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Abstract

NASA’s ICE, Cloud and Land Elevation Satellite-2 (ICESat-2) has been measuring the topography of
the Earth’s surface since its launch in September 2018. Equipped with a single instrument, namely,
the Advanced Topographic Laser Altimeter System (ATLAS), ICESat-2 is able to acquire the along
track vertical profiles of its laser footprints. While satellite based land classification has traditionally
been performed with the use of multi-spectral data, which doesn’t consider the vertical structure of the
surface in question, the three-dimensional Light Detection and Ranging (LiDAR) product provided by
ATLAS allows for the observation of the vertical structure of the illuminated surface. This provides
information for the discrimination of surfaces that are only distinctly different from one another in this
dimension, such as different types of vegetative species. Moreover, a greater understanding of how the
signal interacts with different land types will benefit current and future users of the data. This study
presents a first look at the potential of the base scientific data set provided by ATLAS, ”ATL03”, as a
means of land type classification. Features extracted from ATL03 vertical profiles are used to classify
multiple land types in The Netherlands, namely, ”Artificial Surfaces”, ”Agricultural Areas”, ”Forest and
Semi-Natural Areas”, ”Wetlands” and ”Water Bodies”. 100m grid cells were classified and validated
with the CORINE land cover database. The overall classification accuracy was 71.2%, however, after a
visual inspection of the misclassification errors it was found that that the actual accuracy was a minimum
of 5.5% higher, that is, 76.7%. 51 features were created to discriminate between land classes and their
importance per class was analysed. In general, simple statistical parameters, such as the standard
deviation and percentile ranges worked well in distinguishing between classes. For the classes with a
greater vertical range, such as ”Artificial Surfaces”, features that described the height and prominence
of its scattering surfaces were most important.
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1. Introduction

Land cover maps provide segmented information pertaining to the different types of physical coverage on
the Earth’s surface, such as Forests, Wetlands, Artificial surfaces, Agriculture and Water Bodies. The
classification of land cover is an essential component of socio-economic policy and decision making in
the development, planning and management of critical infrastructure and resources. Land cover assess-
ment and the monitoring of its dynamics are essential requirements for the sustainable management of
natural resources and environmental protection. In addition, characterisation of the landscape is also
necessary to establish boundary conditions for models which are sensitive to these properties, such as
predictive models of atmospheric change that depend on land-atmosphere interactions. The most widely
used remote sensing technique for land classification is the visual and computational interpretation of
high resolution single and multi-spectral satellite imagery. The spectral data provided by remote sensing
satellites such as Landsat and Sentinel have allowed the mapping of land cover on a national and conti-
nental scale [Feranec et al., 2016][NERC Environmental Information Data Centre, 2019][Hazeu, 2013].

The Ice, Cloud and Land Elevation Satellite-2 (ICESat-2) was launched in September 2018 and carries
a single instrument, the Advanced Topographic Laser Altimeter System (ATLAS). It is the successor to
the original ICESat mission, which similarly carried a single laser altimeter. ATLAS sends out 3 pairs of
laser beams that reflect off the Earth’s surface and records the return travel time of individual photons.
By measuring the along track return of individual photons, ATLAS is able to trace the vertical profile
of the landscape, providing a slice of the topographical variation at the location of the footprints. This
offers a unique perspective of observation in comparison to spectral data as it provides the opportunity
to obtain information pertaining to the vertical structure of the illuminated surface. This can be partic-
ularly usefull for surfaces that are only distinctly different from one another in the vertical dimension,
such as different types of vegetative species, the identification of wildland fuel or the distinction between
woodland and agricultural areas.

The main scientific goals of the ICESat-2 mission are to measure a changing cryospheric environment
in order to understand the processes that connect the polar regions with the global climate system.
However, secondary goals such as the worldwide measurement of canopy height to measure carbon stor-
age provide insight into the wider possible applications of the data. In addition to the official scientific
goals associated with the mission, NASA’s ”Early Adoption” programme promotes research applications
into a wide range of fields in order to provide a fundamental understanding of ICESat-2’s raw signal
[NASA, 2019]. Many potential use cases of ATLAS data are proposed, such as ice forecasting, wildland
fuel assessments and coastal mapping/monitoring. Similarly to the wide range of proposed applications
in the early adopter programme, it is intended that the research provided in this report will demonstrate
the utility of this novel data product outside the predominant scientific goals.

The aim of this research is to classify land types in The Netherlands with the use of the vertical profiles
collected by ATLAS. Specifically, with the use of the base scientific dataset, ”ATL03”, which provides
the latitude, longitude and vertical heights for each reflected photon along the laser footprints of ATLAS.
The data products collected by ICESat-2 are the first Geo-referenced photon data product available on
a world scale and by analysing the behaviour of ATLAS data when interacting with different surfaces, it
is hoped that a greater understanding of the capabilities and limitations of the data set will be acquired.
A greater understanding of the behaviour of the signal with the land types analysed in this research
can be beneficial to current and future users of ICESat-2 data. The study is intended as a means of
understanding which unique features to ICESat-2 are the most important for classifying land and what
these features can reveal about the surface under illumination.

While this research is the first example of multi-class land type classification of ATLAS data, there
has been some research suggesting its potential. [Duong, 2010] and [Molijn et al., 2011] showed that the
more rudimental footprints recorded on the original ICESat mission were able to successfully classify high
level land types such as ”urban areas” and ”vegetation”. In both cases, the full waveform was simplified
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into a number of Gaussian modes, from which characteristic attributes were extracted for classification.
[Zhou et al., 2016] argued that by discretisizing the full waveform, one is not taking full advantage of the
information in the waveform. The original ICESat mission classified elliptical laser pulse footprints of ≈
70m in diameter every 175m. In contrast, ICESat-2 collects a continuous stream of individual photons
along its footprints, collecting a significantly higher amount of information in the vertical topographical
plain.

There is research that shows the potential of using ATLAS profiles for land classification. [Gwenzi et al., 2016]
showed that the histograms made from the ATLAS profiles provide characteristic attributes that show
vegetation is present as well as the height and other attributes of the vegetation canopy. Furthermore,
in [Neuenschwander and Magruder, 2019] it can be seen that different types of vegetation provide ob-
servable differences in profiles. For example, the standing water below a mangrove forest was clearly
identifiable from a visual inspection of ATLAS profiles. It is expected that the information rich profiles
will be able to successfully detect features attributed to other land types found in The Netherlands,
such as man-made structures, agriculture and rivers. In fact, [Zhang et al., 2020] performed a successful
binary classification of ice/snow covered and bare land with only the returned photons that were con-
sidered noise. It has been shown that the original ICESat mission was able to successfully classify high
level land types and that ICESat-2 can identify distinguishable features in its vertical profiles. However,
it has not been attempted to classify areas of dense land type diversity, such as The Netherlands. In
addition, the behaviour of the ICESat-2 signal on surfaces within The Netherlands, such as Agriculture
and Artificial Surfaces, is unknown.

The goal is to determine to what extent and how accurately ICESat-2 data can be used to classify land
types. In doing so, it will be necessary to determine what attributes of the surface topography affect
the return signal as well as which features of the ATLAS data product are most important at classi-
fying certain land types. Features are henceforth defined as a measurable property or characteristic of
a group of photons, such as the average height, range height or standard deviation of the height. As
this classification serves as a baseline for the data product, it was decided to use the highest level land
types provided by the validation data. These were ”Artificial Surfaces”, ”Agricultural Areas”, ”Forests
and Semi-natural Areas”, ”Wetlands” and ”Water Bodies”. In addition, due to the unique measurement
technique which records a continuous stream of individual photons, a custom validation technique will
be necessary.

The objectives of the research can be summed up by the following research question and sub-questions:

To what extent can ICESat-2 geo-referenced photon data be used to classify land cover
types in The Netherlands?

1. How effectively can ICESat-2’s ATL03 global geolocated photon data be used to classify between the
land types ”Artificial Surfaces”, ”Agricultural Areas”, ”Forest and Semi-natural area”, ”Wetlands”
and ”Water Bodies” using the random forest machine learning technique?

2. Which features unique to ATL03 geolocated photon data are best at distinguishing land types from
one another?

3. What technique can be used to validate the classification?

The structure of the report is as follows. Section 2 will provide an introduction to the use of ICESat and
ICESat-2 data in land classification as well as more detailed discussion about the ATLAS instrument and
the Random Forest classification technique. The research methodology is provided in Section 3. Section
3.1 provides the reader with a first look and description of the ATLAS data, while the validation data
and study area is provided in Sections 3.2 and 3.3 respectively. The classification strategy is discussed
in Sections 3.4 and 3.5, with the test set-up presented in Section 3.6. The results are separated into 3
sub-sections. The overall accuracy, feature importance and a misclassification analysis can be found in
Sections 4.1, 4.2 and 4.3 respectively. Finally, the conclusions and recommendations are presented in
Section 5.
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2. Background

The aim of this Section is to provide the reader with some relevant background information on the
research topic. It is not necessary to read the information provided here for the understanding of the
research, but it does serve as a sound basis for the readers unfamiliar with the ICESat missions and/or
the working principle of ATLAS and/or the random forest classification algorithm.

The original ICEsat mission is introduced in Section 2.1 and ICESat-2 in Section 2.2. The working
principle of ATLAS is discussed in Section 2.2.1 and an overview of the relevant research performed with
ATLAS data is provided in Section 2.2.2. Section 2.3 provides an introduction to the Random Forest
machine learning technique and associated parameters relevant for this research.

2.1 ICESat

ICESat, the predecessor to ICESat-2, was launched in 2003 and remained active until 2010. The orig-
inal ICESat mission carried a single laser altimeter, the Geoscience Laser Altimeter System (GLAS)
and its success led directly to the follow up mission that is ICESat-2. The main scientific objectives of
ICESat-1 were to monitor the mass balance of the polar ice sheets and their contributions to global sea
level change. Secondary objectives were to measure cloud heights and the vertical structure of clouds
and aerosols. As oppose to ATLAS, which measures individual photons, GLAS measured the returns
from pulses of energy fired toward the surface. Portions of this energy are reflected (and absorbed) at
different points on the way to the surface, such as in a cloud or the canopy of a tree. The return signal
is therefore expressed as the return power as a function of time and the waveform provides information
on the vertical structure of the surface.

[Duong, 2010] performed a case study over The Netherlands in which it was assumed that the return
waveform can be decomposed into different Gaussian components, where each component can describe
the properties of a particular reflecting object within the footprint. From the decomposed Gaussian
components, [Duong, 2010] derived some individual waveform parameters to be used in the land type
classification: Number of modes, Total Energy, Waveform begin and Waveform extent. A graphical
description of these parameters can be seen in Figure 2.1.

Figure 2.1: ICESat Waveform Classification Parameters derived from an arbitrary waveform: (a)
Number of Modes, (b) Total Return Energy, (c) Waveform Begin, (d), Waveform Extent [Duong, 2010]

[Duong, 2010] used a simple decision tree classification scheme to discriminate between 4 different land
types, that is, high vegetation, urban, bare land/low vegetation and water. The classification
scheme simply used thresholds on the parameters to decide on the land type. For example, as water ab-
sorbs considerably more energy from the GLAS pulse than the other land types, it was decided that any
return waveform with an echo energy of less that 45fJ would be considered water. The other land types
were classified in the same way, making use of the rest of the classification parameters. The overall accu-
racy was 73%, indicating that the vertical structure of waveforms can be used to successfully classify land.
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[Molijn et al., 2011] employed a similar technique in the Dry Valleys of Antarctica to different types of
terrain, namely, snow, rock, ice and water. In a similar fashion to [Duong, 2010], [Molijn et al., 2011]
felt that only 4 attributes were necessary as an input to the classification algorithm. A decision tree was
employed in this study, which is a relatively simple classification scheme allowing the user to obtain direct
insight into the influence of the different decisions on the classification outcome. The attributes used
in [Molijn et al., 2011] were different to those used in [Duong, 2010] and it is clear from the discussion
of the respective authors that the attributes needed for successful classification are dependant on the
land types to be classified. As in [Duong, 2010], the overall classification accuracy of 74% indicated that
the method can adequately classify these land types. Although, the ice and snow land types performed
relatively poorly due to the fact that the attributes such as reflectivity were not able to discriminate be-
tween these two surfaces. With the heights of each photon returned along the footprint surface, ICESat-2
offers the ability to employ additional attributes that could better discriminate between these two classes.

[Zhou et al., 2016] thought that by discretisizing and simplifying the full waveform into a number of
Gaussian modes and/or by only taking shape related metrics (echo width, skewness, kurtosis etc) from
the waveform, that one is not taking full advantage of all the information present in the waveform.
[Zhou et al., 2016] employed a curve matching approach in an attempt to access more of the informa-
tion from the waveform. The curve matching approach involved the Kolmogorov-Smirnov (KS) test,
which is a statistical measure of the equality of two probability distributions. The samples were clas-
sified by measuring the similarity in distribution between a test sample and a reference curve of a
desired land class. [Zhou et al., 2016] argues that by using the full culmulative distribution function,
one can extract the information provided by the Gaussian discretization as well as extra information
contained in local peaks, skewness and kurtosis. This argument was somewhat validated in the results of
the study where [Zhou et al., 2016] compared the rule based approach employed by [Duong, 2010] and
[Molijn et al., 2011], to the proposed curve matching approach. The curve matching approach had a
superior accuracy of 87.2% compared to 83.7% achieved by the rule based analysis. While these results
should be taken with caution due to the different land types classified as well as different attributes
employed, there is no doubt promise in the land classification of ATLAS data, given that there will be
much more accessible information contained in its profiles, in comparison to those of the original ICESat
mission.

2.2 ICESat-2

The second Ice, Cloud and Land Elevation (ICESat-2) satellite was launched on the 15th September 2018
as the successor to the original ICESat mission, which was operational from 2003 to 2009. The ICESat-2
mission allows the continuation of altimetric laser measurements of the Earths’ polar regions that started
in 2003 with the Geoscience Laser Altimeter System (GLAS) on-board the first ICEsat satellite. The
data gap between these two satellites was partially filled with NASAs’ ”Operation IceBridge”, an air-
bourne campaign using a variety of instruments to observe Arctic and Antarctic ice sheets, ice shelves
and sea ice [NASA, 2018]. These three missions share a main scientific goal of observing the polar regions
in unprecedented detail in order to better understand processes that connect the polar regions with the
global climate system.

While the main scientific goal of the ICESat-2 mission is the observation of the Earths’ polar regions
[Markus et al., 2017], there are a host of other practical and scientifically interesting use cases. The wide
variety of use cases is best described by the applicants of NASAs early adoption programme. This pro-
gramme promotes ICESat-2 data research in a wide range of fields so that a fundamental understanding
of potential use cases can be realised and scaled into organisations’ policy, business, and management
activities [NASA, 2019]. Current applicants have proposed research looking into, to name a few, wild
land fuel assessments, quantifying biomass carbon sequestration, water level monitoring of lakes and
reservoirs, volcanic hazard mitigation and river hydrodynamics estimation. The diverse set of use cases
drawn from satellite laser altimetry is also exemplified by the successful studies that resulted from
the original ICESat mission such as the resolution of mass balances of mountain glaciers and ice caps
[Pritchard et al., 2009] [Kropáček et al., 2014], sea ice freeboard, thickness and volume measurements
[Kwok et al., 2007] [Kurtz and Markus, 2012] and global vegetation height calculations [Lefsky, 2010]
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[Simard et al., 2011].

2.2.1 ATLAS

The sole instrument on-board ICESat-2, the Advanced Topographic Laser Altimeter System (ATLAS)
is a photon counting light imaging, detection, and ranging (LiDAR) system. Photons are sent from
ATLAS to the ground and the time taken for them to return is recorded. With a knowledge of the
precise orbit and attitude of the satellite, one can accurately determine the height of the spots on Earth
illuminated by the satellite. The precise information of the orbit is determined by the ancillary systems
such as the Global Positioning System (GPS) and star trackers. The measurement principle of ATLAS
is fundamentally different to the GLAS instrument on-board ICESat which measured the full waveform
return as opposed to the individual photons measured by ATLAS. ATLAS transmits green light laser
pulses at 532nm at 10kHz (GLAS operated at 40Hz). About 20 trillion photons leave the ATLAS
instrument every pulse, with only about a dozen returning for measurement. The users of ATLAS data
will be provided with ”photon cloud” graphs, showing thousands of data points of the geo-referenced
photons and the time it took them to return to the instruments. By applying further algorithms to
remove noise and detect the underlying signal, one can determine the elevation of the various surfaces
that will appear under ICESat-2 during her orbits.

ICESat-2 will transmit a total of 6 beams organised in a 2 x 3 array, where pair of beams will be sep-
arated by approximately 3.3km in the cross track direction. The distance between the lasers in a pair
is approximately 90m and can be adjusted by changing the yaw angle of the satellite. The ATLAS
beam and footprint geometry can be seen in Figure 2.2. The pairs of beams are each characterised by a
strong beam and a weak beam, these can be seen as the light green and dark green beams in Figure 2.2,
there is an energy ratio between the two beams of about 1:4. The footprint of each individual laser is
approximately 14m wide, that is, photons can be returned to the instrument from within a 14m along
track corridor.

Figure 2.2: ATLAS Idealised Beam and Footprint Pattern [Neumann et al., 2018] (Left) ICESat-2
beam pattern (Right) Instantaneous footprint pattern

Assuming that the atmosphere is clear enough for photons to reach the desired surface, they are scat-
tered upon arrival once or many times by the various land types they come into contact with. Some of
these photons are scattered back towards the ATLAS receiver, which records them as a ”photon event”.
Based on performance models, the arrival times of up to 12 photons per transmitted laser pulse can be
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recorded by the detector electronics. In addition to the potential 12 signal photons that could be received
[Neumann et al., 2018], noise photons from the sun are constantly entering the telescope. The on-board
processing system knows an approximate height range that the photon should return from, so it can
already ignore many of the photons that are returning from high in the atmosphere. However, photons
are also arriving from the surface that have originated from the sun. Given that a photon is reflected
from within the desired height range, all photons, regardless of origin, are time tagged and saved as what
is referred to as a ”photon event”.

One of the primary tasks of the on-board data processing system is to determine which of the photon
events have indeed been reflected from the laser pulse and which are noise photons entering from some
other place. The workings of the algorithm itself are beyond the scope of this report and can be found in
[Neumann et al., 2018], Section 5. The algorithm classifies each photon depending on the likelihood that
it is a signal photon. It can be classified as ”High”, ”Medium”, ”Low” and ”Noise”. For the research
presented in this report, only the photons with a ”high” classification are considered. It was decided to
only classify ”high” signal photons as it is desired to obtain the baseline performance of the dataset. It
may be that the lower confidence photons make the underlying surface signal stronger, however, it could
also have the opposite effect. The performance of the different photon signal confidences is out of the
scope of this report.

2.2.2 ICESat-2 for Land Classification

As the ICESat-2 mission is largely a continuation of the original ICESat mission, the main principle
of the LIDAR instrument is the same, but of course, with some functional improvements. ATLAS will
operate three pairs of profiling lasers in comparison to the single beam operating on GLAS. This will
allow for the determination of local cross-track slope and an improved spatial coverage.

Research has been conducted for various scientific objectives on individual land types such as high and
low vegetation and land and sea ice. This will give insights into how the ICESat-2 signal behaves when
classifying multiple land types. This will not only contribute toward the interpretation of the classifi-
cation results but will also provide ideas as to what features/attributes should be used for specific land
types as well as patterns that may appear in the data that are specific to a certain land type. Addi-
tionally, there are various further products that have been created from ATL03 data that provide height
information for certain land types. In some cases, classification algorithms have been created in order to
detect a certain land type or feature. These methods and their resulting products can be used as an aid
in the classification algorithm.

One of the main scientific objectives is to measure the canopy height of vegetation around the world
[Markus et al., 2017]. Naturally, to achieve this goal, one would need the means to identify and classify
both high and low vegetation, such that further processing is performed in areas of interest only, that is,
the calculation of canopy height is only performed at land types classified as vegetation. Authors have
indirectly proposed methods to identify vegetation as a land class over a variety of ecosystems by showing
the varied and distinct properties at these locations. This provides useful insights into the potential for
land classification. For example, Figure 2.3 shows the diagrammatic representation of a canopy height
calculation algorithm used to calculate tree height in a savanna ecosystem. As can be seen, the shape of
the histogram indicates that there is a tree present and can provide an estimate of the height of the tree.
By creating numerical parameter/s from the properties of the histogram, one could use this information
as an attribute in the classification algorithm to indicate whether or not vegetation is present, the density
of the vegetation and the height of the canopy.

Similarly, [Neuenschwander and Magruder, 2019] calculate the canopy heights in different ecosystems,
such as tropical forests, savanna/woodland vegetation and mangrove forests. Figure 2.4 shows the
ICESat-2 profile of a mangrove forest in Mexico. One can see both the similarities and differences be-
tween the savanna profile presented in Figure 2.3. The top of the canopy provides a similar curving
profile as the savanna profile and other ecosystems presented in [Neuenschwander and Magruder, 2019],
which will presumably be shared with all high vegetation land classes. Conversely, Figure 2.4 contains
the specular returns which characterise this specific kind of vegetation, namely a mangrove forest. In
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some cases, these specular returns can be used to identify standing water or saturated soils. Again,
this kind of pattern could be recognised in a classification algorithm for more specific/lower level land
types. More recently, [Liu et al., 2020] has taken to classifying even lower level vegetation types with a
feasibility study in the mapping of areas of burnt vegetation. The unique vertical structure measured by
ATLAS allowed the successful classification along ICESat-2’s tracks achieving an accuracy of 83% with
the use of random forest classification. [Liu et al., 2020] used 24 simple metrics such as average, medium
and standard deviation of canopy height.

Figure 2.3: Diagrammatic representation of a tree height calculation algorithm [Gwenzi et al., 2016]

Figure 2.4: Profile of ICESat-2 over a mangrove forest in Mexico [Neuenschwander and Magruder, 2019]

Trying to understand the unique properties of each surface to be identified will undoubtedly be beneficial
in the creation of the classification algorithm. From the research presented in this section, it is clear that
the ATLAS signal behaves differently depending on the land type under illumination. Although there
has been no published research specifically looking into multi-class land type classification of ATLAS
data, there are various resources presented in this Section that have implied that there can be promising
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results, not to mention the successful classification studies performed from the original ICESat mission.
This poses a strong research direction to explore the use of ICESat-2 data for land type classification.

2.3 Random Forest Classification Algorithm

This Section provides a high level introduction to the random forest classification algorithm for the reader
that is not familiar with its application. Section 2.3.1 provides an introduction to decision trees, from
which random forests are constructed and Section 2.3.2 introduces the random forest classification algo-
rithm and relevant attributes. For the readers familiar with the random forest classification algorithm,
a discussion of the hyper-parameters chosen and test set-up can be found in Section 3.6.

2.3.1 Decision Trees

Decision trees are a predictive modelling tool widely used in machine learning. They are defined by re-
cursively partitioning the input space, and defining a local model in each resulting region of input space.
This is represented by a tree structure, where a set of questions (leaves) are hierarchically organised and
where each ”leaf” of the tree can be seen as its own sub-classification model.

Figure 2.5 provides a basic example of a decision tree. Figure 2.5a shows the decision tree structure and
provides some terminology. Each node of the tree represents a question asked about specific properties
of the input data. As the model is hierarchical, the question being asked depends on the answer to the
previous question. All nodes have exactly one incoming edge and in the trees used in this report, two
outgoing edges. The decision on the input sample is made in the terminal node/leaf, which is represented
at the bottom of the tree and by the square leaves in Figure 2.5. This process is described in Figure 2.5b.
The tree is attempting to determine properties about the image, in this case, whether the image has been
taken inside or outside. The features or properties that are available for classification are the pixels in
the image. One can start by asking whether the top part of the image is blue, if so, this indicates that a
sky is present. Based on this, we can ask if the bottom part is also blue and if not, we have evidence that
the scene is indeed an outside image. In simple problems, the parameters and structure of the trees can
be selected by hand. However, for more complex problems or those where a large collection of features
are used, the parameters and structure are automatically trained from the input data.

Figure 2.5: Decision Tree (a) a tree is a set of nodes or edges arranged in a hierarchical manner. (b)
Each node (apart from a terminal node) stores a test/split function to be applied to the incoming data.

Each leaf (terminal node) stores the final classification decision. [Criminisi et al., 2011]
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The input sample to a decision tree is denoted by the vector V = (x1, x2, ..., xd) where xi represents a
property of the input sample, commonly referred to in machine learning as a feature. Of course, the
amount (dimensionality) and form of these features depend on the application at hand. Figure 2.6 shows
a segment of a decision tree used in the research presented in this report. The features can be seen in
the first row of each leaf. For example the root leaf contains the feature ”half perc”, which indicates the
ratio of photons that fall above and below a certain height. In each leaf, a test function (question) is
defined, in this case, ”Is the half perc of the sample in question below or equal to 44.888? Depending on
the answer, the sample moves through the tree to either of the samples below. In this example, it can
be seen that of the 14, 434 samples entering at the root node, 7495 were True and 6939 False.

The input data is split into training and test data. As the training data is passed through the tree,
a probability distribution is created at each test function (leaf). This is indicated in each leaf by the
”value” attribute. The ”value” attribute in each of the leaves indicates the amount of samples associated
with each of the 5 classes used in the research, that is, if one were to terminate the tree at the depth
indicated in Figure 2.6 (3), then the probability of a unseen sample belonging to a particular class would
be calculated using the value attribute. For example, if an unseen sample travelled through the leaf and
ended at the leaf on the bottom left, it would be classified as ”Wetlands” as most (3757/8188) of the
training samples landing in this leaf were Wetlands. As the true classes of the samples used in this report
are known, it is considered a supervised classification task.

Figure 2.6: Decision Tree taken from classification applied in this research. For each leaf: Row 1
provides the test function, Row 2 the gini-importance, Row 3 the total amount of samples considered,

Row 4 the distribution of these samples and Row 5 the predicted class according to that leaf.

Of course, the test functions are key to the successful application of the decision tree. The test functions
are created during the training phase. At each node, j, a subset, Sj of features of the input sample will

be presented. From this subset, the test function that best splits Sj into STruej and SFalsej is learned,
that is, there is a maximisation of an objective function at that node, according to Equation 2.1.

θ∗j = arg max
θj∈T

Ij (2.1)

where

Ij = I
(
Sj ,STruej ,SFalsej ,θj

)
STruej = {(v,y) ∈ Sj | h (v,θj) = True}
SFalsej = {(v,y) ∈ Sj | h (v,θj) = False}

(2.2)

θj ∈ T denote the parameters of the test function at the jth split and y is the known label/class of the
input sample. I is the objective function, which measures the level of information gain at the split. In
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order to determine the optimal split at the each node and according to Equation 2.1, a purity measure
is utilised. This calculates the value at which the most discriminative information is gained from the
split. This is described in Figure 2.7, where a simple example is presented using a purity measure called
”gini-importance”. Imagine you wanted to classify a group of 5 females and 5 males into their respective
genders and that the average heights of females and males was 1.6m and 1.7m respectively. Assume that,
each of the people is at or very close to average height. The gini-importance rewards values that better
split the data and therefore is higher in the case where 1.65m was used as the discriminative value. The
aim is to achieve a value at each node that maximised the gini-impurity at that node.

Figure 2.7: Example of gini importance. The goal is to maximise the importance at each split/test
function. In this case, the value of 1.65m would be best because it splits the samples up and creates an

information gain, that is, one gains more discriminative information about the sample.

The gini-importance, provided in Figure 2.3 and Equation 2.3 will be used as the objective function for
the decision trees in this report.

Gini impurity = 1−
N∑
i=1

p2 (2.3)

where N is the number of possible outcomes from the test function.

2.3.2 Random Forests

Random forests are a combination of decision tree predictors such that each tree depends on the values
of a random vector sampled independently and with the same distribution for all trees in the forest
[Breiman, 2001]. There are a few downsides to decision trees that are alleviated with the use of an
ensemble of trees. Firstly, decision trees are sensitive to changes in the input data, meaning that a small
change in the input data can have a significant effect on the optimal structure of the tree. Due to its
hierarchical nature, the position of a feature in the tree will have a significant effect on the result below
it. The key to the success of random forests is the fact that all of the trees are randomly different to one
another. This leads to a de-correlation between the individual tree predictions, resulting in improved
generalisation and robustness [Criminisi et al., 2011].

Classification Forests will be utilised in this research where the goal will be to match the data point, V,
to one of 5 discrete land types studied in this research. A discussion is now provided regarding some
necessary attributes of the random forest algorithm. For all of the attributes discussed below, choices
need to be made tailored to the application at hand. For this research, the choices and motivation are
presented in Section 3.6.
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Features
Features are a collection of properties extracted from the sample to be classified. For example, if one
were classifying pictures of random animals, some discriminative features could be ”Number of Legs”,
”Height”, ”Fur/No Fur” etc. One of the reasons as to why random forest is popular in classification tasks
and the predominant reason as to why it was selected for this research is that the user chooses their own
features (as opposed to, for example, neural networks, where the features are determined automatically).
This is especially desirable in applications such as this, where one of the aims is to learn which attributes
are best at discriminating between land types and which features are particularly distinct for each class.
Random forest also deals well with a large amount of features. As a chosen random subset of features
is chosen at each split, the computational time isn’t effected by the the number of features. As a large
number of trees are used, the effect of a poor feature on the overall performance is dampened as there
will be many trees that will not consider that feature.

Number of Trees
This is simply the amount of trees in the forest. It has been shown that the testing accuracy of a forest
increases monotonically with forest size [Criminisi et al., 2011]. Each tree in the forest will provide a
probabilistic prediction as an output, that is, it will give the likelihood that a particular sample belongs
to one of the five classes considered in this research. As the trees are all randomly different from one
another, it follows that the generalisation of the forest would increase with an increasing forest size. In
other words, the forest will have more of a capability of successfully classifying data it hasn’t seen before.
A single decision tree will tend to overfit and have a high variance/low generalisation, meaning that the
model will be sensitive to small changes in the input data. These errors reduce as the amount of trees in
the forest increases, however, the generalisation error does converge at some point as the forest becomes
large [Breiman, 2001] and of course, the computational effort increases.

Tree Depth
This is the depth at which the trees of the forest are allowed to grow. For example, the decision tree in
Figure 2.6 has a depth of 3. Of course, an increasing tree depth also increases the computation time.
Intuitively, a tree that is too shallow will not have the resources to successfully discriminate between
classes, leading to a poor overall classification accuracy. Conversely, a too large depth can lead to over-
fitting, as the tree has ”learned” training data too well and will not be able to adapt to changes in
the input data/ data it hasn’t seen before. In general, the depth of the trees needs to be selected as a
function of the model complexity.

Max Features
One of the powerful aspects of random forest is the injection of randomness into the model. One of the
ways in which this is done is by selecting a subset, Sj , from the total set of features to be considered
for each tree. The maximum value of Sj controls the randomness of the forest. For example, if Sj =
Nfeatures, then all trees have access to the same information and there will be no difference between
them. The lower the value of Sj , the more randomness introduced into the model. Again, the optimal
choice is application dependant.

Bootstrapping and Bagging
Bootstrapping, also known as bagging, is another technique that introduces randomness into the model.
Similarly, to ”Max Features”, a random subset of the available samples are used to build each tree. Once
a tree has been built, the samples are replaced and another random selection is made for the next tree.
This reduces the variance and helps reduce overfitting, improving the generalisation of the model.
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To conclude, this section has provided the relevant background information to aspects dealt with in this
report. Namely, an introduction to the ICESat and ICESat-2 mission in Sections 2.1 and 2.2 respec-
tively. The promising classification results of ICESat-1 data combined with the level of detail that is
apparent in ATLAS’s vertical profiles provide evidence that they can be used to classify land types in
The Netherlands.

The nature of the datasets provided by these missions are unique in the sense that they possess some of
the attributes, negative and positive, of both ”laser scanning data” and ”satellite data”. Furthermore,
the GLAS and ATLAS datasets also possess certain attributes, positive and negative, that aren’t typ-
ically attributed to these kinds of datasets. The ATL03 dataset is a unique product and kind of mix
of a typical laser scanning and satellite product. For example, ATLAS is a laser scanning instrument,
which would typically be expected to provide a dense cloud of photon locations. This is advantageous
for applications such as the scanning of a bridge or similarly sized structure, or the creation of a Digital
Elevation Model (DEM) over a relatively small area with use of an airbourne LiDAR. However, ATLAS
does not provide the spatial density required to serve these purposes. However, while ATLAS provides
low density return in comparison to a typical laser scanning product, it can provide this on the scale
of the entire Earth, repeated every 92 days. Conversely, one would expect vast temporal and spatial
coverage of the Earths’ surface with a typical Earth Observation satellite, whereas ATLAS provides data
only at the exact location of the laser footprints. These attributes place ICESat in a unique position to
be able to study vertical profiles on a global scale.

The method that was chosen to attempt the classification was the Random Forest classification algorithm.
An introduction to this subject is provided in Section 2.3 and there are two main reasons as to why it
was chosen. Firstly, when using random forest one is able to select the features. This is of particular
importance in this research, where one of the aims is to discover which features unique to the ATL03
dataset are most important. Secondly, most of the literature presented in this Section that was used
for classification made use of either a decision tree or random forest. As the aim is not to test which
classification technique is best, its seems a logical decision to continue this trend.
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3. Data and Methodology

This Section will describe in detail, the methodology applied in this research as well as the data utilised
to do so. The first 3 subsections aim to provide the reader with an introduction to the datasets used
in the research. Section 3.1 provides a first look at the ATLAS data with a discussion of relevant char-
acteristics. Section 3.2 presents the validation data and Section 3.3 presents the area over which the
classification will be performed.

From Section 3.4, the reader is presented with the novel work of the thesis. Section 3.4 presents the
research strategy, for example, What will actually be classified? How will the data be segmented?
How will the results be validated? etc. Section 3.5 presents the features that were considered for the
classification. For explanatory purposes these have been separated into three categories: ”Altitude
Derived”, ”Eigenvalue-based” and ”Histogram-based”, which are described in Sections 3.5.1, 3.5.2 and
3.5.3 respectively. Section 3.6 provides a description of the classification model and test set-up.

3.1 ATL03 Data

There are variety of data products provided by the National Snow & Ice Data Center (NSICD), a high-
level description of which can be found in Figure 3.1. For the analysis performed in this project, the
product ”ATL03” will be used. As can be seen in Figure 3.1, ATL03 is one of the highest level data
products and is the parent of most of the other data products.

ATL03, along with ATL04, are the base scientific data sets, having been derived, converted and formatted
from the raw telemetry data. ATL03 comprises of latitude, longitude and elevation height for each
recorded photon and ATL04 contains the atmospheric profiles of normalised relative backscatter.

Figure 3.1: ICESat-2 data processing workflow and product map [NSIDC, 2020]
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ATL03 will be used for the research presented in this report. One of the goals of the research is to
determine to what extent the vertical profiles recorded by ATLAS can classify land types. For this
reason, only the photon heights and their respective latitudes and longitudes are desired for the analysis,
that is, the extra information calculated and provided in the lower level datasets in Figure 3.1 would be
superfluous to the cause and move away from the goal of understanding the raw signal. As discussed
in Section 2.2.1, ATLAS records individual photon returns, whether they have reflected off the surface
under investigation, or from a cloud, or were just floating around in the atmosphere at the time of
acquisition. As discussed in Section 2.2.1, for this research, only photons that have been classified with
a ”high” likelihood of being a signal photon have been used.

Figure 3.2 provides the ATL03 photon height profiles above an urban area, or Artificial Surface. The
individual photons are represented by the points in the profiles and they have been connected in the
Figure as it is easier to make out the underlying surface as well as patterns in the profile. The y-axis
represents the height above the WGS-84 ellipsoid and the x-axis represents the along track path of the
profile, where the laser footprint is represented by the red line passing across the image, below the profile.
The profile directly follows the laser footprint, that is, if a vertical line were to be drawn from any of the
photons to intersect with the laser footprint, that would be the location from the which the photon was
reflected. The different colours in the profiles represent a different 100m segment from the associated
image.

Figure 3.2: ATL03 Characteristic Photon Height Profiles above Artificial Surfaces.
The colours indicate a different 100m segment as divided in the image. The laser footprint is shown by
the red line passing over the Earths surface. If a vertical line were to be drawn from the photon in the
profile to the laser footprint, the intersection would be the exact location that the photo was reflected

from.
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It can be seen in Figure 3.2 that the Earth’s surface is well represented in the photon returns. At the start
of the third cell, there is a football pitch surrounded by trees. This can be seen traced out in the blue
profile above it, where there are two dense areas of photon return, approximately 6m higher than the flat
surface between them. Figure 3.3 provides characteristic profiles of the other 4 classes analysed in this
report, that is, ”Agricultural Areas”, ”Forest and Semi-Natural Areas”, ”Wetlands” and ”Water Bodies”.

Figure 3.3a shows the profiles over an Agricultural surface. The four small bodies of water that the laser
passes over can clearly be seen by the dips in the profile. Agricultural areas tend to have a relatively
bumpy profile, due to uneven ground or vegetation at varying heights. As a consequence, the underlying
surface tends to be a little more difficult to make out than Artificial Surfaces or Forest and Semi-natural
(Figures 3.2 and 3.3b).

(a) Agricultural Areas (b) Forest and Semi-Natural Areas

(c) Wetlands (d) Water Bodies

Figure 3.3: Characteristic Examples of ICESat-2 Vertical profiles above various land types. Due to the
difference in range height of photon returns for different classes, the scale of the y-axis is not the same

for the 4 profiles shown above.
The colours indicate a different 100m segment as divided in the image. The laser footprint is shown by
the red line passing over the Earths surface. If a vertical line were to be drawn from the photon in the
profile to the laser footprint, the intersection would be the exact location that the photo was reflected

from.
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In Figure 3.3b, the profile of a dense forest canopy is provided. Both the underlying surface and forest
canopy are clearly defined, below and above trees of more than 20m in height. Note how the form of the
profile when reflecting off a tree is the same as the trees around the football pitch in Figure 3.2. The
form of the underlying surface in this example (Figure 3.3b) also implies a Forest and Semi-natural area
class, as it is one that would unlikely be seen in the other classes, especially in the The Netherlands,
which is mostly flat.

The final two characteristic profiles, provided in Figures 3.3c and 3.3d are Wetlands and Water Bod-
ies. Water Bodies profiles possess the interesting characteristic that the surface of the water is sharply
defined, accompanied with downward facing spikes, which are assumed to be reflected from within the
body of water or ground surface below. Wetlands can largely be considered a mix of Water Bodies and
Agriculture, as seen in the associated Wetlands image and its profile. It shares both the uneven return
over a relatively small range of height, as with Agricultural surfaces, and the dense return and downward
facing spikes found in Water Bodies.

It is clear to see the distinctive characteristics of the different land types in the examples provided in
this Section. Of course, it is not always as clear, however these profiles signify the trends that are seen
for each class throughout the data set. When discussing a ”characteristic profile” in the remainder of
this report, it will be referring to the attributes and characteristics that are easily detected visually from
the examples provided in this Section.
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3.2 Validation Data - CORINE Land Cover Database 2018

The CoOrdination of INformation on the Environment (CORINE) Land Cover (CLC) database is a
European wide land cover database that has been maintained and updated since 1986. The database
consists of an inventory of land cover in 44 classes, separated into 3 levels of detail. The highest level
classes are ”Artificial Surfaces”, ”Agricultural Areas”, ”Forest and Semi-Natural Areas”, ”Wetlands”
and ”Water Bodies”. These are also the land types classified in this research.

The most recent version, ”CLC2018”, was produced from Land cover observed in 2018, predominantly
via Sentinel-2 data. The land cover is provided at 100m resolution. Figure 3.4 provides the CLC2018
over The Netherlands. CLC2018 can be accessed at [Copernicus Land Monitoring Service, 2019a]. The
minimum width of the linear mapping elements in the dataset is 100m, that is, each pixel presented in
Figure 3.4 is 100x100m grid cell. Each cell is associated with 1 of 44 land types.

Figure 3.4: CORINE 2018, The Netherlands. Each pixel is 100x100m and each colour represents a
different land class

Figure 3.5 represents the land cover class breakdown. It was decided to use the highest level land cover
types according to the CLC2018 for this research. This is due to the fact that multi land type classi-
fication of The Netherlands with the use of ATLAS data has not been performed before and therefore
the capability is unknown. [Copernicus Land Monitoring Service, 2019b] provides a detailed discussion
of what constitutes the classes presented in Figure 3.5.

Its necessary to be aware of the scope of land types within the classes, that is, some classes constitute
a much wider variety of surface types. For example, Water Bodies basically consist of rivers, estuaries
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and the ocean/sea. One would not expect particularly large variations of profiles between these sub-
classes. On the other hand, Forest and Semi-natural areas consists of all forest types, beaches and
surrounding areas, as well as natural grassland and sparsely vegetated areas. The surface variations
from certain classes, such as Forest and Semi-natural areas, is larger and will likely present difficulties
in the performance when compared to a class such as Water Bodies which is anticipated to have a low
surface variation across its profiles.

Figure 3.5: CLC2018 Land Cover Class Breakdown.
Only the highest level of classes will be used in this research, that is, ”1. Artificial Surfaces”, ”2.

Agricultural Areas”, ”3. Forest and Semi-Natural Areas”, ”4. Wetlands”, ”5. Water
Bodies”[Copernicus Land Monitoring Service, 2019b]
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3.3 Study Area

Figure 3.6: ICESat-2 Laser Footprints and associated land tyes - The Netherlands
Acquired between September 26th - December 26th 2019

The study area used in this research is a grid in Western Europe that encapsulates The Netherlands.
While The Netherlands was the focus of this research, some data is also acquired above Belgium and
Germany. Of the 1387 distinct ground tracks per 92 day repeat orbit of ICESat-2, 30 pass over The
Netherlands and the data collected from these 30 ground tracks are used in the analysis. The data
is taken from ICESat-2’s fifth repeat orbit (Cycle 5) and is taken between September 26th 2019 and
December 26th 2019.
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The exact study area can be seen in Figure 3.6, where all the data used in this research is shown above
the study area. The colours indicated the land type at that location. The tracks in Figure 3.6 actually
represent the exact locations in which data was considered. The along track gaps in the footprints
indicate that it was considered too cloudy to include the data at that location and time. The coloured
pixels indicate the CORINE land type at that location.
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3.4 Land Type Classification Strategy

The ICEsat and ICESat-2 datasets were introduced in Sections 2.1 and 2.2 respectively. Both ICESat
missions share similar properties, however there are some significant differences in the data collection
that instigates a different approach to the classification. The original ICESat mission shot laser pulses,
which resulted in elliptical footprints where the distance between the footprints (where no data was ac-
quired) being proportional to the pulse frequency of GLAS. It will not work to follow the same approach
as [Duong, 2010], who classified each of these elliptical laser pulse footprints, as the ICESat-2 photon
returns are essentially continuous. In this sense, it is necessary to partition the continuous photon return
provided by ATLAS and create a custom classification/validation strategy.

An example of the ATLAS footprints can be seen in Figure 3.7, where photon signal data is acquired at
only and exactly the locations of the laser footprints. Figure 3.7 (left) shows the footprints of one pass
over The Netherlands, where the different colours simply indicate 1 of 6 laser tracks. Figure 3.7 (right)
shows the zoomed in view of the footprints over Amsterdam, The Netherlands. It was decided to start
by classifying square grid cells in accordance with the CLC2018 coordinate system. A description of and
motivation for choosing the CORINE dataset can be found in Section 3.2. A grid was modelled over The
Netherlands in accordance with CLC2018, that is, the ’epsg:3035’ coordinate system [epsg.io, 2019].

Figure 3.7: Examples of ATLAS Laser tracks over (left): The Netherlands and (Right): Amsterdam
Different colours indicate a different laser track (6 per track). In total there are 30 Reference ground

tracks passing over The Netherlands, that is 30x6 unique laser footprints.

Figure 3.8 provides the modelled classification grid and ATLAS footprints superimposed over Amster-
dam. Of course, one is only able to classify the land at the locations where the footprints interact with
the surface, therefore the grid cells to be classified are only those in which the laser footprints pass
through. This is depicted in Figure 3.9, where only the cells to be classified are shown. As can be seen,
the vast majority of grid cells do not coincide with the ATLAS footprints and will therefore not be used
in the classification. Every individually recorded photon has been provided with the respective coordi-
nates in space at which it was reflected, and by converting these to the coordinate system of CLC2018
(epsg:3035), each photon was assigned to a grid cell, with the collection of all photons lying in a cell to
be used for the classification.
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Figure 3.8: Classification Grid, Amsterdam
Each cell is 100x100m, aligned with the same coordinate system as the CORINE validation data, that

is, the ”epsg:3035” coordinate system.

Figure 3.9: Reduced Classification Grid, Amsterdam, The Netherlands.
The areas where the laser tracks can be seen without a classification cell did not meet the minimum

number of photons (50) to be considered for a classification cell

Due to the number of CORINE grid cells lying over The Netherlands (13,246,236) as well as the amount
of photons being returned by each laser track (>> 106), it was important to remain computationally
efficient when assigning photons to grid cells. Figure 3.10 provides a graphical description of how this
was executed by processing as few grid cells as possible. As can be seen in Figure 3.9, the cells in which
the tracks pass through form a recurring pattern across the Earths’ surface. Following the laser tracks
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from the bottom to the top of the image (South to North), it can be seen that for every one cell in the
Easterly direction, the pattern moves 6 or 7 cells in the Northerly direction. This pattern holds for all of
the laser tracks considered in this research, that is, for every 1 cell in the east-west direction, the pattern
moves > 1 cell in the north-south direction. This is further exemplified in Figure 3.10a, where 3 different
laser track patterns are presented. Depending on the reference ground track, the orbit of the satellite is
either ’ascending’ or ’descending’, that is, travelling in the south-north or north-south direction.

(a) Ground Track Grid Cell Pattern Variability (b) Obtaining x/longitude bounds of laser tracks

(c) Grid/Column creation in x/longitudinal direction (d) Grid/Row creation in y/latitudinal direction

Figure 3.10: Graphical Description of Photon Assignment Algorithm

The first step, depicted in Figure 3.10b is to obtain the bounds in the x (longitudinal) direction. This is
achieved by searching the photon locations for the extreme values and then creating a grid from these
values rounded to the nearest 100m, in accordance with the ’epsg:3035’ coordinate system. The start
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and end point of the grid in the x-direction are labelled il and ir respectively. The grid now consists
of (ir − il)/grid resolution columns, as shown in Figure 3.10c. The algorithm loops through each of
these columns and extracts all photons that lie within the bounds of the column. The procedure is
now repeated in the j (latitudinal) direction. First, the bounds are obtained, again by rounding up
to the nearest 100m for the upper bound and down for lower, creating a grid between the minimum
(jl = ymin, ju = ymax) and maximum useful grid cells for that column. This is depicted for each laser
pattern in Figure 3.10d, where the highlighted grid cells are the only cells that will be searched for that
particular column. One can see that by applying the algorithm in this order, the minimum amount of
grid cells are considered.

Once all the photons in a track have been assigned to a cell, an object dictionary can be made of all the
relevant cells, where all the necessary information pertaining to that cell can be stored, such as the name
of the cell, the photon data, the name of the reference ground track etc. All the information needed to
create the features used for classification will be stored in the dictionary. The features that are made
from this information will also be stored in this dictionary.
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3.5 Data Attributes and Feature Extraction

This Section will present the features that were considered for the classification. In this report, a feature
is defined as a measurable property or characteristic of a group of photons bound within a classification
cell. For explanatory purposes, the features have been separated into 3 classes, namely, ”Altitude De-
rived”, ”Histogram-based” and ”Eigenvalue-based”. A description of each class as well as its associated
features can be found in Sections 3.5.1, 3.5.2 and 3.5.3 respectively.

The features were created based on a mixture of the use of previous research and novel solutions. The
”Altitude Derived” features consist of mainly of simple statistical measures of the photon heights,
such as averages, standard deviation and percentile heights. It has been shown in that simple sta-
tistical measures such as these could provide discriminative information regarding certain land types
[Liu et al., 2020][Neuenschwander and Magruder, 2019][Ni et al., 2017].

The histogram-based features, derived from scattering surfaces discovered from histograms of the photon
heights, are novel to this work. They were created in an attempt to define multiple scattering surfaces
within classification cells. It was hoped that this would improve the error rate between classes such
as Forest and semi-natural areas and Artificial. Upon first look, the profiles of these two classes look
relatively similar, however, the strength, location and relative location of their scattering surfaces are
distinctive.

While the laser footprints seem to directly trace the ground track of the satellite, it is stated that the
footprint has an across track variation of ≈ 14m [NSIDC, 2019]. As this is is the same order of mag-
nitude as the classification cells, it seems logical that there could be discriminative information in this
dimension. Moreover, this would become more significant as the size of the classification cell became
smaller. It was therefore decided to implement features that considered all three dimensions and are
henceforth referred to as Eigenvalue-based features. There is vast literature covering the extraction of
geometric features from point cloud/laser scanning data. The analysis presented here mainly focused on
the work presented in [Weinmann et al., 2015][Demantké et al., 2011].

Extensive feature testing wasn’t performed in the creation of the classification model, as one may expect
during the training phase. Firstly, as discussed in Section 2.3.2, feature optimisation is not necessary as
the overall effect of a poor feature is spread across the many trees in the classification forest. As the
aim of this research is not to optimise the classification result but observe which features are significant
or not, it was deemed sufficient to study the feature importance in the testing phase of the algorithm.
This is discussed in further detail in the feature importance results, Section 4.2. There were more ideas
for features that are discussed in the recommendations, Section 5.2. These were not implemented due
to complexity, time constraints or falling out of the scope of this report.

All of the features are calculated directly from the elevation profiles of the classification cells, that is,
from the altitudes of the individual photons recorded within the cells. The features presented can be
created using any individual or combination of photon signal classifications (i.e ’low’, ’medium’, ’high’,
’noise’).

It is necessary to mention that the features presented in this Section are by no means the full set
of potential features that were considered or that were thought capable of contributing toward the
discrimination of the land types. However, in keeping with the global nature of the dataset, it was
desired to create functionality that could classify large areas of land, such as The Netherlands. In order
to fulfil this, it is required to remain computationally efficient in the creation of features. Therefore,
the features that have been chosen are all calculable in a few mathematical operations. As an example,
it was thought that the co-efficients of varying degrees of polynomials used to fit the altitude profiles
would have the potential to characterise the land classes. However, this was also considered unfeasible
with respect to processing time when considering the > 106 classification cells above The Netherlands
and keeping in line with the desired computational efficiency.

30



3.5.1 Altitude Derived Features

The altitude derived features consists of 22 simple statistical properties taken directly from the raw pho-
ton heights. The calculations were performed over the groups of photons assigned to the classification
cells. The features are depicted in Figures 3.11 to 3.16. For comparison, Figures 3.11 to 3.14 show
arbitrary profiles of the different classes, with the altitude derived features depicted.

Mean Height
The average height above the WGS84 ellipsoid of all the photons within the classification cell. Depicted
in Figures 3.11 and 3.12 by the solid line, labelled hmean and calculated using Formula 3.1:

hmean =

∑Nph

i=1 hi
Nph

(3.1)

Figure 3.11: Altitude Derived Features for the classification cell bounded within the black border -
Artificial Surfaces

hrange is equal to the range of the y − axis. hmean and hhalf−range are shown with the solid blue line
and the standard deviation with the dashed blue line.
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Standard Deviation
The standard deviation of the photon heights above the WGS84 ellipsoid of all the photons within
the classification cell. Depicted in Figures 3.11 and 3.12 by the dashed line, labelled hmean + σh and
hmean − σh and calculated using Equation 3.2:

σ =

√∑Nph

i=1 (hi − hmean)2

Nph − 1
(3.2)

Variance
The variance of the photon heights above the WGS84 ellipsoid of all the photons within the classification
cell, calculated using Equation 3.3

var =

∑Nph

i=1 (hi − hmean)2

Nph − 1
= σ2 (3.3)

Figure 3.12: Altitude Derived Features for the classification cell bounded within the black border -
Water Bodies

hrange is equal to the range of the y − axis. hmean and hhalf−range are shown with the solid blue line
and the standard deviation with the dashed blue line.
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Figure 3.13: Altitude Derived Features for the classification cell bounded within the black border -
Forest and Semi-natural areas

The 5, 10, 25, 50, 75, 90 and 95 height percentiles are represented by the solid horizontal lines. The
95-5, 75-25 and 50-5 percentile ranges are represented by the dashed vertical blue lines.

Minimum Height
The lowest height of all photons within the classification cell. Depicted in Figures 3.11 to 3.14 as the
lowest point on the y-axis and calculated using Equation 3.4.

hmin = min(hph) (3.4)

Maximum Height
The maximum height of all photons within the classification cell. Depicted in Figures 3.11 to 3.14 as the
highest point on the y-axis and calculated using Equation 3.5.

hmax = max(hph) (3.5)

Range Height
The height range of the photons above the WGS84 ellipsoid of all the photons within the classification
cell. Depicted in Figures 3.11 and 3.12 by the solid vertical blue line, labelled hrange and calculated
using Equation 3.6.

hrange = hmax − hmin (3.6)
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Half Range Ratio
The Half Range Ratio (HRR) is the ratio of photons above and below the mid point between the lowest
and highest photon. Depicted in Figures 3.11 and 3.12 as the number of photons above and below the
hhalf−range line and calculated using Equation 3.7.

HRR =

∑Nph

i=1 hi∑Nph

i=1 hj
(3.7)

where

hi > hmin +
hrange

2
, hj ≤ hmin +

hrange
2

(3.8)

Figure 3.14: Altitude Derived Features for the classification cell bounded within the black border -
Agricultural Areas

The 5,10, 25, 50, 75, 90 and 95 height percentiles are represented by the solid horizontal lines. The
95-5, 75-25 and 50-5 percentile ranges are represented by the dashed vertical blue lines.
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Normalised Height
The normalised height is the lowest height subtracted from the mean height. Calculated using Equation
3.9.

hnormal = hmean − hmin (3.9)

Percentile Heights
A variety of percentile heights were used as features, that is, the height at which x% of the photons
fall below. The percentile heights were calculated at 5%, 10% ,25%, 50%, 75%, 90% and 95%, depicted
in 3.13 and 3.14 by the solid lines labelled with the respective percentile. Percentiles are calculated by
ordering the photons heights and taking the height at which n photons fall under. n is calculated from
Equation 3.10.

n = (
P

100
) ∗Nph (3.10)

where P is the value of the desired percentile.

Percentile Ranges
The range difference of percentile heights, depicted in Figures 3.13 and 3.14 by the vertical dashed lines
for the 95− 5, 75− 25 and 50− 5 percentile ranges. The percentile ranges are calculated using Equation
3.11.

hp−range = hp1 − hp2 (3.11)

where P1,2 represent the values of the desired percentile heights to find the range between.

Photon Reflectance/ Apparent Surface Reflection (ASR)
The ASR is a measure of the received laser pulse energy divided by the transmitted laser energy multiplied
by the two way atmospheric transmission. The ASR is always modified by the atmospheric transmission,
which is in general unknown for a given location and time, or at least difficult to obtain. ASR is calculated
using Equation 3.12:

ρ =
πNphr

2DcF

NEAtSret
(3.12)

where Nph is the number of photons received, r is the distance between the satellite and the surface, Dc

is the detector dead time correction factor, F is a calibration factor, E is the outgoing laser pulse energy,
At is the area of the telescope, Sret is the product of the transmittance of the optics and the quantum
efficiency of the detector and N is the number of laser pulses summed.

[Palm et al., 2020] calculates the ASR as a function of received surface photons as can be seen in Figure
3.15. As the Figure shows a correlation of 1 between photons received per shot and ASR, it was deemed
sufficient to take the number of photons received per cell as a measure of the surface reflectance. As
the total distance travelled by an ATLAS laser is variable through a classification cell and the distance
travelled is proportional to the amount of laser shots, the number of photons received has been divided
by the distance travelled within the cell, to provide the number of photons received per meter. Equation
3.13 provides the calculation for this feature.

Photon Reflectance =
Nph√

dx2epsg:3035 + dy2epsg:3035

(3.13)

For a given surface, time, orbit position and laser the returning laser energy is largely effected by clouds
and their properties. At the time of writing, this has not been considered in the calculation of this
feature. Due to the fact that only classification cells with a sufficient amount of photons are considered,
the effect of clouds is considered to be already included in the calculation to a sufficient extent, in other
words, classification cells falling under cloudy areas have been removed. Both the absolute and per meter
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Figure 3.15: The ASR as computed by Equation 3.12 as a function of the number of surface return
photons received per laser pulse (r = 496 km, Dc = 1.1, F = 1.0, E = 160 µJ , At = 0.43 m2,

Sret = 3.79 e17, N = 400) [Palm et al., 2020]

values are included as features, called n ph, n ph rel respectively.

Skewness
The skewness is a measure of the difference in shape or asymmetry of a sample distribution from a
bell curve or normal distribution. A positive skew indicates that the tail falls to the left hand of the
distribution. The skewness is calculated from the photon heights above the WGS84 ellipsoid of all the
photons within the classification cell using Equation 3.14. The x-axis in Figure 3.16 provides the variance
in skewness from 1376 samples taken from a laser track across The Netherlands.

The sample skewness is defined as the Fisher-Pearson coefficient of Skewness [Zwillinger and Kokoska, 1999]:

Coefficient of skew =
m3

m
3
2
2

(3.14)

where,

mi =
1

Nph

Nph∑
n=1

(hn − hmean)i (3.15)

Kurtosis
Kurtosis is a measure of the difference of the extent of the tail of a sample distribution with respect
to a bell curve or normal distribution. Data sets that have high kurtosis (or heavy tails) tend to have
outlier and vice versa for distributions with low kurtosis, where the extreme case would be a uniform
distribution. The kurtosis is calculated from the photon heights above the WGS84 ellipsoid of all the
photons within the classification cell. The y-axis in Figure 3.16 provides the variance in kurtosis from
1376 samples taken from a laser track across The Netherlands.

The kurtosis of the classification cell is calculated using Equation 3.16 [Zwillinger and Kokoska, 1999]:
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Coefficient of Kurtosis =
m4

m2
2

(3.16)

where mi is given by Equation 3.15.

Figure 3.16: Skewness and Kurtosis Variance for all classes. 1376 samples taken from one laser track
across The Netherlands
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3.5.2 Histogram Features

The next set of features are referred to as ”Histogram Features” as they are all derived from histograms
created from the heights of the photons above the WGS84 ellipsoid of all the photons in a classification
cell. Histograms provide some desirable attributes for this research. Features created from the his-
tograms can be processed much quicker as the data is essentially reduced from the number of photons to
the number of histogram bins. In addition, it allows the simple determination of areas of dense photon
return, or in other words, the discovery of a scattering surface.

For the analysis presented in this section, a histogram peak is considered analogous to a scattering sur-
face, that is, a defined surface within a classification cell. For example, this could be the roof of a house,
the bank of a lake or a dense area of tree canopy. The method of persistent homology was utilised in
order to obtain the histogram peaks from each classification cell. Persistent homology is an algebraic
method of discerning topographical features of a dataset. In this application, the topographical features
of concern are the peaks of the photon height histograms.

The goal with the peak detection algorithm applied is not to just to find the global maximum, as in most
cases, this will be the underlying surface. In the case of a lightly forested area, this would negate the less
dense canopy and solely detect the underlying surface. Nor is the goal to detect all the local maxima,
as many are insignificant compared to other maxima in the neighbourhood. The goal is to identify the
relative maxima and quantify their strength with respect to other identified maxima.

Figure 3.17: Histogram, Profile and peaks identified from peak search algorithm - ”Artificial Surfaces”
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A mathematical definition of persistent homology is beyond the scope if this report, however Appendix
A provides an algorithmic formulation of the problem in order to give some context to the theorem. For
the readers comparison, Figures 3.17 to 3.20 present examples of histograms and respective profiles of
4 arbitrary classification cells, from the ’Artificial Surfaces’, ’Forest and Semi-natural’, ’Wetlands’ and
’Water Bodies’ classes. A simple analogy to describe the operation of the algorithm is to imagine that
the histograms presented in Figures 3.17 and 3.20 are vast mountain ranges lying under the sea in the
peak of an inter-glacial period. As the temperature cools the sea level starts to drop, the mountain
peaks start to emerge. A peak is created when these local maxima emerge. Whenever a local minimum
surfaces, we consider the higher peak to have died, or the lower peak to have merged in to it, which
provides a quantity to assess the significance or persistence of the peak. In Figures 3.17 to 3.20, the
peaks and respective persistences are depicted by the coloured lines, which are measured from the circle
at the top of the coloured line to the bottom of the line. The persistence, which is the photon histogram
counts, is considered as a measure of the strength of a scattering surface, as many photons were reflected
from this height range.

In Figure 3.17, notice how some of the obvious scattering surfaces are detected by the algorithm. Moving
from left to right of the classification cell, the footprint passes over two buildings that seem to be the
same height, these are represented by Peak 3. There is the artificial ground surface, represented by Peak
1 and the two bodies of water at the middle and end of the cell, which are lower than the ground surface,
represented by Peak 2.

In Figure 3.18, the laser seems to elude the trees until reflecting off a 10m tree at the end of the cell,
represented by Peak 2. Peak 2, which is much smaller in strength, due to the characteristically low
return from vegetation, and appearing at a much higher altitude, will be a strong indicator for a Forest.

Figure 3.18: Histogram, Profile and peaks identified from peak search algorithm - ”Forest”
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A Wetlands histogram is provided in Figure 3.19 and shows the characteristically choppy, yet dense
profile that is seen from Wetlands. The choppiness comes from the uneven ground associated with vege-
tation, while the dense photon return comes from the water within the cell. It is interesting to note the
skew of this cell in comparison to the Water Bodies histogram, shown in Figure 3.20. The downward
facing spikes, typical of Water Bodies, mean that there are tiny peaks below the strongest peak.

It is clear from Figures 3.17 to 3.20 that the strength, altitude and relative position of histogram peaks
are class specific. The peaks detected from the histograms of the classification cell can represent valuable
information within the cell at a small computational cost. The information provided by the 100’s of
photons reflected per cell can be reduced to a 20 bin histogram and finally, the location and strength of
peaks within it.

Figure 3.19: Histogram, Profile and peaks identified from peak search algorithm - ”Wetlands”

A number of features were calculated from the histogram peaks. For each classification cell, a number
of peaks, PN (PN >= 1) are calculated.

For each classification cell,
P = P1, ..., PN (3.17)

where each Pi has an associated persistence (strength of scattering surface) and location, labelled Pi,pers
and Pi,loc respectively and ordered from the most persistent peak, P1, to the least persistent PN . Table
3.1 presents the features that were created from the peaks and their respective persistence’s. It would
be possible to create many more features from these peaks, given the multiple persistence peaks for a
classification cell (dependant on bin size). However, it is intended to keep this list as concise as possible,
whilst pertaining the most significant information. The feature values for the histograms in Figures 3.17
to 3.20 are also provided for the readers comparison in Table 3.1. Features are created from the strength
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of the strongest, second strongest and weakest persistence’s. The heights at which they occur are also
features as well as the difference in both height and persistence between them.

Figure 3.20: Histogram, Profile and peaks identified from peak search algorithm - ”Water Bodies”

It is hoped that the features presented in Table 3.1 will assist especially with the discrimination of ”Arti-
ficial Surfaces”, ”Agriculture” and ”Forest and Semi-natural” as these profiles can be relatively similar,
especially in comparison with the ”Water Bodies” and ”Wetlands” classes, whose profiles are of course
alike. In general, it is expected that artificial surfaces will have strong peaks, where photons are reflecting
of sharp man-made surfaces such as roofs and roads. In addition, it is likely that these peaks will be
further away from each other than in other classes, the transition from a roof to a road for example. In
comparison, for the ”Forest and Semi-natural class”, using a tree as an example, it is expected that the
photons will reflect more randomly throughout the canopy of the tree, leading to less defined peaks and
less distance between them. In addition to the features defined from the peak detection algorithm, there
are some further features calculated from the histogram properties:

Number of Empty Bins
The number of histogram bins with a count of zero. Empty bins = 5 in Figure 3.17

Maximum consecutive Empty Bins
The maximum number of empty bins that lie next to each other. For example, in Figure 3.17, this would
be equal to 4, the consecutive bins appearing from bins 4 and 7.
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Feature Formula
Artificial
Fig 3.17

Forest
Fig 3.18

Wetlands
Fig 3.19

Water Bodies
Fig 3.20

N peaks
∑
P 5 2 4 4

Pers max P1,pers 53 53 129 23
Pers sec P2,pers 41 6 3 6
Pers weak PNpers

1 6 1 1

Pers max rel
P1,pers

Nph
0.218 0.582 0.268 0.137

Pers sec rel
P2,pers

Nph
0.169 0.066 0.006 0.036

Pers weak rel
PN,pers

Nph
0.004 0.066 0.002 0.006

dPers max sec P1,pers − P2,pers 0.049 0.516 0.261 0.101
dPers max weak P1,pers − PN,pers 0.214 0.516 0.266 0.131

Pers mean
∑Npeak

i=1 Pi,pers

Npeak
23.2 29.5 33.5 7.75

h max peak [m] P1,loc 42.57 45.70 41.81 41.56
h sec peak [m] P2,loc 40.84 56.70 41.26 41.21
h weak peak [m] PN,loc 45.59 56.70 42.42 40.92
h max sec [m] P1,loc − P2,loc 1.72 -11.0 0.55 0.35
h max weak [m] P1,loc − PN,loc -3.02 -11.01 -0.61 0.64

h peak mean [m]
∑Npeak

i=1 Pi,loc

Npeak
44.47 51.20 41.95 41.12

Table 3.1: The 16 features derived from Histogram Peaks and their respective values in the histograms
presented in Figures 3.17 to 3.20

42



3.5.3 Eigenvalue-based Features

ATLAS data differs from traditional laser scanning data by only providing dense photon returns in two
dimensions, that is, in the along track and height directions. Technically, the data does have 3 dimensional
variation, however the variance in the across track direction is an order of magnitude smaller than the
along track and height directions. It is stated in [NSIDC, 2019] that the footprint of ATLAS is 14m,
however what this means is a little unclear. It is expected that this means the photons can be returned
from within a 14m corridor parallel to the along track direction of the laser. Figures 3.21 and 3.22
provide 3D views of real segments of the laser tracks above The Netherlands.

Figure 3.21: Side view of a segment of laser tracks in The Netherlands. x-axis = 7.78km , y-axis =
4.91km Distance between pairs of lasers = 2.5km

Figure 3.22: Front View of a segment of laser tracks in The Netherlands. x-axis = 7.78km , y-axis =
4.91km, Distance between lasers = 90m
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Figures 3.21 and 3.22 provide an approximately 5km segment of the laser tracks for all 6 beams. The
general geometry can be seen, that is, the 3km between the pairs of lasers and 90m between the lasers
themselves. It is clear that over this 5km, the lasers don’t diverge much from their path, or at lease it
cannot be made out from Figure 3.22. The across track variation must be much smaller than 90m. In
order to gauge the across track variation of a single laser footprint print, a linear line of best fit has been
plotted of all the photons received from an arbitrary laser track across The Netherlands, this is depicted
by the blue plot, with the photons represented by the scattered blue dots. The average deviation from
this line on either side is represented by the red and purple plots and the extreme deviation by the orange
and green plots. The average deviation from this line is ≈ 2.8m, with the maximum at ≈ 11.7m. In
other words, it seems that there is a corridor of up to 23.4m within which a photon could fall. With
most of the information contained within a 5.4m corridor. This is larger than the 14m previously stated,
however it is probably due to the fact that photons arriving from another source are reflected into the
instrument. It is clear that the information stored in this dimension is less significant than the other
dimensions, however, it has been decided to calculate some basic 3D features for the classification testing.
This functionality is implemented as it is desired that the method provided in this report can be applied
to classification cells at a higher resolution. If one were to classify at a resolution of 5m classification
cells or less, it would not make sense to ignore this dimension, given that it’s variation can be up to 23m.
In addition, the features chosen have respected the aim to stay computationally fast.

Figure 3.23: Cross-Track Visualisation

The 11 3D features presented here are taken from [Weinmann et al., 2015] and are all geometric features.
For each classification cell, let Xi = (xi, yi, zi)

T and X̄ = 1
n

∑
i=1,nXi, the centroid of the n photons.

Given M = (X1 − X̄, ..., Xn − X̄)T , the 3D structure tensor is defined by the covariance matrix C =
1
nM

TM . An eigenvalue decomposition of the covariance matrix provides the 3 principle directions
(eigenvectors) of the photons within a classification cell and their magnitudes (eigenvalues). Figure
3.24 provides the principle directions for 100 random classification cells of each class. The principle
directions can be considered a decomposition of the directional variance of a classification cell. There is
a clear difference in variance between the 3 principle directions. In terms of classification, this indicates
the discriminative potential of a feature created from the eigenvalues of a certain principle direction.
Principle direction 1 seems to have the least variance as well as no clear distinction between classes.
Principle direction 2 has the largest variance and seems to have more of a distinction between classes,
although a pattern is not clear. Saying that, there seems to be the most variation in classes that contain
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the most varied surface types, such as Forest, whose vectors are pointing in many directions, as oppose
to Water Bodies, whose vectors seem to be pointing in two distinct directions, namely, along the positive
and negative x-axis, albeit with some anomalies. Principle direction 3, whose values are mostly positive
as it is associated with the photon heights (whose values are all positive), discriminates the most between
classes. Water Bodies, Forest and Wetlands can be seen grouped together.

Figure 3.24: Principle Directions for 500 classification cells chosen at random (100 for each class)
Key: Artificial Surfaces, Agriculture, Forest, Wetlands, Water Bodies

Using the eigenvalues derived from the structure tensor a collection of ”Eigenvalue-derived” features were
created. Each classification cell is considered as its own cloud, with the photons within it being used as
the points. The following features are calculated from the normalised eigenvalues, ei, where i ε {1, 2, 3},
of the photons heights extracted from a classification cell.

Linearity = Lλ =
e1 − e2
e1

(3.18)

Planarity = Pλ =
e2 − e3
e1

(3.19)

Scattering = Sλ =
e3
e1

(3.20)

Omnivariance = Oλ = 3
√
e1e2e3 (3.21)

Anisotropy = Aλ =
e1 − e3
e1

(3.22)

Eigentropy = Eλ = −
3∑
i=1

eiln(ei) (3.23)

Change of Curvature = Cλ =
e3

e1 + e2 + e3
(3.24)

V erticality = 1− nz (3.25)

where nz is the vertical component of the normal vector n ε R3
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sum EV s3D = (e1 + e2 + e3)3D (3.26)

[Weinmann et al., 2015] discusses how the methods applied here are intended to be de-coupled from the
size of the neighbourhood used. Still, this method is generally applied to denser photon clouds over much
smaller areas. For example, this method is widely used in the object segmentation of LIDAR data. While
it has been shown that the variation in the z-direction is much larger than the other two dimensions, it
is still thought that there could be valuable information stored within them and it has therefore been
decided to use the eigenvalue-based features in the analysis.
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3.6 Classification and Test Set-up

In Section 2.3, a relatively high level introduction of the random forest technique was provided, along with
a discussion of the most important hyper-parameters/attributes. This Section will provide a motivation
for the attributes chosen for the land type classification presented in this report. Sections 3.6.1 and 3.6.2
discuss the hyper parameter and sample distribution selection and Section 3.6.3 discusses the One vs All
classification technique used to obtain the most significant features for the classification. Section 3.6.4
provides the final test-up used in the classification. Table 3.4 provides an overview of the features used
in the classification and Table 3.3 provides the chosen parameters used as inputs in the classification
model.

3.6.1 Hyper-Parameter Selection

The following section will present some tests that were performed in order to motivate the decisions that
were made with regards to the hyper-parameters and input sample distribution. Of course, an optimal
solution is desired, however, the goal of the research is not to optimise the classification accuracy and
therefore significant effort was not spent in perfecting these parameters. An introduction to the random
forest classification model and associated parameters can be found in Section 2.3. The tests presented
in this Section were performed on the training data, which consisted of 95,562 classification cells and for
each test the average accuracy is taken from a 5-fold cross validation.

For the amount of trees used in the forest, in contrast to [Criminisi et al., 2011], where the monotonic
increase in test accuracy with an increase in forest size was discussed, Figure 3.25 shows that the valida-
tion accuracy drops off after 500 trees. It may be that the test accuracy (performance on unseen data)
does indeed monotonically increase with a larger forest. It is decided to use a forest with 500 trees, which
provided the maximum validation accuracy with an acceptable computation time.

Figure 3.25: Validation accuracy for an increasing Forest Size.
Test Parameters: Tree Depth = 20, Max Features =

√
Nfeatures, Nsamples = 95,562 with 5-fold

cross validation

Figures 3.26 and 3.27 provide the validation accuracy for an increasing tree depth for two different sam-
ple distributions, that is, the original sample distribution and a randomly undersampled subset of the
original distribution. The effect of a sample distribution is discussed in more detail in Section 3.6.2 and
the Figures are provided here as a means of comparing the hyper parameters. In both Figures, it can be
seen that the validation accuracy jumps up sharply after a depth of 20 is reached and then either stays
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approximately the same or changes by a small amount (≤ 2
10%) as the tree depth increases, before con-

verging. As discussed in Section 2.3.2, a higher tree depth can lead to overfitting. It is therefore decided
to use 30 as the maximum tree depth, as this provides close to the highest accuracy in most of the cases
presented in Figures 3.26 and 3.27. It is hoped that this tree depth, will allow for good performance
while allowing the model to keep a sufficient level of generalisation, that is, effectively classify unseen data.

Figure 3.26: Validation Accuracy for an increasing tree depth and Max Features - Original Sample
Distribution

Test Parameters: Number of Trees = 100, Nsamples = 95,562 with 5-fold cross validation

Figure 3.27: Validation Accuracy for an increasing tree depth and Max Features - Randomly
Undersampled Distribution

Test Parameters: Number of Trees = 100, Nsamples = 22805 with 5-fold cross validation
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The different coloured plots in Figures 3.26 and 3.27 also indicate the ”Max Features” attribute. This
is discussed in Section 2.3.2 and represents the amount of features that are considered at each test
function/split. The lower this number, the less correlated the trees are with one another. Similarly to
the tree depth, there is a only a fraction of a percent difference in validation accuracies between the
options tested. It was decided to use log2(Nfeatures) as it achieved close to the highest accuracy, while
being the lowest value of max features, which maximises the amount of randomness injected into the
forest.

3.6.2 Sample Distribution

Figure 3.28 shows the sample distribution over the 5 land types considered in this report. Each sample
represents a 100x100m classification cell. The dataset is quite heavily imbalanced, with Agriculture
having significantly more samples than the other classes and Forest and Wetlands significantly less.

Figure 3.28: Original Sample Distribution of ICESat-2 - Cycle 5 data. Acquired between September
26th - December 26th 2019, Nsamples = 106181

It is discussed in [Criminisi et al., 2011] that an unbalanced class distribution can be detrimental to
forest performance. To this end, a variety of different input sample distributions were investigated.
Table 3.2 provides the accuracy results per class for the different distributions tested. The simplest
way to overcome a class imbalance is to re-sample the data set to create a uniform or close to uniform
(stratified) dataset. Artificially making the class balance equal by down-sampling the majority class or
over-sampling the minority class has been shown to be more effective than using a largely imbalanced
dataset [Drummond et al., 2003]. In Table 3.2, ”Randomly Undersampling - min samples” refers to
randomly selecting samples from all the classes equal to the amount of samples of the lowest class, in
this case, an equal amount of samples as the Wetlands class. The replacement refers to whether or not
a chosen sample was returned to the pool before selecting the next sample. ”Random Oversampling
- Max samples” is the opposite, where samples are randomly selected from the pool until there is an
equal amount as the majority class. Of course, replacement is necessary here. An additional technique
for oversampling is the Synthetic Minority Over-sampling Technique (SMOTE), which was created in
order to combat the common problem that a certain class is largely underrepresented in a dataset. The
technique is executed by taking each majority class sample and introducing synthetic examples along
the line segments joining any/all of the k minority class nearest neighbours [Chawla et al., 2002]. The
final 3 sampling distributions shown in Table 3.2 were a combination of undersampling and SMOTE
oversampling in order to create an equal class balance.
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Sampling Technique
Overall
Accuracy
[%]

Artificial
[%]

Agriculture
[%]

Forest
[%]

Wetlands
[%]

Water
Bodies
[%]

Original Distribution 76 42 90 28 60 79
Random Undersampling
(min samples, with replacement)

75 72 62 63 90 85

Random Undersampling
(min samples, without replacement)

67 61 57 61 80 78

Random Oversampling
(Max Samples)

97 99 85 100 100 99

SMOTE Oversampling
(Max Samples)

80 76 76 82 86 82

Combined SMOTE/ Under sampling
(Equal Classes/ 30000 per class)

74 64 65 75 84 81

Combined SMOTE/ Under sampling
(Equal Classes/ 50000 per class)

76 70 71 78 84 80

Combined SMOTE/ Under sampling
(Equal Classes/ 70000 per class)

79 64 65 75 84 81

Table 3.2: Sample Distribution Testing - Per class validation accuracy

The first important conclusion drawn from Table 3.2 is the high sensitivity of the model to the sample
distribution. The validation accuracy, however, does in general remain at an acceptable level above
70%. The overall accuracy of the ”Original Distribution”, presented in Figure 3.28, is misleading at 76%
as there was a large imbalance in the per class performance. Unsurprisingly, Agriculture, the heavily
majority sampled class achieved a superior validation accuracy (90%) in comparison to the lesser sam-
pled Forest class (28%) for this distribution. ”Random Undersampling - with replacement” was able
to achieve almost the same performance (75%) but with a more even performance across the classes.
However, the problem with using replacement is that it is highly likely that there are samples in the
test data that have been seen in the training data. This is undesirable as it reduces your models ability
to successfully classify unseen data and provides a misleading performance indication. In addition, in
the act of resampling, valuable information is already being lost in the omission of data samples and
replacement further contributes to this. Indeed, ”Random Undersampling - without replacement” has
an inferior validation accuracy at 67%, due to the fact that is is only being tested on data it hasn’t seen
before. ”Random Oversampling - Max samples” achieved a near perfect classification, but of course, has
likely seen almost all of the test samples within the training phase, where the Wetlands samples would all
have been resampled more than 10 times. SMOTE would be the better option if one were to oversample
as it creates unique datapoints whilst achieving a high performance. The final three distributions are
a combination of undersampling and SMOTE, producing an increasing performance for an increasing
amount of samples per class.

The main conclusion that was taken from the testing of different sample distributions was the fact that the
model is significantly sensitive to the sample distribution. In fact, determining the optimal distribution
for this application could be a study of its own and dealing with imbalanced datasets is indeed hot topic
in machine learning. As a result of the discovered sensitivity to sample distribution, it was decided to not
go further than what was presented in Table 3.2. In lieu of investigating the optimal sample distribution
strategy, it has been attempted to reduce the effect of the sample distribution choice on the final result.
It was therefore decided to move forward with ”Random Undersample - without replacement”, where
the number of samples per class equalled that of the minority class. It may seem unintuitive as this was
the distribution that achieved the lowest classification accuracy, however, considering the aims of the
research, to determine whether the raw data and its extracted features offer classification potential, it
seems the sensible option. By creating an equal set of unique samples for each class, the overall relative
performance of each class can best be evaluated, as well as the features that are most important at
classifying them. The introduction of synthetic examples and/or repeat samples may skew the result
and reduce the ability to observe which features best contribute to the classification of each class. The
downside of this strategy is that much of the training data is essentially thrown away.
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3.6.3 Feature Importance and the One vs All Classification Strategy

In order to determine which features are most important for the classification, the gini-importance mea-
sure was used for each split function in each tree of the forest. As introduced in Section 2.3.1, the
gini-impurity (Equation 2.3) measures the ability of a feature (or node test function) to discriminate
between classes, that is, how effectively can the feature split up the samples. The feature importance
of a decision tree is calculated by summing up the gini-importance for the feature used at each test
function and the feature importance over the whole forest is the mean of the importance calculated for
each feature in every tree. Once the classification has been performed, a relative performance of each
feature in the classification can be obtained.

As a means to address the research question ”Which features unique to ATL03 photon data are best
at distinguishing land types from one another?”, the One vs All classification technique is employed.
This turns the multi-class problem that was used for the overall classification into a binary problem
[Huang and Fisher, 2014], where the class in question is classified against the other four classes. In this
way, the class under scrutiny is better isolated and the features that discriminate it from the rest can be
better observed. For the feature importance testing with use of the One vs All classification strategy, a
separate model is trained using the same train and test data as with the general classification model and
all the same hyper-parameters are used as well as a ”Randomly undersampled - without replacement”
sample distribution. The only difference is that there are only two outcomes that the forest can predict,
namely, whether it is the class under scrutiny or not, the not meaning it belongs to any of the other four
classes.

3.6.4 Test Set-up

This section presents the final test set-up for the classification model. The data used for the classification
was taken from ICESat-2’s 5th repeat orbit, Cycle 5 and is acquired between September 26th 2019 and
December 26th 2019. It is expected that the effect of seasons may play a role on the quality of the
classification or at least have an effect on the characteristic profiles. For example, it is expected that a
forest profile will look different depending on whether or not the forest has leaves on its trees. Due to
this, it was decided to perform the test on data taken from the same cycle/season, such that the effect
of a changing climate on the results is minimised. Indeed, this would be an interesting area to investigate.

Data that was too cloudy or reflective was omitted, that is, classification cells that didn’t return the
minimum number of photons deemed acceptable for classification. This left 106, 181 classification cells,
which were split up into 90% training data and 10% testing data. The testing data was taken out
at the start of the project and was not used for any of the model/feature development. As the test
data is taken out before any re-sampling is performed, it adheres to the true sample distribution, that
is, approximately the same balance as that presented in Figure 3.28. 10,619 samples were used for testing.

An overview of the 51 features used in the classification, which were introduced in Section 3.5, are pro-
vided in Table 3.4 and an overview of the hyper-parameters used in the classification algorithm are pro-
vided in Table 3.3. These tables hold for both the general classification and the One vs All classification
used to obtain the feature importance. The ”scikit-learn” [Pedregosa et al., 2011] toolbox was utilised
in the creation of the classification algorithm, where the ”RandomForestClassifier” [scikit-learn, 2020]
provided most of the Random Forest algorithm functionality.

Attribute Value
Number of Trees 400
Maximum Tree Depth 30
Maximum Features log2(Nfeatures)
Sampling Strategy Randomly Undersampled without replacement
Bagging/ Bootstrapping Yes
Split Criteria Maximise Gini-Impurity
Number of Training/Test Samples 95562 (90%) / 10619 (10%)

Table 3.3: Random Forest Classification Attributes
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Feature Unit Description
h mean [m] Mean height of photons
N ph [-] Number of photons received
h range [m] Height range of photons
h std [m] Standard Deviation of photon heights
h skew [-] Skew of photon heights
h kurt [-] Kurtosis of photon heights
N ph rel [1/m] Number of photons recieved per meter
h var [-] Variance of photon heights
h normal [m] Height difference between mean & minimum height
h min [m] Minimum photon height
h max [m] Maximum Photon height
HRR [-] Ratio of photons above and below half of photon range
fifth perc [m] 5th percentile of the photon heights
ten perc [m] 10th percentile of the photon heights
quart perc [m] 25th percentile of the photon heights
half perc [m] 50th percentile of the photon heights
three quart perc [m] 75th percentile of the photon heights
ninety perc [m] 90th percentile of the photon heights
ninety fifth perc [m] 95th percentile of the photon heights
perc 95 5 [m] Height difference between the 95th & 5th percentiles
perc 75 25 [m] Height difference between the 75th & 25th percentiles
perc 50 5 [m] Height difference between the 50th & 5th percentiles
Linearity [-] Linearity of photon heights
Planarity [-] Planarity of photon heights
Scattering [-] Scattering of photon heights
Omnivariance [-] Omnivariance of photon heights
Anisotropy [-] Anisotropy of photon heights
Eigentropy [-] Eigentropy of photon heights
Change of curvature [-] Change of curvature of photon heights
Verticality [-] Verticality of photon heights
sum EVs 2D xz [-] The sum of the 2D eigenvalues in the x & z plane
sum EVs 3D [-] The sum of the 3D eigenvalues
EV ratio 2D xz [-] The ratio of the eigenvalues in the x & z planes
N peaks [-] The number of histogram peaks detected
Pers max [-] The maximum persistence of the histogram peaks
Pers max rel [-] Maximum persistence divided by number of photons
Pers sec [-] Persistence of the second most persistent histogram peak
Pers sec rel [-] Second most persistent peak divided by number of photons
Pers weak [-] Persistence of the least persistent histogram peak
Pers weak rel [-] Least persistent peak divided by number of photons
dPers max weak [-] Persistence difference of most & least persistent peaks
dPers max sec [-] Persistence difference between maximum & second persistent peaks
Pers mean [-] Average persistence of the histogram peaks
h max peak [m] Height of the most persistence peak
h weak peak [m] Height of the least persistent peak
h sec peak [m] Height of the second most persistent peak
h peak mean [m] Average height of the histogram peaks
h max weak [m] Height difference between most & least persistent peaks
h max sec [m] Height difference between maximum & second persistent peaks
bins empty [-] Number of empty histogram bins
bins empty consec [-] Maximum number of consecutive histogram bins

Table 3.4: List of 51 Features used in the classification grouped by feature type:
22 Altitude Derived Features - Section 3.5.1

,18 Histogram-based Features - Section 3.5.2, 11 Eigenvalue-based Features - Section 3.5.3
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4. Classification Results & Interpretation

This Section provides the classification results for the experimental set-up outlined in Section 3. The
classification strategy and test set-up can be found Section 3.6, while a discussion of the features created
for the classification can be found in Section 3.5.

The results are separated into 3 sections, which all address a different aspect of the classification. Section
4.1 provides the overall results of the classification in The Netherlands. Section 4.2 provides the results of
the One vs All classification strategy which aimed to shed light on which features where most important at
distinguishing one class from another. Finally, Section 4.3 provides a misclassification analysis performed
on a subsample of the misclassified classification cells. The aim here was to categorise and quantify error
types, that is, reasons for predictive confusion. This Section also addresses the suitability of the CORINE
data set for the classification of ATLAS data.

4.1 Overall Accuracy

The overall accuracy of the model considers the predictions of the test data fed into the classification
model. When the predicted class output from the algorithm was the same as the CORINE class, the
results was considered positive. As described in Section 3.6, there were 10,619 test samples. The sample
distribution of the test data was unchanged, as oppose to the training data, which was re-sampled such
that each class had the same amount of samples. A motivation for the selection of sample distribution
can be found in Section 3.6.2. In order to reduce bias toward a particular weather condition or data
acquisition time, the test samples were selected randomly from all applicable samples across the three
month test period. This means that the test samples have been distributed evenly across The Nether-
lands according to the sample class density of the acquisition data.

The classification result can be seen in Figure 4.1. Each coloured pixel represents the predicted class of
the respective 100m classification cell. The 100m classification pixels have been enlarged in this Figure
for easier observation. The along track gaps in the tracks indicate the minimum number of photons were
not returned for a particular classification cell, due to weather/daylight conditions or poor reflectivity.
For all of the tracks, the path of the track can be identified and of course the areas in between cannot be
classified, as no data was acquired there. It is interesting to note the general trends across the country.
As shown in the original data distribution and test sample distribution, agriculture largely outweighs all
other classes. The Randstad can be observed in the South to Mid-West of the country by the relatively
dense pockets of Artificial Surfaces, between Breda and Amsterdam. The artificial lakes IJsselmeer and
Markemeer can be seen in the middle North of the country by the dense area of Water Bodies and Wet-
lands above Lelystad. Forests and Semi-natural areas can be seen dotted throughout the country, with
the most dense area lying through the ”Hoge Veluwe” national park between Almere and Apeldoorn as
well as at the Belgian border.

Figure 4.2 and 4.3 provide further examples of the classification result. The predicted test classification
cells have been superimposed over Landsat/Copcernicus observation satellite images provided by Google
Earth. As can be seen in Figure 4.1, the density of test samples varies across the country and the
examples provided in Figures 4.2 and 4.3 provide areas with a relatively high density of test samples.
Figure 4.2 shows the return over the port of Antwerp at the Dutch-Belgian border. In the left of the
image, a mixture of Artificial surfaces and Water Bodies can be seen as the tracks pass over the winding
port area. Leading up to this from the right, the transition from countryside can be seen. Figure 4.3
provides the classification above Texel, in in the North-West of The Netherlands. This provides a good
example of the distinction between Wetlands and Water Bodies, where the algorithm seems to have
successfully detected the inter-tidal flats that constituent the Wetlands class, indicated by the brown
classification cells. To the left of the image, the sandy island tip of Vlieland has been successfully
classified as Forest and Semi-natural areas, a positive result considering the limited training samples for
beaches in comparison to the other constituents of the Forest and Semi-natural areas class.
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Figure 4.1: Classification Result - The Netherlands. Each pixel represents the predicted class for a
100m classification cell. Pixels have been enlarged by an order of 3 for easier observation.
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Figure 4.2: Classification Result - Texel and Den Helder
Key: Artificial Surfaces, Agriculture, Forest, Wetlands, Water Bodies

Figure 4.3: Classification Result - The Port of Antwerp
Key: Artificial Surfaces, Agriculture, Forest, Wetlands, Water Bodies
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The overall classification accuracy of the 10,619 test samples was 71.2%. The detailed classification
results are presented in the confusion matrix in Figure 4.4. The confusion matrix provides per class
information on the true and predicted classes. For example, with the origin in the upper left, cell (1,2)
indicates that 276 samples classified as Artificial Surfaces by the validation data, were deemed to be
Agricultural areas by the classification algorithm. The diagonal of the confusion matrix signifies the suc-
cessful results. The best performing classes are Wetlands and Water Bodies with classification accuracies
of 81.8% and 84.2% respectively. This was to be expected due to the low variability of surface types
within the class. For example, referring to the class surface breakdown in Figure 3.5, Water Bodies con-
sists of only Inland Waters and Marine Waters. The only significant feature separating these two classes
would perhaps be changing surface height of ocean water due to the presence of waves. Water profiles
have distinct characteristics, such as the return of photons from below the water surface (see Figure 3.3d)
as well as characteristically low variability with respect to the Artificial Surfaces, Agricultural Areas and
Forest and Semi-natural areas classes. For instance, the surface profiles of water classes would generally
be flat, with a distinctly low average height and range in comparison to other classes. Naturally, a large
proportion of the confusions for the water classes are between each other, 5.3% and 8.7% for Wetlands
and Water Bodies respectively.

Figure 4.4: Classification Result - The Netherlands/ Belgium - Confusion Matrix
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Artificial surfaces were classified with 70.6% accuracy. Considering the high variability of surface types
within this class, from Dump sites to Sports and leisure facilities, this is considered a positive result.
Artificial surfaces shares samples that are similar to other classes, both in surface type and the nature
of the characteristic profile. In the case of the former, Artificial surfaces such as golf courses and sports
fields are similar to a typical Agriculture profile. In addition, Artificial surfaces are often found in the
Agriculture validation samples. For example, small roads or houses and agriculture buildings attributed
to a farm. The highest classification error of 30.1% was indeed observed between these two classes (13.8%
for Artificial and 16.3% for Agriculture). In fact, Agriculture was the class with the lowest classification
accuracy at 65.0%. In addition to the discussed overlap with Artificial surfaces, Agricultural surfaces
often find themselves on the fringes of other classes such as Forest and Semi-Natural Areas and Wetlands.
With the Forest and Semi-Natural areas class, its useful to realise (referring to class surface breakdown
in Figure 3.5), that in addition to Forests, this class also consists of natural grassland, transitional wood-
land shrub, beaches and sparsely vegetated areas, which all share similar properties to Agriculture. The
classification error between Agriculture and Forest and Semi-natural areas was 8.8%. Its also necessary
to mention that Agriculture had many more (5023) test samples than the other classes and is perhaps
a more robust measure than, for example, Forest and Semi-natural areas (764), albeit at a lower accuracy.

Forest and Semi-natural areas was classified with an accuracy of 67.5%. Similarly to Artificial surfaces,
Forest and Semi-natural areas has a large variability in surface types. From dense forests to beaches and
bare rock. There tends to be a problem with classification for this class when the classification cell does
not have at least one tree. In this case, the algorithm would often classify as Agriculture. This happened
in 14.4% of test samples for this class. There were a significant amount of training samples in which
the profiles between Forest and Semi-natural areas and Artificial Surfaces were similar. For example,
in a particularly dense forest at around the height of a house. As discussed in Section 3.5.2, the peak
detection algorithm was implemented in order to reduce this confusion, however there is still confusion
in 24.4% (11.4% for Artificial and 12.6% for Forest) of samples between these two classes.

4.2 Feature Importance

This Section aims to decipher which features were most important in distinguishing one class from the
others. The calculation by which the feature importance is measured is discussed in Sections 2.3 and 3.6.3.

While the methods used to analyse feature importance indeed provide interesting and valuable insights,
the nature of the Random Forest algorithm means that it is difficult to understand the exact effects of
the features on the result, given the fact that the forest has 500 trees, each with a tree depth of 30.
By using the One vs All classification strategy, the question that is addressed is ”How does a feature
contribute to distinguishing one class from the others?”

The selection of optimal features is a field of study in its own right, whether one is attempting to se-
lect optimal features for the best classification accuracy, or for computational efficiency. Of course, the
approach taken depends on the specific problem and the desired result/application. One would usually
expect the process of feature selection to be performed in the creation and tuning of the model itself.
As this research serves as a baseline for multi land type classification of ATLAS data, the aim is not
necessarily to optimise the features selected (i.e only use the best features), but to understand which do
and do not effectively contribute towards the classification of the 5 land types investigated.

The Section is separated according to the land types investigated. As there were 51 features implemented
in total, the discussion will often refer to groups of features, most notably the groups that were intro-
duced in Section 3.5, that is ”Altitude-derived”, ”Histogram-based” and ”Eigenvalue-based”. Firstly, a
few general conclusions are provided followed by a per class discussion to highlight the features that are
uniquely important to each class. In order to remain concise, the feature importance results have only
been included for Artificial Surfaces. For the rest of the classes a discussion will be provided and the
results can be found in Appendix B. The reader may notice that the values of the feature importance’s
are not discussed. This is due to the fact they indicate the relative feature importance for each One vs
All model applied and therefore the values for each class investigated are difficult to compare. In other
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words, the numeric values for the feature importance provided in Figure 4.5, which are derived from the
model classifying Artificial surfaces against all other classes, cannot be compared to the other feature
importance results provided in the Figures in Appendix B, which compare each class in turn against the
remaining four classes. The sum of feature importance in each model is equal to 1.

There is some level of general agreement for the feature importance’s between the classes. For example,
as expected, some of the eigenvalue based features that didn’t contain the second principle direction,
such as Scattering, Anisotropy and Change of curvature were not important features for any of the
classes. Conversely, Linearity, Planarity and Eigentropy were all notably important for the classes that
had significant variation in height, that is, Artificial Surfaces, Agricultural Areas and Forest and Semi-
natural Areas. For the water classes, none of the eigenvalue-based features were of significant importance.

The histogram based features were particularly important for the Artificial Surfaces class, where the high
strength of the second peak indicates artificial scattering surfaces (where the strongest/most persistent
peak represents the underlying surface). Apart from this case, generally, the heights at which the peaks
occurred (i.e h strong, h second, h peak mean) and the differences in height between between them
(i.e h strong second), carried more importance as oppose to their persistence or difference in persis-
tence (dPers). There were a few features that simply performed poorly and were ranked at or near the
bottom of feature importance for all of the classes. These include the persistence of the weakest peak,
Pers weak, Pers weak rel, the features related to empty bins, empty bins and consec max bin count
and the number of peaks, num peaks.

The altitude based features were the most important feature set. Of course, different percentiles were
more indicative for different classes, but in general perc 95 5, perc 75 25, ninety fifth per and h max
were always important features for all classes. In general, the lower percentiles, such as fifth perc,
ten perc and quart perc were less important than the higher percentiles. This is thought to be due to
the fact that the differences in height and characteristic profiles between the classes is less pronounced
closer to the surface, especially in The Netherlands, where the topography is relatively flat over most of
the country.

4.2.1 Artificial Surfaces

Figure 4.5 shows the feature importance rankings for Artificial surfaces. It is important to note that the
rankings are relative rankings and don’t provide information regarding the quality of the model itself.
The red bars provide the mean importance calculated from the sum of the gini-impurity for each feature
over the forest. The blue lines indicate the standard deviation. A negative value indicates that a feature
negatively contributed toward the classification. This can be seen in the standard deviation for some
features. This can happen for a variety of reasons. It could be that the it was a poor test sample, for
example, the surface that was seen by the laser footprints was not what the validation data indicated.
An additional reason for negative feature importance could lie in the fact that there can often be some
ambiguity in the distinction between classes. For example, a semi-natural grassland, where features
from this surface would strongly indicate an Agricultural surface. In doing so, negatively effecting the
classification. In this sense, features with a negative importance can also indicate that this feature can
be one who’s importance is shared between multiple classes.

The most important feature for Artificial surfaces is the relative strength of the second strongest his-
togram peak, Pers sec rel. In addition, the vertical distance between the two most defined scattering
surfaces (strongest and second strongest peaks), h max sec, is within the 15 most important features. In
general, the ground/underlying surface of a classification cell would produce the strongest peak. Artificial
surfaces, in comparison to other classes, tend to have a relatively strong second peak due to the strong
scattering surfaces found within their classification cells, such as roofs. These two features are only also
of notable importance in the Forest and Semi-Natural class, understandable given the fact that it is the
only other class with a high photon height range, leading to strong scattering surfaces at significantly
different ranges.

Artificial Surfaces tend to have the biggest range of heights within the cells as well as the highest absolute
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heights. This seems to be a discriminative characteristic as features such as perc 95 5, h var, h max,
h std, perc 75 25, ninety fifth perc and h range all appear within the top 15 most important features.
This is in comparison to Agricultural areas for example, where those altitude derived features that define
the extremes in height are much less important.

Figure 4.5: Feature Importance - One vs All Classification Strategy - Artificial Surfaces
51 features: 22 Altitude-derived, 18 Histogram-based, 11 Eigenvalue-based

With regards to the eigenvalue based features, ”planarity”, ”eigentropy” and ”linearity” are signifi-
cantly important. As discussed in Section 3.5.3, it was expected that the eigenvalue based features that
pertain to the second principle direction would be most important and this is indeed the case. Linearity
and Planarity measure the difference in magnitudes between the first and second, and second and third
principle directions respectively. It seems as if there is a distinguishable difference in feature values for
these three eigenvalue based features as they are also significantly important for the agricultural areas
class, whose characteristic profile is notably different.

4.2.2 Agricultural Areas

The importance of the features for Agricultural areas was significantly more evenly distributed than other
classes, that is, the difference in importance between most of the features is less pronounced. As oppose
to, for example, Artificial Surfaces and Wetlands which have a few features that are relatively strong and
many that are much less so. Agricultural areas was the worst performing class and this could indicate
that the algorithm is struggling to find features that can distinguish agricultural areas from the other
classes. Another hypothesis is that as the agricultural class often contains a good deal of overlap with
other classes (streams in fields, vegetation separating fields, farmhouses etc), meaning that a wide variety
of features can aid in the distinction of this class, leading to a more evenly distributed feature importance.

However, there are still features that are uniquely important to this class. The sum EV s 2D xz is the
most important feature for this class. It seems that the combination of the behaviour in the x and z
plains is unique to Agriculture. Indeed, the characteristic agricultural profile of agriculture is unique
in comparison to other classes. It is likely the random and unstructured returns from the low lying
vegetation in this plain contribute towards sum EV s 2D xz being so important for this class. As a
comparison, one would expect the variation in this plain to be structured and constant on an artificial
surface and to a lesser extent, the same can be said for a dense forest canopy. Agricultural surfaces
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provide uneven surfaces with varying vegetative densities and heights. This is thought to contribute
toward the unique eigenvalues that constitute this feature.

h normal is also uniquely important for this class. Likely due to its unique height range, if you consider
that that this feature (and many other altitude derived features) will be similar for the pairs Artificial
Surfaces and Forests, as well as Wetlands and Water Bodies. Agriculture ranges from just above the
water level to within approximately 1m above that. Whilst Wetlands and Water Bodies are ranging from
the water level to just above and of course, Artificial Surfaces and Forests are ranging to many metres
above the surface.

The Agricultural Areas feature importance results can be found in Appendix B, Figure B.1.

4.2.3 Forest and Semi-natural areas

In comparison to Agricultural Areas, Forests have a less even distribution of feature importance over
the 51 features, with the top 8 features sharing significant importance. The most important features
for Forest and Semi-natural areas are a mix of the most important features from Artificial Surfaces and
Agricultural Areas, that is, the features that indicate a larger range in height such as h std, h var and
perc 95 5, as well as the most important feature from Agricultural areas, sum EV s 2D xz. In the case
of the latter, this could share the hypothesis of Agricultural areas that this feature represents the uneven
ground associated with agriculture and Forest canopy floors.

While h std is an important feature for Artificial Surfaces, it is uniquely the most important feature for
Forest and Semi-natural areas. Conversely, the strength of the second peaks, Pers sec rel, is the most
important feature for Artificial Surfaces and considerably less so for Forest and semi-natural areas. As
vegetation (and uneven ground) is less reflective than flat and constant artificial surfaces, the peaks are
less prominent, meaning that a more general statistic, such as h std and h range describing the entire
cell profile contains more discriminative information for the Forest and Semi-natural areas class than the
histogram peaks.

The Forest and Semi-natural feature importance results can be found in Appendix B, Figure B.2.

4.2.4 Wetlands and Water Bodies

It is appropriate to discuss Wetlands and Water Bodies together, as they share similarly important fea-
tures, while the differences in feature importance are also telling of the differences in the surfaces covered
by these two classes.

The most important features are, for both Water Bodies and Wetlands, dominated by altitude derived
features such as ninety fifth perc, ninety perc, half perc and three quar perc. This makes sense as
these percentiles will generally all be in a uniquely low range with respect to the other classes. The range
in height is relatively much smaller than other classes as well as the average.

The algorithm actually distinguished between Wetlands and Water Bodies very well, considering how
similar the profiles can be. Only 5.3% of Wetlands samples were misclassified as Water Bodies and 8.7%
of Water Bodies were misclassified as Wetlands. Probably, this is attributed to the fact that, in general,
the Wetlands class will sit slightly higher up in altitude than Water Bodies, which are more or less all at
sea level. In addition to this, the often relatively uneven and vegetative surface of Wetlands compared
to Water Bodies could change the form of the height profile to enough of an extent to allow for the
successful discrimination between the two classes.

The only eigenvalue based feature of significant importance is the sum EV s 2D xz for the Wetlands
class. Again, similarly to Agriculture, probably due to the uneven surfaces that are associated with the
Wetlands class. In general, the eigenvalue-based features are not important for the distinction of water
classes, likely due to the relatively low variance of the profiles with respect to the other classes. The
feature importance results can be found in Appendix B, Figures B.3 and B.4 for Wetlands and Water
Bodies respectively.
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4.3 Misclassification Analysis

In order to better understand the capability of classifying land types with ATLAS data, as well as assess-
ing the suitability of CORINE for validation, a detailed misclassification analysis has been performed.
Out of the 10,619 test samples, 3053 (28.8%) were incorrectly classified. 1052 of these incorrectly clas-
sified samples (34.5%) were inspected in an attempt to determine the nature of the misclassifications.
There were many different forms of error, however, these have been grouped into 4 high level error types
for conciseness. Section 4.3.1 quantifies and provides a summary of the error types and sections 4.3.2 to
4.3.5 provide definitions of the error types as well as provide some real examples.

Four high level error types were identified in the analysis of the classification cells that predicted a differ-
ent class than that of CORINE. Each error type discussed can be broken down into lower levels of error
types, however the presentation of them in this report was considered redundant in terms of the drawn
conclusions. The error types were identified by superimposing the classification cells onto a map, where
the predicted and true classes were indicated. By visually analysing the surface content of the classifica-
tion cells relative to where in the cell the footprint of the laser lay, it was possible to determine whether
or not the misclassification was actually a classification error or not. Its necessary to mention that the
surface images that were used for analysis were taken at various points throughout 2019, whereas the
validation data was collected in 2018. In addition, the weather condition above each classification cell at
the moment of acquisition is unknown. As previously discussed, the omission of classification cells that
didn’t meet the threshold for the minimum number of photons is considered to sufficiently remove the
effect of weather for the purposes of this research. The determination and assessment of the algorithmic
misclassifications discussed in this section have been performed by a human, and are therefore open to
a certain degree of subjectivity.

It is first necessary to briefly define the error types, a more detailed description (as well as visual exam-
ples) of each error type can be found in Sections 4.3.2 to 4.3.5:

Type A A genuine predictive confusion of the classification model

Type B
The laser footprint passes over multiple classes within the classification cell and
the classification model predicts the minority class seen by the laser

Type C
The laser footprint passes over multiple classes within the classification cell and
the classification model predicts the majority class seen by the laser

Type D The validation data is considered incorrect

4.3.1 Error Analysis/ Overview

Of the 10619 test samples, 3053 were incorrectly classified. Just over a third, 1052 samples, were visually
checked in order to quantify the types of error that were occurring. The results of this sub-sample
analysis can be found in Table 4.1.

Artificial
Surfaces

Agriculture Forest Wetlands
Water
Bodies

Total Total [%]

Type A 169 313 70 33 101 686 65.2
Type B 19 96 4 0 7 126 12.0
Type C 28 151 13 1 8 201 19.1
Type D 7 19 12 0 1 39 3.7
Total 223 579 99 34 117 1052

Table 4.1: Misclassifications categorised by Error Type

The rows represent the error types described from Sections 4.3.2 to 4.3.5 and the columns represent
the land types. The total errors can be seen in the last two columns of Table 4.1. Only 65% of the
misclassifications analysed were deemed to be genuine confusions (Type A). 3.7% of the validation error
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were considered to be erroneous, that is, the validation data was considered to be incorrect. 31.1% of the
misclassifications consisted of errors arising from the laser footprints passing over multiple classes within
the classification cell. This was separated into Type B error for the prediction of the minority class seen
by the laser, and Type C error for the prediction of the majority class seen by the laser, where Type B
and Type C errors amounted to 12.0% and 19.1% respectively.

Figure 4.6: Misclassification Confusion Matrix - 1052 misclassified samples.
Type C errors, which are now considered correct classifications, populate the diagonals of the confusions
matrix, represented by the blue border. As this is a confusion matrix of the error, the diagonals would

usually remain unpopulated. Therefore, this confusion matrix can be considered as indicating the
reduction of error due to the visual inspection of the incorrectly classified cells.

In order to re-asses the total accuracy of the model, Figure 4.6 provides the confusion matrix of the
misclassified cells. While one could consider Type B errors to be partly correct, for this analysis, they
are still considered misclassified as they were unable to predict the majority class. Type D errors have
been removed. Type C errors, the predictions of which are now considered correct after visual inspection,
can be seen along the diagonal of the confusion matrix, indicated by the cells with the blue border. Of
course, if one were to plot the confusion matrix of all the misclassifications without this analysis, the
diagonal cells would be unpopulated. This confusion matrix therefore provides a more comprehensive
view of the error, where the diagonals provide an indication of the per class added accuracy that could
be expected from the final result if all the errors were to be visually analysed.

Overall, with a 19.1% Type C error, one could expect the total accuracy of the model to be increased
by 5.5%. The largest source of accuracy gain, or Type C error, came from the Agriculture class. This is
due to the frequent in cell overlap this land type shares with the other classes. Often, a large part of the
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cell would consist of an artificial surface such as a greenhouse, or the edge of a forest and the algorithm
would predict accordingly.

It is expected that Type B error, of 12.0%, could largely be reduced by either classifying at a higher
resolution (smaller classification cells) or using smaller segments of the classification cells to vote for the
overall outcome of that cell. In this way, the minority class that is predicted would not carry as much
weight in the classification, as the effects of its feature values on the total results of the cell would be
reduced. Imagine that of a 100m classification cell, 90m consists of a typical agricultural field and the
final 10m an industrial greenhouse. The industrial greenhouse will largely alter the feature values for
that cell, increasing the average and altering the percentile heights as well as adding defined scattering
surfaces (peaks) in the histograms, leading to an incorrect prediction.

As with Type B error, Type C error is largely a results of the measurement technique and validation
data. These errors can only be avoided by visual inspection and would require a higher resolution data
set to be removed automatically.

4.3.2 Type A Error - Genuine Predictive Confusion

A Type A error is defined as a genuine confusion, that is, the laser passes mostly over a cell of which
the validation is considered correct, yet classifies the cell as a different class. Of course, these errors give
the most insight into the weaknesses of the classification algorithm itself as oppose to the flaws with
validation data and its attributes. Therefore, a more detailed analysis will be provided of this error type.

Of course, there are many different types of genuine confusion, however, only some of the most common
errors for each class will be presented, with the intention to remain concise, while providing the most
significant trends of confusion. Figures 4.7 and 4.8 provides some individual cases of confusion. In each
sub-figure, profiles are provided, with the classifications cells and laser footprints below. The profiles
and respective cells are coloured to match the predicted class.

(a) True: Artificial Surfaces
Predict: Agricultural Areas

(b) True: Agricultural Areas
Predict: Wetlands

Figure 4.7: Type A Misclassification examples.
Photon height profiles of 100m classification cells, with the location and footprint of the cell below. The

intersection of a vertical line drawn from any point of the profile to the footprint is the location at
which a photon was recorded.

Key: Artificial Surfaces, Agriculture, Wetlands

In Figure 4.7a, the left cell is misclassified as agriculture. Looking at the profile of the left classification
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cell in Figure 4.7a, it seems that photons were only returned from the warehouse, and not the underlying
surface on either side. Clearly, the roof wasn’t flat and a profile similar to a characteristic agriculture
profile was returned. Whereas, in the cell on the right, photons were also returned from the ground,
providing two scattering surfaces 7m apart. While one may expect that the high average height of the
left cell relative to most agricultural surfaces would be an indicator to not classify as such, it seems that
in this case, an additional scattering surface was required. In this case, the conditions were clearly not
optimal as only part of the cells profile was returned. Of course, the higher the photon return within a
cell, the more information the algorithm has for classification.

(a) True: Forest and semi-natural
Predict: Artificial Surfaces

(b) True: Artificial Surfaces
Predict: Agriculture

(c) True: Water Bodies
Predict: Wetlands

(d) True: Water Bodies
Predict: Agriculture

Figure 4.8: Type A Misclassification examples.
Photon height profiles of example 100m classification cells, with the location and footprint of the cell
below. The intersection of a vertical line drawn from any point of the profile to the footprint is the

location at which a photon was recorded.
Key: Artificial Surfaces, Agriculture, Forest, Wetlands, Water Bodies

Figure 4.7b shows a common error of ”class mixing”. In this case, the left classification cell is incorrectly
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classified as Wetlands. Probably due to the fact that the water body at the end of the cell was particu-
larly reflective, introducing properties attributed to Water Bodies/Wetlands into the profile, such as the
downward pointing spikes. In the next cell, there is also a small stream, however for some reason is not
as pronounced as in the previous cell. Class mixing was a common reason for confusion. Some other
examples of note were, sports fields and golf courses classified as Agriculture or Forest and semi-natural,
and urban areas with a high density of trees classified as Forest and Semi-natural.

Figure 4.8a show a Forest and Semi-natural area cell misclassified as Artificial Surfaces (third from the
left classification cell). While there is clearly an artificial surface in the middle cell, it is correctly classi-
fied as Forest and Semi-natural. It is thought that the relatively flat surface in the incorrectly classified
cell has contributed toward the Artificial Surfaces classification. Whereas in the other two cells, the
underlying surface is bumpy or ascending/descending, indicating a natural surface. As previously dis-
cussed, the profiles of Artificial and Forest and Semi Natural can often be similar and there was a 24%
error rate between these two classes.

Figure 4.8b provides another example of class-mixing. In the middle cell, the footprint passes over a
part of a cemetery without raised objects/structures, but does pass over vegetation, resembling an Agri-
cultural surface. In the cell to the right, also a cemetery, it seems that a tree or other structure was
recorded, indicating a significant height difference and therefore an Artificial Surface.

The nature of errors of the final two sub-figures, that is, Figures 4.8c and 4.8d, are somewhat more
ambiguous. In both cases, Water Bodies has been misclassified. It is not immediately obvious from the
profiles why this was the case. In Figure 4.8c, the final two cells are misclassified as Wetlands and in
Figure 4.8d two of the middle cells are misclassified as Agriculture. It is often the case for the water
classes that photons are returned from somewhere below the water surface and in shallower waters the
photons can be returned from the ground surface. This could be the case in Figure 4.8d, as the data is
clearly taken in shallow waters, then again, the cells either side are correctly classified as Water Bodies.
In Figure 4.8c the only noticeable difference is the more staccato nature in the along track direction of the
profiles classified as Wetlands, that is, there is less of a constant photo return in some places. This is often
seen in Wetlands classes, as there are many Wetland samples that have vegetation within them, which
can be much less reflective than water. Perhaps the break in reflectivity has changed eigenvalue based
features enough to indicate Wetlands. The errors shown in Figures 4.8c and 4.8d show the drawback of
the Random Forest algorithm as it is difficult to say for certain what is causing the misclassificaiton.
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4.3.3 Type B Error - Minority Class Confusion

A Type B error is defined as one in which the land type designated by the validation set is considered
correct, that is, 50% or more of the classification cell consists of the indicated class. However, the
laser footprint passes over a different class for a minor proportion of the cell and is such classified
as the minor class. The difference with class mixing, which was discussed for Type A errors, is that
class mixing represents ambiguity between class definitions, such as a vegetative surface in an urban
landscape (i.e garden). Whereas, in Type B errors, there are distinctly different classes appearing within
the classification cell, such as the house and field in Figure 4.9c.

(a) Majority/ True: Artificial Surface
Minority/ Predict: Wetlands

(b) Majority/ True: Water Bodies
Minority/ Predict: Artificial Surfaces

(c) Majority/ True: Agriculture
Minority/ Predict: Artificial Surfaces

(d) Majority/ True: Agriculture
Minority/ Predict: Forest

Figure 4.9: Type B Misclassification examples.
The left-hand side of the cell indicates the True class and the right-hand the predicted class. In the case
of Type B errors, the minority class has been predicted, that is, the class which is seen the least by the

footprint.
Key: Artificial Surfaces, Agriculture, Forest, Wetlands, Water Bodies

Figure 4.9 provides 4 instances of Type B error. The colour of the left hand side of the classification
cell indicates the true class and the colour on the right hand side indicates the predicted class. In all
4 cases, it can be seen that the minority class has been predicted by the classification algorithm, that
is, the class which is passed over the least by the laser footprint. For example, in Figure 4.9b, the laser
track passes over a raised road for only a small part of the cell, however, the effect on the features due to
this surface seem to be enough to predict Artificial Surfaces. This is also the case for the other examples
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in Figure 4.9, that is, the minority class dominates the prediction results. In the case of Type B errors,
one would expect an increase in performance if a higher resolution of classification cells were used, that
is, for example, if 10m classification cells were used. In this case, one would expect the algorithm to
identify the correct class either side of the in-cell class boundary between, for example, the bridge and
road in Figure 4.9b.

4.3.4 Type C Error - Majority Class Confusion

Type C errors are defined as those in which the laser footprint passes mostly (or fully) over a different
class than the true/CORINE class. In this sense, one could not expect the algorithm to predict the
correct class as it is not seen by the laser. A cell is considered a Type C error if, upon visual inspection,
the prediction is considered correct, that is, it predicts the majority class seen by the laser. Type C error
can for the most part be considered as the opposite of a Type A error, however, in some cases, such as
Figure 4.10d, none of the cell contains the typical surface of the indicated validation class.

(a) Predicted: Artificial Surfaces
Validation Class: Water Bodies

(b) Predicted: Wetlands
Validation Class: Agriculture

(c) Predicted: Forest
Validation Class: Agriculture

(d) Predicted: Artificial Surfaces
Validation Class: Agriculture

Figure 4.10: Type C Misclassification Examples.
The left-hand side of the cell indicates the True class and the right-hand the predicted class. In the case
of Type C errors, the majority (or only) class has been predicted, that is, the class which is seen the the

most/fully by the footprint.
Key: Artificial Surfaces, Agriculture, Forest, Wetlands, Water Bodies
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Figure 4.10 provides 4 instances of Type C error. In all 4 cases, it can be seen that either none or most
of the footprint within the classification cell passes over the true class. For example in Figures 4.10c,
the footprint passes almost completely over a forested area, correctly classifying it as such. However,
the true class, understandably, is Agricultural areas. Figure 4.10a is more similar to a Type A error,
where there are two distinct classes that the footprint passes over, in this case, Artificial Surfaces and
Water Bodies. In this case the cell is incorrectly classified as Artificial surfaces. However, upon visual
inspection, this results is considered correct and it is therefore designated as a Type C error. Type C
errors, as discussed in the overview in Section 4.3.1, are considered in this misclassification analysis to be
correctly classified. In the case of Type C error, it is not necessarily that the validation data is incorrect,
but that it is not fully compatible with the laser footprints.
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4.3.5 Type D Error - Incorrect Validation Data

A Type D error is one in which the validation class is simply incorrect. That is, none of the cell con-
stitutes a surface associated with the indicated class. As discussed, the validation data was collected in
2018, whereas the ATLAS and map images used to check the results were acquired at different points in
2019. It could be that the land type has changed in between theses two acquisition dates or it could be
that the validation was simply incorrect.

(a) True: Agriculture
Predict: Wetlands

(b) True: Agriculture
Predict: Artificial Areas

(c) True: Water Bodies
Predict: Forest

(d) True: Artificial Surfaces
Predict: Water Bodies

Figure 4.11: Type D Misclassification examples.
The left-hand side of the cell indicates the True class and the right-hand the predicted class. In the case

of Type D errors, the indicated True class is considered to be incorrect.
Key: Artificial Surfaces, Agriculture, Forest, Wetlands, Water Bodies

Figure 4.11 shows four instances of Type D error. In all cases, it is obvious that the validation class (left
hand side of the classification cell) is incorrect. In Figures 4.11b and 4.11d, the classification cell consists
fully of the predicted class (right hand side of the classification cell).
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5. Conclusion & Recommendations

Section 5.1 presents the conclusions to the research questions set out in Section 1. Recommendations
for further research and aspects that were either out of the scope of this research or were not able to be
implemented due to time constraints are presented in Section 5.2.

5.1 Conclusion

The wider goal of the research presented in this report was to better understand the behaviour of ICESat-2
geo-referenced photon data. The observation and measurement of individual photons on the scale pro-
vided by the ATLAS instrument is a novel application in satellite laser altimetry and the motivation
behind the study was to acquire knowledge of how ICESat-2 interacts and behaves when illuminating
different land types. The ability to measure the vertical structure of the footprint offers a contrasting
and unique perspective in comparison to the traditional use of spectral information to classify land types.

Referring to the first research question, namely, ”How effectively can ICESat-2’s ATL03 global geolo-
cated photon data be used to classify between the land types Artificial Surfaces, Agricultural Areas,
Forest and Semi-natural area, Wetlands and Water Bodies using the random forest machine learning
technique?”. The test considered all available ICESat-2 data from the fifth repeat orbit, from September
26th 2019 to December 26th 2019. The 101,681 applicable samples that were obtained for this period
were separated into test and train data, of which 10619 were used for the testing. The overall accuracy
of the classification model was 71.2%. This overall result considers the 5 land types that were classified:
”Artificial Surfaces”, ”Agricultural Areas”, ”Forest and Semi-natural Areas”, ”Wetlands” and ”Water
Bodies”. The water classes were the most successful land type, with Wetlands and Water Bodies achiev-
ing an accuracy of 81.8% and 84.2% respectively. Agricultural Areas was the worst performing class at
65.0%. Artificial Surfaces and Forest and Semi-natural areas achieved accuracies of 70.6% and 67.5%
respectively. A large source of misclassification was found to be due to the validation data and the
discretization size of the footprints into classification samples. After a visual analysis was performed on
the misclassification samples, it was found that only 65% of the total errors were deemed to be genuine
confusions. By visually expecting the misclassification samples, it was found that the accuracy was a
minimum of 5.5% greater, leading to a total accuracy of 76.7%. In addition, it is expected that if the size
of the resolution of the classification cells were reduced (i.e classify 10x10m cells), one could expect an
additional gain in accuracy of 3.5%, resulting from the ability of ATLAS’s lasers to better detect class
boundaries.

The use of the random forest model has allowed the discovery of which features are important toward the
classification of the 5 land types investigated. Unlike other classification models such as neural networks,
the features are chosen by hand and this greatly contributed toward the understanding of the signal. Say-
ing that, a detailed analysis of the exact behaviour of the forest was difficult due to the 500 trees included.

The second research question aimed to decipher ”Which features unique to ATL03 geolocated photon
data are best at distinguishing land types from one another?”. Three different feature sets were used for
the classification, namely, ”Altitude-derived features”, ”Histogram-based” and ”Eigenvalue based fea-
tures”. The importance of a feature was measured in the features ability to discriminate between classes,
measured using the summation of the gini-impurity values over the classification forest. In general, the
inclusion of the three feature sets was validated. There were features from all three features sets that
were important for each class investigated. In general, the altitude derived features were highly ranked
for all classes. Statistical features that described the distribution toward the higher end of the profiles
were the most important, that is, the 90th and 95th percentile, the difference between the 95th and 5th

percentiles and the maximum height of the photons. While the altitude derived features were successful
in discriminating between all classes, there were certain features that were of particular importance to
certain classes. The eigenvalue based features ”Linearity”, ”Planarity” and ”Eigentropy”, derived from
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the principle directions of the ATLAS profiles, were of significant important for the classes that had
the most vertical variation their profiles, that is, Artificial Surfaces, Agricultural Areas and Forest and
Semi-natural Areas. Eigenvalue-based features were not significantly important for the Water classes,
whose profiles were generally represented by a single flat surface. The histogram derived features were
particularly successful at identifying strong/persistent scattering surfaces. The definition of the second
strongest scattering surface, that is, the strongest surface after the underlying ground surface, was the
most important feature for Artificial Surfaces, while the average height of the scattering surfaces was the
best feature overall from this feature set. There were a collection of features that were relatively much
less important for all of the classes. Most notably, the eigenvalue-based features ”change of curvature”,
”scattering” and ”anisotropy” and the histogram features that described properties of the weakest/least
persistent peak as well as those counting the empty histogram bins of a profile. All of the altitude derived
features were of significant importance for at least one of the classes.

The third and final research question was, ”What technique can be used to validate the classification?”.
The CORINE validation set was not an ideal dataset for the validation. While it’s use in this research
has provided satisfactory answers to the research questions proposed, there are also some aspects that
have negatively effected the results. As discussed, upon visual inspection, it was found that the classi-
fication algorithm had actually performed better than the validation set indicated. The extent of this
was quantified in the analysis of the misclassifications, where four different high level error types were
discussed. Three of these error types were due to the incompatibility of the validation with the ATLAS
footprints. ATLAS footprints will always require a custom validation strategy as the footprints are es-
sentially continuous slices of the Earths topography, that is, they collect data only at the locations of
the laser footprints. As the CORINE classification cells are 100x100m, it was often the case that the
footprints passed over a different surface within the classification cell than indicated by the validation
data. After a visual inspection, it was found that that only 65.2% of the misclassification errors were
genuine confusions, the other 34.8% resulting from the discussed problems with the validation data.
While the effect on the accuracy could be quantified with visual inspection of the misclassifications, the
overall effect this had on the training of the model is unknown. CORINE was appropriate for showing
that land types could successfully be classified with the use of ATLAS data, however, it is clear that
superior results could be obtained with the use of a higher resolution and land cover validation dataset.

To conclude, this is the first time that ATLAS footprint have been used to classify multiple land classes.
A classification strategy was proposed that segmented the continuous ATLAS footprints into 100m classi-
fication cells that were aligned with the CORINE 2018 land cover map. An acceptable accuracy of 71.2%
was achieved, however, it was shown after an analysis of the errors that the true accuracy was 76.7%.
Three features sets were used, namely, ”Altitude-derived”, ”Histogram-based” and ”Eigenvalue-based”.
While the simple statistics of the profiles defined within the altitude derived features were in general
most important, there were features from histogram-based and eigenvalue based that were consistently
important for discriminating between all classes. There is strong evidence that ATLAS data could be
used to successfully classify at a higher resolution.

This result certainly provides motivation for further research of ATLAS data for land type classifica-
tion. It is clear that discriminative information can be extracted from ATLAS profiles and this can
add valuable input in combination with traditional spectral land classification methods. For example,
it is thought that the ATLAS profiles have the potential to detect land classes at a higher resolution.
This would be a particularly useful tool in the discrimination of vegetation types, such as grassland and
forest. This functionality can also benefit many wider scientific users of ATLAS data. The detection
of the class boundaries (and land type either side of them) in a variety of landscapes of interest is of
worth and unique to ICESat-2 data, which is the only non-commercial satellite to offer repeated global
measurements with a sub meter resolution. For example, the detection of the exact boundaries of an
alpine lake will be beneficial to both the mapping of the local environment as well as the study of the lake
itself. In the cryospheric environment, that which defines the predominant area of study of ICESat-2,
the detection and definition of land type boundaries between rock, ice and snow are key to maintaining
a continuous record of the short and long term changes that are occurring there.
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5.2 Recommendations

From the research presented in this report, it is clear that ATLAS geo-referenced photon data can be
used to classify land types. As this was a baseline classification, that is, it is the first time multi-class
classification has been performed with ATLAS data, there are some areas in which it is thought that the
classification could be improved. This Section will propose some recommendations that are thought to
be useful areas of further research for ATL03 data.

In terms of features, there were many ideas that were not implemented. Firstly, only photons with a
”high” signal confidence were used for the classification. However, there are many more photons available
that are classified as ”noise”, ”low” and ”medium”. It is unknown whether the medium or low confidence
photons would strengthen the signal or negatively effect the results. [Zhang et al., 2020] performed a
binary classification on Snow and Rock by only using noise photons, implying that there is valuable
information even in the lowest confidence of photons. It is thought that more complex features could
be derived from the signal, such as the co-efficients of various degrees of polynomial used to model the
profiles. Of course, the inclusion of more complex features will provide a trade off with computation time.

As discussed, the aim of this report was not to optimise the classification results. However, it would
certainly be interesting to do so. It is clear from the feature importance results that there are features
that do not contribute significantly toward the final results. An optimal selection of the features pre-
sented in this report could improve the results, or the removal of less important features would create
computational resources to test additional features or extensions of current features. For example, in this
research, a histogram bin size of 20 is used, however, it is thought that additional information could be
extracted with the use of various different bin sizes at the same time and/or a custom bin size depending
on the range of height within the cell.

In addition to the feature selection, there were aspects of the classification itself that could also be opti-
mised. For example, it was shown that the classification model was sensitive to the sample distribution
used in the training. It was chosen to use an equal amount of samples per class, in order to create a
balanced training, however there is clearly an optimal sample distribution for this classification that may
not have been found. An optimal selection of the sample distribution or use of sample weighting would
likely improve the results, especially as much of the training data was thrown away as the amount of
samples per class used in training only matched the amount of the class with the lowest amount. In
addition to the sample distribution, the hyper-parameters of the classification model were not rigorously
tested, mainly due to the fact that there was not a significant effect on the model performance of the
parameters that were tested.

With respect to the classification strategy, it is evident that ATLAS data will perform better when used
to classify areas at a higher resolution than done so in this research. In fact, the use of 100m classification
cells actually negatively impacted the results, that is, it was often the case (Type B and C error), that
there were different surfaces within the classification cell. When a surface such as a house or tree is
appearing in an otherwise flat landscape, even if only for a small portion of the cell, it has a large effect
of the feature values and the classification algorithm often classified the cell incorrectly. However, due to
the wider success of the algorithm, it is thought that the algorithm could successfully distinguish between
a change in surface type. Classifying grid cells may not necessarily be the best way to classify land with
ATLAS data, in fact, looking at the behaviour of the profiles, it is thought that it would be possible to
actually find the boundaries between surfaces, indicated by, for example, observing the moving change
in feature values across the landscape.
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Figure 5.1: Example of hypothesised potential of the classification of higher resolution (10x10m) grid
cells. CORINE class = Water Bodies, Predicted class: Artificial Surfaces

The coloured cells indicated what would be the correct classification of the grid cells. The overall
prediction for the 100m CORINE grid cell would be a vote of the smaller grid cells, which in this case

would give the correct classification of Water Bodies
Key: Artificial Surfaces, Forest, Water Bodies

There are two options with which this problem could be addressed. Firstly, would be the use of the same
validation data, but classify at a higher resolution. Figure 5.1 provides a visual example of this, where
10x10m grid cells have been superimposed within the 100x100m CORINE grid cell. This example was
first presented in 4.3.3 as a Type B error. The effect of the bridge at the end of the grid cell changed
the features of the classification cell to enough of an extent to classify the cell incorrectly as an artificial
surface. If one were to classify smaller grid cells, where each 10m cell would vote on the prediction of
the 100m cell, this effect would be removed and the correct prediction would be presented. Of course,
this assumes that the classification model would correctly classify the smaller cells.

A second method to combat the issues with the validation data would be to use a higher resolution val-
idation dataset. Figure 5.2 provides an example of a validation data set that may be more appropriate
for the classification of ATLAS data due to its higher resolution of surface classification. The Landelijk
Grondgebruiksbestand Nederland (LGN2018) provides land type raster data at 5x5m pixel resolution.
It would certainly be interesting to perform the same classification on classification cells such as this,
given the expected increase in performance from the higher resolution grid cells outlined in this report.
Unfortunately, the most recent version of the LGN is not open source and it’s use would come at a cost.

Finally, it would be interesting to test this model on different land types than presented in this research.
For example, the cryosphere is the main area of intended scientific study for ICESat-2 and the detection
of its land types, such as ice, snow and rock could provide significant benefit for users interested in
those regions. In addition to the region of study and land types under consideration, it is expected
that the temporal acquisition of the data could have an effect on the results. The research presented
here was taken from Autumn 2019, however it would be interesting to study the effect of seasons on the
performance. For example, would the classification of forests perform better of worse when there are
leaves on the tress?
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Figure 5.2: Landelijk Grondgebruiksbestand Nederland (LGN2018), The Netherlands [Hazeu, 2019].
Each pixel is 5x5m and the different colours indicate a different land class.
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A. Histogram Peak Detection Algorithm

class Peak :
def i n i t ( s e l f , s t a r t i n d ) :

s e l f . born = s e l f . l e f t = s e l f . r i g h t = s t a r t i n d
s e l f . d ied = None

def g e t p e r s i s t e n c e ( s e l f , h i s togram counts ) :
return f loat ( ” i n f ” ) i f s e l f . d ied i s None else his togram counts [ s e l f . born ]\

− his togram counts [ s e l f . d ied ]

def h i s tog ram peak de te c t i on ( h i s togram counts ) :
# The his togram counts o f the his togram made from
# the photon h e i g h t s o f a c l a s s i f i c a t i o n c e l l .
peaks = [ ]
# Maps i n d i c i e s to peaks
idxtopeak = [ None for s in his togram counts ]
# Sequence i n d i c i e s s o r t e d by v a l u e s
i n d i c i e s = range ( len ( h i s togram counts ) )

# This r e t u r n s the ordered i n d i c i e s , wi th the h i g h e s t h e i g h t f i r s t
i n d i c i e s = sorted ( i n d i c i e s , key = lambda i : h i s togram counts [ i ] , r e v e r s e = True )

# Process each h i s togram count in descending order
for ind in i n d i c i e s :

l f t d o n e = ( ind > 0 and idxtopeak [ ind−1] i s not None )
rgtdone = ( ind < len ( h i s togram counts )−1 and idxtopeak [ ind +1] i s not None )
i l = idxtopeak [ ind−1] i f l f t d o n e else None
i r = idxtopeak [ ind +1] i f rgtdone else None

# New peak ( i s l a n d ) born
i f not l f t d o n e and not rgtdone :

peaks . append ( Peak ( ind ) )
idxtopeak [ ind ] = len ( peaks)−1

# D i r e c t l y merge to next peak / i s l a n d l e f t
i f l f t d o n e and not rgtdone :

peaks [ i l ] . r i g h t += 1
idxtopeak [ ind ] = i l

# D i r e c t l y merge to next peak / i s l a n d r i g h t
i f not l f t d o n e and rgtdone :

peaks [ i r ] . l e f t −= 1
idxtopeak [ ind ] = i r

# Merge l e f t and r i g h t peaks / i s l a n d s
i f l f t d o n e and rgtdone :

# L e f t was born e a r l i e r : merge r i g h t to l e f t
i f his togram counts [ peaks [ i l ] . born ] > his togram counts [ peaks [ i r ] . born ] :

peaks [ i r ] . d ied = ind
peaks [ i l ] . r i g h t = peaks [ i r ] . r i g h t
idxtopeak [ peaks [ i l ] . r i g h t ] = idxtopeak [ ind ] = i l

else :
peaks [ i l ] . d ied = ind
peaks [ i r ] . l e f t = peaks [ i l ] . l e f t
idxtopeak [ peaks [ i r ] . l e f t ] = idxtopeak [ ind ] = i r

return sorted ( peaks , key=lambda p : p . g e t p e r s i s t e n c e ( h i s togram counts ) ,\
r e v e r s e=True )
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B. Feature Importance

Figure B.1: Feature Importance - One vs All Classification Strategy - Agricultural Areas
51 features: 22 Altitude-derived, 18 Histogram-based, 11 Eigenvalue-based
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Figure B.2: Feature Importance - One vs All Classification Strategy - Forest and Semi-natural areas
51 features: 22 Altitude-derived, 18 Histogram-based, 11 Eigenvalue-based

Figure B.3: Feature Importance - One vs All Classification Strategy - Wetlands
51 features: 22 Altitude-derived, 18 Histogram-based, 11 Eigenvalue-based
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Figure B.4: Feature Importance - One vs All Classification Strategy - Water Bodies
51 features: 22 Altitude-derived, 18 Histogram-based, 11 Eigenvalue-based
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