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a b s t r a c t 

Many applications in decision making under uncertainty and probabilistic risk assessment require the 

assessment of multiple, dependent uncertain quantities, so that in addition to marginal distributions, 

interdependence needs to be modelled in order to properly understand the overall risk. Nevertheless, rel- 

evant historical data on dependence information are often not available or simply too costly to obtain. In 

this case, the only sensible option is to elicit this uncertainty through the use of expert judgements. In 

expert judgement studies, a structured approach to eliciting variables of interest is desirable so that their 

assessment is methodologically robust. One of the key decisions during the elicitation process is the form 

in which the uncertainties are elicited. This choice is subject to various, potentially conflicting, desiderata 

related to e.g. modelling convenience, coherence between elicitation parameters and the model, combin- 

ing judgements, and the assessment burden for the experts. While extensive and systematic guidance to 

address these considerations exists for single variable uncertainty elicitation, for higher dimensions very 

little such guidance is available. Therefore, this paper offers a systematic review of the current literature 

on eliciting dependence. The literature on the elicitation of dependence parameters such as correlations 

is presented alongside commonly used dependence models and experience from case studies. From this, 

guidance about the strategy for dependence assessment is given and gaps in the existing research are 

identified to determine future directions for structured methods to elicit dependence. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

In decision making under uncertainty it is vital that depen-

encies between uncertain variables are appropriately modelled,

s otherwise the model may not be fit for purpose. Dependent

ncertainty may arise either directly because variables in the

odel are correlated, or indirectly when an uncertainty analysis

f model parameters is carried out to explore model robustness.

oth cases exhibit complex interrelations and dependencies which

eed to be considered if assumptions such as independence are not

ustifiable. 

However, it is often not straightforward to either model

r quantify dependence. In particular whenever no relevant
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istorical data are available, the only sensible way to achieve

ncertainty quantification is through eliciting expert judgements.

hen performed rigorously, the elicited quantities, often aggre-

ated from multiple experts, offer reliable information for model

uantification. Nevertheless, there are several different broad ap-

roaches and many choices to be made by the analyst, all of which

an affect the elicitation burden for experts and ultimately also the

eliability of the outcome. 

While research and reviews that offer guidance exist for meth-

ds addressing the elicitation of univariate quantities ( Cooke,

991 ; European Food and Safety Authority (EFSA), 2014 ; French,

011; Jenkinson, 2005; O’Hagan et al., 2006; Ouchi, 2004 ), and

hile dependence modelling is an active research area ( Kurowicka

 Cooke, 2006 ), little guidance exists about the elicitation of

ependencies. The exceptions are Bayesian (Belief) nets (BNs),

hough also for these modelling and elicitation challenges re-

ain, as shown later. In fact, developing defensible elicitation pro-

esses for multivariate quantities is still much under development

espite its fundamental importance for decision as well as risk

http://dx.doi.org/10.1016/j.ejor.2016.10.018
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analysis ( Moskowitz & Bunn, 1987; Smith & Von Winterfeldt,

2004 ). Some of the first studies that elicit dependence are Cooke

and Kraan (1996) , Keeney and von Winterfeldt (1991) , Kunda and

Nisbett (1986) , Gokhale and Press (1982) and Kadane, Dickey, Win-

kler, Smith, and Peters (1980) . Since then more ways for quanti-

fying multivariate distributions and models through experts have

been investigated, yet on the actual elicitation only little discus-

sion and guidance is available. References that introduce some as-

pects are Daneshkhah and Oakley (2010) , Kurowicka and Cooke

(2006) , O’Hagan et al. (2006) and Garthwaite, Kadane, and O’Hagan

(2005) . However, a complete and systematic way of comparing dif-

ferent dependence parameters as elicited quantities, and reflecting

their use in dependence models in the form of a literature re-

view has been non-existent so far. Therefore, research and appli-

cations of several dependence measures in models and their elici-

tation methods are presented. With a practical focus, case studies

are discussed whenever available. This paper addresses elicitation

processes for dependence information and aims at providing un-

derstanding of their use in applications. It offers guidance on mak-

ing robust choices about which summary of expert knowledge on

multivariate distributions should be elicited, and how they might

be used within a dependence modelling context, as these are key

decisions within the overall elicitation process. This is achieved by

outlining how much is understood about the complexity of ap-

proaches to dependence modelling and the cognitive assessment

burden for experts. 

Throughout this paper we use the word “dependence” in a gen-

eral sense (in contrast to specific association measures) to refer to

situations where there are multiple uncertain quantities and gain-

ing information about one would change uncertainty assessments

for some others. More formally, two unknown quantities X and Y ,

are independent (for me) if I do not change my beliefs about X

when given information about Y . For higher dimensions I regard all

quantities independent of one another if knowledge of one group

of variables does not change my belief about other variables. De-

pendence is simply the absence of independence. It is a property

of an expert’s belief about the quantities. This definition relates to

Lad (1996) who reminds us that in a subjective probability con-

text one expert’s (in-) dependence assessment might not be shared

with another expert possessing a different state of knowledge. 

The definition of dependence as we use it here relates directly

to the scope of this review. A first comment on the scope is that

the word “dependence” is used in many ways within Operational

Research (OR) and related fields, and it is worth clarifying how its

use here differs from its meaning in other OR contexts. The un-

derlying framework adopted is that of subjective probability (as

aforementioned), which plays a key role within expected utility

maximisation for decision making. Dependence then, refers to the

way we model and assess the probability dependence structure re-

quired for such decision support processes. We do not consider

non-probabilistic representations of uncertainty, nor do we con-

sider approaches to represent dependence between criteria used to

model the preferences of the decision maker as discussed widely

in the multi-criteria decision analysis (MCDA) literature. 

The foundations of subjective probability are drawn from a

wide literature, in which Savage (1954) provides one of the most

sophisticated accounts. In this account, probabilities can be as-

sessed through preferences over lotteries, and there are implied

consistency rules for preferences which can be empirically vali-

dated. It is well known that there is a distinction between norma-

tive and empirical validation, so the degree to which researchers

choose to be led by normative or empirical consistency has led to

many different approaches. For instance, Dubois, Prade, and Sab-

badin (2001) provide a theoretical framework which attempts to

tie these strands together in the context of possibility theory, and

the implications of this are discussed in detail by Cooke (2004) . 
The modelling of dependence between attributes in MCDA is

he subject of a wide literature, and as discussed above, is out-

ide the scope of this review. Facilitative approaches within multi-

ttribute utility theory provide a variety of models, for which

whenever possible) problem structuring is used to ensure pref-

rence independence ( Von Winterfeldt & Fasolo, 2009; Wallenius

t al., 2008 ), while other approaches have been inspired by issues

uch as assessing the range of preferences within a stakeholder

roup ( Flari, Chaudhry, Neslo, & Cooke, 2011; Neslo & Cooke, 2011 ),

r trying to model preferences based on a limited number of at-

ributes or limited resolution of attribute measurement. For the

atter, in particular interaction among criteria in complex systems

nd dependence of attributes is modelled. This is done for in-

tance to assess the aggregated importance of correlated criteria or

urther investigate dependent attributes for predictive modelling.

ommon methods in the OR literature are: non-additive aggre-

ation models such as Choquet and Sugeno integrals ( Angilella,

reco, Lamantia, & Matarazzo, 2004; Grabisch, 1996; Marichal,

004 ), Robust Ordinal Regression ( Figueira, Greco, & Słowi ́nski,

009; Greco, Mousseau, & Słowi ́nski, 2014 ) and (Dominance-Based)

ough Set Approaches which use decision rules in the form of

f [condition] then [consequent] ( Błaszczy ́nski, Greco, & Słowi ́nski,

007; Greco, Matarazzo, & Słowi ́nski, 20 01; 20 04 ).Another inter-

sting approach in this regard is Abbas (2009) who constructs

 multi-attribute utility function through a copula, a dependence

odel that is introduced later for modelling probabilistic depen-

ence. A frequently considered empirical area for MCDA-based ap-

roaches is financial portfolio optimisation ( Ehrgott, Klamroth, &

chwehm, 2004 ). 

A last comment on the scope is that while we discuss the cog-

itive complexity of assessing dependence in various ways, such as

lready considered by Kruskal (1958) , and while insights from psy-

hological studies are mentioned, corresponding research streams

or causal and association judgements are not reviewed exhaus-

ively. Normative and descriptive models for causal reasoning or

ental conceptualisation of correlations, which origin is often at-

ributed to Smedslund (1963) , are found for instance in Mitchell,

e Houwer, and Lovibond (2009) , Gredebäck, Winman, and Juslin

20 0 0) , Beyth-Marom (1982) and Allan (1980) . An overview and

ntroduction to these areas is given in Hastie (2016) and Shanks

2004) . 

The paper is organised as follows. Section 2 discusses the ex-

ent to which findings from eliciting univariate quantities apply to

he elicitation of multivariate ones in order to provide the reader

ith an indication for the scope of the overall topic. Section 3 in-

roduces the modelling context which shows how modelling and

liciting dependence are related. This offers an overall structure

o the research problem. Then, Section 4 discusses how elicita-

ion is approached for quantifying various dependence models.

ection 5 presents dependence parameters that are commonly

licited together with its implications for experts’ assessment bur-

en before Section 6 briefly reviews findings on mathematical

ggregation of dependence assessments. Section 7 provides an

verview of the empirical contributions in the literature based on

hich Section 8 formulates directions for future research and con-

ludes the paper. We refer to Appendix B (Supplementary mate-

ial) whenever a technical term needs a more detailed explanation,

owever the original references should be considered for an ex-

ended introduction. 

. Generalisations of univariate elicitation processes for 

liciting dependence 

Structured processes for the elicitation of dependence follow

istorically from findings made when eliciting univariate quanti-

ies. In the early days of uncertainty modelling, formal processes
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Fig. 1. Schematic representation of modelling and elicitation context. 
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or eliciting univariate uncertainties, such as marginal probabilities,

ere developed to ensure a methodologically robust approach to

arameter quantification in the face of lacking relevant historical

ata. From these, methods to elicit dependence followed given the

eed of accounting for relationships between uncertainties. Cooke

2013) discusses the historical development of expert judgement in

ncertainty analysis and its achievements in more detail. 

This development is not surprising as univariate quantities are

typically) more intuitive to experts and their specification is re-

uired (at least implicitly) prior to eliciting dependent distributions

or two or more uncertain quantities. 

In this section we discuss some main foci of structured ex-

ert judgement studies and evaluate the extent to which findings

or univariate quantities are generalisable in the multivariate case.

his discussion outlines where in a process adjustments are nec-

ssary when eliciting multivariate uncertainty and therefore pro-

ides an indication for the scope of dependence elicitation. Given

he overall focus of the paper, we outline only the relevant consid-

rations for the elicited dependence parameters and the aggrega-

ion of judgements. However, it should be noted that an elicitation

rocess is much more complex and other decisions in it, such as

ow to design the statistical training for experts prior to an elici-

ation, might vary as well considerably when eliciting multivariate

ncertainty. 

Already the earliest expert judgement studies for univariate

uantities have shown that assessment outcomes can differ greatly

epending on the use of directly or indirectly elicited query for-

ats ( Spetzler & Stael von Holstein, 1975 ). As a result, an exten-

ive literature on heuristics and biases is available on the mat-

er of framing elicitation questions and choosing a form for the

uery variable. Further, recommendations are made on the theo-

etical suitability of the elicited format, e.g. objections are made to

on-observable quantities ( Kadane & Wolfson, 1998 ). For eliciting

ultivariate quantities on the other hand, the same conclusions

re not readily applicable. As will be seen, the effect of direct and

ndirect elicitation approaches is less well-understood and findings

re often conflicting. The objection to non-observable quantities is

ess clear and indeed we show later that eliciting non-observable

uantities performs well in terms of empirical accuracy and math-

matical coherence. Similarly, for heuristics and biases only some

xtensions for the multivariate case exist, such as “illusory correla-

ion” ( Chapman & Chapman, 1969 ), stemming from the availability

ias, and “confusion of the inverse”, originating with the represen-

ativeness bias ( O’Hagan et al., 2006 ) (for both see Appendix B).

hile these findings indicate an overlap for the existence of com-

on biases, a lack of empirical research on the effect of framing

or multivariate elicitation does not allow for generalisable conclu-

ions. 

Once the dependence information has been elicited in the form

f some dependence parameter (which is thoroughly addressed in

he following sections), a well-researched topic for univariate un-

ertainty, which generalisation would be desirable for multivariate

licitation, is the use of scoring rules. Roughly, a scoring rule is a

umerical evaluation of a probability assessment based on obser-

ations. In expert judgement studies, they are typically used for

wo reasons, first to present an incentive for truthful assessment

nd second to measure the quality of an assessment after the elic-

tation, usually to inform a weighted combination of the judge-

ents. In other words, they are used to define desirable properties

f the assessment itself and they serve as a reward structure when

valuating an assessment. While an incentive is given by using

strictly) proper scoring rules which ensure that experts achieve

heir maximal expected score if and only if stating their true be-

ief, a main property of measuring the quality of an assessment is

ts calibration, i.e. the statistical accuracy after observing an event

f interest. Suppose an expert provides a probability distribution
 over a set of n mutually exclusive events i . Then, after observ-

ng the events of interest, we can construct the sample distribu-

ion S with S ( i ) equal to the number of times that i is observed

ivided by n . While it appears reasonable to state at first thought

hat an expert is not well calibrated if S � = P , this might be false if

e suppose that true values represent independent samples from

 random variable with distribution P . In this case, P relates to “re-

lity” but we will never have S = P due to statistical fluctuations. 

oosely, an expert is therefore said to be well-calibrated if the true

alues of the uncertain quantities can be regarded as independent

amples of a random variable with distribution P ( Cooke, 1991 ). 

When evaluating experts’ performance, we have to distinguish

etween scoring rules for individual variables and scoring rules

ased on sets of assessments together with sets of realisations. The

rst, assigning scores to each individual assessment and summing

hese scores over a set of variables, is often suggested in the lit-

rature for the purpose of rewarding, yet it is not a sensible ap-

roach. A main issue is that the resulting scores cannot be inter-

reted in a meaningful way without knowing the number of quan-

ities assessed and their overall sample distribution. This is due to

he possible additive decomposition of these types of scores into

 “calibration” and “resolution” term ( DeGroot & Fienberg, 1983 ).

esolution measures how well experts partition the variables into

tatistically distinct categories while not considering whether the

istributions assigned to these categories correspond to the ex-

erts’ assessment. This becomes problematic when high resolu-

ion overpowers low statistical accuracy. A more detailed presen-

ation of this drawback and some intuitive examples are given in

ooke (1991) ; 2014 ). Therefore, scoring rules for average probabil-

ties are highly encouraged for evaluating and combining experts.

hile some main properties of scoring rules are applicable in the

ultivariate case, others cannot be readily used. 

Jose, Nau, and Winkler (2009) discuss (for the univariate case)

he inclusion of order information (requiring an ordered state

pace). Ordered events allow for rewarding that takes account of

earness to an event’s realisation. In the multivariate case the lack

f natural ordering means that this approach is not possible. Fur-

her, Jose, Nau, and Winkler (2008) discuss a wide class of scor-

ng rules, called generalised divergence scores, that allow for any

aseline distribution (rather than a uniform by default), and which

eward according to a measure of distance between the assessed

istribution and the baseline distribution. Of interest for multivari-

te elicitation is the derivation of a weighted scoring rule that is

losely related to the Hellinger distance which is a measure of di-

ergence that has been used in the calibration of experts’ multi-

ariate assessments ( Section 6 ). 

. Guide to modelling and elicitation context 

The main purpose of eliciting dependence is to quantify a mul-

ivariate stochastic model when this cannot be done wholly by

onventional statistical estimation (which, in our view is a com-

on situation). This section discusses broad approaches to depen-

ence modelling in order to provide a clear structure for the next

ections by highlighting the link between dependence modelling

nd expert judgement. Fig. 1 shows this general view on the mod-

lling context with three different broad approaches to assessing
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dependence and illustrates the relationships between model input

and output variables. 

In this general context, S represents the vector of stochastic

variables in the model, and T the vector of output variables which

depends deterministically on S . R represents another set of auxil-

iary variables used to evaluate the uncertainty on S . The solid ar-

rows show deterministic relationships between the variables, and

hence the direction in which uncertainty can be propagated. 

It is not uncommon for there to be dependence between the

output variables T . This can arise simply as a result of the func-

tional dependence represented in arrow a , even if the stochastic

variables in S are modelled as being stochastically independent.

In many applications, however, it is not appropriate to model the

variables in S as independent, and so we should find a way to

model and assess dependence in S . 

Approach a. In Approach ( a ) we model the dependence relations

between the variables in S directly. The main techniques are BNs,

copulas, parametric families of multivariate distributions (e.g. the

multivariate Gaussian distribution), and Bayes Linear methods. We

provide examples for each method in the next section. Having as-

sessed the dependence and hence having specified the distribu-

tion of the variables in S , uncertainty is then propagated through

the model (arrow a ) to the output variable (or variables) T . As we

shall see later, direct assessment of dependence on the variables

S is most predominant in the literature. However, two other ap-

proaches are also important and worth discussing. 

Approach b. In Approach ( b ) we introduce a new set of auxiliary

variables R , which are not directly part of the model variables

(though may in practice have some overlap with the variables S ).

The variables R are chosen so that their uncertainty is easier to

quantify—in particular one might choose these variables so that

they can be considered stochastically independent, with the de-

pendence in the variables S arising as a result of the complex rela-

tionship between the “explanatory” variables R and those in S . This

is shown in Fig. 1 as arrow b . This approach is of interest partic-

ularly when change of variables methods (frequently used in mul-

tivariate statistics) can be used to simplify the variable set from S .

A common model type used in this context is a regression model

and an example of introducing and assessing auxiliary variables is

given in Section 4.2 . 

Approach c. In Approach ( c ) we “calibrate” the uncertainties on S

through considering some set of output variables T on which the

uncertainties can be assessed. Obviously, to be useful, this would

have to be a different situation than the one in which the overall

model is to be used (see dashed node inside T ), as we would oth-

erwise be simply directly assessing the uncertainty in the variables

of interest. This calibration of uncertainties relies on the backwards

propagation of uncertainty from T back to S , shown by arrow c . The

dotted arrow is used to indicate a key difference with the solid

arrows a and b . In general, more than one distribution on S will

forward-propagate to the given distribution on T , that is, the in-

verse problem has no unique solution (or even worse, it has no

solution). Other criteria (such as max entropy) are then used to

select a unique inverse. That solution then defines a dependence

structure on S , which can be propagated back through arrow a

to look at other output contexts. This is called Probabilistic Inver-

sion (PI) ( Cooke, 1994; Kraan & Bedford, 2005; Kurowicka & Cooke,

2006 ) and we show an example in Section 4.3 . 

This approach is of interest when the dependence structure in S

is difficult to determine directly, but must satisfy reasonable condi-

tions on output variables that are easier to understand and hence

easier to quantify. 
A common theme in the latter two approaches is the model

oundary. In both cases we choose to extend the model to in-

lude other input or output variables in addition to those which

re strictly necessary for direct modelling. Indeed it may happen

hat the auxiliary variables represent simplifications of more com-

lex issues which are insufficiently understood to be included ex-

licitly in the model but which are known to collectively impact

he behaviour of the system significantly. An example of this is

he modelling of common cause events in risk analysis ( Bedford

 Cooke, 2001 ) where the range of underlying causes is too wide

o be modelled individually, but which together have a substantial

ffect in inducing dependencies in the overall system behaviour. 

We illustrate the dependence structures shown in Fig. 1 with

he following simplified project risk management example which

hows how choices can be made in the various modelling con-

exts. We are managing a project which has an overall cost (model

utput variable T ). The cost is determined by individual activities

ith associated costs (variables in S ) that are of importance for the

roject completion. If we want to model the stochastic dependence

etween activities in order to obtain information about the overall

ost, a first option is to do so directly by specifying the dependen-

ies directly between the cost elements. The dependence models

sed here are part of modelling context a . If modelling the depen-

ence between the individual activities directly does not produce a

atisfactory model output, we have the choice to include explana-

ory variables ( R ) that help us to understand the relationship bet-

er. For instance, we can include factors like environmental uncer-

ainties if we belief that our project’s activity costs are (partly) in-

uenced by them. The techniques used here are part of modelling

ontext b . Recall that we are choosing to extend the model which

elates to the earlier discussion on the model boundary. The rea-

on for modelling dependency in this way is because it may be

asier to consider the impact of certain factors explicitly rather

han implicitly when only using approach a . If the model output

esulting from the inclusion of additional factors is still not satis-

actory, we might choose to model some systemic impacts of the

roject. For instance, factors like the availability of qualified staff

ight be present and result in a subtle dependence relationship,

eading to the distribution for the overall cost (the model output

ariables T ) being incorrectly assessed. With methods used in c ,

e would have a separate assessment of the distribution (or at

east for features of this distribution) for the overall cost which

ould lead to a changed model for the joint distribution of the

ctivity costs (modelling context a or b ). We could also consider

odelling a more complex situation in which we manage several

rojects. In this case, the overall cost becomes multivariate instead

f univariate (i.e. T becomes a vector of variables). Then, we can

se methods (from c ) that allow propagating our uncertainty from

ne project about which we have information backwards in order

o make inference about the distribution of the activities ( S ) and

ence the distribution for overall costs ( T ). The common objective

s to find a good model for the uncertainties relating S and T . Con-

eptually, we can only ever specify part of the required informa-

ion for this model, so that in practice our model is always under-

pecified (though this point is often not appreciated because mod-

llers often adopt low-dimensional parametric families of models

arly on). Approaches b and c provide complementary approaches

o specify further information about the model. 

. Dependence models and expert judgement 

Before presenting and reviewing dependence parameters as

licited quantities explicitly, in this section we first discuss expert

udgement for common dependence models. This includes main

hallenges when using experts to quantify models as well as the

pplicability of elicited forms for a satisfactory representation of
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Fig. 2. Example Bayesian network with one child and three independent parents. 
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he experts’ information in the model. We present the modelling

spects first given that decisions here precede and strongly affect

he choice of which dependence parameter to elicit. In accordance

ith the earlier framework (see Fig. 1 ), BNs and copulas together

ith probabilistic and non-probabilistic parametric models are in-

roduced for context ( a ), regression models for ( b ) and Probabilistic

nversion for ( c ). 

.1. Elicitation for direct modelling 

.1.1. Bayesian (belief) networks 

In ( a ), a common way of integrating high dimensional uncer-

ainty in a probabilistic model is by specifying a multivariate dis-

ribution for the random variables through the product of marginal

nd conditional probabilities. A common modelling framework is

 BN ( Darwiche, 2009; Pearl, 2000 ). A random variable is de-

cribed by a node in the graph while arcs represent the qualita-

ive dependence relationships amongst variables. The direct prede-

essors/successors of a node are called parents/children, and the

N is specified (for example) by determining for every child node

ts conditional probability distribution given the states of its par-

nt nodes. Hence, it is composed of a directed acyclic graph with

arginal distributions for source nodes and conditional distribu-

ions for child nodes given the parents. A simple example BN to be

sed throughout this review is shown in Fig. 2 . 

When using expert judgement, French (2011) views eliciting

Ns as an obvious approach for obtaining dependence information.

owever, while more has been written about eliciting the qualita-

ive dependence structure (the arrows in the BN) ( Henrion, 1989;

adkarni & Shenoy, 2004 ), eliciting dependence quantitatively has

een recognised as a main issue when constructing BNs ( Druzdel

 Van Der Gaag, 20 0 0; Renooij, 20 01 ). Identified difficulties are the

licitation for high dimensional models and the assessment burden

ue to an exponentially growing number of probabilities to assess

in discrete BNs). Therefore, some alternative modelling approaches

ave been developed to be used in conjunction with expert judge-

ent methods. 

While in the low dimensional, discrete case, experts pro-

ide information in form of conditional probabilities to populate

onditional probability tables, in higher dimensions this is in-

ractable and too time-consuming. An alternative approach is to

odel continuous distributions and to elicit dependence informa-

ion through (un-) conditional rank correlations. These models are

nown as non-parametric BNs for which a review of applications

an be found in Hanea, Napoles, and Ababei (2015) . For these,

orales Nápoles, Kurowicka, and Roelen (2008) developed a way

f eliciting conditional exceedance probabilities for higher dimen-

ions to derive the required rank correlations. This method is de-

ailed in the next section when discussing elicited forms of depen-

ence parameters explicitly. 

In order to address the reduction of the assessment burden (in

he discrete case), one way is to reduce the number of necessary

ssessments. For instance, Wisse, van Gosliga, van Elst, and Barros

2008) propose piecewise linear interpolation (see Appendix B) in

rder to reduce the overall number of required assessments for a

ull conditional probability table. Their method elicits conditional
robabilities which are discussed in the next section as an elicited

orm. Another method that reduces the number of required assess-

ents is through assumptions on the causal interpretation of a BN.

he assumptions on the causal interpretation originate with noisy-

R gates ( Pearl, 1988 ) which use an underlying parametric distri-

ution that reduces necessary assessments logarithmically (see Ap-

endix B). The functional OR relationship denotes how individual

arent nodes are combined for a common effect and assumes that

hey are independent of each other with respect to their causal

ffect on the child nodes. Thus, the presence of one parent node

uffices to produce an effect on the child independently of other

arents (with a certain probability—hence noisy rather than de-

erministic). A leaky noisy-OR gate includes a background proba-

ility that represents the influence of non-modelled causes. From

his, Zagorecki and Druzdzel (2004) , building onto Druzdzel and

an Der Gaag (1995) , introduce the elicitation of leaky and non-

eaky noisy-OR parameters as alternatives to conditional probabil-

ties. They use parameters introduced by Henrion (1989) and Diez

1993) and a potential framing (for the BN in Fig. 2 ) is: 

“What is the probability that X is present when Y 1 is present and

all other causes of X (addition for leaky case: including those not

modelled explicitly) are absent?”

In an experimental setting, Zagorecki and Druzdzel (2004) elicit

eaky and non-leaky noisy-OR parameters together with con-

itional probabilities. An artificial dependence relation between

hree parents and one child node was determined (causes for anti-

ravity of an unknown type of rock) and in a small simulation,

articipants could choose the influence (strength level of presence

r absence) of each cause and observe what happens as an effect

anti-gravity or not). Then they assessed the conditional probabil-

ty distribution with each assessment method, i.e. non-leaky and

eaky noisy-OR parameters and a direct conditional probability as-

essment. The leaky noisy-OR parameter was assessed as most ac-

urate (in terms of Euclidean distance to empirical distribution)

hile conditional probability was found least accurate. The authors

laim that with an increasing number of nodes their method offers

 clear advantage over conditional probability elicitation as the lat-

er will become unmanageable. More generally, noisy-OR methods

elong to the group of canonical models ( Pearl, 1988 ). For these,

ssumptions on the underlying probabilistic relationship are made

o that a conditional probability table can be generated algorith-

ically given parameters that are assessed by experts and which

nly grow linearly with the number of parent nodes. Usually the

arameters refer to conditional assessments which are made about

 number of combinations of the states of the parent nodes. An

lternative to the aforementioned noisy-OR method is the noisy-

AX method ( Diez, 1993 ). Within the same group of methods is

lso the ranked nodes approach ( Fenton, Neil, & Caballero, 2007 ).

riefly, ranked nodes are random variables with discretised ordi-

al scales which are typically assessed by experts through verbal

escriptors of the scale. 

The usage of verbal classifiers to assess BNs has also been pro-

osed more generally to counteract a high assessment burden.

ere, the influence of a node is simply determined verbally rather

han numerically. For instance, van der Gaag, Renooij, Witteman,

leman, and Taal (1999) use a scale containing both, numerical and

erbal anchors, and Mkrtchyan, Podofillini, and Dang (2015) con-

lude (in a review on the use of expert judgement for BNs in hu-

an reliability assessment) that the use of verbal labelling for in-

erences in BNs is common. We discuss verbal elicitation of depen-

ence explicitly in the next section. 

A last way to facilitate judgement is by providing graphical sup-

ort. Hänninen, Banda, and Kujala (2014) provide experts with the

ie chart probability tool available in GeNIe Bayesian Network Soft-

are to adjust assessments. Probability masses are determined and
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the resulting distribution is graphically visible immediately. This

procedure is repeated until the experts feel comfortable with their

assessments. 

As shown in Section 7 , the use of expert judgement for BNs is

considered in a variety of empirical areas given the popularity of

this dependence model itself. 

4.1.2. Copulas 

In certain situations of context ( a ), a multivariate distribution

can also be modelled by a copula rather than by the “marginal-

and-conditional approach” ( Clemen & Reilly, 1999 ), presented for

BNs before. While an extensive introduction to copulas can be

found in Durante and Sempi (2015) and Joe (2014) , recall first that

for a continuous random variable X with distribution function F X ,

the random variable U = F X (X ) is uniformly distributed. If we have

two continuous random variables X and Y , then the distribution

of the vector ( F X ( X ), F Y ( Y )) is supported on the unit square and

has uniform marginals. Any such distribution is called a (bivariate)

copula. This construction can be reversed: Any set of univariate

distribution functions combined with a copula represents a mul-

tivariate distribution as a result of Sklar (1959) . The notion of a

copula is easily extended to greater than two dimensions. 

Often a one–parameter copula family is used, C θ (u, v ) , that can

be indexed by a parameter θ related to a rank correlation such as

those of Spearman or Kendall (see Appendix B). In fact, both can

be expressed in terms of the copula: Spearman’s correlation is 

ρC = 12 

∫ ∫ 
[0 , 1] 2 

C(u, v ) dudv − 3 

and Kendall’s τ is 

τC = 4 

∫ ∫ 
[0 , 1] 2 

C(u, v ) dudv − 1 

Within a chosen family of copulas (see Appendix B), expert elici-

tation can be used to determine the correlation and hence specify

the dependence. Whenever the family is uncertain, information on

how copulas differ for upper or lower tail concentration, i.e. tail

(in-)dependence (see Appendix B), needs be elicited additionally.

For this, upper (or lower) asymptotic tail dependence is of interest.

The asymptotic upper tail dependence parameter is defined as: 

λU (X, Y ) = lim 

u → 1 −
P (Y > F −1 

Y (u ) | X > F −1 
X (u )) 

when a limit λU ∈ [0, 1] exists. In this case, X and Y are defined

as dependent in the upper tail when λU > 0, whereas whenever

λU = 0 , they are tail independent ( Joe, 2014 ). In other words, for

the former case, it is more likely to observe high values for Y

given high values for X . Following naturally from the concept of

tail dependence, the tail concentration function distinguishes vari-

ous copula formats and is defined for any u in (0, 1) as λU = P (U >

u, V > v ) / (1 − u ) . For the (upper) tail, it leads to the tail depen-

dence coefficient in form of λU = (1 − 2 u + C(u, u )) / (1 − u ) . 

The review results presented in Section 7 show limited experi-

ence for expert judgement within a copula modelling framework.

One reason might be that copulas are distinguished on the one

hand by measures of association such as rank correlations, but on

the other hand also by its behaviour along the dependence func-

tion as indicated by its family. This constitutes a great deal of com-

plexity to be integrated into an elicitation method. However, both

types of information are highly important given that two differ-

ent copula families exhibit a very different behaviour even for the

same rank correlation (as shown in Appendix B). This is particu-

larly crucial for copula families that model extreme joint depen-

dence through asymptotic upper/lower tail dependence (as consid-

ered in the first elicitation approach presented below) in contrast

to tail independent ones. At this point, it is important to note that

the use and elicitation of measures of association related to tail
ependence depends (obviously) on whether one is interested in

apturing tail dependence explicitly or whether another measure

ight serve the modelling purpose better, given the increased cog-

itive complexity for experts to assess tail dependence. 

Some proposed methods that aim at a sensible representation

f an expert’s understanding of dependence in form of a copula

re outlined in the following. Arbenz and Canestraro (2012) de-

ompose the asymptotic upper tail dependence coefficient (pre-

ented above) and query its components from experts before

ombining it again. They consider this as a non-asymptotic ap-

roximation of λU ( X , Y ). The elicitation is as follows: in a first

tep, all non-negligible causes for X to be “extremely large” de-

oted as events j , j = 1 , 2 , . . . , J, are listed. Then, experts assess

 (e v ent j| X = “ extremel y l arge ”) , so the likelihood that the chosen

vent is present if X is in the tail of its distribution. Lastly, ex-

erts are queried P (Y = “ extremel y l arge ”| e v ent j) , i.e. the probabil-

ty that the corresponding event affects Y with the implied magni-

ude. All assessments are then combined by λU (X, Y ) ≈ ∑ J 
j=1 

P (Y =
 extremel y l arge ”| e v ent j) P (e v ent j| X = “ extremel y l arge ”) . The pro-

osed framing is: 

“Given that an extremely bad outcome is observed in X , what

is your estimate of the probability that Y will experience an ex-

tremely bad outcome?”

According to the authors (whose experts were actuaries) this

ethod was perceived as cognitively easy. 

Another option that is being researched further by several co-

uthors of this review but has not been published so far is query-

ng conditional exceedance probabilities for chosen quantiles from

xperts to fit a parametric copula. This is done by plotting elicited

alues for each considered quantile together with candidate copula

hoices and after a first “eyeballing” use conventional goodness-

f-fit tests for the distance to parametric families. Fig. 3 shows

imulated conditional exceedance probabilities for several para-

etric copulas with given rank correlations. With the assessment

f the probability that Y exceeds its u th quantile given that X ex-

eeds its u th quantile for a certain number of thresholds u , a sen-

ible copula choice that represents the experts’ beliefs can be es-

imated. We address the details of eliciting conditional exceedance

robabilities in the next section. 

As a non-standard parametric alternative, Meeuwissen and Bed-

ord (1997) discuss using a minimally informative copula with

iven rank correlation. A copula is modelled by asking experts

o provide a dependence constraint between two random vari-

bles, and taking the copula which is minimally informative with

espect to the uniform (independent) copula. This is further de-

eloped in Bedford, Daneshkhah, and Wilson (2016) and Bedford

2002) . Here, experts assess the expectation of functions for the

wo underlying variables. From that a (min inf) joint probability

s constructed which satisfies the expected value constraint. An

dvantage is that in this approach it is easier to relate a cop-

la parameter to an observable quantity than it is for common

arametric families. An example is given for the dependence of

ailure times between machine components. Minimal informative-

ess also served as motivation for Kotz and Van Dorp (2010) who

onsider a sub-family of generalised diagonal band (DB) copulas

hich require a dependence parameter. It is specified by experts

hrough conditional exceedance probabilities (given the median

alue). Van Dorp (2005) regards DB copulas as advantageous when

sing expert judgement as a dependence parameter that relates to

ts one copula parameter can be defined. We will introduce this

ependence parameter in the next section when we address forms

f elicited dependence parameters explicitly. 

Besides some empirical work in maintenance optimisation

 Bunea & Bedford, 2002 ), the majority of experiences for elicit-



C. Werner et al. / European Journal of Operational Research 258 (2017) 801–819 807 

Fig. 3. Conditional exceedance probabilities at u th quantiles (rank correlations: 0.2–

0.9). 
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ng copulas, such as the first approach presented above, comes

rom banking and insurance ( Arbenz & Canestraro, 2012; Böcker,

rimmi, & Fink, 2010; Regis, 2011; Shen, Odening, & Okhrin, 2015 ),

n area in which the popularity of copulas has increased lately

 Genest, Gendron, & Bourdeau-Brien, 2009 ). Here, expert judge-

ent is typically used to assess conditional and joint probabilities

f (extreme) loss events. These studies might be helpful for other

reas where copulas are gaining increased interest, such as hydrol-

gy ( Genest & Favre, 2007 ). 

.1.3. (Probabilistic) parametric models: multivariate distributions 

Another way to model dependence in ( a ) is by specifying a mul-

ivariate distribution. For an introduction and overview of the dis-

ributions discussed here, see Balakrishnan and Nevzorov (2004) . 

As a main challenge when eliciting a multivariate distribution

s that its full specification would be cognitively too complex for

xperts, we should impose a structure on the distributional choice.

hile for univariate distributions it might be sufficient to assume

 minimal structure such as a continuous and smooth cumula-

ive distribution function which can be specified satisfactorily by

 few quantile assessments ( O’Hagan et al., 2006 ), in higher di-

ensions this is still unreasonable for practical use. Rather, a para-

etric multivariate distribution that represents an expert’s belief

ufficiently is a necessary assumption. Then, an expert’s opinion is

ully specified by determining a few parameters. While any distri-

utional assumptions have to be in agreement with the experts,

hey should be as well in accordance with the modelling purpose.

or instance, it should be suitable for its use in a specific deci-

ion problem for which a distributional form is predetermined or

ts use as a prior in a Bayesian modelling framework. The latter

ffers a probabilistic framework to complement the lack of data

or some common statistical dependence models. Prior beliefs of

xperts (see Appendix B) for given parameters are updated once
bservations are available. A prior is chosen so that it can be most

asily updated ( O’Hagan et al., 2006 ). Generally, this is a different

licitation situation/purpose than using expert judgements to ob-

ain beliefs about uncertainties without the inclusion of future ob-

ervations (what is done in most of the literature reviewed here),

ut this is not of importance for us as with regards to dependence

licitation both methodologies have similar challenges. Hence, both

ethodologies contribute to the findings presented here. 

In the literature on eliciting parameter information for quanti-

ying a multivariate distribution, mainly multivariate normal ( Al-

wadhi & Garthwaite, 1998, 2001; Dickey, Lindley, & Press, 1985;

arthwaite & Al-Awadhi, 2001 ), or t ( Al-Awadhi & Garthwaite,

001; Kadane et al., 1980 ) and Dirichlet distributions ( Chaloner

 Duncan, 1987; Elfadaly & Garthwaite, 2013; Zapata-Vázquez,

’Hagan, & Soares Bastos, 2014 ) are considered. A method that

pecifies a multivariate distribution in a more flexible way (as

hown below) is given in Moala and O’Hagan (2010) . 

For the common parametric assumption of a multivariate nor-

al or t distribution, the elicitation aims at quantifying the mean

ector, μ, and the covariance matrix, �. Instead of determining

he variables of interest directly, even though this has been at-

empted through interactive graphical methods ( Chaloner, Church,

ouis, & Matts, 1993 ), typically hyperparameters that follow from

istributional assumptions on the form of μ and � and therefore

pecify (or index) the multivariate distribution of interest are de-

ermined. In other words, the values of the hyperparameters re-

ect the available subjective prior knowledge about the unknown

odel parameters. This is typically based on specifying hierarchi-

al priors assuming exchangeability (see Appendix B) for the joint

istribution in question. The variables of interest are then con-

itionally independent given the hyperparameters. This is known

s Bayesian hierarchical modelling (see Appendix B) which is a

ommon way to restructure dependence in order to elicit param-

ters as univariate quantities. Typically, the hyperparameters con-

ist of means, scale parameters, degrees of freedom and the spread

atrix which (whenever possible) are elicited through univariate

uantities and conditional medians of observable variables. Percy

20 02, 20 04) presents how the specification of suitable prior dis-

ributions can be simplified and how values of hyperparameters

an be elicited from experts through quantiles of predictive prior

istributions for a variety of common distributions in the reliabil-

ty context of mathematical modelling of maintenance. While we

xplain this approach below (for Dirichlet distributions), it is note-

orthy here that a main advantage is that observable quantities

an be used. Further, he proposes to elicit fewer quantiles than un-

nown hyperparameters and use interaction of experts for further

djustments. 

A different problem for which a multivariate distribution needs

o be specified is whenever an event can take one of k possible

utcomes ( k > 2) and the probability of the i th outcome, p i , is

licited from experts. This might be denoted as eliciting the opin-

on about a “set of proportions” ( Zapata-Vázquez et al., 2014 ). As

he sum of all p i must equal 1, p i cannot be assessed in isolation.

urther, with k > 2, a multinomial distribution models the overall

utcome given that we have independent trials and the probability

f each outcome is the same in each trial. The commonly chosen

arametric distribution is then a Dirichlet distribution, the conju-

ate prior distribution of a multinomial one ( O’Hagan et al., 2006 ).

ne of the earliest approaches in Chaloner and Duncan (1987) uses

n elicitation strategy based on predictive distributions. When con-

idering a specified number of draws from the population of inter-

st, the expectation of the number that belongs to a category is

n fact p i . Given that, they ask their experts for the joint modes

f the predictive distribution. Other methods assess the Dirich-

et distribution by imaginary observations, i.e. by determining the

xtent to which experts change their belief given an observation
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from a draw ( O’Hagan et al., 2006 ). More recently, Zapata-Vázquez

et al. (2014) proposed a refinement to acknowledge the strong as-

sumptions of a Dirichlet distribution (due to the small number of

parameters that determine its form) and therefore make use of

over-fitting. Loosely, they ask experts for more assessments than

(strictly) necessary to fit a distribution in order to reject the choice

of a Dirichlet distribution if it is inappropriate. 

A more flexible method that avoids experts’ belief to fit a single

pre-specified parametric family is presented in Moala and O’Hagan

(2010) . While the focus of the elicitation is laid on the analyst who

seeks to identify the probability density function for a multivari-

ate vector, the posterior distribution is based on the prior distri-

bution as specified by an expert. In order to ensure flexibility on

the parametric assumptions, the analyst’s prior belief is a Gaussian

process which allows the multivariate distribution to take a vari-

ety of forms given the experts’ assessments. The elicited parame-

ters are univariate quantities and a small number of joint probabil-

ities, unless the elicitation of the latter can be reduced to querying

univariate information as well, depending on assumptions for the

multivariate vector’s probability space. 

Given that dependence information for quantifying paramet-

ric multivariate distributions is (mainly) elicited through univariate

quantities, experimental studies show a similar performance to ex-

pert judgement studies with univariate variables of interest. For in-

stance, (conditional) medians are regarded as cognitively easy and

reliable to assess ( Al-Awadhi & Garthwaite, 2006 ). Empirical find-

ings on the elicitation of multivariate distributions are scarce how-

ever which is why no indication for a particular application area

can be given ( Section 7 ). 

4.1.4. (Non-probabilistic) parametric models: Bayes linear methods 

An alternative to eliciting distributional (prior) beliefs for

Bayesian models in ( a ) is the Bayes linear method (BLM) ( Goldstein

& Wooff, 2007 ). It differs by using expectation as basis and is

able to represent more complex problems through adjusting beliefs

by linear fitting. Without distributional assumptions all required

parameters are first and second moments ( Farrow, 2003 ). Hence,

eliciting dependence information concerns beliefs about the co-

variance of parameters (rather than joint probabilities). While not

much experience on the actual elicitation is found in the literature,

Revie, Bedford, and Walls (2010, 2011) and Revie (2008) address

expert judgement for BLM specifically. The dependence model con-

sidered is Y = αX + R where X is the explanatory variable of Y .

R represents the unexplained uncertainty between X and Y (with

no correlation between X and R ) and α is used to measure the

strength of the relationship between X and Y . As a pragmatic way

to elicit covariance information, the elicitation of quantiles is pro-

posed whereas the relation between these and the moments needs

to be derived. A possibility is through Pearson and Tukey (1965) ,

further developed in Keefer and Bodily (1983) , who propose elicit-

ing from three to five percentiles to obtain means and variances.

Hence, with the 5 th , 50 th and 95 th quantiles specified as x 0.05 ,

x 0.5 , x 0.95 for an uncertain variable X , the mean is derived by μX =
0 . 63 x 0 . 5 + 0 . 185[ x 0 . 05 + x 0 . 95 ] and the variance by σ 2 

X = ((x 0 . 95 −
x 0 . 05 ) / (3 . 29 − 0 . 1(	/σ0 )) 

2 with 	 = x 0 . 95 + x 0 . 05 − 2 x 0 . 5 and σ0 =
((x 0 . 95 − x 0 . 05 ) / 3 . 25) 2 . 

In Revie et al. (2010) five elicitation techniques are compared. A

first one is the direct elicitation of cross-moments which is omit-

ted here given that it is discussed in the next section as a com-

monly elicited form. For the remaining methods we assume that

the mean and variance of X and Y have been elicited beforehand.

In the direct calculation approach, experts assess their updated be-

lief of E ( Y ) after the observation that E ( X ) increased hypothetically.

While α can be computed, for the uncertain variable R the experts’

5th, 50th and 95th quantiles are elicited through: 
“Given that X is known to be x̄ with complete certainty, what are

the 5 th , 50 th and 95 th quantiles of Y?”

It follows that E ( R ) and v ar(R ) can be calculated as shown

efore and then E(Y ) = αE(X ) + E(R ) , v ar(Y ) = α2 v ar(Y ) + v ar(R )

nd cov (X, Y ) = αv ar(X ) . For the adjusted expectation method, ex-

erts are asked to re-assess their belief about X based on the true

alue of Y . When defining the true value as ȳ , the new belief for

 ( X ) is E Y (X ) = X Y with observed ȳ . The covariance can then be

alculated as cov (X, Y ) = ((E Y (X ) − E(X )) / (Y − E(Y ))) v ar(Y ) . The

alue of α is again computed and defines the values an expert

an assess for coherence reasons. The adjusted uncertainty ap-

roach works in the same way as adjusted expectation, with the

nly difference that the variance of X is updated based on an ob-

ervation of the true Y . With the adjusted variance denoted as

 ar Y (X ) , the adjusted covariance is then derived using cov (X, Y ) =
 

(v ar(X ) − v ar Y (X )) v ar(Y ) . 

In an experimental setting of the same study, experts were

resented with the pairs of variables for life expectancy between

ales and females (in the same country), height and weight of

ale students, as well as mean time to failure between vehicles.

ll experts were familiar with basic statistical summaries, but not

ith BLM. The different techniques were compared for accuracy,

ncoherence and intuitiveness. Thereby, adjusted uncertainty was

he only method that exhibited incoherent assessments and also

ad more inaccurate results with far more assessments of nega-

ive or no correlation when all empirical data was positively cor-

elated. Direct calculation on the other hand had the best perfor-

ance in terms of accuracy and no incoherent assessments. Direct

orrelation and adjusted expectation barely showed any differences

or experts’ performance. However, over 15% of the responses were

eemed inconsistent. 

While this is the first and only such complete attempt to explic-

tly focus on the actual elicitation of covariance in BLM, some main

eferences for empirical studies with documented expert judgment

pproaches are Gosling et al. (2013) , Revie, Bedford, and Walls

2011) , Bedford, Denning, Revie, and Walls (2008) , Farrow, Gold-

tein, and Spiropoulos (1997) and O’Hagan, Glennie, and Beardsall

1992) . 

.2. Elicitation for indirect modelling with auxiliary variables 

.2.1. Regression models 

A common dependence model in context ( b ) is a regression

odel. For recent overviews, see Ryan (2008) and Weisberg (2005) .

Recall that here information on the dependence is modelled in-

irectly by restructuring the natural input. Technically restructur-

ng is done using variable transformation techniques. Beliefs about

arameters are then elicited while being formulated as univariate

uery variables. Similar to quantifying parametric multivariate dis-

ributions, elicitation here is typically done for prior beliefs in a

ayesian methodology. 

The parameter of interest is a regression coefficient, β . The like-

ihood function p ( Y | X , β) relates observed data Y to regression co-

fficients β and covariates X . Experts then specify the prior distri-

ution for p ( β) typically through hyperparameters which are the

ean and the variance of the regression coefficient ( James, Choy,

 Mengersen, 2010 ). Eliciting moments of regression coefficients

irectly however might be cognitively too complex given that ex-

erts would need to understand the effect that a change of co-

ariate X has on Y . Therefore, the literature on eliciting priors for

egression models proposes indirect approaches. For these, experts

rovide a probability of the response value based on specified val-

es of the explanatory variables or vice versa. From this, prior elic-

tation methods for linear models, normal ( Kadane et al., 1980 ) and

ultiple ( Garthwaite & Dickey, 1991 ), piecewise-linear ( Garthwaite,

l-Awadhi, Elfadaly, & Jenkinson, 2013 ) as well as logistic
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egression models ( O’Leary et al., 2009 ) have been developed. For

he latter, experts typically assess conditional means, E ( Y | X , β)

 Bedrick, Christensen, & Johnson, 1996; James et al., 2010 ) for

 probability of presence, p i , with binary responses for observa-

ion i modelled as logit (p i ) = β0 + β1 x i, 1 + β2 x i, 2 + ... + β j x i, j + εi 

 O’Leary et al., 2009 ). For instance, Choy, O’Leary, and Mengersen

2009) elicit the probability of presence for a certain wallaby type

t a specified location with fixed habitat characteristics in habitat

odelling. Depending on distributional assumptions for the prob-

bility of presence (such as a Beta distribution) the mode rather

han an arithmetic average or median might be elicited due to the

otential skewness of the distribution. 

In a similar manner, parameters can be elicited for (multiple)

inear regression models. Garthwaite and Dickey (1991) propose a

odel of the form: 

(Y | x 1 , x 2 , ..., x i ) = (β1 x 1 , β2 x 2 , ..., βi x i ) 

here again β denotes the regression coefficient and E ( Y | x 1 , x 2 ,

.., x i ) is the expected (average) value of Y when X 1 = x 1 , X 2 =
 2 , ..., X i = x i . Experts then specify the prior distribution of β by

ssessing hyperparameters. To do so, the authors introduce design

oints, values at which a prediction is made after hypothetical data

re given. Likewise, Kadane et al. (1980) elicit fractiles for a pre-

ictive distribution with specified values at design points, using a

isection method (see Appendix B). 

Regression elicitation is further explored in Choy et al. (2009) ,

’Leary et al. (2009) and Al-Awadhi and Garthwaite (2006) .

’Leary et al. (2009) present three different elicitation methods

ith graphical support, similarly to Al-Awadhi and Garthwaite

2006) who use an interactive graphics method as well. Empirical

tudies for expert judgement in regression modelling are mainly

ound in the area of ecology for which e.g. Choy et al. (2009) sum-

arise various approaches. 

.3. Elicitation for modelling propagation of output 

.3.1. Probabilistic inversion 

In modelling context ( c ), a common situation is that input pa-

ameters of a dependence model are not observable. Therefore, a

irect quantification of these variables is not sensible and methods

uch as PI ( Cooke, 1994; Kurowicka & Cooke, 2006 ) are used. Its

im is to take the distribution representing the uncertainty on cer-

ain observables and translate it on the uncertainty of target vari-

bles. While the distribution can come from historical data, PI can

e used as well as a method for transforming expert assessments

f some observable model outputs into uncertainties on parame-

er values. A motivation for PI (that was never published as such)

riginated in the development of expert judgement methods and

ncertainty analysis in the nuclear sector (for a historical overview,

ee ( Cooke, 2013; Kraan & Cooke, 1997 )) where experts refused to

ssess transfer coefficients directly. Similarly, Kraan and Bedford

2005) elicit outputs of a power law that models spread of lat-

ral plume in atmospheric dispersion in form of σy (x ) = A y x 
B y . The

utput σ y ( x ) denotes the lateral (indicated as y ) spread at wind-

peeds x and is determined by the dispersion coefficients A and B .

nstead of querying the joint distribution on ( A , B ), which would

equire experts to consider all possible effects of this relationship

hrough the model, they are asked to quantify uncertainty on the

utput at various downwind distances through a univariate elici-

ation method. In addition to modelling plume spread, the same

aper discusses a case study in banking. Empirical findings of the

ethod are however lacking which is why no indication of specific

pplication areas can be given. 
. Forms of elicited dependence parameters 

This section reviews the proposed forms of dependence param-

ters for elicitation, i.e. association measures or summary types of

n expert’s joint distribution that are used in an elicitation ques-

ion. As well, the corresponding framing of elicitation questions is

resented. In addition to outlining the main elicited forms, an eval-

ation regarding desirable properties is given whenever possible.

hosen desiderata allow for guidance on the suitability of elicited

ependence parameters from different perspectives. 

esiderata for elicited dependence parameters 

A first perspective concerns theoretical feasibility whereas a

ommon desideratum for expert judgement is that the elicited

orms are observable and physically measurable. This allows as-

essments to be credible and defensible ( Cooke, 1991 ). With a

imilar objective, a rigorous foundation in probability theory is

esirable. 

A further perspective considers the assessment burden for ex-

erts. In this regard Kadane and Wolfson (1998) emphasise prac-

icality, i.e. that experts feel comfortable at assessing uncertainty

hile their opinion is captured to a satisfactory degree. For the for-

er, query variables should be kept intuitively understandable. For

he latter, queried information should be linked as directly as pos-

ible to the specific dependence model of interest, ensuring that an

xpert’s assessment is satisfactorily reflected in the final output of

he model. As variables are often transformed into some other pa-

ameter than the one that populates a dependence model (e.g. due

o a potential reduction in the assessment burden), it is important

o measure and control the degree of resemblance between the re-

ulting assessments (through the model) and the dependence in-

ormation as specified by the expert ( Kraan, 2002 ). Note that the

ransformation of dependence parameters is typically based on as-

umptions about the underlying bivariate distribution. For instance,

hen transforming a product moment correlation coefficient into

 rank correlation, this is straightforward under the assumption of

ivariate normality. However, positive definiteness is not guaran-

eed which relates to the next desideratum, that of mathematical

oherence. Coherence means that the outcome should be within

athematically feasible bounds. For dependence measures, ensur-

ng positive definiteness of a resulting correlation matrix might

e a potential issue and methods that adjust experts’ judgements

ight be necessary ( Lurie & Goldberg, 1998 ). Yet, whether an ex-

ert agrees with this adjustment or not determines their confi-

ence in the final assessment. Another solution to incoherence is

o fix possible bounds for the assessment a priori, even though

his can severely decrease the intuitiveness of the assessment. A

ast desideratum is to calibrate assessments on statistical accuracy.

his means, we would like to test experts’ performance (in terms

f statistical accuracy) against empirical data (if available), often to

nform the weighting for mathematically combining judgements. 

While no elicited dependence parameter meets all desiderata,

heir consideration supports comparison and allows a better guid-

nce in terms of suitability within certain modelling situations. 

At a broad level, a distinction for elicited quantities can be

ade between probabilistic and statistical approaches ( Clemen &

eilly, 1999; Kraan, 2002; Morales Nápoles et al., 2008 ). When-

ver possible the presented findings are categorised into one of the

roups. Approaches that do not fit in any of these classifications

an be found in Section 5.3 . 

.1. Probabilistic methods 

In the selected literature popular variables to elicit are of prob-

bilistic nature. This popularity can be attributed to the firm
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Fig. 4. Expert’s conditional probability assessment as a function of the product mo- 

ment correlation coefficient. 
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foundation (in probability theory) and the (potential) observability

of the elicited variables which accompany this choice. 

5.1.1. Forms of probabilistic dependence parameters 

Conditional (exceedance) probabilities. In the context of probabilis-

tic measures of dependence, conditional probability might be the

best known one. A common way to elicit conditional probabilities

is to provide an expert with the information that the conditioning

variable is observed above (or below) its median value (marginal

probabilities are elicited first or are known from data) before the

probability that the target variable lies above (or below) its median

value is enquired. A possible framing of the question is: 

“Consider the pair of variables, X and Y. Suppose now that Y has

been observed to be above its/your median value for it. What is

the probability that X lies also above its/your median value for it?”

This might be extended to any quantile defining for the pair of

random variables X and Y the elicited form for a conditional prob-

ability as P CP ( x i , y i ) := P ( X ≥ x i | Y ≥ y i ) where i = 0 . 5 refers to the

median value, but i might take any other quantile. Experts assess

independence between X and Y as P CP (x i , y i ) = P (X ≥ x i ) implying

that learning about P ( Y ≥ y i ) does not add any information. For a

(strong) negative relationship experts state their belief as P CP ∈ [0,

P ( X ≥ x i )) while for a (strong) positive it is P CP ∈ ( P ( X ≥ x i ), 1].

Given the above form, a conditional probability is sometimes also

called conditional exceedance probability. In contrast, another way

to elicit a conditional probability is by P CP (x i , y i ) := P (X ≥ x i | Y =
y i ) . This way can be applied similarly and its use depends strongly

on context. However, O’Hagan et al. (2006) regard it as less cogni-

tively complex. 

In order to transform a conditional probability into a product

moment correlation coefficient (e.g. for modelling purposes) the

relation between the two can be derived as shown in Fig. 4 . 

The above derivation is possible only when an assumption

about the underlying copula is made ( Kurowicka & Cooke, 2006 ).

Fig. 4 was obtained under the assumption of normal copula den-

sity for X and Y. The analyst finds the product moment correlation

that ensures a positive definite correlation matrix and satisfies the

expert’s assessments ( Morales Nápoles et al., 2008 ). 

Experts’ performance when eliciting conditional probabilities

(in comparison to six other methods) has been investigated in

Clemen, Fischer, and Winkler (20 0 0) . The assessed pairs of vari-

ables are relationships such as height–weight, as well as depen-

dence between individual stocks, their indices and the relation be-

tween stocks and their indices. Participating experts were MBA
tudents with some basic statistical training. In this experimen-

al setting, conditional probability is among the worst performing

ethods for coherence and fourth out of six in terms of accuracy

gainst empirical data. Similar coherence issues when assessing

onditional probabilities were observed by Moskowitz and Sarin

1983) who therefore provided their experts with a Joint Proba-

ility Table which led to large improvements in performance. Gen-

rally, for this method the elicitation of several values to condition

n is recommended ( Cooke & Kraan, 1996 ). 

In the case-study literature ( Section 7 ), the elicitation of con-

itional probabilities is nevertheless favoured as it often serves as

irect model input. Main references where this approach has been

ormally used stem from the Joint CEC/USNRC Uncertainty Analy-

is framework ( Cooke & Kelly, 2010 ). The experts participating in

hese studies became familiar with this format which underlines

he importance of training experts to ensure familiarity. 

An alteration to the elicitation of conditional probabilities

hich is also closely related to concordance probabilities (see be-

ow) is presented in Fackler (1991) . Experts are asked to assess the

edian deviation concordance probability which is also known as

uadrant probability ( Kruskal, 1958 ). It is defined as the probabil-

ty of the two variables, X and Y , falling both either below or above

heir medians, i.e. P QP (x, y ) := P ((X − x 0 . 5 )(Y − y 0 . 5 ) > 0) with x 0.5

nd y 0.5 being the respective medians. This could be asked for as

ollows: 

“Consider the pair of variables X and Y. You have indicated that

there is a 50/50 chance of X being above or below x 0.5 and Y being

above or below y 0.5 . What is the probability that X and Y both will

either be above or below their medians?”

The above formulation is a slightly altered version of the orig-

nal reference to offer a general framing. While the conditional

robability cannot be fully represented with a quadrant proba-

ility, the author claims that the dependence elicitation concen-

rates on events that experts “should be capable of making most

nformed judgements about” ( Fackler, 1991 ). According to Kruskal

1958) , this is “perhaps the simplest measure of association be-

ween two random variables” and an advantage is that it can

e assessed and interpreted on the customary range. This mea-

ure is non-parametric, meaning that is has a well-defined in-

erpretation (even) when structural assumptions, such as bivari-

te normality, do not hold. Further, it is ordinally invariant, i.e.

t remains unchanged by monotone functional transformations of

ts coordinates. This has advantages with regards to modelling

onvenience as well as in terms of cognitive complexity to as-

ess it. The measure is closely related to Blomqvist β ( Blomqvist,

950 ) which is defined as β = P ((X − x 0 . 5 )(Y − y 0 . 5 ) > 0) − P ((X −
 0 . 5 )(Y − y 0 . 5 ) < 0) . 

Similar to Kruskal (1958) when discussing the conveniences

f using the quadrant probability, Blomqvist (1950) describes his

easure of association as being “valid under rather weak assump-

ions regarding the distribution of the population” and “easy to

eal with in practice”. Under the assumption of bivariate nor-

ality, a relation to the correlation coefficient, ρ , is given by

(2 /π arcsin ρ) . Given the advantages from a modelling together

ith elicitation perspective and as pointed out by a reviewer

f an earlier version of this paper, the quadrant probability and

lomqvist β deserve more attention when eliciting dependence. 

onditional (exceedance) probabilities (for higher dimensions). Elicit-

ng higher dimensions of dependence such as in Morales Nápoles,

anea, and Worm (2013) and Morales Nápoles et al. (2008) re-

uires the assessment of conditional rank correlations in addition

o unconditional ones. To do so, the variables of interest that are

onditioned onto are ordered according to some order of prefer-

nce. This corresponds for instance to the relation of parent to
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hild nodes in a directed acyclic graph. Once experts have assessed

he unconditional rank correlation ρX,Y 1 
(in Fig. 2 ) with any of the

ther techniques presented here, the conditional rank correlations

eed to be determined ( ρX,Y 2 | Y 1 and ρX,Y k | Y 2 ,Y 1 in Fig. 2 ). A prob-

bilistic way to do so is through conditional (exceedance) proba-

ilities for higher dimensions which directly follow from the low

imensional case discussed above. A question (according to Fig. 2 )

ight be framed as follows: 

“Suppose that not only Y 1 but also Y 2 has been observed above

its/your median value. What is now your probability that also X

will be observed above its/your median value?”

For this the conditioning set of the unconditional case will be

xtended to P CP ( x i , y 1, i , y 2, i ) := P ( X ≥ x i | Y 1 ≥ y 1, i , Y 2 ≥ y 2, i )

or the i th quantile, e.g. i = 0 . 5 for the median. If experts assess

conditional) independence, the estimate will be the same as for

 CP (x, y 1 ) = P (X ≥ x i | Y 1 ≥ y 1 ,i ) . Otherwise the positive/negative re-

ationship is assessed as before. Whenever P CP ( x , y 1 , y 2 ) � = 1 or 0 it

ollows that X is not completely explained by Y 1 so that Y 2 adds to

he explanation of the former. In psychological research of causal

earning theory, Y 1 , Y 2 and Y k would be referred to as cues that

ompete for associative strength ( Mitchell et al., 2009 ). The idea

f associative strength shows a key difference to the elicitation of

oisy-OR parameters presented earlier in the context of BNs. 

The intuitiveness of this method might be inhibited given that

he choice of the first (unconditional) correlation imposes restric-

ions of the possible values for the second (conditional) correlation

similar to those of positive definiteness of a correlation matrix).

his introduces the necessity to compute (in real time) updated in-

ervals (different than the unrestricted [ −1 , 1] ) into which the new

ssessment can fall, to preserve coherence. Technical details can be

ound in Morales Nápoles (2010) . 

In order to test experts’ performance when assessing a multi-

imensional dependence structure, ( Morales Nápoles et al., 2013 )

ompared conditional probabilities of exceedance with the direct

licitation of pairwise correlation. In their study, a group of 14

xperts (with previous training on statistics) was presented with

wo versions of a graphical model for the relationship between

ulphur dioxide emissions and fine particular matter in Alabama,

SA. The experts were split into two groups so that different de-

endence measures could be elicited. For the first model, query-

ng the rank correlation directly exhibited the best performance

hen averaging out the absolute difference of empirical data and

ll individual answers. Based on a performance-based measure

f accuracy (detailed in Section 6 ), the top three most accurate

xperts assessed correlation directly. However, when averaging

erformances per elicitation technique and model, the conditional

xceedance probabilities outperformed direct assessments. Nev-

rtheless, the authors could not formulate definitive conclusions

ince the different model versions might have had an influence on

he differences in experts’ performances. 

oint probabilities. From conditional probabilities it follows natu-

ally to consider the elicitation of joint probabilities. A joint prob-

bility, P JP ( x , y ) := P ( X ≤ x , Y ≤ y ), can be queried for two random

ariables, X and Y , by asking: 

“Consider the pair of variables X and Y. What is the probability

that both are within the lower (upper) k th percentage of their re-

spective distributions?”

If an expert assesses independence between X and Y , the joint

robability corresponds to P JP (x, y ) = F X (x ) F Y (y ) , where F X and F Y 
epresent the marginal cumulative distributions of the correspond-

ng elicitation variables. A positive relationship is assessed by ei-

her P JP (x, y ) = F X (x ) or P JP (x, y ) = F Y (y ) . For a negative relationship

 JP ( x , y ) approximates 0. 
A relation to the (product moment) correlation coefficient is

erived similarly as in the case of conditional probability. For

edians, conditional probabilities are derived by using the relation

 P (X ≥ x 0 . 5 , Y ≥ y 0 . 5 ) = P (X ≥ x 0 . 5 | Y ≥ y 0 . 5 ) ( O’Hagan et al., 2006 ). 

Daneshkhah and Oakley (2010) mention a modification to elicit

oint probabilities. It is presented in Moala and O’Hagan (2010) ,

here the elicited probability takes the form P JP ( x , y ) := P ( x i ≤
 ≤ x j , y i ≤ Y ≤ y j ). It is concluded that this alternative is able

o capture the most important features of an expert’s distribution

ith a good accuracy and by just making use of a small amount of

ata. 

Eliciting joint probability directly however is seen as rather cog-

itively complex and (even) assessing independence in such a way

s regarded as non-intuitive ( Garthwaite et al., 2005 ). A system-

tic bias for this kind of assessment is that experts tend to over-

stimate the probability of conjunctive events and underestimate

hat of disjunctive ones ( O’Hagan et al., 2006 ). This might be due

o the requirement that certain knowledge of probability theory

s necessary for this method. ( Clemen et al., 20 0 0 ) found that

hen elicited joint probabilities are transformed to correlations,

he obtained values tend to be out their feasible bounds rather fre-

uently. Further, it was the least accurate method when compared

o empirical data. 

oncordance probabilities. A further way to think probabilistically

bout dependence is by considering concordance (and discordance)

f random variables. The concept of concordance probabilities is

losely related to the earlier introduced quadrant probability and

t is limited to a frequency or cross-sectional interpretation for the

air of variables in question, i.e. it requires a population to draw

rom ( Clemen & Reilly, 1999 ). The question can be framed as: 

“Consider two independent draws, ( x a , y a ) from their common un-

derlying population a and ( x b , y b ) from population b. Given that

x a > y a holds for population a , what is your probability that the

relation x b > y b holds for population b?”

Exemplary populations for a and b might be height and weight

f some specified group of people. Formally, the probability of con-

ordance between two random variables, X and Y , considering n

ndependent draws ( x a , y a ) to ( x b , y b ) is given by: 

 C (x, y ) = 

∑ n −1 
a =1 

∑ n 
b= a +1 1 C ∗ ((x a , y a ) , (x b , y b )) (

n 
2 

)
ith C ∗ = (x a − x b )(y a − y b ) > 0 . It can be assessed by an expert

n [0, 1]. A value of (or close to) 0 indicates a strong negative re-

ationship, 0.5 represents independence, and 1 refers to a strong

ositive relationship. The transformation to a rank correlation such

s Kendall’s tau, τ , is defined as τ = 2 P C − 1 . With the assump-

ion that X and Y can be approximated by a bivariate normal dis-

ribution, the relation from τ to other correlation measures, such

s Pearson’s product moment correlation, ρ∗, or Spearman’s rank

orrelation, ρ , can be inferred through ρ∗ = sin (πτ/ 2) and ρ∗ =
 sin (πρ/ 6) ( Kruskal, 1958 ). Nevertheless, a (transformed) product

oment correlation matrix that is positive definite is not guaran-

eed ( Kraan, 2002 ). 

Within the psychological literature of causal learning, the con-

ordance probability relates to the term degree of relatedness . In

he classical experimental design, participants are presented with

nformation about the presence or absence of an input variable,

epresenting a candidate cause, as well as the presence or ab-

ence of an effect/outcome. For instance, medical experts assess

he likelihood of a disease from the (non-) occurrence of a symp-

om. Based on their assessments of discordant and concordant ob-

ervations the aim is to formulate descriptive rules for inferring

ausal strength ( Shanks, 2004 ). 
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Fig. 5. Conditional quantiles to rank correlations. 
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In Clemen et al. (20 0 0) , this technique performed reasonably

accurate in comparison to other methods and only rarely incoher-

ent assessments were made. Similarly, Garthwaite et al. (2005) ,

Kunda and Nisbett (1986) and Gokhale and Press (1982) come to

the conclusion that this method is reasonably accurate and might

be preferred if a population is given. Yet the importance of an ex-

pert’s familiarity with the population is emphasised. 

Expected conditional quantiles (fractiles/percentiles). The quantile

(fractile/percentile) method requires conditional estimates and

therefore shares certain characteristics with eliciting conditional

probabilities. Experts are presented with information that the

conditional value corresponds to a certain quantile (or frac-

tile/percentile) and given that information, the experts assess

which expected quantile the other variable takes. A possible fram-

ing might be: 

“Consider variables X and Y. Given the value Y has been observed

at its ith quantile, q i . What is your expectation of X’s value in

terms of its quantile?”

For the pair of random variables, X and Y , this is defined as

E(F X (x ) | Y = y (q i )) where F X ( x ) is the corresponding distribution

function of X and y (q i ) is the value that Y takes at its i th quantile.

The relation to rank correlation is given through the standard non-

parametric regression function of E(F X (x ) | Y = y (q i )) = ρX,Y (F Y (y ) −
0 . 5) + 0 . 5 ( Fig. 5 ). The conditional quantile is bounded by μmin ≤
E(F (x ) | Y = y (q )) ≤ μmax where μ = min [ F (y ) , 1 − F (y )] and
X i min Y Y 
max = max [ F Y (y ) , 1 − F Y (y )] . If F Y ( y ) is above its median, the val-

es close to the minimum refer to a (strong) negative relationship,

nd the values close to the maximum indicate a (strong) positive

ne. For independence, experts assess E(F X (x ) | Y = y (q i )) = 0 . 5 . A

losely related method is predictive assessment which was men-

ioned in the context of hyperparameters. 

It should be noted that this dependence parameter has cer-

ain characteristics which would have similarly justified list-

ng it among the statistical approaches which are presented in

ection 5.2.1 , after the general discussion on the assessment bur-

en of probabilistic methods. 

.1.2. Assessment burden of probabilistic methods 

Despite the limited empirical evidence available for ex-

erts’ intuitive understanding of different assessment methods,

orales Nápoles et al. (2008) and Clemen et al. (20 0 0) conclude

hat probabilistic statements are not perceived as cognitively easy.

onditional as well as joint probability assessments were rated

y experts as most difficult among all other methods presented

o them. In particular, when moving towards higher dimensions,

he growing conditioning sets for conditional exceedance probabil-

ties were met with accordingly growing concern. Additionally, for

onditional quantiles (fractiles/percentiles) the expert must under-

tand these location properties of distributions quite well together

ith the notion of regression towards the mean which might in-

uce cognitive difficulties ( Clemen & Reilly, 1999 ). A possible ad-

antage of these techniques is that the assessment burden can be

ecreased for most probabilistic methods by re-framing the ques-

ions. For instance, it is often possible to express their forms as rel-

tive frequencies which are a more natural way of thinking about

robabilities. Such framings were found to have a positive effect

oth on assessment burden and accuracy in the univariate case

 Hoffrage, Lindsey, Hertwig, & Gigerenzer, 20 0 0 ). Recognition of

he cognitive burden of assessing dependence has existed at least

ince Kruskal (1958) , who supports probabilistic methods, in par-

icular the quadrant probability, due to its intuitive decision ana-

ytic interpretation in comparison to statistical methods. 

.2. Statistical methods 

Despite some objections to the direct elicitation of moments

f distributions or even cross moments, such as non-observability

 Kadane & Wolfson, 1998 ), the literature offers some interesting

ndings and conclusions about the direct assessment of statistical

easures of association (and alternative formulations). 

.2.1. Forms of statistical dependence parameters 

irect (rank) correlation. Directly asking experts for the natural in-

ut of a dependence model is seen by some as a natural way of

liciting dependence. Often, this is a correlation coefficient. One

ption is to ask experts for an estimate of the (rank) correlation

etween pairs of variables X and Y . A framing might be simply: 

“Consider variables X and Y. What is the (rank) correlation be-

tween them?”

This usually refers to the Spearman’s rank correlation coeffi-

ient (see Appendix B) which is defined on the interval of [ −1 , 1] .

 value of ρ = −1 denotes the strongest possible negative corre-

ation, ρ = 0 expresses that X and Y are uncorrelated while ρ = 1

efers to the strongest possible positive relation. An advantage of

liciting rank correlations over product moment ones is that the

nterpretation of the former is independent of its marginal distri-

utions implying that its values are always in the aforementioned

nterval. Nevertheless, for choosing the appropriate correlation co-

fficient, an analyst has to take into account what kind of rela-

ionship is assessed. Rank correlations, such as Spearman’s version,
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ssume monotonicity while Pearson’s product moment coefficient

see Appendix B) can only be meaningful for linear relationships

 Reilly, 20 0 0 ). 

An obvious precondition for this type of dependence param-

ter to be intuitive is a certain level of familiarity with statisti-

al measures. Therefore, several (conflicting) conclusions have been

ade from research on this query variable. Some studies, such as

adane and Wolfson (1998) , Morgan, Henrion, and Small (1992) , as

ell as Gokhale and Press (1982) , view a direct method as unreli-

ble. The latter for instance conclude that even trained statisticians

ill have difficulties with this method even when being presented

ith graphical output in form of scatterplots. This is in agreement

ith Meyer, Taieb, and Flascher (1997) who conclude that experts

udge the degree to which variables deviate from perfect correla-

ion rather than directly assessing dependence of variables when

hown a scatterplot. Yet according to other research, a direct elic-

tation has performed better in comparison with other assessment

ethods. Revie et al. (2010) , Clemen et al. (20 0 0) and Clemen and

eilly (1999) concluded that eliciting a correlation coefficient is

ore accurate than other dependence variables (in relation to em-

irical data) as well as more coherent. The better performance in

omparison to other methods is primarily attributed to sufficient

ormative expertise of the experts. 

atios of (rank) correlation. When considering higher orders of

ependence, a direct way to elicit this information from ex-

erts is through ratios of (unconditional) rank correlations. In

his method, experts assess the “relative strength” of each

ank correlation ( Morales Nápoles, 2010 ). ( Morales Nápoles,

elgado-Hernández, De-León-Escobedo, & Arteaga-Arcos, 2014 )

nd ( Delgado-Hernández, Morales-Nápoles, De-León-Escobedo, & 

rteaga-Arcos, 2014 ) present it as an alternative to conditional ex-

eedance probabilities for higher dimensions which have the re-

uirement to assess large conditioning sets that make the elicita-

ion exercise rather unintuitive. 

When defining unconditional rank correlations in the exem-

lary BN of Fig. 2 as r X,Y 1 
and r X,Y 2 

, then for the first conditional

ank correlation, ρX,Y 2 | Y 1 , the ratio R = r X,Y 2 
/r X,Y 1 

would be elicited.

he corresponding question might be framed as: 

Given your previous estimate, what is the ratio of r X,Y 2 
to r X,Y 1 

? 

Similar to the conditional probabilistic techniques, the values

hat an expert can assess are restricted for each subsequent ratio.

mposing bounds ensures coherence but makes the elicitation less

ntuitive. Empirical comparisons to probability of exceedance have

either shown a superior nor an inferior performance. Neverthe-

ess, the proponents of this method found that experts often think

n terms of unconditional correlations rather than ratios. The in-

ention of the ratio framing is to prompt experts to think in terms

f relative influence between variables. However, there is no way

f ensuring the experts will follow the proposed path. 

erbal. An indirect statistical approach to elicit experts’ beliefs

bout dependence is through the use of a pre-defined scale. The

ost common way to do so is by using verbal descriptions that

orrespond to certain correlation coefficient values. For instance,

lemen et al. (20 0 0) use a scale of seven points on which the

elationship between X and Y is measured as S X , Y . The points

ange from 1 describing a very strong negative relationship up to

 which denotes a very strong positive relationship. Accordingly, 4

efers to no relationship. The transformation to Spearman’s rank

orrelation is done through ρ = (S X,Y − 4) / 3 . Despite its obvious

ubjectivity in determining the scale due to the rather infor-

al translation of verbal qualifiers, a good performance in terms

f coherence and accuracy can be observed in empirical studies
sing this method. Moreover, the method is intuitive which makes

t popular. In the area of human reliability analysis, Swain and

uttmann (1983) introduce the Technique for Human Error Rate

rediction (THERP) which uses a verbal scale for assigning the

ependence level between human errors. The conditional proba-

ility for failure between tasks A and B is computed as P (B | A ) =
(1 + K · P (B ) / (K + 1) where K is assessed via verbal qualifiers of

omplete dependence ( K = 0 ) to high ( K = 1 ), medium ( K = 6 ), low

 K = 19 ) and zero dependence ( K = ∞ ). The dependence assess-

ent method in THERP is the foundation of various further de-

elopments of dependence modelling efforts in this area. 

oefficient of determination. A method that has been used rather

arely but that is still possible is to elicit the coefficient of de-

ermination. For this, Clemen and Reilly (1999) propose to ask

or the percentage of variance explained as it would result from

egressing one variable on another ( R 2 ). Van Dorp (2005) uses

his idea to construct a dependence measure which can be used

n the elicitation of copula parameters. It is proposed for a

ommon risk factor model within the context of the Program

valuation and Review Technique (PERT) for which dependence is

odelled with a DB copula (see previous section). PERT is an op-

rational research technique for analysing and scheduling projects

hereas the uncertainty in completion time is typically of inter-

st. For modelling the dependence between the (aggregated) com-

on risk factor Y (factors influencing project completion time) and

andom variable X (completion time), first R (X ) = b − a, i.e. the

ange where realisations of X can be observed, is defined. Next,

he range of the conditional distribution, R (X| Y = y, φ) , is speci-

ed where the state of different common risk factors that result

n the aggregate risk of Y as well as the dependence parameter of

he DB copula, φ, are known. From this, the dependence measure

(X| Y, φ) = (1 − R (X | Y, φ) /R (X ))100% is derived (see reference for

ull elaboration). This measure can be thought of as the average

ercent reduction in the range of X when the state of common risk

actor, Y , is given. Suppose Y defines the set of possible risk factors,

 = { rain, no rain } , and the range of X is the length of an activity,

.g. a project’s duration in days. Then the query question is asked

s follows: 

“Not knowing the state of the common risk factor, Y , a value of x

has been assessed for X. Suppose you knew the state of the com-

mon risk factor, Y , on average within a spread of how many days

could you now assess the completion of this activity, X?”

An expert’s assessment of 5 days would then correspond to

0%, i.e. this is the percentage of uncertainty that is explained by

nowing the state of the risk factor. The author highlights that the

licitation question is framed in terms of X which is an observable

uantity. While an intuitive appeal for the method is mentioned,

o empirical results in terms of performance or cognitive burden

or experts have been reported. Extensions for use with different

opula families are achieved by slightly altering the formulation of

 ( X ). 

.2.2. Assessment burden for statistical methods 

Overall, the statistical methods are seen as intuitively

ccessible for experts and enjoy favourable feedback in terms

f assessment burden ( Clemen et al., 20 0 0; Revie et al., 2010 ).

specially verbal scales are seen as directly applicable and

ave therefore enjoyed further consideration. Clemen et al.

20 0 0) report that for statistical methods training and feedback for

ollow-up studies improved accuracy. This is confirmed by expert

tudies with frequent feedback on correlation assessments, such

s weather forecasters ( Bolger & Wright, 1994 ). 

Similarly, neurological experiments in which experts get fre-

uent feedback on correlation coefficients find evidence for a hu-
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man ability to “learn” the effect of varying correlation coefficients

( Wunderlich, Symmonds, Bossaerts, & Dolan, 2011 ). Even though

not conclusive, there are reasons to believe that statistical meth-

ods for dependence elicitation are more intuitively understandable,

or at least “learnable”, when compared to other approaches. This

is nevertheless a signal rather than a strong conclusion also due

to the fact that statistical methods have often been tested (only)

for simple examples (e.g. height–weight relationships) rather than

complex elicitation problems. 

With regards to the complexity of problems for which experts

might assess a correlation directly, Kruskal (1958) offers perhaps

one of the most detailed discussions. He addresses the cognitive

complexity required for assessing correlation coefficients directly

in terms of their operational, decision-analytic and intuitive inter-

pretation. From this perspective, according to him the necessary

level of cognitive processing for assessing a correlation coefficient

can be rather high. For instance, when interpreting a (rank) corre-

lation in terms of concordance and discordance of hypothetical ob-

servations of a population (which has a clear and intuitive mean-

ing) experts might have to assume (the rather unintuitive idea of)

an infinite population (see Appendix B for the definition of rank

correlations). The product moment coefficient is seen as (even)

more difficult to assess as it is not ordinally invariant which (as

aforementioned) inhibits a simple, intuitive understanding given

that any assessment is interpreted with regards to the transforma-

tions made to the marginal distributions. 

5.3. Other methods 

In the following, methods that do not fit the categories above

(for reasons which will be explained) are considered. 

One such method is proposed by Abbas, Budescu, and Gu

(2010) who elicit joint probabilities through univariate distribu-

tions and isoprobability contours. In other words, dependence is

elicited indirectly. We present this approach separately because ex-

perts express preferences over binary gambles with identical pay-

offs rather than providing probabilistic (or numerical) responses

directly. 

Loosely, an isoprobability contour is a collection or set of points

which have the same cumulative probability. In order to elicit the

50th percentile of a contour for two variables of interest, X and Y ,

experts assess first the common quantiles for X , e.g. the median,

x 0.5 , the 75th quantile, x 0.75 , and so forth. Then, the experts are

offered two gambles, for which the authors propose the framing

of: 

A: You receive a fixed amount, z , if the outcome of variable X is

less than x 0.5 and variable Y takes any value (short: ( x 0.5 , y max )). 

B: You receive the same fixed amount, z , if the outcome of variable

X is less than x 0.75 and the outcome of variable Y is less than y 1 (with

y 1 < y max ; short: ( x 0.75 , y 1 )). 

The formulation has been altered to fit the wording of the ear-

lier framings for elicitation questions in this review. The value for

y 1 is specified and depending on the response of an expert, y 1 
is adjusted until the expert is indifferent between the two gam-

bles. If no indifference is achieved, the process ends after a pre-

determined number of iterations and upper and lower bounds for

y 1 are specified to choose the midpoint. With the same framing,

the experts continue choosing between binary deals while varying

the quantiles for X and values of y n , such as A: ( x 0.75 , y 1 ) and B: ( x 0.9 ,

y 2 ) and so forth. Through enough iterations, i.e. a sufficient num-

ber of indifferent choices that determine the points on the con-

tour, its 50th percentile is assessed. Once this is achieved, the joint

cumulative distribution of any point, ( x , y ) ∈ [ x min , x max ] × [ y min ,

y max ], can be derived with one additional assessment of a univari-

ate quantity such as a marginal probability for any of the variables
f interest, F x ( x ), by finding the point ( x 1 , y max ) lying on its iso-

robability contour. The joint probability assessment reduces then

o a univariate problem through F (x, y ) = F (x 1 , y max ) � F x (x 1 ) . 

This approach was tested with graduate students who assessed

he joint probability of weight and height relationships within

heir university cohort. A monetary incentive was offered for ob-

aining honest and accurate answers. The authors conclude that

his method is sensible with respect to difficulty, monotonicity and

ccuracy, but still discuss some possible assumptions that might

ase the assessment burden. As a main advantage over conven-

ional methods they mention the flexibility in analysing the results

y deriving various dependence measures from the elicited out-

omes. 

Another method that has been proposed for specifying de-

endence through expert judgements and which fits into this

ub-section is Papathomas and O’Hagan (2005) . They consider a

ayesian updating procedure for dependent binary random vari-

bles. Again, dependence assessments are not made directly, but a

hreshold copula approach is used to fully determine the depen-

ence structure. 

. Aggregation of dependence assessments 

As we typically elicit judgements from more than one expert in

rder to obtain a broader perspective on the uncertainties of in-

erest, concerns around the aggregation of multiple expert opin-

ons also influence the decision of which dependence parame-

er to elicit. Broadly, two groups of aggregation methods exist,

ehavioural and mathematical ones. Behavioural ways seek con-

ensus among the experts while mathematical methods use a

eighting scheme for the combination. Typically, mathematical ag-

regation is preferred to avoid shortcomings of the first, such as

ndividual experts dominating (or even dictating) the assessment

esult. A potential issue that might occur with mathematical ag-

regation in dependence elicitation is however that not all depen-

ence assessments are preserved. While for instance a linear com-

ination of correlation matrices still is a correlation matrix, condi-

ional independencies, such as specified in a BN, will not be pre-

erved. 

When combining experts’ assessments mathematically, mainly

wo methods are considered: Bayesian aggregation which might

ccount for biases (e.g. overconfidence) and pooling methods

hich are seen as more robust and easier to use ( Hora & Karde ̧s ,

015 ). The latter are discussed in more detail given their explicit

onsideration when aggregating dependence judgements. Gener-

lly, a pooling function is a weighted combination of individual

udgements. Experts are assigned weights either equally or so that

he weights reflect their competence (all weights are non-negative

nd sum to one). The most common types of pooling functions

re linear and geometric. In the theoretical literature, both types

re justified on axiomatic grounds ( Dietrich and List, in press ;

cConway, 1981 ). However, in the context of aggregating depen-

ence assessments, it might be considered problematic that these

ooling methods are not compatible with probabilistic indepen-

ence preservation. This independence property ensures that if all

xperts agree for two variables to be (conditionally) independent,

hen this is reflected in the combined assessment. Yet, unless in-

ependence is justified on structural grounds as well (e.g. through

 graphical dependence representation) and is therefore not purely

ccidental, this normative requirement is questionable ( Bradley, Di-

trich, & List, 2014 ). As shown, often dependence parameters are

licited in a modelling process in which structural judgements,

uch as directed acyclic graphs, are included and therefore we take

he position that both sources of information are respected and

ooling methods can be regarded as valid combination functions.

or other models, the structural information in form of functional
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ependence might be assessed separately and prior to the quanti-

ative assessment in the elicitation process. 

inear pooling: equal weighting. One way of pooling experts’ as-

essments is by equally weighting their estimates (i.e. averaging

hem). Equal weighting of several (directly) elicited correlations

as found to increase statistical accuracy when distance to em-

irical data was measured ( Winkler & Clemen, 2004 ). The authors

ested the robustness of their conclusions by removing/adding ex-

erts from/to the pool and found that the mean average error

MAE) decreased as the number of experts increased. 

inear pooling: performance-based weighting. In the same study,

inkler and Clemen (2004) show that taking the average of only

he top performing cohort of experts as measured by the MAE

educes the overall error considerably (calculated when averaging

he entire set of estimates). This finding is consistent with expert

udgement studies for univariate quantities ( Cooke & Goossens,

008 ) and motivated the idea of developing a measure of cali-

ration to assess experts’ performance in terms of statistical ac-

uracy for multivariate assessments. Note that there is some in-

ication that a common calibration method for univariate expert

udgements ( Cooke, 1991 ) was shown not to be feasible for aggre-

ating dependence assessments ( Morales Nápoles et al., 2013 ). 

The first and only calibration score for multivariate assessments

to the authors’ knowledge) is the dependence calibration score in-

roduced in Morales Nápoles and Worm (2013) which makes use of

he Hellinger distance . In order to assess this score, seed variables

nown to the facilitator/analyst but not the experts are elicited in

ddition to the target variables. This is similar to Cooke’s Classical

odel ( Cooke, 1991 ). For two bivariate copulas, f C (a copula model

sed for calibration purposes) and f E (a copula as estimated by ex-

ert opinions), the Hellinger distance H is then: 

( f C , f E ) = 

∫ ∫ 
[0 , 1] 2 

√ 

1 √ 

2 

( 
√ 

f C (u, v ) −
√ 

f E (u, v ) ) 2 dudv 

n Abou-Moustafa, De La Torre, and Ferrie (2010) an overview of

ifferent distances between distributions is given. If the distribu-

ions are Gaussian, these distances can be written in terms of the

ean and covariance matrix, i.e. the parameters of the Gaussian

istribution. Under the Gaussian copula assumption, H might be

arameterised by two correlation matrices: 

 G (�C , �E ) = 

√ 

1 − det (�C ) 1 / 4 det (�E ) 1 / 4 

(1 / 2 det (�C ) + 1 / 2 det (�E )) 1 / 2 

here �C is a correlation matrix used for calibration purposes and

E the matrix derived from experts’ assessments. The dependence

alibration score is then: 

 = 1 − H 

he score is 1 if an expert’s assessment corresponds to the cali-

ration model exactly. Conversely, it differs from 1 as the expert’s

ssessment differs from the calibration model. Under the Gaus-

ian assumption, i.e. when using H G , the score approaches 1 as

E approximates �C elementwise and the score decreases as H G 

iffers from H C elementwise. A score equal to 0 means that at

east two variables are linearly dependent in the correlation ma-

rix used for calibration purposes and the expert fails to express

his. Or contrary to this, an expert expresses perfect linear depen-

ence between two variables when this is not the case. For more

etails, see Morales Nápoles, Worm, Hanea, and Kalkman (2016) . In

he same study ( Morales Nápoles et al., 2016 ), the authors extend

he method discussed in Morales Nápoles and Worm (2013) . They

se the Hellinger distance to compare a Gumbel copula generated

rom precipitation data with a copula constructed from experts’ as-

essments of tail dependence between rain amount and duration
the way to obtain these estimates is discussed in Morales Nápoles

t al. (2008) ). For that study, a combination of expert opinions

ased on the dependence calibration score outperformed individ-

al expert opinions. Further, it is shown that experts with highest

alibration scores for univariate assessments were not the experts

ith the highest dependence calibration score. 

In order to combine dependence assessments, experts are

eighted according to their dependence calibration score. Similar

o the univariate case, a cut-off level is established, either chosen

y the analyst or by optimising the performance of the combina-

ion. If an individual expert falls below this level, their score will

e unweighted for the pooling function. 

. Dependence elicitation in the empirical literature 

Following the previous discussions about elicitation in various

odelling contexts and about forms of elicited dependence param-

ters, this section provides an overview of the common approaches

n practice that are prevalent in the case study literature. 

While a complete outline of our review methodology can be

ound in Appendix A, we briefly present how the literature on elic-

ting dependence has been reviewed. The objective for this litera-

ure review is two-fold: 

1. Assess the application areas and approaches to dependence

modelling that are used in case studies published in the liter-

ature, in order to evaluate the reach of the different elicitation

methods. 

2. Ensure that the theoretical review is complete and includes a

broad variety of perspectives. 

As a first step, a search strategy was formulated that defined

he key words used in order to ensure a thorough search of poten-

ial references of interest. For this, we started combining common

ey words of expert judgement studies such as “expert judgement

British English)/judgment (American English)” or “elicitation”

tself, with general key words of dependence elicitation and mod-

lling. This was refined by including key words for specific depen-

ence modelling techniques and dependence parameters. Next, ap-

ropriate databases were identified, again starting generally before

earching explicitly in archives of the topic’s research areas, such

s Operational Research and Decision as well as Risk Analysis. For

valuating the relevance of references under equal principles, cri-

eria that specify the fit to this review (and which are outlined

ompletely in Appendix A) had to be defined. The candidate refer-

nces were then filtered and lastly, the selected findings were dis-

inguished between theoretical and practical contributions as the

atter were categorised for the overview in this section. 

In total 53 references have been identified in which dependence

as been elicited within decision analysis/risk analysis case studies

in some, more than one dependence parameter was elicited). The

licited dependence parameters are categorised as conditional (ex-

eedance) probabilities (CP/CEP), point estimates as well as quan-

iles, joint probabilities, statistical parameters such as correlation

oefficients, verbal and other methods (whereas other methods

ere differ from the ones presented in Section 5.3 ). A detailed list

f the identified case studies can be found in the additional Sup-

lementary material. The empirical references were investigated

rom different perspectives and Fig. 6 summarises how the empir-

cal literature is clustered. 

In the upper-left corner it can be seen that the predominant de-

endence model for which dependence is elicited is a BN (61.02%).

or that, the main dependence parameters elicited are conditional

exceedance) probabilities (point estimate) and verbal scales. De-

endence is elicited much less frequently for copulas, BLM ap-

roaches or parametric multivariate distributions. 
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Fig. 6. Different perspectives on elicited dependence parameters’ use in the case study literature. 
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For dependence parameters per aggregation method an appar-

ent finding is that performance-based methods are used mainly

together with conditional (exceedance) probabilities (through

quantile assessments). This might not be surprising given that

the authors for these studies come from the same expert judge-

ment school that emphasises the use of performance-based com-

bination and quantile (rather than point) assessment. In total

performance-based weighting is used in 22.03% of all case stud-

ies, just more than equal weighting which is used in 18.64% of all

references. Most significant however is that for 37.28% of all case

studies the aggregation method is not described or mentioned at

all. 

When clustering the experts’ domains and substantive exper-

tise (upper-right corner), it is shown that in particular for envi-

ronmental and ecological studies as well as in risk analyses for in-

frastructure problems, dependence is elicited through probabilistic

variables (CP/CEP), point and quantile assessments, together with

verbal methods. Overall, the main domains that experts have sub-

stantive expertise in are environmental/ecological (38.98%), in-

frastructure (23.72%) and energy decision analysis/risk analysis

(11.86%). In this context, it is an interesting observation that the

relevant case studies (see Supplementary material) are mostly pub-
ished in domain-specific journals rather than journals with a fo-

us on the modelling and hence elicitation methodology. This gives

 few indications about the status quo of the empirical side of the

esearch problem addressed in this review. It shows that modelling

ependence together with expert judgement for quantification is a

esearch problem that is (actually) recognised in the identified do-

ains. Interestingly, the domains have an established tradition of

pplying rigorous risk analysis methods, often stemming from the

rea of probabilistic risk analysis ( Bedford & Cooke, 2001 ). Further,

his finding indicates that due to a focus on the application in the

elds, there is less focus on developing new theory for dependence

odelling and elicitation which would be found in journals with a

ethodological focus. This allows for cross-fertilisation of various

ndings discussed in the previous sections and our review aims to

stablish a contribution for this. 

While a recommended number of experts from marginal elici-

ation protocols is between 5 and 10 experts (see aforementioned

eferences on guidance for univariate elicitation), for dependence

licitation this is taken into consideration only in 15.25% of the

ases. Slightly more often (22.03%), less than five experts are used.

gain, the predominant percentage (33.89%) for “Multiple” implies

 less clear documentation. 
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While these findings are not conclusive they offer an indication

n the predominant approaches in the case study literature. 

. Conclusions and further research 

We have argued that multivariate decision models under un-

ertainty are becoming more and more prevalent’ whether as BNs

continuous or discrete), as parametric multivariate models, or as

eparate specifications of univariate distributions together with

opulas to model the dependencies. We also argued that this im-

ediately leads to the need for elicitation techniques to quantify

hese models. 

The biggest challenge in the use of expert judgement to quan-

ify dependence is in the way we manage the elicitation burden

or experts. Implicit in our discussion above is that the elicitation

urden has two key dimensions: 

• The required quantity of information—there is a danger that

large amounts of information required from experts will burden

them too much in terms of time and the prolonged intensity of

the task. 
• The complexity of the required information—there is a danger

that the experts might not be able to hold all the required

information in the forefront of their minds while considering

complex scenarios in which (conditional) probabilities are re-

quired. 

Both considerations should guide the analyst to choose be-

ween ways to reduce the elicitation burden, by: simplifying the

arameterisations of models, by considering the qualitative and

uantitative steps of elicitation separately, or by finding ways of

xplaining in practical terms the quantities that are being elicited.

owever, there is a clear trade-off between easing the elicitation

urden and building models that replicate the important behaviour

f real world systems. Satisfying both the above requirements is

hallenging and under research. 

The qualitative structure provided by a Bayesian network is one

xample in this direction. However, often it is difficult to decide on

 particular form of network. We may have situations, for example,

here a multivariate distribution can be estimated from data for

oderate values of the variables, but where qualitatively different

ehaviour can occur in the tails. Expert judgement may be more

ppropriate in this context, as stochastic behaviour is then driven

y different relationships between variables. 

The literature review illustrates clearly the challenge faced in

nding better ways to elicit multivariate uncertainties: In many

ases the reported studies use students instead of (costly) experts.

ften, when experts are used, they are asked to only provide guid-

nce on parameters, but the justification for the chosen parametric

amily is not given. Clearly, for purposes of validity and verifica-

ion we need to evolve better practices in selecting such families.

therwise we are not in a strong position to challenge poor opera-

ional practice, such as the prevalence of the Gaussian copula used

idely in financial modelling prior to the recent crash, and almost

ertainly still in equally wide use ( Salmon, 2009 ). 

Finally, in the paper we have focused on the use of expert as-

essment in quantifying multivariate distributions. However, the

evolution in data analytics is using machine-learning and expert

ystems rather than human experts. It is therefore worth reflecting

n the relative benefits, similarities and complementarities of these

pproaches. An individual human expert may be considered anal-

gous to a particular machine-learning model, and the empirical

esult that machine-learning model averaging typically gives better

esults than any one of the models on their own, reflects older ob-

ervations in the use of expert judgement that weighted averages

f expert assessments are better calibrated than individual experts.

owever, the human expert may be able to provide simplifications
hrough parametric model choices, and insights into model “phase

hanges” that the machine-learning models struggle with, because

he data does not go far enough into the tail. The research chal-

enges we have set out above will help us find a more satisfactory

pproach to combining human and machine expert judgements for

ncertainty modelling. 
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