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Accommodating unobservability to control 
flight attitude with optic flow

Guido C. H. E. de Croon1 ✉, Julien J. G. Dupeyroux1, Christophe De Wagter1, 
Abhishek Chatterjee1, Diana A. Olejnik1 & Franck Ruffier2

Attitude control is an essential flight capability. Whereas flying robots commonly rely 
on accelerometers1 for estimating attitude, flying insects lack an unambiguous sense 
of gravity2,3. Despite the established role of several sense organs in attitude 
stabilization3–5, the dependence of flying insects on an internal gravity direction 
estimate remains unclear. Here we show how attitude can be extracted from optic flow 
when combined with a motion model that relates attitude to acceleration direction. 
Although there are conditions such as hover in which the attitude is unobservable, we 
prove that the ensuing control system is still stable, continuously moving into and out 
of these conditions. Flying robot experiments confirm that accommodating 
unobservability in this manner leads to stable, but slightly oscillatory, attitude control. 
Moreover, experiments with a bio-inspired flapping-wing robot show that residual, 
high-frequency attitude oscillations from flapping motion improve observability. The 
presented approach holds a promise for robotics, with accelerometer-less autopilots 
paving the road for insect-scale autonomous flying robots6. Finally, it forms a 
hypothesis on insect attitude estimation and control, with the potential to provide 
further insight into known biological phenomena5,7,8 and to generate new predictions 
such as reduced head and body attitude variance at higher flight speeds9.

In the fight against gravity, it is crucial for flying robots and animals to 
control their attitude, thus determining the direction of forces such as 
thrust and lift. Flying robots can be designed to have a passively stable 
attitude, meaning that they do not need to actively control their atti-
tude to stay upright. Examples include fixed-wing drones10 and tailed 
flapping-wing robots11. However, passive stability comes at a cost, as it 
requires a minimal velocity and leads to reduced agility. Indeed, agile 
flyers such as flying insects12, quad rotors13 and tailless flapping-wing 
robots6,14 are inherently attitude-unstable and rely on active attitude 
control. To this end, unstable flying robots commonly feature accel-
erometers15, as filtering acceleration measurements over time allows 
to retrieve the gravity direction13.

It is still unclear whether and how flying insects estimate their atti-
tude3,5,16,17. Although insects have many different sensory modalities, no 
specific gravity sensor such as an accelerometer has been found. Sensory 
cues that carry information on the gravity direction when walking (such 
as leg loads18,19), are not valid when airborne. A flying body is often subject 
to accelerations larger than gravity in other directions, especially dur-
ing manoeuvring20. Moreover, organs with gyroscopic function such as 
the halteres in dipterans3 can aid stabilization by providing information 
on body rotation rates, but they carry no information on the absolute 
attitude angle itself. Depending on the insect species, rotation rates 
may also be sensed with antennal flagella21, wing strains22, ocelli23,24 or by 
separating the rotational and translational components of optic flow25. 
In principle, one can integrate rotation rates starting from a known initial 
attitude26, but the estimated attitude will then drift over time.

A few bio-inspired control approaches have forwarded the inter-
esting possibility that insects may bypass estimating attitude 
altogether17,24,27. It has been demonstrated that pendulum-like 
flapping-wing robots can be stabilized around hover purely by coun-
tering rotation rates24. A full control system can also use optic flow for 
controlling flight speed17,27. However, the system’s control performance 
will depend on setting the rotation rates such that the available thrust 
and lift forces reach the desired directions quickly enough. Because 
the right sign and magnitude for rate commands depend on the atti-
tude angle, these approaches will also benefit from taking attitude 
into account.

Combining optic flow and a motion model
Here, we explore whether the attitude angle can be retrieved when com-
bining optic flow with a motion model. Motion models are commonly 
used for state estimation in flying robots, but almost always incorpo-
rate measurements from an inertial measurement unit, containing 
gyros, magnetometers and accelerometers, to retrieve attitude28,29. A 
few studies have attempted to estimate attitude angles with just optic 
flow and motion models before30–33. However, the results from these 
studies are inconclusive. First it was shown that attitude angles could 
not be determined in this manner for fixed-wing drones30. Follow-up 
studies demonstrated that attitude deviations from the forwards flight 
equilibrium point are observable31–33, but already so when observing 
the drone’s rotation rates alone. Indeed, the simulation experiments 
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show growing errors on the pitch angle32, indicating that the model 
may be largely relying on integrating rotation rates.

We follow a bio-robotics approach (Fig. 1a) to studying optic- 
flow-based attitude estimation and control. First, we prove theoretically 
that attitude angles can be estimated when combining optic flow meas-
urements with a generic, thrust-vectoring motion model of unstable 
flyers. This type of model relates body attitude, that is, pitch and roll 
angles, to acceleration direction. It applies to rotorcraft such as quad 
rotors13, but also to insects34–36 and tailless flapping-wing robots6,14 when 
averaging forces over the flapping cycle. Mathematically describing 
the sensory inputs and the motion model enables a formal analysis of 
the state’s ‘observability’. The state of the two-dimensional (2D) model 
in Fig. 1b is a vector with the roll angle, velocities and height, whereas 
its sensory input comes from a single optic flow sensor similar to an 
elementary motion detector37, directed downwards from the body. The 
state is observable if it can be uniquely determined by tracking motor 
actions and sensor observations over time.

We investigate the thrust-vectoring model for various levels of 
complexity, starting from a basic constant-height model without drag 
(Theoretical analysis and Supplementary Information). Non-linear 
observability analysis shows that the state, including the attitude angle, 
is locally, weakly observable38. This means that at a single time instant, 
changes in the observation and corresponding time derivatives can 
be uniquely linked to changes in the state. A further mathematical 
and numerical analysis indicates that the model even possesses the 
stronger property of local observability, indicating that the state itself 
can be determined instantaneously.

However, the observability depends on the values of the state vari-
ables and control inputs. To illustrate this, Fig. 1d,e shows the degree 
of observability (equation (35), Supplementary Information) for two 

variants of a constant-height model, in which a higher degree implies 
that changes in the state can be observed more easily. The model in 
Fig. 1d estimates rotational accelerations generated by its motor 
actions, whereas the model in Fig. 1e also measures the rotation rate. 
The latter model’s degree of observability is higher throughout the 
state space, but both models have an unobservable state when the 
roll rate p = 0° per s. At first, this seems to represent a considerable 
problem as a zero rate will occur frequently, that is, whenever the 
controller reaches its target attitude angle or optic flow setpoint. In 
engineering, having unobservable states at the core of the control 
system would be regarded as unacceptable and remedied by adding 
extra sensors.

By contrast, we propose that nature may have accommodated the 
unobservability of attitude in certain states. For the basic constant- 
height model, we provide a proof (Supplementary Information) of the 
control system’s stability, including the unobservable conditions. It 
consists of two parts: (1) when the state is observable the controller is 
able to achieve its control objective, which will lead to zero rate, that 
is, a condition in which the state is unobservable. (2) When the state is 
unobservable, noise and disturbances will lead to a condition in which 
the state is observable again. For example, a direct effect is caused by 
actuation noise in the moment generation that makes the model rotate, 
inducing observability. Another example is an indirect effect caused 
by sensor noise, which will lead to a wrong attitude estimate. Because 
the wrong estimate will be off-target, the controller will command a 
‘corrective’ action that results in a non-zero rate and thus an observ-
able state. Consequently, the system will continuously move into and 
out of unobservable states, leading to slightly oscillatory motions. This 
is illustrated in Fig. 1c and the oscillations are evident from the ellipti-
cal black line trajectories in φ p( , ) -space shown on Fig. 1d,e.
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Fig. 1 | Theoretical analysis proves that attitude can be estimated with 
optic flow and a thrust-vectoring motion model but that the presence of 
unobservable states leads to slight attitude oscillations. a, Illustration of 
our approach to studying optic-flow-based flight attitude control. Grey arrows 
represent the influence of insights and inspiration, and black arrows represent 
modelling and the generation of hypotheses. L hf

1  is the Lie derivative of the 
optic flow observation equation. The honeybee image is reprinted with the 
permission of iStock.com/Antagain.  b, Thrust-vectoring motion model of an 
unstable flying system, that is, robot or insect, and an axis system used for a 2D 
constant-height model, with body velocities v w,B B, roll attitude angle φ and 
rate p, distance along the principal axis, ZB, to a world point for which optic flow 
is measured and inertial velocity vI and altitude ZI. c, Illustration showing that 
the proposed approach to attitude estimation leads to a continuous transition 
between observable and unobservable states, leading to slight attitude 
oscillations of the system. d, The degree (deg.) of observability (equation (35), 
Supplementary Information) in a part of the state space for a constant-height 

model without rate measurements, with the remaining variables set to v = 0I , 
Z = 1I  and moment M = 0. The colour range goes from unobservable (dark blue) 
to higher degrees of observability (yellow), which implies a faster convergence 
of a state estimation filter. The state is unobservable if the system is upright 
(φ = 0) or not rotating (p = 0). A state space trajectory is shown of a controller 
with as desired state φ* = 0 (black solid line in the plot’s centre and in the inset). 
e, The same graph for a constant-height system with rate measurements. The 
state is now only unobservable in the case of zero rate. f, Control performance 
for the constant-height system without rate measurements. The figure shows 
the mean absolute (abs.) error ω ω| − |y y

∗  for the simulated system over N = 10 runs 
(from green to red). A mean absolute error ≥0.05 means that the controller is 
not able to track the reference. The y axis represents the optic flow sensing 
frequency (OF freq.), and the x axis represents different noise settings for the 
optic flow measurement σOF and actuation noise on the generated moment σM, 
separately. g, The same graph as f but for a constant-height system with rate 
measurements.
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Closed-loop simulation experiments with varying noise levels con-
firm that the unobservable states do not hamper successful attitude 
or optic flow control. Figure 1f,g shows the control performance for 
the model without and with rate measurements. In general, the per-
formance benefits from fast vision measurements, as performance 
increases with an increasing vision update frequency. Moreover, the 
control performance is worse for the model without rate measure-
ments in which increasing actuation noise forms a problem. These 
simulation results show that rotation rate measurements are not strictly 
necessary for attitude estimation and control, but do improve control 
performance.

The mathematical and numerical analysis of increasingly com-
plex models shows that their state is also locally, weakly observable. 
The complexities introduced include a varying height model with 
drag and wind, imperfect thrust prediction, a sloped surface and 
finally flight in generic three-dimensionally structured environments 
(Supplementary Information). Attitude is observable with the help 
of a thrust-vectoring model as it links attitude to accelerations and 
acceleration changes that are captured by optic flow and its time 
derivatives. However, the state is always unobservable in a perfect 
hover condition, that is, when the attitude is constant and optic flow 
is cancelled out.
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Fig. 2 | The theoretical findings are confirmed by robotic experiments in 
which fully autonomous flight is demonstrated based on optic flow and 
gyro measurements. a, Quad rotor robot used in the experiments.  
b, Optic-flow-based (thick line) and accelerometer-based (thin line) estimated 
roll angles over time during a hover-experiment in which the drone flies first 
with the accelerometer-based estimate (light grey shading, ‘ACC-based 
attitude’) and then with the optic-flow-based estimate (dark grey shading, 
‘OF-based attitude’). c, Optic-flow-based (thick line) and accelerometer-based 
(thin line) estimated pitch angles over time. d, Optic-flow-based (thick line)  
and motion-tracking-based (thin line) estimated lateral velocity vy over time.  

e, Optic-flow-based (thick line) and motion-tracking-based (thin line) 
estimated longitudinal velocity vx over time. f, Optic-flow-based (thick line) and 
motion-tracking-based (thin line) height Z  over time. g, Comparison of 
sampled probability distributions of the pitch angle θ while flying with an 
accelerometer-based estimate (light grey, foreground) and an optic-flow- 
based estimate (dark grey, background), data from N = 10 flights, 5,471 samples. 
h, The drone flying over a moving slope. i, The drone flying over a three- 
dimensionally structured environment. j, Disturbance-rejection experiment  
in which the roll is perturbed by 10°.
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Robotic experiments
Experiments with a free-flying, fully autonomous quad rotor (Fig. 2) 
confirm the theoretical findings. The drone observes both the 

longitudinal and lateral ventral optic flow, capturing the ratio of the 
horizontal velocities and the height, and the optic flow divergence, 
representing the ratio of the vertical velocity and the height (Quad 
rotor experiments). Its objective is to hover, eliminating ventral flow 

Motion of the �apper drone 

Optic �ow (Lucas–Kanade)

To
p

 r
ig

ht

To
p

 le
ft

B
ot

to
m

 r
ig

ht

B
ot

to
m

 le
ft

O
b

se
rv

ab
ili

ty
 d

eg
re

e 
(–

)

No oscillations 1 Hz 10 Hz

Time (s)

0

0.2

0.2

0.4

0.4

0.6

0.8

0.8

1.0

1.00.6

Time (s)

0 4 53

u 
(1

03  
p

ix
el

s 
p

er
 s

)

0

0.5

1.0

p
( d

eg
re

es
 p

er
 s

)

0

5

–5

(°
)

0

5

–5

–10

OF-based attitude
ACC-based attitude

a b

c

d

e

f

CurvACE
Arti�cial compound eye

180° �eld of view
3 g

200 Hz optic �ow
STM32F4 processor

168 MHz and 192 kB RAM

1 2

Fig. 3 | Experiments with a bio-inspired flying robot show that residual 
oscillations from flapping-wing motion improve observability. 
 a, Flapping-wing robot experiment, featuring a 50 cm wingspan ‘flapper 
drone’ (design based on ref. 14) carrying the light-weight, high-frequency 
artificial compound eye CurvACE40. A constant-height model was implemented 
that only used lateral ventral flow (no divergence). b, The CurvACE determined 
optic flow at 200 Hz in four separate downwards facing regions in its field of 
view. Each time instance it used one step of the Lucas–Kanade optic flow 
algorithm to determine the flow in the x and y directions at these four locations. 
During the experiments, the lateral optic flow was determined by averaging the 
flow in the x direction over the four areas. c, Estimated roll angles over time 

during one of the experiments, estimated by a complementary filter that uses 
the accelerometers (thin line) and by a filter that is based on optic flow and gyro 
measurements (thick line). There is no ground truth z or vy, as the 
motion-tracking system needed to be switched off as its infrared lights 
influenced the CurvACE sensor. d, Roll rate over time. e, Average optic flow 
over time (in pixels per second). f, Simulation results for a constant-height 
model, in which we compare the default case (dark blue) with cases in which  
we actively add sinusoidal oscillations of different frequencies to the roll rate 
(1 Hz, medium blue, 10 Hz, light blue line). The observability degree increases 
substantially due to the higher rotation rates.
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by estimating and controlling the roll and pitch attitude angles and 
divergence by means of thrust control. When flying with a traditional 
complementary filter based on gyros and accelerometers1, the drone 
hovers still (σ = 0.96φ , σ = 0.55θ , Fig. 2g). Switching to the proposed 
attitude estimation scheme using optic flow and gyros, indeed leads 
to slight oscillations, as is evident from the attitude angles and veloc-
ities over time in Fig. 2b–f and the wider angle histogram in Fig. 2g 
(σ = 1.24φ , σ = 0.84θ , significantly different from accelerometer-based 
flight with P < 0.001, two-sided bootstrap method39). Furthermore, 
the height is most difficult to estimate (Fig. 2f and Extended Data 
Fig. 1d). We note, however, that neither the estimated velocity nor the 
height is used by the drone’s control loops. Instead, the drone directly 
uses optic flow measurements. In general, the attitude estimation and 
control of the robot is very robust, despite the assumptions of a con-
stant height and flat ground. This is shown by more experiments with 
slopes or three-dimensional (3D) structures under the drone and with 
angle disturbances (Fig. 2h–j and Supplementary Videos 1–8). Similar 
results have been obtained with a varying height model (Supplemen-
tary Information and Extended Data Fig. 6). The robustness is partly 
due to the drone processing optic flow over the entire flow field (Quad 
rotor experiments).

To better approximate natural flyers, we also performed experiments 
with a bio-inspired flapping-wing robot (Flapping-wing robot experi-
ments, Fig. 3a). The robot is equipped with an artificial compound eye 
called CurvACE40 (Fig. 3b). It features a wide field of view of 180° × 60° 
with a coarse visual resolution of 40 × 15 pixels. We determine optic flow 
in four regions at a high temporal resolution of 200 Hz, close to the 
flicker fusion frequency of honeybee vision41. We initially thought that 
the residual flapping-wing motion on the compound eye would hamper 
state estimation (see the rates and optic flow in Fig. 3d,e). However, the 
optic-flow-based attitude estimates correspond well to those of the 
complementary filter using accelerometers (Fig. 3c). We subsequently 
realized that the residual flapping motion did not impair but improved 
attitude observability. Figure 3f shows that oscillations are beneficial 
to observability, with higher frequencies shortening the time duration 
of low observability. This finding suggests that flying insects or robots 
could benefit from residual flapping-wing oscillations or even actively 
induce rotation rates to enhance the degree of observability—in the 
spirit of active vision42,43.

Discussion
Our findings have implications for robotics. First, tiny, insect-sized 
flying robots such as the Robobee6,44 are extremely resource-limited. 
For such robots, even small MEMs-based sensors form a burden. We 
have demonstrated that accelerometers are not necessary to success-
fully control attitude. Second, most autopilots for flying robots only 
incorporate lateral ventral flow into their state estimation. We have 
shown that optic flow divergence can improve redundancy, even allow-
ing to fly completely autonomously without any height sensors or 
accelerometers. Third, accommodating unobservability is a strategy 
with broader implications than optic flow control alone. For instance, 
wireless-ranging-based relative localization in drone swarms45 leads to 
important unobservable conditions such as during formation flight. 
The current study suggests investigating the option of a minimalistic 
system accommodating this unobservability instead of a heavier, more 
power-hungry system with more sensors.

The presented approach also forms a hypothesis on insect attitude 
estimation, potentially explaining various phenomena observed in 
flying insects. First, it explains which role optic flow may play in atti-
tude estimation and control. Optic flow was shown to be essential to 
hoverflies for stabilizing their flight when falling5,16. The hoverflies’ 
behaviour was best explained by a model that incorporated attitude 
angles16, but it was unclear how such angles were estimated without 
a clear visual horizon in the environment. We have shown that this is 

possible if the insect possesses a motion model, relating attitude to 
acceleration direction. This raises the question of how plausible it is 
for insects to have a motion model, with which we intend any means to 
use predicted effects of actions for perception and control. In ref. 46 it is 
argued that insects possess such ‘forwards models’ and that they serve 
goals such as reducing action latency47 and differentiating between 
external disturbances and expected feedback48. Our study highlights 
another potential purpose of forwards models, that is, to make states 
such as attitude observable. The implementation of such a model in the 
brain can be implicit, for example, reminiscent of how visual receptive 
fields of lobula plate tangential cells seem to be tuned to an insect’s 
motion model49. Second, the results reported in Fig. 2 may explain 
the (im)precision of flight for different species and conditions. For 
instance, honeybees can still fly, but less precisely, when their ocelli are 
covered with opaque paint8. Moreover, the results in Fig. 3 indicate a 
potential usefulness for flapping-induced, high-frequency thorax and 
head oscillations of blowflies7.

Verifying the hypothesis may be challenging, as it concerns brain 
processes that are hard to monitor during flight. One potential avenue 
is to exploit the prediction that the degree of observability changes over 
the state space, which in turn will affect the insect’s attitude variation. 
For example, closed-loop simulation experiments with a head-and-body 
model (Supplementary Information) show that observability increases 
and attitude variation in both body and head decreases for higher flight 
speeds. As a preliminary analysis we investigated the biological data 
from honeybee experiments by Portelli et al.9. The data only allow us 
to retrieve the body pitch angle, which indeed has a lower variance 
for higher speeds (Supplementary Information and Extended Data 
Figs. 2 and  9). However, other phenomena also influence this trend. 
For example, parasitic drag will be larger at higher flight speeds, stabi-
lizing attitude. In the same time, aerodynamic insect models34–36 also 
predict increasing pitch instability at higher flight speeds, destabilizing 
attitude. More simulation experiments, piecing apart parasitic drag 
from observability effects, suggest that only observability affects the 
trend of the head attitude (Supplementary Information). Future bio-
logical studies that track not only body but also head attitude or that 
manipulate sensory inputs could give further insight into this matter.

Finally, one can wonder what role the proposed mechanism plays 
in the context of insects’ many more sensory cues. On the one hand, 
adding more sensors will improve the observability. On the other hand, 
unless such further sensory cues directly encode for the gravity direc-
tion, flight conditions such as a pure hover will remain unobservable. 
Hence, the main findings on unobservability and the ensuing attitude 
variations stay relevant when taking into account extra senses. Because 
animals generally rely on redundant information sources, even larger 
animals such as birds could use optic flow and motion model informa-
tion to support their attitude estimation50.
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Methods

Theoretical analysis
The theoretical analysis of the observability of the state, including 
attitude, relies on both a motion model and a model of the sensory 
inputs. In this section, we first explain the model for the elementary 
case of a quad rotor flying at a constant height above a flat ground 
surface. The model captures the main characteristics necessary for 
attitude estimation with optic flow, while leading to mathematical 
formulas of limited complexity and hence improved comprehensibility. 
Subsequently, we discuss more general models of motion and more 
generic environments. The mathematical derivations and formulas 
involved in the non-linear observability analysis and stability proof for 
the constant-height model are detailed in the Supplementary Informa-
tion for brevity.

Constant-height model
Observability analysis. Without loss of generalization with respect 
to a thrust-vectoring model, we will consider a quad rotor drone’s mo-
tion in the 2D plane. Please see the axis definitions in Extended Data 
Fig. 3a. In our analysis, we focus on the roll angle φ (and roll rate p), but 
the findings are equally valid for the pitch angle θ (and pitch rate q). In 
practice, estimating pitch instead of roll may require different param-
eters for drag and moment of inertia in the case of an asymmetric body. 
As a result, the stability properties of these axes may be different, but 
this does not fundamentally affect the analysis. The velocity in the in-
ertial z axis will be denoted with wI and that in the inertial y axis with vI. 
In Extended Data Fig. 3a, wI is not shown as it is zero. For velocities in 
body axes, we will use w v,B B, for the body z and y axes, respectively.

The observation model represents the optic flow in the direction of 
the camera’s principal axis. For our derivations, we use a pinhole cam-
era model. We are interested in the time derivative of the feature’s loca-
tion in the camera’s field of view, which at the principal axis image 
coordinate, x y( , ) = (0,0), is given by51:
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where ωy is the ventral lateral flow. Equation (1) is valid for the interval 
φ ∈ (−90°, 90°) , where the parentheses denote the exclusion of the 
interval borders. The right-hand side of equation (1) is based on geo-
metric relations visible in Extended Data Fig. 3a that would change if 
the roll angle were outside this interval.

The state is defined as a vector v Z= [ , φ, ]I Ix , and the control input 
(motor action) is the roll rate, that is, u p= . This leads to the state update 
equation, with g representing the gravitational acceleration:
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Equations (1) and (2) form the basis for the non-linear observability 
analysis, of which the details can be found in the Supplementary Infor-
mation. The analysis shows that the system is locally, weakly observable 
in most of the state space. Weak observability implies that given the 
sensory input and its time derivatives, changes in the state can be 
uniquely identified. Local stands for local in time, that is, the estimation 
can be done at a single time instant. The main condition in which the 
state is unobservable (not weakly, locally observable), is when the roll 
rate is zero, p = 0. This condition corresponds to flying with a constant 
roll angle, in which the acceleration is not changing, that is, there is no 
‘jerk’. We also analyse the stronger property of local observability for 
this model. The theoretical and numerical analysis indicate that in most 
of the state space the system is locally observable, that is, that the sensory 
input and its time derivatives suffice for directly determining the state. 

The two main conditions for which the state is locally unobservable are 
p = 0 and φ = 0, that is, when there is either no jerk or no acceleration.

Control system stability. At first sight, the unobservable condition of 
p = 0 may seem problematic because an attitude controller that reaches 
the desired attitude will set the rate to zero. Hence, if the control system 
is successful, it will lead to unobservability of the system. In the Sup-
plementary Information, we provide a stability proof for the 
constant-height model, which takes conditions into account in which 
the state is unobservable. The first part of the proof shows that when 
the state is observable, the control will be able to reach a desired atti-
tude angle φ*. If this angle is reached, the controller will command 
p = 0, which leads to unobservability of the system. The second part of 
the proof shows that sensor noise, actuation noise or external distur-
bances will always make the system observable again.

Simulation setup. The proof is supported by evidence from simulation 
experiments (Supplementary Information and Extended Data Figs. 7 
and 8). Here we explain the simulation setup, as simulations with dif-
ferent models also follow the same scheme (for example, the simulation 
results in Fig. 1 and Extended Data Fig. 2). The simulation uses the mo-
tion model in equation (2) for the evolution of the ground-truth state 
over time. It also features a simulated ‘robot’ that receives optic flow 
observations according to equation (1), but delayed and with additive 
Gaussian noise: ω t t p t µ t tˆ ( + ∆ ) = − + ( ) + ( + ∆ )y

φ t v t
Z t

cos ( ( )) ( )
( )

2
I

I
, with t∆  as 

the delay and µ σ~ (0, )ωy
N  the noise, where the tilde (~) means "distrib-

uted as". These observations are input into an extended Kalman filter 
(EKF)52, which uses equation (2) for predictions and linearization of 
equation (1) around the current estimated state x̂ as the observation 
equation. The simulated robot has a proportional, integral ‘outer loop’ 
controller for reaching a desired optic flow value ω*y. The output of this 
controller is a desired roll angle, φ*. An ‘inner loop’ proportional inte-
gral controller then sets the rate command p t( ) on the basis of the error 
in the roll angle, that is, the difference between the desired and esti-
mated roll angle φ φ( * − ˆ). Whereas the EKF uses this commanded roll 
rate for its predictions, it is used in the simulator after being delayed 
and perturbed by Gaussian noise. Thus, the p entered in equation (2) 
is p t t p t µ t t( + ∆ ) = ( ) + ( + ∆ ), with μ σ~ (0, )pN .

Model extensions. The two central assumptions of the elementary 
constant-height model may sound stronger than they actually are. 
First, as we perform local observability analyses, the flat ground as-
sumption only needs to hold close to the world point now perceived 
by the optic flow sensor (spatially local flatness). Moreover, although 
the height is assumed constant, it is part of the state that is estimated. 
Hence, height changes will eventually be picked up by the state estima-
tion. Nonetheless, we also study extensions of the model both in terms 
of motion and structure of the environment. Below we briefly discuss 
the various extensions, of which the details can be found in the Sup-
plementary Information.

First, in the analysis above, p is a control input that is known to the 
system. However, real-world systems such as drones and flying insects 
do not control attitude rate directly. Instead, by varying rotor speeds 
or wing flapping amplitudes, they generate moments. Modelling the 
system as such makes the rate p a state that is to be estimated. The 
rotation rate can be measured by means of gyros, which gives a very 
high update frequency (typically ≫ 500 Hz), as is done in our robotic 
experiments (Flapping-wing robot experiments and Quad rotor exper-
iments). It can also be measured with other sensors. For example, it 
can be extracted from the optic flow field51. The disadvantage of this 
is that the rates are then determined at a lower update frequency, lead-
ing to slower, less accurate state estimates. Still, theoretically, measur-
ing p is not necessary because predicting the moments caused by 
control inputs suffices, as shown in the Supplementary Information. 
This is the motion model that was used for the simulation results from 



Article
Fig. 1 in the main article. These simulation experiments follow the same 
simulation scheme as explained for the rate-based constant-height 
model explained above, except for the state update equations and 
control being different. Specifically, in these simulations the motor 
actions of the simulated robot do not consist of rotational rates, but 
of moments. This leads to the following state update equation: 

x ̇ ̇ ̇ ̇f u v φ p Z g φ p M I( , ) = [ , , , ] = [ tan( ), , / , 0]I I , where M is the moment and 
I  is the moment of inertia. In this case, the control input (motor action) 
is the moment, u M= , which is also delayed and perturbed by Gaussian 
noise when performing simulations.

Second, the constant-height model has an obvious potential flaw: 
can the system keep the height constant enough when it has to be esti-
mated? In practice, this model works well because keeping a roughly 
constant height is possible through appropriate optic flow divergence 
control. Still, in the Supplementary Information, we extend the model 
above to a varying height model (including vertical body velocity), with 
drag and wind (see Extended Data Fig. 3b for a graphical illustration 
of the model). Non-linear observability analysis shows that the state 
of this varying height model, including the current wind velocity, is 
locally, weakly observable. The state becomes unobservable when we 
set the thrust to compensate for gravity, the velocities to match the 
wind and the moment and rate to zero. This setting corresponds to a 
condition of a pure hover in this model—without accelerations of jerk.

Although this extensive model is still locally, weakly observable, 
state estimation performance will benefit from further measurements. 
That is why we also study a varying height model including an extra 
sensory input, that is, the optic flow divergence, which captures the 
vertical body velocity relative to the distance to the ground w

z
B

B
. This 

model, which includes drag and a thrust bias as state variables but excludes 
wind, is described and studied in the Supplementary Information. It 
is again locally, weakly observable and has been successfully imple-
mented onboard of a quad rotor for robotic experiments (Quad rotor 
experiments and Extended Data Fig. 6).

Third, we analyse cases in which the ground is not flat. In the Sup-
plementary Information, we investigate what happens when the ground 
surface is sloped, while still only observing optic flow at the principal 
axis coordinate (Extended Data Fig. 3c). The state, including the slope 
angle, turns out to be locally, weakly observable even with this elemen-
tary optic flow measurement. Subsequently, in the Supplementary 
Information we analyse the case of a generic environment with the 
system having access to the entire optic flow field (Extended Data 
Fig. 3d). It is well-known that from the entire optic flow field the system 
can estimate a unit-vector for velocity v, with v = 1, the rotation rate 
p and all inverse depths 

z
1

iB
 for all world points Pi in view53. Finally, in the  

Supplementary Information it is shown that this suffices for retrieving 
attitude, velocity and height with respect to a selected point Pi.

Fourth, in all above cases, the eye is rigidly fixed to the body, whereas 
insects can move their head with respect to their body to stabilize their 
gaze. In the Supplementary Information we study a head-and-body 
model, in which the body attitude influences the thrust direction and 
the head attitude the looking direction (Extended Data Fig. 10). Also this 
more complex model is locally, weakly observable. This model is used 
in simulation for the comparison with the biological data (Extended 
Data Fig. 2).

Quad rotor experiments
The setup for the quad rotor experiments is shown in Extended Data 
Fig. 4. We use a Parrot Bebop 2 drone for the experiments, replacing 
its firmware autopilot with the open-source Paparazzi UAV software54. 
All sensory processing and control runs onboard the drone. Here we 
discuss all processes shown in the figure.

Image processing. The image processing pipeline consists of: (1) fea-
ture detection with ACT-corner55, (2) optic flow determination with the 
Lucas–Kanade algorithm56 and (3) extraction of optic flow 

measurements ω ω ω( , , )x y z . The first two represent the longitudinal 
ventral flow ω =x

u
z

B

B
 and lateral ventral flow ω =y

v
z

B

B
. The last one is the 

optic flow divergence ω =z
w
z

B

B
. These measurements are obtained from 

the optic flow field with the methods from ref. 57, in which the optic flow 
is not derotated. The optic flow processing makes a robust fit of the 
flow field, assuming that it is predominantly linear. Moreover, the cal-
culation of divergence ωz is based on a separate process that estimates 
size changes in the image, making it insensitive to rotation rates.

Optic flow outer loop control. The drone has an optic flow outer loop 
control, which uses separate proportional integral controllers for the 
vertical and horizontal axes, as shown with a control diagram in Ex-
tended Data Fig. 4b. The vertical axis uses a proportional integral con-
troller for the thrust based on the optic flow divergence error ω ω( * − )z z

, 
in which during our experiments ω* = 0z , that is, we want the drone to 
hover. Successful optic flow divergence control requires an appropri-
ate control gain, which in turn depends on the height57. Too high a gain 
will lead to vertical oscillations, which can be detected by the drone 
and in turn be used to find the right control gain57,58. The control gains 
for lateral control with ω ω,x y also depend on height, and we scale them 
linearly with respect to the vertical control gain. The outer loop lat-
eral and longitudinal control sets the desired attitude angles φ θ*, *, 
which are executed by the inner loop attitude controller.

Inner loop attitude control. Inner loop attitude control is performed 
with incremental non-linear dynamic inversion (INDI)59. This inner loop 
controller, illustrated in Extended Data Fig. 4c, uses the errors between 
the estimated and desired states φ φ θ θ( * − ˆ), ( * − )̂. It subsequently uses 
proportional gains to set desired attitude rates and then rotational 
accelerations. The INDI block that determines the correct moment 
commands uM to the motor mixing, relies on rotational accelerations 
that are calculated by low-passing and differentiating gyro measure-
ments. For the exact details of INDI we refer the reader to ref. 59.

EKF/complementary filter. The attitude estimates used by the inner 
loop control can either come from an EKF that uses the proposed ap-
proach and combines optic flow with gyro measurements, or from a 
traditional complementary filter that fuses accelerometer and gyro 
measurements. We can switch between these estimators for use by 
the control, but always log both estimates for comparison purposes. 
The EKF is instantiated by using the state and observation equations 
in our models.

The EKF has parameters for the observation and actuation noise, 
forming the diagonal entries in the matrices R and Q. Moreover, the 
varying height model includes four parameters that map the four com-
manded rotor speeds linearly to the thrust value, that is, T = p r⊤ , where 
p is a vector with the four parameters and r a vector with the com-
manded rotor speeds. Although these EKF parameters can be estimated 
in a supervised manner from data, we obtained the best results by using 
an evolutionary optimization algorithm, covariance matrix adaptation 
evolutionary strategy (CMA-ES)60. Specifically, we performed seven 
flights in which we made a high-frequency log of all onboard sensor 
data. This allowed to run the EKF offline on the data sets. Then, CMA-ES 
optimized the parameters of the EKF, with as cost function the sum of 
squared errors of the estimates (comparing EKF estimates with the 
logged ‘ground truth’ from the complementary filter for attitude and 
motion-tracking system for height and velocities). Once optimized, 
the parameters resulted in successful state estimation and did not have 
to be adapted anymore for any of the test flights presented in the arti-
cle’s results.

The experiments presented in the main article and Fig. 2 are based 
on the constant-height model with rotation rate inputs presented in 
Theoretical analysis. Instead of predicting the rotation rates, gyro 
measurements are used as a stand-in for the control input to the filter. 
Moreover, the real robot always also uses the optic flow divergence as 



an observation. The same model is used for roll and pitch, assuming 
decoupled dynamics. We also performed experiments with a ‘varying 
height model’, which only estimates the roll angle but does take into 
account height changes, as explained in the Supplementary Informa-
tion (results in Extended Data Fig. 6). Finally, we use the ‘quaternion 
complementary filter’ implemented in the open-source Paparazzi 
autopilot54 as the standard, accelerometer-based attitude estimation 
algorithm.

Experimental setup: slope. There are several ways in which the robot 
could take into account a sloped surface, for example, by means of an 
improved vision or state estimation process (Supplementary Informa-
tion). However, we also perform an experiment in which we test on the 
drone what happens if the slope is not taken explicitly into account. 
Specifically, the drone uses the constant-height model for roll and pitch 
(Theoretical analysis), which does not include the slope in the state, 
and the vision processes described above, where the determination of 
ventral flow and divergence also do not take slope into account. The 
experimental setup and resulting state estimates are shown in Extend-
ed Data Fig. 1a. The screen starts out at a tilt of roughly 20°, but during 
the experiment it is moved slowly up to an angle of roughly 40° (Ex-
tended Data Fig. 1a) and then down again. It turns out that the presence 
of a slope is not particularly problematic for state estimation, even if 
it is ignored by the vision processing and in the state estimation setup. 
When moving up-slope (left in the picture), the optic flow should in-
crease quicker than expected and the angle should be estimated larger.  
When moving down-slope, the optic flow increases slower than ex-
pected, which should lead to a smaller angle estimate. In the case of 
commanded hover flight, these effects only lead to slightly increased 
attitude variation (σ = 2.0°φ , σ = 1.54°θ ), with the estimates still closely 
resembling the accelerometer-based estimates (Extended Data Fig. 1a). 
Moreover, during the experiment, the screen that forms the slope is 
dragged away, which represents a disturbance that is successfully han-
dled by the drone; as it is commanded to keep the lateral ventral flow 
zero, it moves along with the object. The experiment is included in the 
Supplementary Videos 1–8.

3D structure. In the Supplementary Information, we show that the 
proposed approach to attitude estimation does not rely on the ground 
being a flat surface. We explain there that one can deal with irregular 
environment structure by using a general vision method to separate 
the environment’s 3D structure from the ego-motion. However, we 
also perform an experiment to test whether the constant-height 
model and the current vision processing are sufficiently robust to deal 
with a certain amount of 3D structure, by having the drone fly above 
several objects. The setup for this experiment and corresponding 
results are shown in Extended Data Fig. 1b. The roll and velocity esti-
mates correspond well to the ground truth. The height seems under-
estimated, which here could be partly because the objects in view are 
actually closer to the drone than the ground. During the experiment, 
the drone first hovers above these objects and then also gets non-zero 
outer loop optic flow commands (ω*y) to translate left and right over 
the 3D structure (as can be seen in the Supplementary Videos 1–8). 
The attitude is well estimated throughout the experiment. We expect 
that the robustness of the current method stems from the fact that 
flow from the entire field of view is integrated to determine the optic 
flow observation.

Disturbance. A disturbance experiment was performed to test the 
response of both the state estimation filter and optic flow control. 
Specifically, to create a disturbance, we add a given number of de-
grees to the desired roll attitude φ* that is determined by the outer 
loop control. For clarity, the outer loop control is unaware of this 
addition. As a consequence of this disturbance, which is 10° in our 
experiments, the inner loop control will command a much larger 

angle than desired by the outer loop control. The drone will acceler-
ate sideways, leading to a larger lateral ventral optic flow. The outer 
loop proportional integral controller will attempt to eliminate the 
flow, with the integral term eventually cancelling out the introduced 
addition.

Several flights. The main paper shows results from ten subsequent 
flights (Fig. 2g). For each flight, the drone takes off, hovers according 
to its accelerometer-based attitude estimate, switches to using the 
optic-flow-based attitude estimate and then lands again. Extended 
Data Fig. 1d shows a picture of the experimental setup. Please note 
that during the experiments the ground surface of the arena was not 
changed to add visual texture. Furthermore, Extended Data Fig. 1d 
contains the error distributions for the different estimated states dur-
ing all ten flights, when the drone was using the estimated angles for 
control. Here, the roll angle is compared to the accelerometer-based roll 
estimate, which we consider as ground truth. The velocity and height 
are compared to measurements by the motion-tracking system. It can 
be seen that both the roll angle and velocity are estimated accurately. 
The height error distribution is ‘strange’, showing that it is the most 
difficult variable to estimate, and that around hover the height does 
not always converge to the correct value. Also, other experiments have 
shown the height estimates to be the least accurate.

Flapping-wing robot experiments
For the flapping-wing robot experiments, we used a commercially 
available ‘flapper drone’. Its design is inspired by the ‘DelFly Nimble’ 
flapping-wing robot14. However, the flapper drone is more robust, 
which facilitates experiments. It is also larger and heavier than the 
DelFly Nimble, while staying light-weight compared to most quad 
rotor drones (100 g). The flapping frequency of the flapper drone is 
roughly 12 Hz. As explained in the main text, the flapper drone is 
equipped with the CurvACE40, a miniature artificial compound eye, 
which has a broad field of view (180° × 60°) and a high update rate for 
the optic flow measurements (200 Hz). Extended Data Fig. 5 shows 
the experimental setup for the flapper drone, which uses the BitCraze 
open-source autopilot software. We adapted the flapper drone hard-
ware to include the CurvACE, sending its outputs (four optic flow 
vectors) to the BitCraze autopilot board. Extraction of ωy is done by 
averaging the four flow values in the y direction, and scaling it with a 
constant factor to encode rad s−1. We also modified the software to 
run an EKF based on ωy and gyro measurements in parallel to the stand-
ard complementary filter, for estimating φ. By contrast to the quad 
rotor experiments, the outer loop control is performed by a human 
pilot, providing desired attitude angles and thrust commands. A basic 
PID controller serves as inner loop controller to reach the desired 
attitude angles. Again, we can switch between the estimated angle 
determined by the optic-flow-based EKF and by the accelerometer- 
based complementary filter. One might be tempted to think that the 
human pilot could be able to fly the flapper drone even if the roll esti-
mates by the EKF are far off from the true roll angles. However, the 
inner loop control operates at such a fast time scale that this is not 
possible: good attitude estimates are necessary for successful flight. 
The moment and thrust commands are mixed and result in commands 
to the two independently moving wing pairs for executing the roll and 
thrust commands. Pitch moments are controlled with a servo that 
determines the dihedral angle, whereas yaw moments are controlled 
with a servo that twists the wings slightly for thrust vectoring. For 
details, we refer the reader to Karásek et al.14.

Data availability
All data necessary for performing and analysing the experiments 
is publicly available: the flight data is available at https://doi.
org/10.4121/20183399.
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Code availability
The code to reproduce the theoretical and simulation results and 
analyse robotic experiments is publicly accessible at https://doi.
org/10.4121/20183399. The code to perform flight experiments with 
the open-source Paparazzi autopilot on the Bebop 2 drone is available 
at https://github.com/tudelft/paparazzi/releases/tag/v5.17.5_attitude_
flow. The code to perform flight experiments with the flapper drone 
is available at https://github.com/tudelft/crazyflie-firmware/releases/
tag/v3.4.0_attitude_flow.
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Extended Data Fig. 1 | Robustness experiments robotic flight. a, Quadrotor 
flying based on optic flow above a strong slope, which is dragged away, 
violating the assumption of a static flat ground. From top to bottom, the plots 
show the estimated attitude angles, velocities, and height. b, Quadrotor flying 
above three-dimensional objects, with artificial plant leaves moving due to the 
propellers’ downwash, again violating the assumption of a static flat ground.  

c, Quadrotor reacting to a 10-degree roll-disturbance. The plots below  
show the roll angle, lateral velocity and height over time for four of such 
disturbances. d, Ten subsequent flights are performed to gather statistics  
on the attitude variation and errors when attitude is estimated with optic flow. 
The violin plot shows the error statistics over the ten flights for the estimated 
roll angle, lateral velocity, and height.
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Extended Data Fig. 2 | Preliminary analysis investigating the hypothesis 
that attitude variation decreases when flight speed increases. a, Picture  
of a honeybee flying in the doubly tapered corridor in the experiments of9, 
photo reprinted with permission of DGA / François Vrignaud. b, Pitch angle  
for a single honeybee trajectory over time for one of the trajectories.  
c, Corresponding velocity over time. d, Mean pitch angle for the honeybees vs. 
forward flight speed. e, Standard deviations of the body attitude angles per 
velocity bin, ranging from [0.05, 0.15) m/s to [0.75, 0.85) m/s for 21 honeybee 
trajectories (dark yellow) and 30 simulation trajectories (light brown).  
Two different simulation models are compared, one with the proposed 

optic-flow-based state estimator (solid line) and an alternative model that 
perceives a noisy version of the ground-truth attitude (dashed line). f, Standard 
deviation of the simulated head attitude angle for different velocities, again for 
the optic-flow-based state estimator (solid line) and an alternative model that 
perceives a noisy version of the attitude (dashed line, almost zero). g, Degree of 
observability for a constant height system with drag and both lateral flow ωy 
and divergence ωz  as observations for different velocities and rotation rates.  
h, Mean absolute estimation errors in velocity, height, and body and head 
attitude angles for different flight velocities in the simulation.



Extended Data Fig. 3 | Sketches of different quad rotor and environment 
models. a, Axis definitions for a constant height quadrotor model. B indicates 
the body frame, whereas I  indicates the inertial frame. The arrows for Y  and Z  
point into the positive directions. The attitude angle φ represents the 
quadrotor’s roll angle, and p the roll rate. The shaded rectangle represents the 

floor. b, Varying height model of a quad rotor in the 2D plane. c, Constant 
height motion model of a quad rotor where the ground has slope angle α.  
d, Varying height model in the 2D plane for a drone flying over an uneven 
terrain. The drone uses one world point Pi (red star) for state estimation.
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Extended Data Fig. 4 | Processing and control loops onboard of the 
quadrotor drone (a Parrot Bebop 2) used in the robotic experiments.  
a, Onboard image processing, state estimation, and control used for fully 
autonomous flight of the drone. b, Control diagram for the optic flow outer 
loop control, where the longitudinal and lateral optic flow ωx and ωy are used to 

set desired attitude angles for the inner loop control and the divergence ωz  
directly leads to a thrust command uT . c, Inner loop control to transform 
desired attitude setpoints θ *, φ* into moment commands uM for the quadrotor 
motor mixing. For the INDI block we refer the reader to59.



Extended Data Fig. 5 | Setup of the robotic experiments with the flapping wing drone (a modified Flapper Drone). A human pilot executes the outer loop 
control, while the drone itself runs the inner loop attitude controller, based on the onboard roll angle estimates. See the text for details.



Article

Extended Data Fig. 6 | Robotic experiments with height changes. a, Picture 
of the experiment. b, Roll angle, lateral velocity, and height over time during 
the experiment, in which the height was varied, all with the constant height 
model. Solid lines represent estimates, dashed lines the ground truth. c, Roll 
angle, lateral velocity, and height over time during the experiment, in which the 
robot estimates and controls its roll axis with the help of the varying height 
model explained in Supplementary Information. Solid lines represent 

estimates, dashed lines the ground truth. d, Picture of experimental setup in 
which the drone performed thirteen subsequent flights for gathering state 
estimation statistics. e, Estimation error distributions over the thirteen flights 
for the roll angle, lateral velocity, and height. f, Picture of the quadrotor flying 
over a slope with the varying height model. g, Picture of the quadrotor flying 
over a 3D structured scene with the varying height model.



Extended Data Fig. 7 | Simulation experiments to verify the stability  
proof - I. a, Simulation without noise. Top row: The three states (true, solid line, 
and estimated, dashed-dotted line) over time. The dotted line indicates zero. 
Bottom row, from left to right: The optic flow ωy (solid line) and the reference 
desired flow (dashed line), the rate (solid line) with a dotted line at zero, and the 

observability degree over time. b, Simulation with sensor noise. Top row: The 
three states (true, solid line, and estimated, dashed-dotted line) over time. The 
dotted line indicates zero. Bottom row, from left to right: The optic flow ωy 
(solid line) and the reference desired flow (dashed line), the rate (solid line)  
with a dotted line at zero, and the observability degree over time.
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Extended Data Fig. 8 | Simulation experiments to verify the stability  
proof - II. a, Zoomed in view on time interval [15,25] seconds for a simulation 
with sensor noise. Top: True (dashed) and estimated (solid) roll angle over time. 
Bottom: roll rate. b, Observability degree over time for an experiment with 

actuation noise. c, Observability degree over time for an experiment with 
lateral disturbances. d, Experiment with malicious disturbances in the vertical 
axis when the system is not moving. Top: Observability degree over time. 
Bottom: True (dashed) and estimated (solid) height over time.



Extended Data Fig. 9 | Histograms of honeybee pitch angles at different 
velocities. a, The histograms of all data, i.e., with outliers, of the honeybee 
body pitch angles for different velocity bins. Each subplot’s title mentions the 

centre of the speed bin and the variance of the pitch angles in that bin. b, The 
histograms of the data without outliers.
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Extended Data Fig. 10 | Model with independently moving head and body. 
a, Graphical illustration of a “honeybee” simulation model, in which the head 
and body rotate independently. The head determines the looking direction of 
the optic flow sensor, the body determines the thrust direction. For a detailed 
explanation, see Supplementary Information. b, Plot of the head (blue) and 
body (green) pitch angles over time, when the simulated insect attempts to 

have a lateral ventral flow of ωx = 0.5. Solid lines are estimates, dashed lines  
the ground truth. c, Estimated (solid) and true (dashed) velocity over time.  
d, Estimated and true height over time. e, Optic flow over time. f, Body and head 
rate over time. The head makes much smaller corrections. g, Observability 
degree over time.
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