
groups. Approaches that do not fit in any of these classifications
can be found in Section 5.3.

5.1. Probabilistic methods

In the selected literature popular variables to elicit are of prob-
abilistic nature. This popularity can be attributed to the firm
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Fig. 4. Expert’s conditional probability assessment as a function of the product mo-
ment correlation coefficient.

foundation (in probability theory) and the (potential) observability
of the elicited variables which accompany this choice.

5.1.1. Forms of probabilistic dependence parameters

Conditional (exceedance) probabilities. In the context of probabilis-
tic measures of dependence, conditional probability might be the
best known one. A common way to elicit conditional probabilities
is to provide an expert with the information that the conditioning
variable is observed above (or below) its median value (marginal
probabilities are elicited first or are known from data) before the
probability that the target variable lies above (or below) its median
value is enquired. A possible framing of the question is:

“Consider the pair of variables, X and Y. Suppose now that Y has
been observed to be above its/your median value for it. What is
the probability that X lies also above its/your median value for it?”

This might be extended to any quantile defining for the pair of
random variables X and Y the elicited form for a conditional prob-
ability as Pcp(x;, ¥;) := P(X > x;|Y > y;) where i = 0.5 refers to the
median value, but i might take any other quantile. Experts assess
independence between X and Y as Pp(X;,y;) = P(X > x;) implying
that learning about P(Y > y;) does not add any information. For a
(strong) negative relationship experts state their belief as Pep < [0,
P(X > x;)) while for a (strong) positive it is Pp € (P(X > x;), 1].
Given the above form, a conditional probability is sometimes also
called conditional exceedance probability. In contrast, another way
to elicit a conditional probability is by P-p(x;,y;) := P(X > x;]Y =
¥;). This way can be applied similarly and its use depends strongly
on context. However, O’'Hagan et al. (2006) regard it as less cogni-
tively complex.

In order to transform a conditional probability into a product
moment correlation coefficient (e.g. for modelling purposes) the
relation between the two can be derived as shown in Fig. 4.

The above derivation is possible only when an assumption
about the underlying copula is made (Kurowicka & Cooke, 2006).
Fig. 4 was obtained under the assumption of normal copula den-
sity for X and Y. The analyst finds the product moment correlation
that ensures a positive definite correlation matrix and satisfies the
expert’s assessments (Morales Napoles et al., 2008).

Experts’ performance when eliciting conditional probabilities
(in comparison to six other methods) has been investigated in
Clemen, Fischer, and Winkler (2000). The assessed pairs of vari-
ables are relationships such as height-weight, as well as depen-
dence between individual stocks, their indices and the relation be-
tween stocks and their indices. Participating experts were MBA

students with some basic statistical training. In this experimen-
tal setting, conditional probability is among the worst performing
methods for coherence and fourth out of six in terms of accuracy
against empirical data. Similar coherence issues when assessing
conditional probabilities were observed by Moskowitz and Sarin
(1983) who therefore provided their experts with a Joint Proba-
bility Table which led to large improvements in performance. Gen-
erally, for this method the elicitation of several values to condition
on is recommended (Cooke & Kraan, 1996).

In the case-study literature (Section 7), the elicitation of con-
ditional probabilities is nevertheless favoured as it often serves as
direct model input. Main references where this approach has been
formally used stem from the Joint CEC/USNRC Uncertainty Analy-
sis framework (Cooke & Kelly, 2010). The experts participating in
these studies became familiar with this format which underlines
the importance of training experts to ensure familiarity.

An alteration to the elicitation of conditional probabilities
which is also closely related to concordance probabilities (see be-
low) is presented in Fackler (1991). Experts are asked to assess the
median deviation concordance probability which is also known as
quadrant probability (Kruskal, 1958). It is defined as the probabil-
ity of the two variables, X and Y, falling both either below or above
their medians, i.e. Pyp(x,y) :=P((X —Xg5)(Y —yo5) > 0) with xg5
and yq 5 being the respective medians. This could be asked for as
follows:

“Consider the pair of variables X and Y. You have indicated that
there is a 50/50 chance of X being above or below xq 5 and Y being
above or below yo 5. What is the probability that X and Y both will
either be above or below their medians?”

The above formulation is a slightly altered version of the orig-
inal reference to offer a general framing. While the conditional
probability cannot be fully represented with a quadrant proba-
bility, the author claims that the dependence elicitation concen-
trates on events that experts “should be capable of making most
informed judgements about” (Fackler, 1991). According to Kruskal
(1958), this is “perhaps the simplest measure of association be-
tween two random variables” and an advantage is that it can
be assessed and interpreted on the customary range. This mea-
sure is non-parametric, meaning that is has a well-defined in-
terpretation (even) when structural assumptions, such as bivari-
ate normality, do not hold. Further, it is ordinally invariant, i.e.
it remains unchanged by monotone functional transformations of
its coordinates. This has advantages with regards to modelling
convenience as well as in terms of cognitive complexity to as-
sess it. The measure is closely related to Blomqvist 8 (Blomquvist,
1950) which is defined as 8 = P((X —xp5)(Y —¥o5) > 0) — P((X —
X05)(Y —Yo5) < 0).

Similar to Kruskal (1958) when discussing the conveniences
of using the quadrant probability, Blomqvist (1950) describes his
measure of association as being “valid under rather weak assump-
tions regarding the distribution of the population” and “easy to
deal with in practice”. Under the assumption of bivariate nor-
mality, a relation to the correlation coefficient, p, is given by
(2/m arcsin p). Given the advantages from a modelling together
with elicitation perspective and as pointed out by a reviewer
of an earlier version of this paper, the quadrant probability and
Blomqvist S deserve more attention when eliciting dependence.

Conditional (exceedance) probabilities (for higher dimensions). Elicit-
ing higher dimensions of dependence such as in Morales Napoles,
Hanea, and Worm (2013) and Morales Napoles et al. (2008) re-
quires the assessment of conditional rank correlations in addition
to unconditional ones. To do so, the variables of interest that are
conditioned onto are ordered according to some order of prefer-
ence. This corresponds for instance to the relation of parent to
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child nodes in a directed acyclic graph. Once experts have assessed
the unconditional rank correlation pxy, (in Fig. 2) with any of the
other techniques presented here, the conditional rank correlations
need to be determined (pxy,)y, and pxy,y,y, in Fig. 2). A prob-
abilistic way to do so is through conditional (exceedance) proba-
bilities for higher dimensions which directly follow from the low
dimensional case discussed above. A question (according to Fig. 2)
might be framed as follows:

“Suppose that not only Y; but also Y, has been observed above
its/your median value. What is now your probability that also X
will be observed above its/your median value?”

For this the conditioning set of the unconditional case will be
extended to Pep(x;, ¥ i Y2,i) = PX = xilY1 = y10 Y2 = ¥2,4)
for the ith quantile, e.g. i = 0.5 for the median. If experts assess
(conditional) independence, the estimate will be the same as for
Pep(x,y1) = P(X > x;|Y7 > y1;). Otherwise the positive/negative re-
lationship is assessed as before. Whenever Pcp(X, y1, y2) # 1 or 0 it
follows that X is not completely explained by Y; so that Y, adds to
the explanation of the former. In psychological research of causal
learning theory, Y, Yo and Y, would be referred to as cues that
compete for associative strength (Mitchell et al., 2009). The idea
of associative strength shows a key difference to the elicitation of
noisy-OR parameters presented earlier in the context of BNs.

The intuitiveness of this method might be inhibited given that
the choice of the first (unconditional) correlation imposes restric-
tions of the possible values for the second (conditional) correlation
(similar to those of positive definiteness of a correlation matrix).
This introduces the necessity to compute (in real time) updated in-
tervals (different than the unrestricted [—1, 1]) into which the new
assessment can fall, to preserve coherence. Technical details can be
found in Morales Napoles (2010).

In order to test experts’ performance when assessing a multi-
dimensional dependence structure, (Morales Napoles et al., 2013)
compared conditional probabilities of exceedance with the direct
elicitation of pairwise correlation. In their study, a group of 14
experts (with previous training on statistics) was presented with
two versions of a graphical model for the relationship between
sulphur dioxide emissions and fine particular matter in Alabama,
USA. The experts were split into two groups so that different de-
pendence measures could be elicited. For the first model, query-
ing the rank correlation directly exhibited the best performance
when averaging out the absolute difference of empirical data and
all individual answers. Based on a performance-based measure
of accuracy (detailed in Section 6), the top three most accurate
experts assessed correlation directly. However, when averaging
performances per elicitation technique and model, the conditional
exceedance probabilities outperformed direct assessments. Nev-
ertheless, the authors could not formulate definitive conclusions
since the different model versions might have had an influence on
the differences in experts’ performances.

Joint probabilities. From conditional probabilities it follows natu-
rally to consider the elicitation of joint probabilities. A joint prob-
ability, Pp(x, y) := P(X < X, Y < y), can be queried for two random
variables, X and Y, by asking:

“Consider the pair of variables X and Y. What is the probability
that both are within the lower (upper) ke, percentage of their re-
spective distributions?”

If an expert assesses independence between X and Y, the joint
probability corresponds to Pp(x,y) = Fx(x)Fy (y), where Fx and Fy
represent the marginal cumulative distributions of the correspond-
ing elicitation variables. A positive relationship is assessed by ei-
ther Pp(x,y) = Fx(x) or Pp(x,y) =y (y). For a negative relationship
Pjp(x, y) approximates O.

A relation to the (product moment) correlation coefficient is
derived similarly as in the case of conditional probability. For
medians, conditional probabilities are derived by using the relation
2P(X > Xg5,Y > yo5) = P(X > x05|Y > yg5) (O'Hagan et al., 2006).

Daneshkhah and Oakley (2010) mention a modification to elicit
joint probabilities. It is presented in Moala and O’Hagan (2010),
where the elicited probability takes the form Pjp(x, y) := P(x; <
X < X, yi <Y <) It is concluded that this alternative is able
to capture the most important features of an expert’s distribution
with a good accuracy and by just making use of a small amount of
data.

Eliciting joint probability directly however is seen as rather cog-
nitively complex and (even) assessing independence in such a way
is regarded as non-intuitive (Garthwaite et al., 2005). A system-
atic bias for this kind of assessment is that experts tend to over-
estimate the probability of conjunctive events and underestimate
that of disjunctive ones (O’Hagan et al., 2006). This might be due
to the requirement that certain knowledge of probability theory
is necessary for this method. (Clemen et al., 2000) found that
when elicited joint probabilities are transformed to correlations,
the obtained values tend to be out their feasible bounds rather fre-
quently. Further, it was the least accurate method when compared
to empirical data.

Concordance probabilities. A further way to think probabilistically
about dependence is by considering concordance (and discordance)
of random variables. The concept of concordance probabilities is
closely related to the earlier introduced quadrant probability and
it is limited to a frequency or cross-sectional interpretation for the
pair of variables in question, i.e. it requires a population to draw
from (Clemen & Reilly, 1999). The question can be framed as:

“Consider two independent draws, (Xq, yq) from their common un-
derlying population a and (xy, y,) from population b. Given that
Xq > Yq holds for population a, what is your probability that the
relation x, >y, holds for population b?”

Exemplary populations for a and b might be height and weight
of some specified group of people. Formally, the probability of con-
cordance between two random variables, X and Y, considering n
independent draws (X4, yq) to (xp, yp) is given by:

>t Lbar 1o ((XasYa), (o )
()

with C* = (xq —x,) a —¥p) > 0. It can be assessed by an expert
on [0, 1]. A value of (or close to) 0 indicates a strong negative re-
lationship, 0.5 represents independence, and 1 refers to a strong
positive relationship. The transformation to a rank correlation such
as Kendall’s tau, 7, is defined as t = 2P- — 1. With the assump-
tion that X and Y can be approximated by a bivariate normal dis-
tribution, the relation from t to other correlation measures, such
as Pearson’s product moment correlation, p*, or Spearman’s rank
correlation, p, can be inferred through p* =sin(wrt/2) and p* =
2sin(r p/6) (Kruskal, 1958). Nevertheless, a (transformed) product
moment correlation matrix that is positive definite is not guaran-
teed (Kraan, 2002).

Within the psychological literature of causal learning, the con-
cordance probability relates to the term degree of relatedness. In
the classical experimental design, participants are presented with
information about the presence or absence of an input variable,
representing a candidate cause, as well as the presence or ab-
sence of an effect/outcome. For instance, medical experts assess
the likelihood of a disease from the (non-) occurrence of a symp-
tom. Based on their assessments of discordant and concordant ob-
servations the aim is to formulate descriptive rules for inferring
causal strength (Shanks, 2004).

Pe(x.y) =
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Fig. 5. Conditional quantiles to rank correlations.

In Clemen et al. (2000), this technique performed reasonably
accurate in comparison to other methods and only rarely incoher-
ent assessments were made. Similarly, Garthwaite et al. (2005),
Kunda and Nisbett (1986) and Gokhale and Press (1982) come to
the conclusion that this method is reasonably accurate and might
be preferred if a population is given. Yet the importance of an ex-
pert’s familiarity with the population is emphasised.

Expected conditional quantiles (fractiles/percentiles). The quantile
(fractile/percentile) method requires conditional estimates and
therefore shares certain characteristics with eliciting conditional
probabilities. Experts are presented with information that the
conditional value corresponds to a certain quantile (or frac-
tile/percentile) and given that information, the experts assess
which expected quantile the other variable takes. A possible fram-
ing might be:

“Consider variables X and Y. Given the value Y has been observed
at its ith quantile, q;. What is your expectation of X’s value in
terms of its quantile?”

For the pair of random variables, X and Y, this is defined as
E(Fc(x)|Y =y(q;)) where Fx(x) is the corresponding distribution
function of X and y(g;) is the value that Y takes at its ith quantile.
The relation to rank correlation is given through the standard non-
parametric regression function of E(Fx (x)|Y =y(q;)) = pxy (K ¥) —
0.5) + 0.5 (Fig. 5). The conditional quantile is bounded by i, <
E(Fe(0Y = y(4) < max Where /iy, = min[F (). 1 - F ()] and

Umax = max[F (), 1 — K (y)]. If Fy(y) is above its median, the val-
ues close to the minimum refer to a (strong) negative relationship,
and the values close to the maximum indicate a (strong) positive
one. For independence, experts assess E(Fx (x)|Y =y(g;)) =0.5. A
closely related method is predictive assessment which was men-
tioned in the context of hyperparameters.

It should be noted that this dependence parameter has cer-
tain characteristics which would have similarly justified list-
ing it among the statistical approaches which are presented in
Section 5.2.1, after the general discussion on the assessment bur-
den of probabilistic methods.

5.1.2. Assessment burden of probabilistic methods

Despite the limited empirical evidence available for ex-
perts’ intuitive understanding of different assessment methods,
Morales Napoles et al. (2008) and Clemen et al. (2000) conclude
that probabilistic statements are not perceived as cognitively easy.
Conditional as well as joint probability assessments were rated
by experts as most difficult among all other methods presented
to them. In particular, when moving towards higher dimensions,
the growing conditioning sets for conditional exceedance probabil-
ities were met with accordingly growing concern. Additionally, for
conditional quantiles (fractiles/percentiles) the expert must under-
stand these location properties of distributions quite well together
with the notion of regression towards the mean which might in-
duce cognitive difficulties (Clemen & Reilly, 1999). A possible ad-
vantage of these techniques is that the assessment burden can be
decreased for most probabilistic methods by re-framing the ques-
tions. For instance, it is often possible to express their forms as rel-
ative frequencies which are a more natural way of thinking about
probabilities. Such framings were found to have a positive effect
both on assessment burden and accuracy in the univariate case
(Hoffrage, Lindsey, Hertwig, & Gigerenzer, 2000). Recognition of
the cognitive burden of assessing dependence has existed at least
since Kruskal (1958), who supports probabilistic methods, in par-
ticular the quadrant probability, due to its intuitive decision ana-
lytic interpretation in comparison to statistical methods.

5.2. Statistical methods

Despite some objections to the direct elicitation of moments
of distributions or even cross moments, such as non-observability
(Kadane & Wolfson, 1998), the literature offers some interesting
findings and conclusions about the direct assessment of statistical
measures of association (and alternative formulations).

5.2.1. Forms of statistical dependence parameters

Direct (rank) correlation. Directly asking experts for the natural in-
put of a dependence model is seen by some as a natural way of
eliciting dependence. Often, this is a correlation coefficient. One
option is to ask experts for an estimate of the (rank) correlation
between pairs of variables X and Y. A framing might be simply:

“Consider variables X and Y. What is the (rank) correlation be-
tween them?”

This usually refers to the Spearman’s rank correlation coeffi-
cient (see Appendix B) which is defined on the interval of [-1, 1].
A value of p = —1 denotes the strongest possible negative corre-
lation, p = 0 expresses that X and Y are uncorrelated while p =1
refers to the strongest possible positive relation. An advantage of
eliciting rank correlations over product moment ones is that the
interpretation of the former is independent of its marginal distri-
butions implying that its values are always in the aforementioned
interval. Nevertheless, for choosing the appropriate correlation co-
efficient, an analyst has to take into account what kind of rela-
tionship is assessed. Rank correlations, such as Spearman’s version,



C. Werner et al./European Journal of Operational Research 258 (2017) 801-819 813

assume monotonicity while Pearson’s product moment coefficient
(see Appendix B) can only be meaningful for linear relationships
(Reilly, 2000).

An obvious precondition for this type of dependence param-
eter to be intuitive is a certain level of familiarity with statisti-
cal measures. Therefore, several (conflicting) conclusions have been
made from research on this query variable. Some studies, such as
Kadane and Wolfson (1998), Morgan, Henrion, and Small (1992), as
well as Gokhale and Press (1982), view a direct method as unreli-
able. The latter for instance conclude that even trained statisticians
will have difficulties with this method even when being presented
with graphical output in form of scatterplots. This is in agreement
with Meyer, Taieb, and Flascher (1997) who conclude that experts
judge the degree to which variables deviate from perfect correla-
tion rather than directly assessing dependence of variables when
shown a scatterplot. Yet according to other research, a direct elic-
itation has performed better in comparison with other assessment
methods. Revie et al. (2010), Clemen et al. (2000) and Clemen and
Reilly (1999) concluded that eliciting a correlation coefficient is
more accurate than other dependence variables (in relation to em-
pirical data) as well as more coherent. The better performance in
comparison to other methods is primarily attributed to sufficient
normative expertise of the experts.

Ratios of (rank) correlation. When considering higher orders of
dependence, a direct way to elicit this information from ex-
perts is through ratios of (unconditional) rank correlations. In
this method, experts assess the “relative strength” of each
rank correlation (Morales Napoles, 2010). (Morales Napoles,
Delgado-Hernandez, De-Ledn-Escobedo, & Arteaga-Arcos, 2014)
and (Delgado-Hernandez, Morales-Napoles, De-Le6n-Escobedo, &
Arteaga-Arcos, 2014) present it as an alternative to conditional ex-
ceedance probabilities for higher dimensions which have the re-
quirement to assess large conditioning sets that make the elicita-
tion exercise rather unintuitive.

When defining unconditional rank correlations in the exem-
plary BN of Fig. 2 as rxy, and rxy,, then for the first conditional
rank correlation, pxy,y,, the ratio R =ryy, /rxy, would be elicited.
The corresponding question might be framed as:

Given your previous estimate, what is the ratio of rxy, to rxy,?

Similar to the conditional probabilistic techniques, the values
that an expert can assess are restricted for each subsequent ratio.
Imposing bounds ensures coherence but makes the elicitation less
intuitive. Empirical comparisons to probability of exceedance have
neither shown a superior nor an inferior performance. Neverthe-
less, the proponents of this method found that experts often think
in terms of unconditional correlations rather than ratios. The in-
tention of the ratio framing is to prompt experts to think in terms
of relative influence between variables. However, there is no way
of ensuring the experts will follow the proposed path.

Verbal. An indirect statistical approach to elicit experts’ beliefs
about dependence is through the use of a pre-defined scale. The
most common way to do so is by using verbal descriptions that
correspond to certain correlation coefficient values. For instance,
Clemen et al. (2000) use a scale of seven points on which the
relationship between X and Y is measured as Sy y. The points
range from 1 describing a very strong negative relationship up to
7 which denotes a very strong positive relationship. Accordingly, 4
refers to no relationship. The transformation to Spearman’s rank
correlation is done through o = (Sxy —4)/3. Despite its obvious
subjectivity in determining the scale due to the rather infor-
mal translation of verbal qualifiers, a good performance in terms
of coherence and accuracy can be observed in empirical studies

using this method. Moreover, the method is intuitive which makes
it popular. In the area of human reliability analysis, Swain and
Guttmann (1983) introduce the Technique for Human Error Rate
Prediction (THERP) which uses a verbal scale for assigning the
dependence level between human errors. The conditional proba-
bility for failure between tasks A and B is computed as P(B|A) =
(14+K-P(B)/(K+1) where K is assessed via verbal qualifiers of
complete dependence (K = 0) to high (K = 1), medium (K = 6), low
(K=19) and zero dependence (K = oo). The dependence assess-
ment method in THERP is the foundation of various further de-
velopments of dependence modelling efforts in this area.

Coefficient of determination. A method that has been used rather
rarely but that is still possible is to elicit the coefficient of de-
termination. For this, Clemen and Reilly (1999) propose to ask
for the percentage of variance explained as it would result from
regressing one variable on another (R2). Van Dorp (2005) uses
this idea to construct a dependence measure which can be used
in the elicitation of copula parameters. It is proposed for a
common risk factor model within the context of the Program
Evaluation and Review Technique (PERT) for which dependence is
modelled with a DB copula (see previous section). PERT is an op-
erational research technique for analysing and scheduling projects
whereas the uncertainty in completion time is typically of inter-
est. For modelling the dependence between the (aggregated) com-
mon risk factor Y (factors influencing project completion time) and
random variable X (completion time), first R(X) = b —a, i.e. the
range where realisations of X can be observed, is defined. Next,
the range of the conditional distribution, R(X|Y =y, ¢), is speci-
fied where the state of different common risk factors that result
in the aggregate risk of Y as well as the dependence parameter of
the DB copula, ¢, are known. From this, the dependence measure
EX|Y,¢) = (1 —RX]Y,¢)/R(X))100% is derived (see reference for
full elaboration). This measure can be thought of as the average
percent reduction in the range of X when the state of common risk
factor,Y, is given. Suppose Y defines the set of possible risk factors,
Y = {rain, no rain}, and the range of X is the length of an activity,
e.g. a project’s duration in days. Then the query question is asked
as follows:

“Not knowing the state of the common risk factor, Y, a value of x
has been assessed for X. Suppose you knew the state of the com-
mon risk factor, Y, on average within a spread of how many days
could you now assess the completion of this activity, X?”

An expert’s assessment of 5 days would then correspond to
50%, i.e. this is the percentage of uncertainty that is explained by
knowing the state of the risk factor. The author highlights that the
elicitation question is framed in terms of X which is an observable
quantity. While an intuitive appeal for the method is mentioned,
no empirical results in terms of performance or cognitive burden
for experts have been reported. Extensions for use with different
copula families are achieved by slightly altering the formulation of
R(X).

5.2.2. Assessment burden for statistical methods

Overall, the statistical methods are seen as intuitively
accessible for experts and enjoy favourable feedback in terms
of assessment burden (Clemen et al, 2000; Revie et al., 2010).
Especially verbal scales are seen as directly applicable and
have therefore enjoyed further consideration. Clemen et al.
(2000) report that for statistical methods training and feedback for
follow-up studies improved accuracy. This is confirmed by expert
studies with frequent feedback on correlation assessments, such
as weather forecasters (Bolger & Wright, 1994).

Similarly, neurological experiments in which experts get fre-
quent feedback on correlation coefficients find evidence for a hu-
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man ability to “learn” the effect of varying correlation coefficients
(Wunderlich, Symmonds, Bossaerts, & Dolan, 2011). Even though
not conclusive, there are reasons to believe that statistical meth-
ods for dependence elicitation are more intuitively understandable,
or at least “learnable”, when compared to other approaches. This
is nevertheless a signal rather than a strong conclusion also due
to the fact that statistical methods have often been tested (only)
for simple examples (e.g. height-weight relationships) rather than
complex elicitation problems.

With regards to the complexity of problems for which experts
might assess a correlation directly, Kruskal (1958) offers perhaps
one of the most detailed discussions. He addresses the cognitive
complexity required for assessing correlation coefficients directly
in terms of their operational, decision-analytic and intuitive inter-
pretation. From this perspective, according to him the necessary
level of cognitive processing for assessing a correlation coefficient
can be rather high. For instance, when interpreting a (rank) corre-
lation in terms of concordance and discordance of hypothetical ob-
servations of a population (which has a clear and intuitive mean-
ing) experts might have to assume (the rather unintuitive idea of)
an infinite population (see Appendix B for the definition of rank
correlations). The product moment coefficient is seen as (even)
more difficult to assess as it is not ordinally invariant which (as
aforementioned) inhibits a simple, intuitive understanding given
that any assessment is interpreted with regards to the transforma-
tions made to the marginal distributions.

5.3. Other methods

In the following, methods that do not fit the categories above
(for reasons which will be explained) are considered.

One such method is proposed by Abbas, Budescu, and Gu
(2010) who elicit joint probabilities through univariate distribu-
tions and isoprobability contours. In other words, dependence is
elicited indirectly. We present this approach separately because ex-
perts express preferences over binary gambles with identical pay-
offs rather than providing probabilistic (or numerical) responses
directly.

Loosely, an isoprobability contour is a collection or set of points
which have the same cumulative probability. In order to elicit the
50th percentile of a contour for two variables of interest, X and Y,
experts assess first the common quantiles for X, e.g. the median,
X5, the 75th quantile, xg75, and so forth. Then, the experts are
offered two gambles, for which the authors propose the framing
of:

A: You receive a fixed amount, z, if the outcome of variable X is
less than xq 5 and variable Y takes any value (short: (Xg s, Ymax))-

B: You receive the same fixed amount, z, if the outcome of variable
X is less than xq 75 and the outcome of variable Y is less than y; (with
Y1 < Ymax, short: (xg.75, y1)).

The formulation has been altered to fit the wording of the ear-
lier framings for elicitation questions in this review. The value for
y1 is specified and depending on the response of an expert, y;
is adjusted until the expert is indifferent between the two gam-
bles. If no indifference is achieved, the process ends after a pre-
determined number of iterations and upper and lower bounds for
y; are specified to choose the midpoint. With the same framing,
the experts continue choosing between binary deals while varying
the quantiles for X and values of y;, such as A:(xq75, ¥1) and B:(xg o,
y2) and so forth. Through enough iterations, i.e. a sufficient num-
ber of indifferent choices that determine the points on the con-
tour, its 50th percentile is assessed. Once this is achieved, the joint
cumulative distribution of any point, (X, ¥) € [Xmin, Xmax] X [Ymin»
Ymax ], can be derived with one additional assessment of a univari-
ate quantity such as a marginal probability for any of the variables

of interest, Fx(x), by finding the point (x;, ymax) lying on its iso-
probability contour. The joint probability assessment reduces then
to a univariate problem through F(x,y) = F(X1, Ymax) = FE(x1).

This approach was tested with graduate students who assessed
the joint probability of weight and height relationships within
their university cohort. A monetary incentive was offered for ob-
taining honest and accurate answers. The authors conclude that
this method is sensible with respect to difficulty, monotonicity and
accuracy, but still discuss some possible assumptions that might
ease the assessment burden. As a main advantage over conven-
tional methods they mention the flexibility in analysing the results
by deriving various dependence measures from the elicited out-
comes.

Another method that has been proposed for specifying de-
pendence through expert judgements and which fits into this
sub-section is Papathomas and O’Hagan (2005). They consider a
Bayesian updating procedure for dependent binary random vari-
ables. Again, dependence assessments are not made directly, but a
threshold copula approach is used to fully determine the depen-
dence structure.

6. Aggregation of dependence assessments

As we typically elicit judgements from more than one expert in
order to obtain a broader perspective on the uncertainties of in-
terest, concerns around the aggregation of multiple expert opin-
ions also influence the decision of which dependence parame-
ter to elicit. Broadly, two groups of aggregation methods exist,
behavioural and mathematical ones. Behavioural ways seek con-
sensus among the experts while mathematical methods use a
weighting scheme for the combination. Typically, mathematical ag-
gregation is preferred to avoid shortcomings of the first, such as
individual experts dominating (or even dictating) the assessment
result. A potential issue that might occur with mathematical ag-
gregation in dependence elicitation is however that not all depen-
dence assessments are preserved. While for instance a linear com-
bination of correlation matrices still is a correlation matrix, condi-
tional independencies, such as specified in a BN, will not be pre-
served.

When combining experts’ assessments mathematically, mainly
two methods are considered: Bayesian aggregation which might
account for biases (e.g. overconfidence) and pooling methods
which are seen as more robust and easier to use (Hora & Kardes,
2015). The latter are discussed in more detail given their explicit
consideration when aggregating dependence judgements. Gener-
ally, a pooling function is a weighted combination of individual
judgements. Experts are assigned weights either equally or so that
the weights reflect their competence (all weights are non-negative
and sum to one). The most common types of pooling functions
are linear and geometric. In the theoretical literature, both types
are justified on axiomatic grounds (Dietrich and List, in press;
McConway, 1981). However, in the context of aggregating depen-
dence assessments, it might be considered problematic that these
pooling methods are not compatible with probabilistic indepen-
dence preservation. This independence property ensures that if all
experts agree for two variables to be (conditionally) independent,
then this is reflected in the combined assessment. Yet, unless in-
dependence is justified on structural grounds as well (e.g. through
a graphical dependence representation) and is therefore not purely
accidental, this normative requirement is questionable (Bradley, Di-
etrich, & List, 2014). As shown, often dependence parameters are
elicited in a modelling process in which structural judgements,
such as directed acyclic graphs, are included and therefore we take
the position that both sources of information are respected and
pooling methods can be regarded as valid combination functions.
For other models, the structural information in form of functional
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dependence might be assessed separately and prior to the quanti-
tative assessment in the elicitation process.

Linear pooling: equal weighting. One way of pooling experts’ as-
sessments is by equally weighting their estimates (i.e. averaging
them). Equal weighting of several (directly) elicited correlations
was found to increase statistical accuracy when distance to em-
pirical data was measured (Winkler & Clemen, 2004). The authors
tested the robustness of their conclusions by removing/adding ex-
perts from/to the pool and found that the mean average error
(MAE) decreased as the number of experts increased.

Linear pooling: performance-based weighting. In the same study,
Winkler and Clemen (2004) show that taking the average of only
the top performing cohort of experts as measured by the MAE
reduces the overall error considerably (calculated when averaging
the entire set of estimates). This finding is consistent with expert
judgement studies for univariate quantities (Cooke & Goossens,
2008) and motivated the idea of developing a measure of cali-
bration to assess experts’ performance in terms of statistical ac-
curacy for multivariate assessments. Note that there is some in-
dication that a common calibration method for univariate expert
judgements (Cooke, 1991) was shown not to be feasible for aggre-
gating dependence assessments (Morales Napoles et al., 2013).

The first and only calibration score for multivariate assessments
(to the authors’ knowledge) is the dependence calibration score in-
troduced in Morales Napoles and Worm (2013) which makes use of
the Hellinger distance. In order to assess this score, seed variables
known to the facilitator/analyst but not the experts are elicited in
addition to the target variables. This is similar to Cooke’s Classical
model (Cooke, 1991). For two bivariate copulas, f¢ (a copula model
used for calibration purposes) and f¢ (a copula as estimated by ex-
pert opinions), the Hellinger distance H is then:

He o= ff \/ 5 V/Few.v) - /B, ) dudy

In Abou-Moustafa, De La Torre, and Ferrie (2010) an overview of
different distances between distributions is given. If the distribu-
tions are Gaussian, these distances can be written in terms of the
mean and covariance matrix, i.e. the parameters of the Gaussian
distribution. Under the Gaussian copula assumption, H might be
parameterised by two correlation matrices:

- det(Sc)1/4det(Zg)1/4
He(Xc, %) = \/1 ~ (1/2det(Zc) + 1/2det(Zg))1/2

where X is a correlation matrix used for calibration purposes and
Y the matrix derived from experts’ assessments. The dependence
calibration score is then:

D=1-H

The score is 1 if an expert’s assessment corresponds to the cali-
bration model exactly. Conversely, it differs from 1 as the expert’s
assessment differs from the calibration model. Under the Gaus-
sian assumption, i.e. when using H; , the score approaches 1 as
Y r approximates X elementwise and the score decreases as Hg
differs from Hc elementwise. A score equal to 0 means that at
least two variables are linearly dependent in the correlation ma-
trix used for calibration purposes and the expert fails to express
this. Or contrary to this, an expert expresses perfect linear depen-
dence between two variables when this is not the case. For more
details, see Morales Napoles, Worm, Hanea, and Kalkman (2016). In
the same study (Morales Napoles et al., 2016), the authors extend
the method discussed in Morales Napoles and Worm (2013). They
use the Hellinger distance to compare a Gumbel copula generated
from precipitation data with a copula constructed from experts’ as-
sessments of tail dependence between rain amount and duration

(the way to obtain these estimates is discussed in Morales Napoles
et al. (2008)). For that study, a combination of expert opinions
based on the dependence calibration score outperformed individ-
ual expert opinions. Further, it is shown that experts with highest
calibration scores for univariate assessments were not the experts
with the highest dependence calibration score.

In order to combine dependence assessments, experts are
weighted according to their dependence calibration score. Similar
to the univariate case, a cut-off level is established, either chosen
by the analyst or by optimising the performance of the combina-
tion. If an individual expert falls below this level, their score will
be unweighted for the pooling function.

7. Dependence elicitation in the empirical literature

Following the previous discussions about elicitation in various
modelling contexts and about forms of elicited dependence param-
eters, this section provides an overview of the common approaches
in practice that are prevalent in the case study literature.

While a complete outline of our review methodology can be
found in Appendix A, we briefly present how the literature on elic-
iting dependence has been reviewed. The objective for this litera-
ture review is two-fold:

1. Assess the application areas and approaches to dependence
modelling that are used in case studies published in the liter-
ature, in order to evaluate the reach of the different elicitation
methods.

2. Ensure that the theoretical review is complete and includes a
broad variety of perspectives.

As a first step, a search strategy was formulated that defined
the key words used in order to ensure a thorough search of poten-
tial references of interest. For this, we started combining common
key words of expert judgement studies such as “expert judgement
(British English)/judgment (American English)” or “elicitation”
itself, with general key words of dependence elicitation and mod-
elling. This was refined by including key words for specific depen-
dence modelling techniques and dependence parameters. Next, ap-
propriate databases were identified, again starting generally before
searching explicitly in archives of the topic’s research areas, such
as Operational Research and Decision as well as Risk Analysis. For
evaluating the relevance of references under equal principles, cri-
teria that specify the fit to this review (and which are outlined
completely in Appendix A) had to be defined. The candidate refer-
ences were then filtered and lastly, the selected findings were dis-
tinguished between theoretical and practical contributions as the
latter were categorised for the overview in this section.

In total 53 references have been identified in which dependence
has been elicited within decision analysis/risk analysis case studies
(in some, more than one dependence parameter was elicited). The
elicited dependence parameters are categorised as conditional (ex-
ceedance) probabilities (CP/CEP), point estimates as well as quan-
tiles, joint probabilities, statistical parameters such as correlation
coefficients, verbal and other methods (whereas other methods
here differ from the ones presented in Section 5.3). A detailed list
of the identified case studies can be found in the additional Sup-
plementary material. The empirical references were investigated
from different perspectives and Fig. 6 summarises how the empir-
ical literature is clustered.

In the upper-left corner it can be seen that the predominant de-
pendence model for which dependence is elicited is a BN (61.02%).
For that, the main dependence parameters elicited are conditional
(exceedance) probabilities (point estimate) and verbal scales. De-
pendence is elicited much less frequently for copulas, BLM ap-
proaches or parametric multivariate distributions.
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Fig. 6. Different perspectives on elicited dependence parameters’ use in the case study literature.

For dependence parameters per aggregation method an appar-
ent finding is that performance-based methods are used mainly
together with conditional (exceedance) probabilities (through
quantile assessments). This might not be surprising given that
the authors for these studies come from the same expert judge-
ment school that emphasises the use of performance-based com-
bination and quantile (rather than point) assessment. In total
performance-based weighting is used in 22.03% of all case stud-
ies, just more than equal weighting which is used in 18.64% of all
references. Most significant however is that for 37.28% of all case
studies the aggregation method is not described or mentioned at
all.

When clustering the experts’ domains and substantive exper-
tise (upper-right corner), it is shown that in particular for envi-
ronmental and ecological studies as well as in risk analyses for in-
frastructure problems, dependence is elicited through probabilistic
variables (CP/CEP), point and quantile assessments, together with
verbal methods. Overall, the main domains that experts have sub-
stantive expertise in are environmental/ecological (38.98%), in-
frastructure (23.72%) and energy decision analysis/risk analysis
(11.86%). In this context, it is an interesting observation that the
relevant case studies (see Supplementary material) are mostly pub-

lished in domain-specific journals rather than journals with a fo-
cus on the modelling and hence elicitation methodology. This gives
a few indications about the status quo of the empirical side of the
research problem addressed in this review. It shows that modelling
dependence together with expert judgement for quantification is a
research problem that is (actually) recognised in the identified do-
mains. Interestingly, the domains have an established tradition of
applying rigorous risk analysis methods, often stemming from the
area of probabilistic risk analysis (Bedford & Cooke, 2001). Further,
this finding indicates that due to a focus on the application in the
fields, there is less focus on developing new theory for dependence
modelling and elicitation which would be found in journals with a
methodological focus. This allows for cross-fertilisation of various
findings discussed in the previous sections and our review aims to
establish a contribution for this.

While a recommended number of experts from marginal elici-
tation protocols is between 5 and 10 experts (see aforementioned
references on guidance for univariate elicitation), for dependence
elicitation this is taken into consideration only in 15.25% of the
cases. Slightly more often (22.03%), less than five experts are used.
Again, the predominant percentage (33.89%) for “Multiple” implies
a less clear documentation.
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While these findings are not conclusive they offer an indication
on the predominant approaches in the case study literature.

8. Conclusions and further research

We have argued that multivariate decision models under un-
certainty are becoming more and more prevalent’ whether as BNs
(continuous or discrete), as parametric multivariate models, or as
separate specifications of univariate distributions together with
copulas to model the dependencies. We also argued that this im-
mediately leads to the need for elicitation techniques to quantify
these models.

The biggest challenge in the use of expert judgement to quan-
tify dependence is in the way we manage the elicitation burden
for experts. Implicit in our discussion above is that the elicitation
burden has two key dimensions:

o The required quantity of information—there is a danger that
large amounts of information required from experts will burden
them too much in terms of time and the prolonged intensity of
the task.

The complexity of the required information—there is a danger
that the experts might not be able to hold all the required
information in the forefront of their minds while considering
complex scenarios in which (conditional) probabilities are re-
quired.

Both considerations should guide the analyst to choose be-
tween ways to reduce the elicitation burden, by: simplifying the
parameterisations of models, by considering the qualitative and
quantitative steps of elicitation separately, or by finding ways of
explaining in practical terms the quantities that are being elicited.
However, there is a clear trade-off between easing the elicitation
burden and building models that replicate the important behaviour
of real world systems. Satisfying both the above requirements is
challenging and under research.

The qualitative structure provided by a Bayesian network is one
example in this direction. However, often it is difficult to decide on
a particular form of network. We may have situations, for example,
where a multivariate distribution can be estimated from data for
moderate values of the variables, but where qualitatively different
behaviour can occur in the tails. Expert judgement may be more
appropriate in this context, as stochastic behaviour is then driven
by different relationships between variables.

The literature review illustrates clearly the challenge faced in
finding better ways to elicit multivariate uncertainties: In many
cases the reported studies use students instead of (costly) experts.
Often, when experts are used, they are asked to only provide guid-
ance on parameters, but the justification for the chosen parametric
family is not given. Clearly, for purposes of validity and verifica-
tion we need to evolve better practices in selecting such families.
Otherwise we are not in a strong position to challenge poor opera-
tional practice, such as the prevalence of the Gaussian copula used
widely in financial modelling prior to the recent crash, and almost
certainly still in equally wide use (Salmon, 2009).

Finally, in the paper we have focused on the use of expert as-
sessment in quantifying multivariate distributions. However, the
revolution in data analytics is using machine-learning and expert
systems rather than human experts. It is therefore worth reflecting
on the relative benefits, similarities and complementarities of these
approaches. An individual human expert may be considered anal-
ogous to a particular machine-learning model, and the empirical
result that machine-learning model averaging typically gives better
results than any one of the models on their own, reflects older ob-
servations in the use of expert judgement that weighted averages
of expert assessments are better calibrated than individual experts.
However, the human expert may be able to provide simplifications

through parametric model choices, and insights into model “phase
changes” that the machine-learning models struggle with, because
the data does not go far enough into the tail. The research chal-
lenges we have set out above will help us find a more satisfactory
approach to combining human and machine expert judgements for
uncertainty modelling.
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