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A B S T R A C T   

A 2-layer non-hydrostatic model with improved dispersive behaviour is presented. Due to the assumption of a 
constant non-hydrostatic pressure distribution in the lower layer, the dispersive behaviour is improved without 
much additional computational time. A comparison with linear wave theory showed that this 2-layer model gives 
a better result for the dispersion relation and shoaling of waves in intermediate water. This means that the 2- 
layer model is applicable in shallow and intermediate water depths (up to relative depths kh equals 4), 
whereas the 1-layer model is only applicable in shallow water depths (kh smaller than 1). Three laboratory 
experiments, including a fringing reef and a barred beach, were used to validate the presented mode for different 
hydrodynamic conditions. Based on these results, it can be concluded that the 2-layer model can be applied to 
accurately simulate the bulk wave height and spectral properties. The low frequency wave height, the setup and 
in particular the second order statistics contain more scatter, but the model accurately captured the general 
trend. Furthermore, the model showed good results for complex bathymetries in shallow to intermediate water.   

1. Introduction 

Numerical wave models are routinely used to transform offshore 
waves to nearshore conditions in order to design and evaluate coastal 
structures, sea defences and port operations (McComb et al., 2009; 
Cavaleri et al., 2007; Thomas and Dwarakish, 2015). This trans
formation is efficiently performed by spectral-domain models such as 
SWAN (Booij et al., 1996), which transform phase-averaged properties 
of the wavefield, under the assumption of weakly-nonlinear (small wave 
steepness), homogeneous (small spatial gradients) wave motion. How
ever, as the depth decreases wave steepen and ultimately break, and 
energy transfers occur that significantly amplify energy levels in the 
spectral tail and in the infra-gravity band (Elgar and Guza, 1985; Lon
guet-Higgins and Stewart, 1962; Herbers et al., 1995). Accounting for 
shallow-water energy transfers in these models is theoretically 
non-trivial (Agnon et al., 1993; Herbers and Burton, 1997; Janssen and 
Herbers, 2009), and computationally expensive. As a consequence only 
approximations are available in practice (Eldeberky, 1997; Salmon 

et al., 2016). Further, other shallow-water processes such as wave 
run-up, reflection, and diffraction are typically not accounted for. 

Shallow-water wave-driven hydrodynamics are an important driver 
for morphological change, and to predict e.g. storm impact and coastal 
flooding a comprehensive description of wave dynamics is needed. 
Given that typical storm impact modelling time- and spatial-scales are 
often large compared to the wave motion (O(100–1000) wave periods, O 
(10) wave lengths), computational restrictions often prevent application 
of numerical models based on primitive equations (e.g. VOF models). It 
was shown by Jacobsen and Fredsoe (2014) that VOF models can be 
applied to model the coastal morphology, but it still requires a signifi
cant amount of computational time. That said, increased computational 
resources have allowed for more accurate descriptions of the hydrody
namics than phase-averaged wave energy models. For example, hydro
dynamics are now routinely computed on the wave-group (or 
infra-gravity) scale through application of the surf-beat model, for 
example using the XBeach model (Roelvink et al., 2009, 2017) and 
Delft3D (Reniers et al., 2004; Van Dongeren et al., 2007). XBeach is an 
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open-source model which is applicable for modeling near-shore hydro
dynamics, sediment transport and morphodynamics. It has been initially 
developed for hurricane impacts on sandy beaches in the United States 
(McCall et al., 2010), but has been further developed for sandy beaches 
in Europe (Ferreira et al., 2009), coral reefs (Quataert et al., 2015; 
Pearson et al., 2017) and wave-vegetation interaction (Van Rooijen 
et al., 2016). 

While successful, further improving predictions of wave impact, e.g. 
effectively predict runup and overwash on reflective beaches (McCall 
et al., 2014, where short waves dominate), or accurately predicting 
nonlinear energy transfers, will require phase-resolved hydrodynamics 
in the nonlinear shoaling region and surfzone. However, to be useful in 
practice, the phase-resolved approximations need to be as efficient as 
possible. Invariably, this sets up a trade-off between accuracy and effi
ciency, which for time-domain models applicable to the surf zone typi
cally puts restrictions on the maximum relative depth kh (k the 
wavenumber, and h depth) that can be approximated. As kh increases, 
vertical accelerations (or wave dispersion) can no longer be neglected, 
and using the (non-dispersive) shallow-water equations to calculate the 
hydrodynamics becomes inaccurate. 

Boussinesq models approximate the effect of vertical accelerations 
(and vertical structure) of the flow (i.e. dispersion) through inclusion of 
additional terms in the horizontal momentum and continuity equations 
(Madsen et al., 1997; Sorensen et al., 1998; Kirby et al., 1998). An 
overview of the state of the art Boussinesq models and their applications 
is presented in Brocchini (2013). The governing equations of the Bous
sinesq models remain effectively 2D in space, at the expense of increased 
complexity of the governing equations. In their simplest form, these 
models are restricted to kh ~ 1, and to apply these models to deeper 
water introduces complex higher order terms that are difficult to 
implement numerically, and can be fundamentally unstable without 
additional filtering of spurious high frequency modes. In contrast, 
Non-hydrostatic models explicitly account for vertical accelerations and 
non-hydrostatic pressure by adopting a 3d description of the flow (Kirby, 
2017). Vertical momentum is explicitly solved for, and non-hydrostatic 
pressure follows by enforcing incompressible flow through a discrete 
pressure-Poisson type equation (Casulli and Stelling, 1998; Stelling and 
Zijlema, 2003; Ma et al., 2012). The latter typically dominates the 
computational effort involved, and can become prohibitive when ver
tical resolution is fine. These models retain efficiency by adopting a very 
crude vertical description of the flow. Therefore, several methods were 
presented to increase the efficiency. Antuono and Brocchini (2013) 
presented a non-hydrostatic model, which is based on the solution of the 
Poisson equation for a semi-averaged vertical velocity instead of a dy
namic pressure to reduce the computational time. To efficiently resolve 
a 3D flow field a sub-grid model was presented by Rijnsdorp et al. (2017) 
in which a limited number of vertical layers are required. However, with 
a few number of vertical layers the application to wave problems is 
limited to a finite range of kh values with the single-layer description 
applicable up to kh ~ 1 (Smit et al., 2014; Bai and Cheung, 2013). 

To allow for phase-resolved hydrodynamics, XBeach adopted such a 
single-layer non-hydrostatic approach (Roelvink et al., 2018; Smit et al., 
2010), primarily because the single-layer non-hydrostatic framework 
was compatible with the existing staggered, depth-averaged, shallow-
water numerical framework (Stelling and Duinmeijer, 2003). This model 
has been applied with success (e.g. Pearson et al., 2017; Van Rooijen 
et al., 2016; McCall, 2015), but practice has shown that the kh ≤ 1 limit 
can be restrictive. It may require enforcing the boundary in a region near 
(or in) the surfzone, where kh ≤ 1. Here nonlinear contributions can be 
large and enforcing boundary conditions correctly is difficult since 
equilibrium solutions based on weakly nonlinear theory no longer apply 
(Fiedler et al., 2019). 

Extending XBeach to allow for multiple layers (similar to Zijlema 
et al., 2011; Ma et al., 2012) would allow for better dispersive behav
iour, but require complete revision of the underlying numerical frame
work, and come at the cost of substantial decrease in model speed, 

severely limiting practical space and timescales that can be considered. 
Further, given all uncertainties in modelling beach response, a full 
multi-layer implementation is not needed. A modest increase in model 
applicability would likely provide a sufficiently accurate description of 
the hydrodynamics. 

Here we therefore consider the approach followed in Cui et al. 
(2014), who proposed an approximate two-layer implementation which 
effectively describes the pressure using a single control point in the 
vertical. This approximation is only effective up to kh ~ 3-4 (as opposed 
to kh ~ 5-6 for a full two-layer description), but the resulting 
pressure-Poisson equation has the same complexity as the 1-layer model, 
and consequently the computational burden only increases moderately. 
Further, formulating the equations in terms of depth-averaged flow, and 
the velocity difference between the layers, allows for a straightforward 
inclusion into the existing code-base. 

The objective of this paper is to introduce the 2-layer XBeach-nh 
model and show the accuracy for various conditions. The paper is 
structured as follows: First the formulation of the 2-layer model is given 
in section 2. In section 3 the performance of the 2-layer model is shown. 
A comparison with laboratory experiments is shown in section 4. The 
results are discussed in section 5 and the conclusions are given in section 
6. 

2. Model formulation 

2.1. Governing equations 

We consider the nonlinear shallow water equations including non- 
hydrostatic pressure (Casulli and Stelling, 1998), formulated on a con
ventional 3D Cartesian Coordinate system (x, y, horizontal, z vertical 
positive upwards) with z = 0 still water level. Assuming (for brevity) 
that the flow is uniform in the y direction, the governing equations are 

∂u
∂t

+
∂uu
∂x

+
∂wu
∂z

= −
1
ρ

∂(pnh + ph)

∂x
+

∂τ
∂z

(1)  

∂w
∂t

+
∂uw
∂x

+
∂ww
∂z

= −
1
ρ

∂q
∂z

(2)  

∂u
∂x

+
∂w
∂z

= 0 (3)  

where t is time, u and w are the horizontal and vertical Eulerian veloc
ities, τ is the shear stress, pnh the non-hydrostatic pressure and ph the 
hydrostatic pressure (ph = ρg(ξ − z)). The water column is vertically 
bounded by the free-surface elevation (ξ) and the bottom level (d). The 
free surface elevation is found by integrating the continuity equation 
over the water depth, 

∂ξ
∂t

+
∂
∂x

∫ ξ

− d
udz = 0 (4) 

The kinematic boundary conditions at the free surface and at the 
bottom are given by, 

w=
∂ξ
∂t

+ u
ξ
∂x

(z= ξ) (5)  

w= − u
∂d
∂x

(z= − d) (6) 

At the enclosing boundaries, boundary-normal horizontal velocities 
according to linear wave theory are prescribed. When irregular waves 
are forced, the wave-wave interactions forcing higher and lower har
monics are also included to minimize the generation of spurious waves 
(Rijnsdorp et al., 2014; Van Dongeren et al., 2003). Further, weakly 
reflective boundary conditions are used at the generating boundary to 
absorb reflected long waves (Smit et al., 2010). 
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2.2. Two layer approximation 

Following Cui et al. (2014) we adopt a 2-layer model of the flow, 
where the water column is divided into two layers ordered from bottom 
up, with height Δz1 = αh (bottom layer) and Δz2 = (1 − α)h. Here α is a 
layer distribution parameter representing the fraction of the height of 
the lower layer and the total water depth, h is the water depth (h = d+
ξ) and the layer interfaces zj are located at − d, − d + αh and ξ (see 
Fig. 1). Horizontal flow velocities are positioned vertically along the 
layer center, whereas vertical velocities and the non-hydrostatic pres
sure are located at the cell face. After integration of the horizontal 
momentum equation over the vertical, and introducing pnh/ ρ as q we 
find, 

∂Δzjuj

∂t
+ gΔzj

∂ξ
∂x

+
∂Δzjujuj

∂x
+ ujωj − uj− 1ωj− 1 +

∂
∂x

(
Δzj

qj + qj− 1

2

)
− qj

∂zj

∂x

+ qj− 1
∂zj− i

∂x
− τj + τj− 1 = 0

(7)  

where the variables with a bar are located at the layer interfaces uj =

u(zj, x, t) and ω = w1 − ∂tz1 − u1∂xz1. Further, the integrated vertical 
momentum equations in terms of face velocities is given as, 

Δzjwj

∂t
+ωjwj − ωj− 1wj− 1 +

∂
(
Δzjujwj

)

∂x
+ qj − qj− 1 = 0 (8) 

Lastly, the layer integrated continuity equation is given as, 

∂
∂x

(
Δzjuj

)
+wj − wj− 1 − uj

∂zj

∂x
+ uj− 1

∂zj− 1

∂x
= 0 (9) 

The intended application domain is in relatively shallow water (kd 
small) and the velocity difference Δu between top and bottom layers is 
assumed small. To make this assumption explicit we redefine the 2-layer 
description in terms of depth averaged velocity U and velocity difference 
Δu (Δu/U≪1) according to, 
[

u1
u2

]

=

[
1 1 − α
1 − α

][
U
Δu

]

;

[
U
Δu

]

=

[
α 1 − α
1 − 1

][
u1
u2

] (10) 

This is similar to Cui et al. (2014), who considered the difference in 
momentum between layers (u2Δz2 − u1Δz1). Here, the velocity differ
ence is preferred, because it tends to zero in the hydrostatic limit even if 
the layer distribution are not equidistant. Further, the non-hydrostatic 
pressure q0 at the bottom is re-expressed as 

q0 = q + Δq (11)  

with Δq = q1 − q0 and where q = q1 denotes the pressure at the center 
interface. Our objective in the following is to describe the evolution of 
the two-layer system in terms of the newly introduced variables. 

The evolution equation for U may be obtained by summation of 
equation (7) for Δz1u1 and Δz2u2, 

∂(hU)

∂t
+gh

∂ξ
∂x
+

∂
∂x

(

U2+α(1− α)(Δu)2
+

h
2
((1+α)q+Δq)

)

− (q+Δq)
∂d
∂x

=τ0

(12) 

Further, an evolution equation for Δu follows from subtraction of 
equation (7) for Δz2u2 divided by (1− α) from equation (7) for Δz1u1 

divided by α. This results in, 

∂hΔu
∂t

+
∂hΔuU

∂x
+

ω1u1

α(a − α)+
∂
∂x

(
h
2
(q+Δq)

)

−
q

1 − α
∂ξ
∂x

−
Δq
α

∂d
∂x

= −
τ0

α

+
τ1

α(1 − α)
(13)  

where τ1 is the shear stress between the two layers and τ0 the bottom 
shear stress. The shear stress between the layers is related to the dif
ferences between the velocities in the layers. Therefore, the closure of 
the shear stress is formulated in terms of the velocity difference multi
plied with an eddy viscosity normalized by the water depth (cf. the 
Boussinesq closure), 

τ1 = − 2νΔu/h (14)  

where ν is an eddy viscosity. Note that the internal stress is not meant as 
an accurate description of turbulent stresses, but added to suppress 
potential spurious steady-state solutions. The bottom shear stress is 
given by a quadratic friction law, 

τb =Cf
U|U|

h
(15)  

where Cf is a friction coefficient. For the two vertical momentum 
equations substitution of U, Δ u, q and Δq yields the equations 

∂hw1

∂t
+

ωw1

α +
∂
∂x

(huw1 +(1 − α)hΔuw1) −
Δq
α = 0. (16)  

and 

∂hw2

∂t
−

ω1w1

(1 − α)+
∂
∂x

(hUw2 − αhΔuw2) −
q

(1 − α)= 0. (17) 

Lastly, the two continuity equations can also be expressed in terms of 
these variables alone. First, addition of two times the kinematic condi
tion at the bottom, w0 + u0∂xd = 0, to equation (9) for j = 1 yields 

∂
∂x

(hU +(1 − α)hΔu)+
2w1

α −
u1

α
∂z1

∂x
+

u0

α
∂d
∂x

= 0 (18)  

where u0 is approximated by u0 = U+ (1 − α)Δu. Secondly, addition of 
twice of equation (9) for j = 1 to the equation for j = 2 gives 

∂
∂x

((1+ α)hU +(1 − α)αhΔu)+ 2w2 − u2
∂ζ
∂x

− u1
∂z1

∂x
= 0 (19) 

Note that, apart from the approximate vertical integration and 
closure of the shear stresses, no further approximations have been made 
thus far, and the system expressed in terms of U, Δ u, q and Δq is a 
consistent two-layer approximation of the full equations. 

2.3. The reduced two layer system 

To simplify the system further, we will assume that Δq/q≪1 so that 
terms which depend on q + Δq can be approximated by q alone and that 
w1 = O(Δu). This assumption limits the application of the model to 
nearshore shallow water. Due to the approximation of the pressure 
distribution with a piecewise linear function, the dispersive behaviour of 
the model is related to the layer distribution. This means that the 
dispersive behaviour is only accurately described for a limited number 
of wave frequencies. In relatively shallow water (kh is small) this does 
not result in a large deviation, because most of the energy is present at 

Fig. 1. XBeach-nh 2-layer definitions.  
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frequencies with an accurately dispersive behaviour. However, in 
deeper water this assumption leads to an incorrect dispersive behaviour 
of the dominant waves. Compared to a fully 2-layer model, this 
assumption results in a larger error in the dispersion relation, but the 
dispersive behaviour is better than a 1-layer model. Under these as
sumptions, the evolution of U, Δ u, w2, ζ and q is completely deter
mined by the set of equations consisting of the two horizontal 
momentum equations 

∂hU
∂t

+ gh
∂ζ
∂x

+
∂
∂x

(
hU2)+

1 + α
2

∂hq
∂x

− q
∂d
∂x

= 0, (20)  

h
∂Δu
∂t

+
∂hUΔu

∂x
+

1
2

∂hq
∂x

+
q

(1 − α)
∂ζ
∂x

= − τ0 − ν 2Δu
α(1 − α)h, (21)  

the equation for the mean vertical equation in the top layer, 

∂hw2

∂t
+

∂hUw2

∂x
−

q
(1 − α)= 0. (22)  

the continuity equation in the top layer 

(1+ α) ∂hU
∂x

+
(
α − α2) ∂hΔu

∂x
+ 2w2 − u2

∂ζ
∂x

− u1
∂z1

∂x
= 0 (23)  

and the global continuity equation 

∂ζ
∂t

+
∂hU
∂x

= 0. (24) 

This set of equations is self-contained, in the sense that neither w1 nor 
Δq is required to determine the time evolution of the other variables. 
This decoupling is achieved by neglecting the coupling to Δq in the 
horizontal momentum equations, which implies that we assume that the 
pressure does not change significantly in the lower layer. 

Note that, if so required, w1 can always be obtained from the con
tinuity equation at the bottom. Since the direct coupling between the 
pressure Δq and the velocities is removed, the pressure Δq acts as a 
constraint variable that has no dynamical significance for the system as a 
whole, but merely attains the value necessary to close the balance. If the 
pressure at the bottom is required, q serves as a good approximation, 
since if Δq is of significance, that is if Δq/q = O(1), the entire procedure 
becomes invalid, and the full two-layer system has to be used. 

To demonstrate the essential components of the reduced pressure 2- 
layer formulation, we only considered a discrete approach in the verti
cal, while horizontal components and time are still continuous. The 
procedure to obtain a fully discrete model is essentially the same as in 
the Xbeach model and we will only highlight the essential aspect here. 
Specifically, the equations are discretized with second-order approxi
mations in space and time on a staggered horizontal grid, with pressure, 
vertical velocities and surface elevation co-located and staggered with 
respect to horizontal flow. Time integration is explicit, but to solve for 
the pressure a discrete pressure-Poisson equation has to be solved at 
each timestep. However, because there is only single unknown pressure 
point in the vertical, the computational effort involved in constructing 
and solving the discrete pressure-poisson equation is essentially the 
same as for a 1-layer model. Hence, compared with a 1-layer model, 
solving for Δu is the only additional computational effort required. 

Lastly, in order to capture breaking of waves with a limited number 
of vertical layers (1 or 2 in this case), the hydrostatic front approxima
tion is applied (Smit et al., 2013). The procedure reduces the model 
locally to a shallow water model, using strict momentum conservation to 
ensure that bulk energy dissipation is represented well. This means that 
Δu is set to 0, as are the pressures, and the bore capturing properties of 
the model are identical to the procedure described in Stelling and 
Duinmeijer (2003), which was verified to work well with the proposed 
switching mechanism in Smit et al. (2013). A computational cell is set to 
be hydrostatic when ∂ξ

∂t > αbrwmax or when ∂ξ
∂t > βbrwmax for a cell next to 

cell where the first condition holds. The cell becomes non-hydrostatic 

again when ∂ξ
∂t < 0, which represents the passing of the wave crest. It 

was found that a breaker steepness, αbr of 0.4 and a βbr of 0.25 gives a 
good approximation for breaking waves (Roelvink et al., 2017). 

3. Validation with analytical solutions 

We assess the dispersive behaviour of the proposed model in com
parison with the linear wave theory solution and the 2-layer linear so
lution. Neglecting the non-linear terms and linearizing the equation of 
the 2-layer model, the dispersion relation of this system can be obtained 
as (Cui et al., 2014), 

ω= k

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

gh
4 + (α − 2α2 + α3)(kh)2

4 + (1 + 2α − 3α2)(kh)2

√

(25) 

The accuracy of the dispersion relation for the 2-layer model depends 
on the layer thickness distribution α. Theoretical, it is possible to select 
an α, which gives the correct dispersive behaviour for a certain water 
depth. However, in most applications irregular waves are modelled and 
an optimum value should be used. Given the numerical dispersion 
relation (equation (25)), it was found that the relative error in the radial 
frequency compared to linear wave theory ((ω − ωlin)/ωlin) is smaller 
than 0.015 for a kh range from 0 until 5 when α is 0.33. Thus, a layer 
distribution of 0.33 is used for all the simulations. 

3.1. Linear dispersive behaviour 

3.1.1. Method 
To verify the dispersive behaviour, a linear standing wave in a closed 

Fig. 2. Dispersive behaviour. Upper panel: group velocity normalized by the 
deep water group velocity. Middle panel: wave celerity normalized by the deep 
water celerity. Lower panel: relative error compared to the solution of linear 
wave theory for the radial frequency (ω). The red triangles are the results ob
tained with the proposed 2-layer model and the blue circles are results of the 1- 
layer model. The solution for the numerical dispersion relation (eq. (25)) with 
an α of 0 and 0.33 is shown as orange and purple lines. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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basin was modelled. By varying the basin length (L), the dispersive 
behaviour can be shown for different relative water depths (kh). A cosine 
was set as initial water level with a wave length of L/2. The computa
tional grid was discretized with 100 grid points and a simulation time of 
fifty theoretical wave periods is applied. The water depth was kept 
constant at 2 m and the amplitude of the initial condition was set to 
0.001 m . This means that linear wave theory is valid (a/L < 0.001 and 
a/d < 0.001) and that the results can be compared to the linear 
dispersion relation, 

ω=
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
gk tanh kh

√
(26) 

The radial frequency was determined based on zero-crossing analyse. 
The wave celerity was computed according to c = k/ω and the group 
velocity was estimated as cg = Δω/Δk. 

3.1.2. Results 
The dispersion characteristics of the group velocity, wave celerity 

and the radial frequency are valid up to a kh of 5 for the 2-layer model, 
whereas the 1-layer model is valid until kh = 1. This is reflected in the 
relative error of the radial frequency (see Fig. 2). Moreover, the results of 
both models are equal to the analytical solutions of the numerical 
dispersion relation (equation (25) with α = 0 and α = 0.33), which 
implies that the numerical implementation does not affect the results. 
Furthermore, there is a different behaviour in deep water for the two 
models. The 1-layer model underestimates the radial frequency in deep 
water (kh > 1), whereas the 2-layer model the radial frequency is 
overestimated. As a consequence, the deep water waves travel faster in 
the 2-layer model than in the 1-layer model (middle panel Fig. 2). 

3.2. Linear shoaling 

3.2.1. Method 
When waves are propagating over a slowly changing bed level, the 

wave amplitude will shoal due to the conservation of the energy flux 
which is given by, 

∂P
∂x

=
∂
(
cgE

)

∂x
= 0 (27)  

where P is the energy flux, cg the group velocity and E the wave energy 
(neglecting bottom friction and wave-wave interactions). Based on this 
relation the shoaling coefficient is given by, 

Kshoal =
A1

A0
=

̅̅̅̅̅̅̅cg,0

cg,1

√

(28)  

where Ai is the wave amplitude at location i. Due to the error in the 
dispersion relation, the shoaling coefficient will deviate from linear 
wave theory for an increasing kh. To verify this behaviour random waves 
from a JONSWAP spectrum (Tp = 8s and Hm0 = 0.001m) were modelled 
over a sloping bathymetry to show the effects of the dispersive behav
iour on the shape of the spectrum. It is assumed that a comparison with 
linear wave theory is possible for these small amplitude waves and that 
nonlinear affects are negligible. 

The waves were forced at a depth of 30 m and after a flat region (x =
100 m) the water depth decreases with a slope of 1:30 m till a depth of 2 
m. The shoaling coefficient is computed for several output points on this 
slope based on the ratio of the spectral wave height over the offshore 
spectral wave height, where the spectral wave height is given as Hm0 =

4
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∫

E(f)df
√

). To derive the theoretical shoaling coefficient, each wave 
component from the JONSWAP spectrum is shoaled based on the linear 
dispersion relation given by Equation (28). This method is also applied 
to the numerical solution of the dispersion relation to derive the nu
merical solution of the 1- and 2-layer model. Because the wave height is 
computed for each wave component, it is also possible to show the 
shoaling behaviour within the spectrum. A 1:200 sloping beach profile is 

used to dissipate all the waves. The bottom friction and viscosity are set 
to zero to neglect wave damping outside the breaking the zone. 

3.2.2. Results 
The 2-layer model gives an accurate result for the shoaling of waves. 

The shoaling coefficient is close to zero till a kh of 0.8 from where the 
waves start to shoal. This result is similar to the solution of linear wave 
theory (see Fig. 3). The 1-layer model shows a different result, where the 
energy of the waves decreases over the slope and the modelled wave 
height is underestimated. The wave height decreases with 20%, whereas 
linear wave theory does not show a decrease of wave energy. The nu
merical results are consistent with their respective analytical dispersion 
solutions (eq. (25)) for α = 0.33 (2-layer) and α = 0 (1-layer). This 
suggest that the numerical implementation is correct. The underesti
mation of the 1-layer model is mainly caused by the wrong shoaling 
behaviour of the shorter waves (see Fig. 3 lower panel). The energy in 
the tail of the spectrum is much lower than predicted with the 2-layer 
model and the linear wave theory solution. 

4. Validation using laboratory data 

Three laboratory experiments were modelled with the proposed 
model to show the performance for different hydrodynamic conditions. 
First, the energy transfer from a bichromatic wave group to the bound 
waves over a plane beach is verified. The other two experiments show 
the accuracy of the wave hydrodynamics of irregular waves over a 
barred beach and a fringing reef. Both experiments were used as vali
dation, because the hydrodynamics are completely different for both 
cases. 

Each experiment is simulated with the proposed 2-layer model with a 
layer distribution of 0.0 (1-layer) and 0.33 (2-layer). As the main 
objective of this paper is to show the validation of the 2-layer model, 
only the results of the 2-layer model are discussed in this section. The 
differences between the 1-layer model and 2-layer model are described 

Fig. 3. Shoaling behaviour. Upper panel: results for the shoaling coefficients 
for different relative depths. Lower panel: ratio deep water (h = 30m) energy 
over shallow water (h = 2m) energy for every frequency in the spectrum. The 
red triangles are the results of the proposed 2-layer model and the blue circles 
are the results of the 1-layer model. The solution for the numerical dispersion 
relation (eq. (25)) with an α of 0.33 and 0.0 is shown as orange and purple lines. 
The method to compute the linear, 1-layer and 2-layer solution of the shoaling 
coefficient are described in section 3.2.1. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of 
this article.) 

M.P. de Ridder et al.                                                                                                                                                                                                                           



Coastal Engineering 164 (2021) 103808

6

in the discussion. All runs were simulated with the default parameters, 
which is a breaker steepness of 0.4 and a Manning friction coefficient of 
0.01s/m1/3 (smooth bottoms). The relative bias (rel. bias) and scatter 
index (SCI) are used to compare the model results with the data of the 
laboratory experiments. These statistical measures are given by, 

Rel. ​ bias=

∑N
i=1

(

xi − x̂i

)

∑N
i=1 x̂i

(29)  

SCI=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1

(

xi − x̂i

))√

1
N

∑N
i=1

⃒
⃒
⃒x̂i

⃒
⃒
⃒

(30)  

where xi is the model output and x̂i the measured data. 

4.1. Bichromatic waves over a plane beach 

4.1.1. Method 
In the bichromatic case, a system of two primary waves was forced in 

a 40 m long flume with a 1/35 sloping beach (Van Dongeren et al., 
2007). 

The two primary waves will interact and force among other com
ponents a bound wave with a difference frequency (sub-harmonic) and a 
bound wave at the sum frequency (super-harmonic). On a flat bottom 
and for small amplitude over depth ratios, these second order bound 
waves are given by, 

η3 =D(ω1,ω2, h)a1a2cosω3t − φ3 (31)  

where a1 and a2 are the amplitudes of the primary waves, D(ω1,ω2, h) is 
the interaction coefficient derived by Hasselmann (1962), ω3 is the 
bound radial frequency and φ3 is the bound phase. Depending on the 
profile, the sub-harmonic is dissipated or reflected at the shoreline 
(Battjes et al., 2004). Therefore, both a test with a reflective 
sub-harmonic (test A1) and dissipative sub-harmonic (test A4) were 
modelled. Additionally, test B4 is modelled because it contains the 
largest amplitude of the bound long wave. The wave conditions of these 
three tests are shown in Table 1. 

During the experiment the waves were generated with a piston-type 
of wave board with reflection compensation including second order 
waves. The water level was measured at 80 locations along the flume 
with a sampling rate of 25 Hz (Fig. 4). In the simulations, the model 
boundary is located at the first wave gauge (x = 6 m), in order to 
compare the forced waves with the measurements. To mimic the labo
ratory environment, the reflection compensation option is applied, and 
the second order waves were included in the boundary signal. Both the 
sum interaction (ω1 + ω2), self interactions(ωi + ωi) and the difference 
interactions (ω1 − ω2) were included at the boundary signal based on 
equation (31) to minimize spurious waves (Madsen and Sørensen, 
1993). A resolution of 0.025 m was used to discretise the domain, which 
corresponds to 30 grid points per wave length for the super-harmonics. 

The threshold water depth above which cells are considered wet, was 
changed to 0.001 m correctly reproduce the reflection of the long waves. 

The validation is based on the total wave energy and the energy of 
the super and sub-harmonic respectively. The total wave height is 
computed from the spectral moment as Htotal = 2

̅̅̅̅̅̅̅̅̅
2m0

√
where m0 is 

given by m0 =
∫

E(f)df . The sub-harmonic wave height (Hsub) is ob
tained by applying a band filter to the difference frequency including 
their higher components (mΔf = m(f1 − f2) up to the Nyquist frequency. 
In this way the steepening of the sub-harmonics is also included in the 
signal. In a similar way the wave height of the super-harmonic was 
determined (Hsuper). 

4.1.2. Results 
The wave transformation of the primary waves and the accompa

nying sub-harmonic is modelled accurately with 2-layer model for the 
three tests (see Table 2). Only the cross-shore distribution of the wave 
heights is shown for experiment A1 and A4 because the long wave 
behaviour of experiment A1 and B4 are very similar. In all tests, the 
energy of the bichromatic wave group is almost constant until the 
breakpoint, after which the wave height decreases (see Fig. 5 panel A). 
Only in test B4 breaking initiated slightly further offshore (≈ 1m). This 
small offset in test B4 could be caused by a different breaking mecha
nism due to the larger wave heights, which require a larger breaking 
steepness. 

Due to the slowly decreasing water depth, the energy of the sub- 

Fig. 4. Laboratory set-up of the bichromatic wave experiment. The vertical lines represent the wave gauges (Van Dongeren et al., 2007).  

Table 2 
Statistics for tests A1, A4 and B4 of the bichromatic wave group experiment for 
the proposed and current version of the model with default settings. The total 
statistical measures were computed for all the observation points for each in
dividual test (A1, A4 and B4).  

Run Htotal   Hsub   Hsuper   

XBeach-nh 2-layer SCI Rel. bias SCI Rel. bias SCI Rel. bias 

A1 0.06 − 0.013 0.13 0.015 0.17 0.050 
A4 0.04 − 0.002 0.14 − 0.012 0.2 0.056 
B4 0.04 0.033 0.10 0.106 0.21 − 0.009 
total 0.04 0.033 0.22 0.150 0.21 − 0.009 
XBeach-nh 1-layer 
A1 0.07 − 0.037 0.14 − 0.006 0.18 0.015 
A4 0.05 − 0.022 0.19 − 0.015 0.19 0.022 
B4 0.06 0.030 0.17 0.104 0.22 − 0.036 
total 0.06 0.030 0.21 0.140 0.22 0.036  

Table 1 
Wave conditions of the three experiments which are modelled. f1 and f2 are the 
primary wave frequency, fb is the bound sub-harmonic frequency and kd the 
maximum normalized water depth.  

Test f1 [Hz]  f2 [Hz]  fb [Hz]  a1 [m]  a2 [m]  kd [rad]  

A1 0.67 0.48 0.19 0.06 0.012 2.0 
A4 0.62 0.53 0.09 0.06 0.012 1.8 
B4 0.65 0.50 0.15 0.06 0.036 1.94  
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harmonic wave shoals until the initiation of breaking (see Fig. 5 panel 
B). However, the behaviour of the sub-harmonic between the tests is 
different. In the case of test A1 and B4 most of the sub-harmonic energy 
is dissipated, whereas a standing wave pattern is visible for test A4 due 
to reflection. This behaviour is captured with the numerical simulations, 
which shows that the 2-layer model is capable in modelling the energy 
transfer to the sub-harmonic and capturing the dissipation and reflection 
of the sub-harmonic at the shoreline (see Fig. 5 panel B). 

In all three tests a similar behaviour of the super-harmonic is found. 
The super-harmonic energy increases with a decreasing water depth 

until the breakpoint, where the super-harmonic is dissipated. This 
behaviour is also found in the numerical simulation, but the oscillation 
in the shoaling region is slightly different in the numerical simulations. 
This oscillation is caused by free spurious waves which arise due to the 
mismatch at the boundary. A simulation without super-harmonics in the 
boundary conditions showed a similar oscillation with a larger ampli
tude, which indicates that these oscillations are caused by a super
position of free and bound super-harmonics. Due to the deviation in the 
dispersive behaviour of the free waves, the wave length is slightly 
different than the measured oscillation. 

Fig. 5. The transformation of the total wave height Htotal for tests A1 and A4 (panel A), the low-passed sub-harmonic wave height Hsub (panels B) and the high-passed 
super-harmonic wave height Hsuper (panel C). 

Fig. 6. Time series at locations in the flume of experiment A1 and A4. The total measured water level elevation (grey solid line), the low-passed observed sub- 
harmonic (blue dots), and the low-passed modelled sub-harmonic (red line). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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Because long waves are important for numerous coastal applications 
(e.g. coastal erosion or resonance), we also verified the sub-harmonic 
wave shape. The time series of the primary and sub-harmonic show 
that the 2-layer model is capable of accurately simulating the shape of 
the sub-harmonic (see Fig. 6). The dissipation of the sub-harmonic for 
test A1 is clearly visible. The wave shape becomes more asymmetrical 
closer to the shoreline. When the wave shape becomes too asymmetrical 
the sub-harmonic starts to dissipate and from that point the amplitude 
reduces. This behaviour is not found for the reflective sub-harmonic, 
where the wave shape is almost constant for the different locations. In 
this case the amplitude differs between the different time series due to a 
standing wave pattern. There is a small deviation for test A4 close to the 
shoreline, but in general the steepness of the sub-harmonic is accurately 
modelled. This means that not only the energy transfer to the sub- 
harmonic is reproduced, but that also the energy transfer to the higher 
components of the sub-harmonic is captured. 

4.2. Irregular waves over a barred beach 

4.2.1. Method 
For the case of irregular waves over a barred beach, three experi

ments observed by Boers (1997) were modelled. In this laboratory flume 
case, a concrete beach profile with an offshore depth of 0.75 m and a bar 
at 25 m (see Fig. 7 panel A) was constructed. Random waves were 
generated at the wave maker for three different wave steepnesses based 
on a JONSWAP spectrum. The wave conditions of the three tests are 
shown in Table 3. The surface elevation was measured at 70 locations 

with a spatial resolution of 0.1 m in the surf-zone and 1 m in the shoaling 
zone. 

The numerical model is discretized with a grid resolution of 0.02 m 
which corresponds to at least 20 grid cells for waves at 3 fp. The 
boundary is located at the first wave gauge and the model is forced with 
the measured high-passed (0.15 Hz) water level time series under the 
assumption that most of the short waves break at the beach. To account 
for the incoming long waves, the theory of Hasselmann (1962) was used 
as implemented by Van Dongeren et al. (2003). 

The results are verified for the total wave height (Hrms = 2
̅̅̅
2

√
m0), 

the low frequency wave height (Hrms,LF = 2
̅̅̅
2

√
m0|f<0.15Hz), the setup 

(〈η〉), the energy period (Tm− 1,0 = m− 1/m0), the mean zero-crossing 
period (Tm02 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
m0/m2

√
), skewness and asymmetry. The wave 

moment, mn, is given by 
∫

fnE(f)df where an upper bound of 4fp is used 
to neglect the noise. The skewness and asymmetry are given by, 

Fig. 7. Validation of the proposed model against 
Boers test 1C. The red line is the result computed with 
the proposed model, the grey line those obtained with 
the current 1-layer model, and the observations are 
shown with blue dots. The comparison is made for the 
total wave height (panel B), the LF-wave height 
(panel C), the setup (panel D), the spectral wave 
period (panel E), zero-crossing period (panel F), the 
skewness (panel G) and the asymmetry (panel H). In 
panel A the bed level and the instantaneous surface 
elevation is shown. (For interpretation of the refer
ences to colour in this figure legend, the reader is 
referred to the Web version of this article.)   

Table 3 
Wave conditions for the tests 1A, 2B and 1C of the Boers experiments. The fp is 
the peak period, Hs the significant wave height, kh the relative depth of the peak 
period and kA the relative steepness of the peak period given the significant 
wave height.  

Test Tp [s]  Hs [Hz]  kh [rad]  kA [rad]  

1A 2.1 0.16 0.93 0.20 
1B 2.1 0.22 0.93 0.27 
1C 3.4 0.1 0.53 0.07  
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Table 4 
The statistical measured for the different runs of the Boers experiments. The results are shown for the 1-layer model and the 2-layer model. The total statistical measure 
was computed for all observation points for each individual test (1A, 1B and 1C).  

Run Hrms   Hrms,LF   η   Tm− 1.0   Tm02   skewness  asymmetry  

2-layer SCI Rel. bias SCI Rel. bias SCI Rel. bias SCI Rel. bias SCI Rel. bias SCI Rel. bias SCI Rel. bias 

1A 0.04 − 0.006 0.1 0.06 3.53 0.07 0.07 0.04 0.05 0.01 0.17 − 0.13 1.76 1.29 
1B 0.06 − 0.03 0.08 − 0.06 2.49 0.25 0.04 − 0.01 0.05 − 0.02 0.15 − 0.1 1.54 1.32 
1C 0.02 0.003 0.09 0.03 7.88 3.92 0.03 − 0.02 0.02 0.01 0.12 − 0.03 0.72 0.52 
total 0.05 − 0.018 0.09 0.002 3.48 0.271 0.11 0.03 0.03 0.0 0.14 − 0.07 1.17 0.92 
1-layer 
1A 0.06 − 0.022 0.09 0.04 3.52 − 0.11 0.08 0.06 0.07 0.03 0.14 − 0.06 1.72 1.22 
1B 0.07 − 0.03 0.08 − 0.05 2.5 0.22 0.12 0.06 0.05 − 0.01 0.14 − 0.11 1.55 1.26 
1C 0.02 − 0.006 0.09 0.02 8.28 4.02 0.03 − 0.02 0.03 0.0 0.12 − 0.02 0.74 0.55 
total 0.06 − 0.025 0.09 − 0.002 3.47 0.187 0.14 0.06 0.05 0.0 0.13 − 0.06 1.17 0.90  

Fig. 8. Scatterplots of computed and observed wave properties for the three Boers experiments. The comparison is made for the total wave height (panel B), the LF- 
wave height (panel C), the setup (panel D), the spectral wave period (panel E), zero-crossing period (panel F), the skewness (panel G) and the asymmetry (panel H). In 
panel A the bed level and the instantaneous surface elevation is shown. 
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Sk=
〈(η − η)3〉

〈(η − η)2〉3/2 (32)  

As=
〈H (η − η)3〉
〈(η − η)2〉3/2 (33)  

where η is the wave signal, η the mean of the signal and H the Hilbert 
transform of the water level signal. 

4.2.2. Results 
The bulk wave statistics and the spectral properties are accurately 

reproduced for all tests, whereas the second order statistics are reason
able accurate predicted (see Table 4 and Fig. 8). First the hydrodynamic 
behaviour of the barred beach is shown for test 1C, which shows com
parable results as the other tests. The main difference between the three 
tests is that the waves shoal in test 1C, whereas the waves are already 
breaking at the wave maker for the two other tests. Secondly, the per
formance of the 2-layer model is shown for a comparison of the three 
tests with the measurements. 

In test 1C the waves shoal till the bar from where the waves start to 
break (Fig. 7 B). The short waves force the low frequency waves (LF- 
waves), which gain energy till the breaker bar. In the breaker-zone, the 
LF-waves partly reflect and dissipate (Fig. 7 C). Due to the decrease of 
radiation stresses in the breaker-zone, the water level is elevated 
resulting in a setup (Fig. 7 D). These bulk wave statistics are well 
captured with the numerical simulations. 

Considering the spectral periods, the 2-layer model shows good re
sults. The results for the Tm02 and Tm− 1.0 indicate that the spectral shape 
is well captured, where Tm02 emphasizes the high-frequency tail of the 
spectrum and theTm− 1.0 lower frequency part. The spectral period shows 

that close to the shoreline most of the energy is present in the long waves 
(Fig. 7 F). The energy transfer to higher components is visible in the 
zero-crossing period which becomes smaller towards the bar (Fig. 7 F). 
From the bar the waves become too nonlinear and start to break, which 
result in an increase of the zero-crossing period. 

The accuracy of the second order statistics is verified by means of the 
skewness and asymmetry, the trend of which is captured correctly (Fig. 7 
G and H). The waves become more skewed closer to the breaking point, 
which means that the peaks become higher compared to the trough. 
When the waves start to break the skewness decreases because most of 
the large waves break. The asymmetry remains almost constant until the 
bar after which the waves become more pitched forward. Thus, the 
asymmetry becomes more negative at the bar and at the second breaking 
point. 

When the results of three runs are compared to the data, the three 
tests give a similar result (see Fig. 8). 

The total wave energy is accurately reproduced for all three tests 
(Fig. 8 B). Considering the LF-wave energy there is more scatter (Fig. 8 
C). A reason for the scatter could be that the reflection compensation in 
the wave flume didn’t work properly, because of breaking waves at the 
wave paddle (Boers, 2005). However, the LF-wave transformation is 
accurately simulated with the proposed model. Both shoaling before the 
bar and dissipation from the bar are accurately reproduced. The mean 
water level shows a similar result as the physical experiments (Fig. 7 D), 
but for all three experiments the setup in the breaker zone is slightly 
overestimated. Since the mean of all data points is very close to zero, the 
statistical scores are relatively larger. 

When the spectral periods are compared, the three tests show a 
similar result. Both the test with the shortest waves (test 1C) and the 
longer waves show good results (Fig. 8 F). Only for test 1A is there an 
overestimation of the Tm− 1.0 close to shoreline (x > 25 m). This causes 

Fig. 9. Validation of the proposed model against 
Buckley et al. (2015) observations. The red line is the 
result computed with the proposed model, the grey 
line those obtained with the current 1-layer model, 
and the observations are shown with blue dots. The 
comparison is made for the total wave height (panel 
B), the LF-wave height (panel C), the setup (panel D), 
the spectral wave period (panel E), zero-crossing 
period (panel F), the skewness (panel G) and the 
asymmetry (panel H). In panel A the bed level and the 
instantaneous surface elevation is shown. (For inter
pretation of the references to colour in this figure 
legend, the reader is referred to the Web version of 
this article.)   
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the much higher scatter index of the Tm− 1.0 compared to the Tm02 (Fig. 8 
E). This deviation is caused by too much energy dissipation at the peak 
frequency, which results in a higher modelled Tm− 1.0 for test 1A. 

Most of the scatter is visible in the second order statistics (Fig. 8 G 
and H). For test 1C the second order statistics are well reproduced, but 
there is larger discrepancy close to the shoreline for the other two tests. 
The trend is very similar to the measurements, but the proposed model 
overestimates the asymmetry close to the shoreline in the case of test 1A 
and 1B. This deviation is the result of the numerical breaking mecha
nism. The hydrostatic front approximation is based on the energy 
dissipation of a bore, where the bore-face can become very steep. In the 

case of spilling/plunging waves this would result in a more negative 
wave asymmetry in the model. Since the wave period is larger for test 1B 
and 1C, more spilling/plunging type of breakers are presented in these 
tests and, therefore, the deviation in wave asymmetry is larger for these 
two tests. 

4.3. Irregular waves over a fringing reef 

4.3.1. Method 
The third laboratory validation case is Buckley et al. (2015) of a 

fringing coral reef. Contrary to the previous mildly-sloping barred beach 
case, waves break violently on the steep reef face, causing large radia
tion stress gradients and large wave-induced setup on the reef platform. 
In addition, long waves are generated in the narrow breaker zone due to 
the breakpoint mechanism (Symonds et al., 1982). 

The Buckley et al. (2015) observations are taken in a 55 m long flume 
with a wooden fringing reef profile consisting of a 1:5 reef slope, a 14 m 
long reef flat and a 1:12 sloping beach (see panel A of Fig. 9). In the 
present analysis, only the runs over a smooth bed were used as valida
tion. From the 16 available tests, five were selected for validation, where 
both the water level and the wave height was varied (see Table 5). 

Table 5 
Model set-up of the Buckley experiments. The reef depth (h0,r) represents the still 
water depth at the reef and the kh is computed for the peak period.  

test Hrms [m]  Tp [s]  h0,r [m]  kh of Tp [rad]  

1 0.03 2.26 0.04 0.85 
2 0.06 2.26 0.04 0.85 
4 0.12 2.26 0.04 0.85 
9 0.06 2.26 0.00 0.82 
12 0.06 2.26 0.09 0.89  

Fig. 10. Scatterplots of computed and observed wave properties for the Buckley experiments for the 2-layer model: total wave height (panel B), the LF-wave height 
(panel C), setup (panel D), the spectral wave period (panel E), zero-crossing period (panel F), the skewness (panel G) and the asymmetry (panel H). In panel A the bed 
level and the instantaneous surface elevation is shown. 
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The model is forced with a TMA spectrum analogous to the labora
tory experiments. To account for the finite volume of water in the wave- 
flume, the bed level is corrected within XBeach. Due to the relative large 
setup on the reef, the water depth at the boundary is slightly shallower 
than the still water depth in the wave-flume. Thus, this difference at the 
offshore boundary is added to the bed level in XBeach. Furthermore, a 
spatially-varying grid was used to optimise the computational effort. 
The grid resolution is based on 80 grid points per wave length (period of 
2 s). The model boundary is located at the first measurement location 
and the model is forced with random components from a TMA spectrum 
including second order waves. 

4.3.2. Results 
The same wave properties as used in the Boers test were validated. 

The bulk wave properties and spectral properties are well reproduced for 
all tests and the second order statistics are predicted reasonably accu
rately (see Fig. 10 and Table 6). The cross-shore distribution of the wave 
properties for the most representative run (test 2) is shown in Fig. 9. 
First, the results of test 2 are described to show the behaviour of the 
hydrodynamic conditions for a fringing reef. Thereafter, the model 
performance is shown for all the five tests. 

At the fore-reef the waves shoal rapidly till the breaking point. The 
waves break in a narrow breaking zone at the reef crest (Fig. 10 B), from 
where the wave energy significantly reduces. In this breaking zone the 
LF-waves are generated, which propagate over the reef flat (Fig. 10 C). 
The reflection of the LF-waves at the shoreline causes the standing wave 
pattern in the LF-wave height profile. Due to the absence of most of the 
short waves, the LF-waves are dominant on the reef flat. At the reef crest 
there is a spike in the LF-wave energy, which both visible in the nu
merical results as the measurements. It is not known which processes 
causes this spike. The breaking waves also result in a water level 
gradient at the reef crest, which gives rise to a constant setup on the reef 
flat (Fig. 10 D). The numerical simulations show good agreement for the 
setup on the reef flat. Before the reef flat, there is a setdown in the 
shoaling region. This behaviour is also visible in the numerical results, 
but the model underestimates this setdown. 

Based on the spectral wave periods, it can be seen that most of the 
energy is transferred to the LF-waves on the reef flat (see Fig. 9 E). The 
Tm− 1,0 increases significantly on the reef flat, which is also visible in the 
performance of the 2-layer model. The 2-layer model results do not 
agree with the observations of Tm02, the metric describing the high- 
frequency tail. The observed Tm02 increases on the reef crest and de
creases again on the reef flat. However, the modelled Tm02 keeps 
increasing on the reef flat. Since most of the short waves break at the reef 
crest, most of the energy is present at the lower frequencies. Therefore, 
the Tm02 is more sensitive for the lower frequencies than the high- 
frequency tail at the reef flat. Due to a slight overestimation of the 

energy at the lower frequencies, the modelled Tm02 is larger than the 
measured Tm02. 

Apart from a transformation of the bulk wave statistics, the second 
order statistics also transform over the reef. Before the reef crest the 
skewness and asymmetry are constant due to the horizontal bed level 
(Fig. 9 E and F). The skewness decreases just before the breaking point 
and then increases to an almost constant value on the reef flat. The 
asymmetry increases until the breaking point, where the most pitch- 
forward wave shape is found. Then the waves start to break, and the 
asymmetry decreases significantly. Due to the shallow water at the reef 
flat, the asymmetry becomes less negative on the reef flat. This general 
behaviour of both the skewness and asymmetry is also visible in the 
numerical results. 

The other tests show a comparable result as test 2. In all tests the total 
wave height is accurately predicted (see Fig. 10 B). There is more scatter 
in the LF-wave height (see Fig. 10 C). This is mainly caused by test 4 and 
12, where the LF-wave energy is underestimated (see also Table 6). It is 
not known why these tests give a different result for the LF-wave energy. 
Apart from this deviation, the LF-wave energy distribution is matching 
the data for all the tests. Offshore of the reef crest the LF-wave energy is 
relatively low and increases rapidly at the reef crest. Considering the 
mean water level, all tests give a good result (see Fig. 10 C). There is only 
a small underestimation (≈ 1mm) of the setup for test 4 and 9 and an 
overestimation for test 1 and 12 (see Table 6). As the setup is the result of 
the radiation stress gradients in the breaker zone, it is sensitive to the 
breaking mechanisms which control the radiation stress gradient. The 
deep-water surf similarity parameter for tests 4 and 9 (ζ = 1.7 and ζ =

2.2) is lower than for test 1 and 12 (ζ = 3.3 and ζ = 2.3Buckley et al., 
2015). Thus, the hydrostatic front approximation results in a slightly 
smaller radiation stress gradient, causing a lower setup, for a lower surf 
similarity parameter. Similar to the Boers test, more scatter is present in 
the skewness and asymmetry (see Fig. 10 E and F). In all tests the pro
posed model overestimates the asymmetry on the reef crest. This results 
in the large scatter index and relative bias. Just as in the Boers test, this 
could be caused by the single-value representation of the surface 
elevation and the simplified breaking mechanism. It is for example not 
possible to simulate overturning waves, which could result in too 
asymmetrical waves in the numerical simulation, whereas in reality the 
waves would become less steep due to a different breaking mechanism. 
However, the model is capable in simulating the correct cross-shore 
profile of these second order statistics for all tests. 

5. Discussion 

The improved dispersive behaviour of this 2-layer model is desired 
for multiple applications. The main reason to apply the presented model 
is when the boundary needs to be in deep water. This could be necessary 

Table 6 
The statistical measures for the different runs of the Buckley experiment with the default settings. The results are shown for the 1-layer model and the 2-layer model. 
The total statistical measures were computed for all the observation points for each individual test .  

Run Hrms   Hrms,lΔf   η   Tm− 1.0   Tm02   skewness  asymmetry  

2-layer SCI Rel. bias SCI Rel. bias SCI Rel. bias SCI Rel. bias SCI Rel. bias SCI Rel. bias SCI Rel. bias 

1 0.11 − 0.044 0.11 0.05 0.35 0.25 0.16 0.09 0.18 0.11 0.46 − 0.17 0.35 0.24 
2 0.12 0.024 0.18 0.02 0.16 − 0.03 0.09 0.02 0.23 0.13 0.35 − 0.07 0.47 0.28 
4 0.1 − 0.034 0.37 − 0.29 0.27 − 0.14 0.1 − 0.02 0.14 0.05 0.38 − 0.12 0.81 0.46 
9 0.11 − 0.037 0.17 − 0.05 0.25 − 0.15 0.05 − 0.01 0.17 0.1 0.32 − 0.13 0.46 0.26 
12 0.12 − 0.044 0.24 − 0.21 0.41 0.27 0.09 − 0.08 0.04 0.03 0.38 − 0.2 0.57 0.32 
total 0.12 − 0.027 0.36 − 0.157 0.32 − 0.094 0.1 0.01 0.17 0.09 0.37 − 0.14 0.55 0.31 
1-layer 
1 0.12 − 0.06 0.12 0.06 0.32 0.21 0.24 0.13 0.22 0.14 0.46 − 0.2 0.32 0.19 
2 0.12 0.002 0.16 0.02 0.17 − 0.05 0.13 0.06 0.24 0.14 0.4 − 0.18 0.47 0.22 
4 0.1 − 0.043 0.38 − 0.3 0.27 − 0.14 0.09 − 0.05 0.15 0.07 0.37 − 0.18 0.81 0.44 
9 0.11 − 0.045 0.19 − 0.08 0.26 − 0.16 0.07 − 0.02 0.19 0.11 0.42 − 0.24 0.45 0.32 
12 0.12 − 0.037 0.23 − 0.21 0.42 0.27 0.12 − 0.09 0.06 0.05 0.37 − 0.21 0.56 0.35 
total 0.12 − 0.036 0.37 − 0.167 0.33 − 0.101 0.13 0.0 0.19 0.10 0.40 − 0.20 0.54 0.3  
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when the wave data, needed for the boundary conditions, is only present 
in intermediate water or when the forced wave heights are too large/ 
nonlinear in shallow water. With the 1-layer model this would result in a 
wrong shoaling behaviour and underestimation of the wave height 
(Fig. 3), whereas the 2-layer model could be still applicable. Because the 
laboratory experiments of irregular waves were all performed in shallow 
water (kh < 1 for the peak period), this wrong shoaling behaviour is not 
very pronounced. Only the short waves in the tail of the spectrum are 
affected by the error in the dispersion relation, but this error is limited as 
these short waves do not contain much energy. In the experiments of a 
bichromatic wave group over a plane beach the relative water depth is 
close to 2 (indeterminate water). This means that there is a significant 
error in the dispersion relation for the 1-layer model, but because of the 
relative simple bathymetry this has no large effect on the results. The 
primary waves hardly shoal due to the small slope of the bed level, 
which therefore does not result in an amplitude error. 

Apart from the water depth, an improved dispersive behaviour 
would also give a better result for the energy transfer to the shorter 
waves, which would mostly affect the Tm02, skewness and asymmetry. In 
general, the results of the 2-layer model are slightly better than the 1- 
layer model, but this difference is very small (Tables 6 and 4). In ap
pendix Appendix A the error in the resonant mismatch, related to the 

energy transfer, is shown for the 1-layer and 2-layer model. This result 
shows that the error in the resonant mismatch is relative small (10%) for 
the 1-layer model when the kh < 1. Thus, the energy transfer to these 
higher components is still reasonable accurate predicted with the 1-layer 
model when the kh is small. Thus, the energy transfer to these higher 
components is still reasonable accurate predicted with the 1-layer model 
when the kh is small. only in the energy of the super-harmonic in the 
experiment of a bichromatic wave group a deviation is visible between 
the two models. The 1-layer model cannot correctly force the super- 
harmonic at the boundary, which result in a spurious wave near the 
boundary. 

Although these results do not show a clear improvement of the 2- 
layer model in shallow water, there is another reason to apply the 2- 
layer model in shallow water. The 1-layer model does not always give 
a propagating wave solution. If the radial frequency of the wave is larger 
than the limiting frequency (ωlim = 2

̅̅̅̅̅̅̅̅
g/d

√
) (SWASH, 2010), evanescent 

modes arise instead of propagating waves. Such a maximum does not 
exist in the 2-layer model. To demonstrate this behaviour, the Beji and 
Battjes (1993) experiment is modelled with both the 1-layer and 2-layer 
model. Two experiments with a different peak period, representing 
relatively shallower and deeper water, were modelled (See Table 7). The 
model is forced with the short wave measured timeseries at the first 
wave gauge. The long waves were computed based on the theory of 
Hasselmann (1962), because in contrast to the short waves, the 
measured long waves could contain reflective components. The grid 
resolution is set to 0.01 m, which corresponds to 20 grid cells for waves 
at 3 fp. The same settings as the other validation cases were applied. 

Before and on top of the bar both model versions agree well with the 
observations (Fig. 12 A, B, D and E) as the higher harmonics are bound to 
the primary wave components. When the bound waves are released as 

Table 7 
Wave conditions of the two experiments which are modelled from the Beji and 
Battjes (1993) experiments.  

Test Hm0 [m]  Tp [s]  kh of Tp [rad]  

JONSWAP Short Non-breaking waves (jsn) 0.041 1 1.7 
JONSWAP Long Non-breaking waves (jln) 0.029 2.5 0.53  

Fig. 11. The results of the validation with the Beji 
and Battjes (1993) observations. The red line is the 
result computed with the 2-layer model, the grey line 
those obtained with the 1-layer model, and the ob
servations are shown with blue dots. The comparison 
is made for the total wave height (panel B), the 
LF-wave height (panel C), the setup (panel D), the 
spectral wave period (panel E), zero-crossing period 
(panel F), the skewness (panel G) and the asymmetry 
(panel H). In panel A the bed level and the instanta
neous surface elevation is shown. (For interpretation 
of the references to colour in this figure legend, the 
reader is referred to the Web version of this article.)   
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free waves on the downslope, evanescent modes appear in the 1-layer 
model results, because part of the tail is above the limiting frequency 
which is given by 1.57 Hz at x = 17 m (See Fig. 12 panel C and F). The 
overestimation of the spectral shape results in incorrect predictions by 
the 1-layer model of the wave height and spectral periods (Fig. 11 B, E, 
F). Note that due to the relatively deeper water for test jsn, the energy of 
the bound waves is smaller and, therefore, the error of the free waves is 
smaller compared to test jln. 

The 2-layer model does not show this unwanted behaviour and is in 
much better agreement with the observations. Moreover, the tail of the 
spectrum is much better captured (Fig. 12 C and F) and consequently the 
integral wave height and spectral period parameters are in much better 
agreement (Fig. 11 B, E and F). The other wave parameters do not show 
a large difference between both models, which indicate that the other 
hydrodynamic processes are accurately computed for both models. 

It has been shown that the 2-layer model gives a better result for 
dispersion relation in deeper water by solving an additional equation. 
Due to the assumption of a constant non-hydrostatic pressure in the 
lower layer there is not much computational time compared to the 1- 
layer model. On average there is a 2%increase of computational time 
for both the Boers and Buckley experiment. Most of the computational 
time is needed to solve the non-hydrostatic pressure and, therefore, the 
computational time is not significantly larger than the 1-layer model. 

6. Conclusion 

A 2-layer non-hydrostatic model with improved dispersion behav
iour is presented. Due to the assumption of a constant non-hydrostatic 
pressure distribution in the lower layer, the dispersive behaviour is 
improved without much additional computational cost. The 2-layer 

model can be applied until a kh of 4, whereas the 1-layer model is 
applicable till a kh of 1 based on a comparison with linear wave theory. 

Due to the improved dispersion behaviour, the shoaling of waves in 
relative deep water is better captured. The 1-layer gives a large under
estimation of the wave height when waves shoal from a kh of 2 to 
shallow water, whereas the 2-layer model shows similar results as linear 
wave theory. 

A simulation of a laboratory experiment of a bichromatic wave group 
over a plane beach, showed that the 2-layer model is capable in simu
lating the energy transfer between the wave components. Both the 
reflection and dissipation of the sub-harmonic were accurately simu
lated. Moreover, the shape of the sub-harmonic was also correctly pre
dicted. To validate the model performance for irregular waves, two 
laboratory tests were used as validation. Both the hydrodynamics at a 
fringing reef and barred beach were accurately reproduced. 

The bulk wave height and spectral properties showed good agree
ment with the experimental data. The low frequency wave height, the 
setup and in particular the second order statistics contain more scatter, 
but the general trend was captured with the model. As an extension, the 
effects of using a model with better dispersion characteristics was shown 
for the wave transformation of irregular waves over a bar. 

Thus, based on these validation cases it can be concluded that the 2- 
layer model can be applied to accurately simulate the bulk wave sta
tistics and the spectral properties and to a lesser extend the second order 
statistics. Furthermore, the model showed good results for the complex 
bathymetries in shallow to intermediate water. Moreover, the 2-layer 
model extends the applicability to nearshore intermediate and shallow 
water with a kh limit of 4 compared to the 1-layer model which is limited 
to only shallow water with a maximum kh of 1. 

Fig. 12. Energy density spectrum for the Beji and Battjes (1993) experiment. The upper panel shows the results for experiment jln and the lower panel the results for 
experiment jsn. The blue dots shown the measured spectrums. The red and dashed grey line show the corresponding 2-layer and 1 -layer results. On the x-axis the 
frequency is shown with the first axis. The second axis shows the relative depth of this frequency component. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 
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Appendix A. Resonant mismatch 

The energy transfer between two wave components is related to the resonant mismatch given by: ω(k1)+ ω(k2) − ω(k1 + k2). Thus, an error in the 
dispersion relation will affect the energy transfer between wave components. The relative error of the resonant mismatch with the linear dispersion 
relation shows that the 2-layer gives accurate results till a kh around 5, whereas the 1-layer model shows the same behaviour around kh ≈ 2 (see 
Figure A13). This error is based on the numerical dispersion relation given in equation (25). This result shows that the 2-layer model gives a better 
result for the tail of the spectrum when kh becomes larger than 2.  

Fig. A.13. Relative error in the resonant mismatch with the linear dispersion relation for a interaction between two waves. The left panel shows the relative error for 
the 1-layer model and the right panel shows the relative error for the 2-layer model. 
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