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Traffic barrier crashes have been a major concern in many prior studies in traffic safety lit-
erature, especially in the crash-prone sections of mountainous regions. However, the effect
of factors affecting the injury-severities resulting from crashes involving different types of
traffic barriers may be different. This paper provides an empirical assessment of the perfor-
mance of ordered and unordered discrete outcome models for examining the impact of
exogenous factors determining the driver injury-severity of crashes involving two types
of traffic barriers in mountainous regions: w-beam barriers and cable barriers. For the
ordered framework, the alternative modeling approaches include: the generalized ordered
logit (GOL) and the random thresholds random parameters generalized ordered logit
model (RTRPGOL). Whereas, for the unordered framework, the alternative modeling
approaches include: the multinomial logit (MNL), the random parameters multinormal
logit (RPL), and the random parameters multinormal logit model with heterogeneity in
the means and variances (RPLHMV). Using injury-severity data from 2016 to 2019 for
mountainous regions in Guiyang City, China, three injury-severity categories are deter-
mined as outcome variables: severe injury (SI), minor injury (MI), and no injury (NI), while
the potential influencing factors including drivers-, vehicles-, road-, and environment-
specific characteristics are statistically analyzed. The model estimation results show: (a)
that the MNL model statistically outperforms the GOL model in terms of goodness-of-fit
measures; (b) the RTRPGOL model is statistically superior to the MNL and RPL models;
and (c) the RPLHMV model is statistically superior to the RTRPGOL model, and therefore
the preferred option among the model alternatives. To that end, the RPLHMV model is
leveraged to quantitatively describe the impact of explanatory variables on the driver
injury-severity and explore how these factors change over the years (between 2016–
2017 and 2018–2019). The results further show that the factors affecting driver injury
severities and the effects of significant factors on injury severity probabilities change across
traffic barrier crash models and across years. In addition, the results of the temporal effects
analysis show that some variables present relative temporal stability, which is important
for formulating long-term strategies to enhance traffic safety on mountainous roads.
Most importantly, the effects of the explanatory factors that exhibit relative temporal
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stability are found to vary across traffic barrier crashes. For example, trucks, daylight,
curved section segments, and high-speed limit (greater than 55 mph) are some of the fac-
tors that have opposite effects between traffic barrier crash models. The findings from this
paper are expected to help policy makers to take necessary measures in reducing traffic
barrier crashes in mountainous regions by forming appropriate strategies, and by allocat-
ing properly their available resources at the pre-planning phase.

� 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Mountainous regions suffer from high crash and fatality rates in countries like the United States, India, and China. In
western countries, mountainous highways (e.g., the mountainous section of the I-70 freeway in Colorado, USA) also suffer
from high crash rates (Yu et al., 2015), thus revealing a general safety problem in mountainous regions. Single-vehicle
crashes are also overrepresented in mountainous regions and are associated with a considerable number of serious injuries
and fatal crashes. The National Traffic Safety Administration (NHTSA) in the United States confirms that single-vehicle
crashes comprise 60% of all fatal crashes (NHTSA, 2014).

One of the most overlooked types of single-vehicle crashes is related to fixed objects (Amiri et al., 2020). Reports indicate
that collisions with fixed objects resulted in 22% of the total fatalities in 2013 in the United States (NHTSA, 2014). Hit-traffic
barriers are the common causes of fatalities in the United States (AASHTO, 2011). Therefore, it is clear that in-depth research
concerning the occurrence and injury severities of hit-traffic barrier crashes is in need. Fig. 1 depicts the most common types
of traffic barrier in mountainous regions in China.

In this regard, there have been considerable efforts to minimize the injury severity of traffic barrier crashes in mountain-
ous regions (e.g., Rezapour et al., 2019a, b; Molan et al., 2019; Molan and Ksaibati 2021a, b; Rezapour et al., 2021). Undoubt-
edly, their results have provided valuable insights into the contributing factors related to driver-, vehicle-, road-, and
environment-specific characteristics associated with crash injury severity. Although traffic barrier types would likely impact
the severity of mountainous crashes, prior studies did not present separate performance models for different traffic barrier
types – to the best of the authors’ knowledge. Differentiating crashes in terms of crash types and investigating differences
between crash contributing factors is crucial for identifying specific countermeasures (Intini et al., 2020; Bhowmik et al.,
2019a, 2019b, 2021). Consequently, the importance of investigating the differences among crash types should also be high-
lighted to provide more reliable conclusions by comparing their injury severities and the associated contributing factors. In
addition, the prior studies on traffic barrier are mainly based on highway crash data from the USA. Traffic barrier crashes on
mountainous roads in other countries are rarely investigated.

In this context, statistics from Guiyang city of China indicate that an overwhelming majority of crashes on mountainous
roads involve w-beam barriers and cable barriers. In addition, the effects of factors influencing injury-severities of crashes
involving different traffic barrier may change over time, which is also worthy of further investigation. To that end, crash
injury-severity data from 2016 to 2019 for mountainous regions in Guiyang City, China, are used. The results from this study
can provide a reference for cities with similar mountainous terrains in other regions featuring similar geographical mor-
phologies, driving behaviors, and cultural idiosyncrasies.

The first aim of this paper is to explore the potentially different effects and the possible temporal stability of explanatory
factors on traffic barrier crashes. Some explanatory variables may differ over time, may have an opposite effect between traf-
fic barrier crashes, or may have a significant effect in only one type of traffic barrier crash. Such results could potentially be
used to help provide new guidelines to reduce the injury-severity of traffic barrier crashes in mountainous regions.
ical traffic barriers: (a) w-beam barriers; (b) cable barriers.
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In addition, the paper provides an empirical comparison of the performance of ordered and unordered discrete outcome
models for examining the impact of exogenous factors determining the driver injury-severities of traffic barrier crashes.
Evaluation of discrete outcome frameworks for modeling crash injury severity is helpful in choosing a suited way to model
traffic barrier crash data.

The rest of the paper is organized as follows: the second section provides a literature review on the injury-severity of traf-
fic barrier crashes in mountainous regions. The third section describes the data used for this study, followed by the fourth
section focusing on the methodological approach. The fifth section summarizes the likelihood ratio tests determining the
temporal stability of the estimated models. The sixth section presents a detailed discussion of the model estimation results.
Finally, the seventh and last section summarizes the findings of this study and discusses potential directions for future
research.
2. Literature review

In this section, the existing relevant literature investigating the injury-severity of crashes in mountainous regions is
reviewed. First, findings from the studies investigating the factors influencing the crash injury-severity in mountainous areas
are summarized. Second, a brief overview of the methodological approaches leveraged in investigating injury-severity of
mountainous crashes is presented. Lastly, a brief overview of the current studies investigating traffic barrier crashes
injury-severity in mountainous regions is presented.
2.1. Crash injury-severity in mountainous regions: Identified factors

Numerous studies have explored the factors influencing crash injury-severities in mountainous areas (e.g., Yu and Abdel-
Aty, 2014a, b; Huang et al., 2018; Rezapour et al., 2019a; Wen and Xue, 2020). The existing studies primarily investigated the
driver-, vehicle-, road-, and environment/crash-specific factors affecting the injury-severity outcomes. Hence, the effect of
the aforementioned factors on the severity of mountainous crashes is summarized in detail.

Driver-specific characteristics significantly influence the severity of crashes in mountainous regions. In terms of gender, a
number of studies have indicated that male drivers are more likely to suffer severe injuries as compared to female drivers (Li
et al., 2018; Rezapour et al., 2019a; Yu et al., 2020c); while others concluded that female drivers are less capable of handling
and responding to crashes than men, and are prone to more severe injuries (Chen and Chen, 2011; Molan et al., 2020a; Yu
et al., 2020c). Behnood and Mannering (2015) found that gender plays a heterogenous role in the severity of road user inju-
ries. With respect to age, older drivers are intuitively found to be more prone to serious injuries (Rezapour et al., 2019b;
Islam and Mannering, 2020; Wen and Xue, 2020; Yu et al., 2020a, 2020c). In addition, specific driving behaviors such as
speeding, driving under the influence, driving fatigue, and not using a seatbelt are some of the major causes of road traffic
crashes and aggravate the degree of the resulting injury-severity (Chen and Chen, 2011, 2013; Rezapour et al., 2019a; Molan
et al., 2020a; Wen and Xue, 2020; Yu et al., 2020a, 2020c).

Vehicle-specific factors, including vehicle type and vehicle state (overloading, weaving, or changing lanes), significantly
affect the severity of crashes in mountainous regions. Motorcyclists sustain more serious injuries due to being more vulner-
able than car or truck drivers (Rezapour et al., 2019a). Compared to passenger cars, crashes involving trucks are more likely
to cause severe and fatal injuries in mountainous regions resulting from brake failure or loss of control on downhill sections
(Rezapour et al., 2019a). On the contrary, Yu and Abdel-Aty (2014b) concluded that passenger cars are more prone to severe
crashes than trucks, especially during the daytime. Furthermore, the vehicle’s state, such as overloading, weaving, or chang-
ing lanes, is found to increase the risk of severe crashes in mountainous regions (Chen et al., 2015; Rezapour et al., 2019a;
Wang and Prato, 2019).

Several road-specific characteristics (e.g., topography, road geometry, speed limit, road surface conditions, Average
Annual Daily Traffic - AADT, section type, type of roadside barriers) significantly affect the severity of crashes in mountainous
areas. Findings from the previous studies indicate that the slope of the roadway and the presence of curves significantly
affect the injury-severity of crashes in mountainous regions (Chen and Chen, 2011; Yu and Abdel-Aty, 2014a, b; Huang
et al., 2018; Li et al., 2018; Wang and Prato, 2019; Haq et al., 2020a, 2020b). Higher speed limits in mountainous regions
are also found to be more dangerous for drivers (Chen and Chen, 2013; Rezapour et al., 2019a, b; Molan et al., 2020a;
Rezapour et al., 2020; Wen and Xue, 2020). For example, Rezapour et al., (2019a) found that for a one-unit increase in
the posted speed limit above 55 mph on downgrades, the risk of crash-injury severity would increase by 2.3 times. Further-
more, dry road surfaces in mountainous regions are associated with severe injuries (Huang et al., 2018; Rezapour et al.,
2019a; Molan et al., 2020a; Rezapour et al., 2020). Huang et al. (2018) indicated that drivers drove more carefully in adverse
weather conditions than in dry road conditions, based on crash data from Hunan Province, China. In addition, increases in the
traffic flow are associated with an aggravated risk of crash occurrence. Wen and Xue (2020) also reported that the risk of
serious injuries is most significant on ‘special’ road sections, such as sharp turns, long continuous slopes, and tunnels.

Environment-and crash-specific characteristics (e.g., weather conditions, lighting conditions, time of day, and crash type)
significantly influence the severity of crashes. First, adverse weather conditions such as rain, snow, fog, and wind, pose a
greater risk of severe or fatal injuries as compared to clear weather conditions (Chen and Chen, 2011; Duddu et al., 2018;
Li et al., 2018; Wang and Prato, 2019; Wen and Xue, 2020). Second, nighttime crashes are more likely to result in more severe
3
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injury as compared to daytime crashes (Duddu et al., 2018; Huang et al., 2018; Li et al., 2018; Wang and Prato, 2019; Wen
and Xue, 2020; Yu et al., 2020a). However, Rezapour et al. (2019a) found that the likelihood of a severe injury during dark
conditions decreases by 54.8% as compared to daylight conditions. In addition, Yu and Abdel-Aty (2014b) and Haq et al.
(2020b) reported that the frequency of severe crashes is higher during the day. Lastly, several studies have shown that
single-vehicle rollover crashes on mountainous highways are prone to more severe injuries (Chen and Chen, 2011, 2013;
Rezapour et al., 2019b; Haq et al., 2020a, b; Molan et al., 2020a; Wen and Xue, 2020).

2.2. Crash injury-severity in mountainous regions: Methodological approaches

Traditional logit and probit models have been widely used to investigate the factors affecting the injury-severity of moun-
tainous crashes. However, traditional models assume that the estimated parameters are fixed for all observations, which
may lead to biased parameter estimates and erroneous inferences (Mannering et al., 2016). Moreover, traditional crash data-
bases often lack relevant information that may affect crash injury-severity, which in turn may result in unobserved hetero-
geneity. To effectively account for unobserved heterogeneity, advanced econometric modeling frameworks are utilized in
recent studies. In addition, machine learning models are also utilized in the literature to gain better predictive performance.
The relevant studies that investigated crashes in mountainous regions are listed in Table 1, along with the study locations,
methodological approaches, and summarized findings. It is observed that the random parameters logit model (Yu and Abdel-
Aty, 2014a, 2014b; Rezapour et al., 2019b), hierarchical Bayesian models (Chen et al., 2015; Haq et al., 2020a), classification
and regression tree model (Huang et al., 2018) are popularly leveraged in these studies.

The random parameters approach in the aforementioned studies assumed that the distribution of random parameters
was independent (Mannering et al., 2016; Behnood and Mannering, 2017b; Hou et al., 2019), and the possibility of explana-
tory factors affecting the individual parameter estimates have not been accounted for. To address this issue, a random
parameters with heterogeneity in means and variances (RPLHMV) approach is leveraged in the literature, which is capable
of capturing multilayered unobserved heterogeneity (Islam and Mannering, 2020).

This new approach has been used by traffic safety analysts to investigate injury-severities of work zone rear-end colli-
sions (Islam et al., 2020; Yu et al., 2020b), bicyclist/motorcyclist injury-severities (Behnood and Mannering, 2017a;
Alnawmasi and Mannering, 2019; Waseem et al., 2019), and crash injury-severities on highways (Behnood and
Mannering, 2019; Islam and Mannering, 2020). However, the application of this approach in the analysis of crashes in moun-
tainous regions appears to be rather limited. It should be noted that the severity of crashes on mountainous roads is more
complex (in other words, more heterogenous) than in non-mountainous counterparts (Wen and Xue, 2020).

2.3. Traffic barrier crashes injury-severity in mountainous regions

Traffic barriers significantly reduce the risk of severe and fatal injuries if the crash occurs unavoidable (Rezapour et al.,
2019a, 2019b; Molan et al., 2019; Molan et al., 2020a, b, c, d; Molan and Ksaibati 2021a, b; Rezapour et al., 2021). In recent
years, several studies have explored the relationship between traffic barrier and the severity of crashes (i.e., Hu and Donnell,
2010; Russo and Savolainen, 2018; Molan et al., 2019; Rezapour et al., 2019b; Molan et al., 2020a; Park et al. (2016)). A sum-
mary of earlier research on driver injury severities involving traffic barrier crashes from the perspective of the various
ordered and unordered discrete outcome models is provided in Table 2. For example, Molan et al. (2020a) employed ordered
logit models to investigate the severity of crashes considering the presence of three roadside barriers (guardrail, rigid, and
cable barriers). Zou et al. (2014) demonstrated that road barriers (guardrails, cable barriers, and concrete barriers) decreased
injury-severity compared to other roadside objects on Indiana highways using mixed-effects binary logistic model. Rezapour
et al. (2019b) found that barrier height and offset distance significantly impacted the crash injury-severity on two-lane roads
in Wyoming based on the mixed logit model. Hosseinpour and Haleem (2021) used mixed logit models to investigate the
impacts of barrier-specific characteristics on crash injury-severity involving high-tension flexible barriers and strong-post
guardrails on interstate highways in Alabama. Table 2 shows that only a few studies provide any type of comparison for
Table 1
Summary of methodological approaches of relevant studies investigating crashes in mountainous regions.

Authors Study location Methodological approach Identified factors

Yu and Abdel-Aty
(2014a)

Colorado, USA Correlated random parameter logit model Large variations of speed or low temperature during snow
seasons

Yu and Abdel-Aty
(2014b)

Colorado, USA Hierarchical Bayesian binary probit
models

Large variations of speed during snow seasons

Chen et al., (2015) New Mexico,
USA

Hierarchical Bayesian random intercept
model

Wet road and disabled vehicle damage

Rezapour et al.,
(2019b)

Wyoming, USA A mixed binary logistic regression model Traffic barrier height, traffic barrier offset, and shoulder-
width

Haq et al., (2020a) Wyoming, USA Bayesian binary logit approach Fire or rollover, guardrail hits, speeding, and curved
segments

Huang et al., (2018) Hunan, China A classification and regression tree model Speeding during the afternoon or evening
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Table 2
Summary of the ordered and unordered discrete outcome models for injury severities of traffic barrier crashes.

Methodological Approach Previous Research

Ordered discrete outcome
framework

Ordered logistic models Rezapour et al., 2019a; Molan et al., 2020a, 2020d; Rezapour et al., 2021
Random parameters ordered
logit models

Molan et al., 2019; Molan et al., 2020b, 2020c; Molan and Ksaibati 2021a, 2021b;
Russo and Savolainen, 2018

Unordered discrete outcome
framework

Mixed logit models Rezapour et al., 2019b; Russo and Savolainen, 2018; Hosseinpour and Haleem,
2021

Nested logit models Hu and Donnell, 2010
Mixed-effects binary logit
models

Zou et al., 2014
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the performance of ordered and unordered discrete outcomemodels for examining the impact of exogenous factors on driver
injury severity of traffic barrier crashes.

In addition, recent studies have not developed separate performance models for different traffic barrier types. Differen-
tiating crashes in terms of crash types and studying differences between crash contributing factors is thus crucial for iden-
tifying specific countermeasures (Intini et al., 2020; Bhowmik et al., 2019a, 2019b, 2021). Consequently, besides the mixed
analysis of hit-traffic barrier crashes, the importance of using the same dataset to investigate the differences among crash
types should also be highlighted to provide more reliable inferences by comparing their injury severities and the associated
contributing factors at the same spatiotemporal level. Note that Molan et al. (2020a) employed ordered logit models to
investigate the severity of crashes considering the presence of three roadside barriers (guardrail, rigid, and cable barriers).
However, traditional logit and probit models assume that the estimated parameters are fixed for all observations, which
may lead to biased parameter estimates and erroneous inferences (Eluru et al., 2008; Mannering et al., 2016). Furthermore,
the current research on traffic barrier crashes rarely accommodates the potential temporal effects of the influencing factors.
Meanwhile, these studies are mainly based on highway crash data from the USA. Traffic barrier crashes on mountainous
roads in other countries are rarely investigated. Since substantial differences exist in driving behavior, barrier selection/
usage, crash characteristics, and influencing factors across different countries and between mountainous and non-
mountainous roads, it is important to investigate country- and region-specific crashes for localized insights.

Using traffic barrier crash injury-severity data from 2016 to 2019 for mountainous regions in Guiyang City, China, this
paper provides an empirical assessment of the performance of ordered and unordered discrete outcome models for exam-
ining the impact of exogenous factors on driver injury severity. To that end, a gamut of ordered (GOL and RTRPGOL) and
unordered (MNL, RPL and RPLHMV) discrete outcome models are estimated.
3. Data description

Guiyang city is located in southwestern China and has become a highly crash-prone location due to special geographical
conditions, with mountainous areas accounting for more than half of the city (Liu et al., 2010). This makes Guiyang city a
good candidate location to investigate to understand better the factors affecting driver injury-severities due to crashes in
mountainous regions.

For the analysis, four-year (2016–2019) data are used from traffic barrier crashes that occurred in Guiyang, China. The
data were collected by the Guiyang Public Security Traffic Administration Bureau. Following the official dataset reports,
the injury severity outcomes are categorized as follows: no injury, minor injury, and severe injury. The dataset consists of
3,045 traffic barrier crashes in mountainous areas: 1,556 crashes involving w-beam barrier and 1,489 crashes involving cable
barrier. It should be noted that this study also intends to explore the temporal stability of injury severity models for traffic
barrier crashes. To that end, the dataset is split into two subsets, one for years 2016–17, and one for years 2018–19. Fig. 2
display the frequency distribution of the crash injury severity categories (66.97%, 17.67%, and 15.36% for no injury, minor
injury, and severe injury in w-beam barrier crashes, respectively; and 65.08%, 26.39%, and 8.53% for no injury, minor injury,
and severe injury in cable barrier crashes, respectively). Apart from the injury severity outcomes, the crash dataset covers
crash-related information, including driver-specific characteristics (age, gender, driving experience, driver under alcohol
influence, seatbelt use), vehicle-specific characteristics (vehicle type, vehicle state), road-specific characteristics (grade, sec-
tion type), environment-specific characteristics (weather conditions, lighting conditions), and temporal characteristics (day
and time of the crash). Table 3 presents the descriptive statistics of explanatory variables used in the injury-severity models.
4. Methodology

This section provides a brief description of the methodology of all models considered for investigating driver injury
severities.
5



Fig. 2. Frequency distribution of the crash injury severity categories.
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4.1. Generalized ordered logit model

In the traditional ordered discrete outcome model (i.e., OL), the discrete injury severity levels (yi) are assumed to be asso-
ciated with an underlying continuous latent variable (y�i ). This latent variable is typically specified as the following linear
function (Yasmin and Eluru, 2013; Eluru, 2013; Yasmin et al., 2015; Bhowmik et al., 2019a, 2019b; Washington et al., 2020):
y�i ¼ Xibþ ei; yi ¼ j; if lj�1 < y�i < lj; for i ¼ 1; 2; � � � ; N; j ¼ 1;2; � � � ; J ð1Þ

where, i (i ¼ 1;2; � � � ;N) represents the drivers, Xi is a vector of exogenous variables (excluding the constant), l represents
the thresholds associated with these severity levels, b is a vector of unknown parameters to be estimated, j are the integer
ordered injury-severity levels, and e is the random disturbance term that is assumed to follow a standard logistic
distribution.

The generalized ordered logit model (i.e., GOL model) relaxes the constant threshold across population restriction to pro-
vide a flexible form of the traditional OL model. The basic idea of the GOL is to represent the threshold parameters as a linear
function of a set of explanatory parameters (Eluru et al., 2008; Fountas and Anastasopoulos, 2017). Thus, the GOL modeling
scheme is expressed as:
li;j ¼ li;j�1 þ expðtj þ djSi ð2Þ

where, t is the intercept for each threshold, S are vectors of variables affecting the thresholds, and d are vectors of estimable
parameters for S.

4.2. Random thresholds random parameters generalized ordered logit model

The random thresholds random parameters generalized ordered logit model (i.e., RTRPGOL) extends the GOL model by
allowing for unobserved heterogeneity in the parameters and the thresholds.

To allow the thresholds to concurrently vary across the observations, Eq. (2) can be re-written as (Fountas and
Anastasopoulos, 2017):
li;j ¼ li;j�1 þ expðtj þ cjlij þ djSi ð3Þ

where, lij is a normally distributed term with mean zero and standard deviation one, while tj and cj are the mean and stan-
dard deviation of the threshold intercept term, respectively.

To simultaneously account for unobserved heterogeneity in the outcome probability process, the effect of the explanatory
parameters can be allowed to vary across the observations. This can be accomplished through the use of random parameters,
in which case the estimable parameters become (Washington et al., 2020):
bi ¼ bþ Cwi ð4Þ
6



Table 3
Descriptive statistics of explanatory variables.

Variables 2016–2017 2018–2019

W-beam Cable W-beam Cable

Mean SD Mean SD Mean SD Mean SD

Driver characteristics
Male indicator (1 if male driver, 0 otherwise) 0.916 0.277 0.907 0.291 0.919 0.273 0.909 0.288
Female indicator (1 if female driver, 0 otherwise) 0.084 0.277 0.093 0.291 0.081 0.273 0.091 0.288
Middle age driver indicator (1 if driver age between 31 and 60 years, 0 otherwise) 0.891 0.311 0.889 0.315 0.866 0.341 0.865 0.342
Young driver indicator (1 if driver age below 30, 0 otherwise) 0.109 0.311 0.111 0.315 0.134 0.341 0.135 0.342
Intermediate driving experience indicator (1 if driving experience between 10

and 15 years, 0 otherwise)
0.202 0.401 0.199 0.399 0.166 0.372 0.146 0.354

Novice driving experience indicator (1 if driving experience between 3 and
10 years, 0 otherwise)

0.495 0.500 0.531 0.499 0.545 0.498 0.579 0.494

Rookie driving experience indicator (1 if driving experience below 3 years, 0
otherwise)

0.128 0.334 0.132 0.339 0.111 0.315 0.107 0.309

Expert driving experience indicator (1 if driving experience above 15 years, 0
otherwise)

0.175 0.381 0.138 0.345 0.178 0.383 0.168 0.374

No driver seatbelt use indicator (1 if driver without seatbelt, 0 otherwise) 0.150 0.358 0.108 0.311 0.127 0.333 0.107 0.309
Driver seatbelt use indicator (1 if driver with seatbelt, 0 otherwise) 0.850 0.358 0.892 0.311 0.873 0.333 0.893 0.309
Driver under alcohol influence indicator (1 if driver under alcohol influence, 0

otherwise)
0.154 0.361 0.162 0.369 0.188 0.391 0.173 0.379

Vehicle characteristics
Car indicator (1 if car, 0 otherwise) 0.741 0.438 0.858 0.350 0.783 0.413 0.849 0.359
Truck indicator (1 if truck, 0 otherwise) 0.259 0.438 0.142 0.350 0.217 0.413 0.151 0.359
Improper braking and steering indicator (1 if improper breaking and steering, 0

otherwise)
0.442 0.497 0.462 0.499 0.408 0.492 0.334 0.472

Improper lane changing indicator (1 if improper lane changing, 0 otherwise) 0.104 0.305 0.134 0.341 0.187 0.390 0.221 0.415
Non local vehicle indicator (1 if non-local vehicles, 0 otherwise) 0.135 0.342 0.079 0.270 0.128 0.334 0.092 0.290
Local vehicle indicator (1 if local vehicles, 0 otherwise) 0.865 0.342 0.921 0.270 0.872 0.334 0.908 0.290
Roadway characteristics
Curved section indicator (1 if curved section segment, 0 otherwise) 0.316 0.465 0.669 0.471 0.352 0.478 0.669 0.471
Straight sections indicator (1 if straight sections, 0 otherwise) 0.684 0.465 0.331 0.471 0.648 0.478 0.331 0.471
Road in good condition indicator (1 if road with good condition, 0 otherwise) 0.969 0.173 0.966 0.181 0.965 0.183 0.981 0.138
Road in bad condition indicator (1 if road with bad condition, 0 otherwise) 0.031 0.173 0.034 0.181 0.035 0.183 0.019 0.138
Dry surface indicator (1 if road surface condition was dry, 0 otherwise) 0.723 0.448 0.779 0.415 0.724 0.447 0.718 0.450
Wet surface indicator (1 if road surface condition was wet, 0 otherwise) 0.277 0.448 0.221 0.415 0.276 0.447 0.282 0.450
Speed limit indicator (1 if speed limit > 55 mph, 0 otherwise) 0.301 0.459 0.242 0.429 0.217 0.413 0.272 0.445
Intersection indicator (1 if crash occurred in intersection, 0 otherwise) 0.155 0.362 0.200 0.400 0.171 0.377 0.167 0.373
Ramp indicator (1 if crash occurred in ramp, 0 otherwise) 0.041 0.197 0.008 0.092 0.091 0.287 0.035 0.183
Homogeneous section indicator (1 if crash occurred in a homogeneous section, 0

otherwise)
0.678 0.468 0.751 0.433 0.063 0.243 0.013 0.113

Tunnel indicator (1 if crash occurred in tunnel, 0 otherwise) 0.126 0.333 0.041 0.198 0.675 0.469 0.786 0.411
Small uphill grade indicator (1 if 0–2% vertical grade, 0 otherwise) 0.758 0.429 0.748 0.435 0.758 0.429 0.783 0.412
Small downhill grade indicator (1 if �2–0% vertical grade, 0 otherwise) 0.082 0.275 0.169 0.375 0.092 0.289 0.123 0.329
Large uphill grade indicator (1 if 2% or greater vertical grade, 0 otherwise) 0.062 0.241 0.042 0.201 0.049 0.215 0.056 0.231
Large downhill grade indicator (1 if �2% or less vertical grade, 0 otherwise) 0.098 0.297 0.041 0.198 0.102 0.302 0.037 0.189
Environment characteristics
Winter indicator (1 if winter, 0 otherwise) 0.254 0.436 0.193 0.395 0.223 0.416 0.232 0.423
Summer indicator (1 if summer, 0 otherwise) 0.267 0.443 0.270 0.444 0.256 0.437 0.266 0.442
Spring indicator (1 if spring, 0 otherwise) 0.199 0.400 0.220 0.414 0.291 0.455 0.268 0.443
Autumn indicator (1 if autumn, 0 otherwise) 0.279 0.449 0.317 0.466 0.230 0.421 0.234 0.423
Sunny indicator (1 if sunny, 0 otherwise) 0.278 0.448 0.308 0.462 0.292 0.455 0.279 0.449
Cloudy indicator (1 if cloudy, 0 otherwise) 0.527 0.500 0.546 0.498 0.542 0.499 0.542 0.499
Rainy/snowy/foggy indicator (1 if rainy/snowy/foggy, 0 otherwise) 0.195 0.396 0.145 0.352 0.166 0.372 0.180 0.384
Low visibility indicator (1 if visibility below 50 m, 0 otherwise) 0.107 0.310 0.118 0.323 0.110 0.313 0.090 0.286
Medium-low visibility indicator (1 if visibility between 50 and 100 m, 0

otherwise)
0.321 0.467 0.386 0.487 0.306 0.461 0.336 0.473

Medium visibility indicator (1 if visibility between 100 and 200 m, 0 otherwise) 0.331 0.471 0.321 0.467 0.247 0.431 0.294 0.456
High visibility indicator (1 if visibility above 200 m, 0 otherwise) 0.241 0.428 0.175 0.380 0.337 0.473 0.280 0.449
Daylight indicator (1 if daylight, 0 otherwise) 0.443 0.497 0.468 0.499 0.486 0.500 0.498 0.500
Dark lighted indicator (1 if dark lighted, 0 otherwise) 0.352 0.478 0.380 0.486 0.312 0.464 0.358 0.480
Dark-no light indicator (1 if dark without streetlights, 0 otherwise) 0.205 0.404 0.152 0.359 0.202 0.402 0.144 0.351
Weekends indicator (1 if crash occurred during the weekends, 0 otherwise) 0.716 0.451 0.749 0.434 0.701 0.458 0.678 0.468
Weekdays indicator (1 if crash occurred during the weekdays, 0 otherwise) 0.284 0.451 0.251 0.434 0.299 0.458 0.322 0.468
Morning peak indicator (1 if time 7:00–8:59, 0 otherwise) 0.240 0.427 0.206 0.404 0.255 0.436 0.208 0.406
Nighttime off-peak indicator (1 if time 19:30–23:59, 0 otherwise) 0.169 0.375 0.128 0.335 0.138 0.345 0.130 0.336
Early morning indicator (1 if time 00:00–7:00, 0 otherwise) 0.086 0.280 0.120 0.325 0.127 0.333 0.168 0.374
Afternoon peak indicator (1 if time 17:00–19:29, 0 otherwise) 0.344 0.475 0.341 0.474 0.276 0.447 0.295 0.456
Daytime off-peak indicator (1 if time 9:00–16:59, 0 otherwise) 0.161 0.368 0.206 0.404 0.205 0.404 0.199 0.399
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where, b is the mean of the random parameters’ vectors, C is the diagonal matrix of standard deviations, and wi is a normally
distributed term with mean zero and variance one. To improve estimation efficiency, a simulated maximum likelihood esti-
mation process is employed using a Halton sequence approach, in order to draw random values of b from the parameter den-
sity function qðbjuÞ, where u denotes a vector of parameters of the density distribution (e.g., mean and standard deviation,
in the case of the normal distribution).

In this context, the ordered probability of each different severity level j for each crash observation, can be calculated as
(following the formulation of Washington et al., 2020):
P y ¼ jð Þ ¼ Uðlj � biXiÞUðljþ1 � biXiÞ ð5Þ

where, P y ¼ jð Þ is the probability of the injury-severity level j, U represents the cumulative function of the standard nor-

mal distribution, l denotes the marginal thresholds for outcome j, and all the other terms are as previously defined.

4.3. Multinomial logit model

Let us consider the probability of a driver i suffering a specific injury-severity level j. The alternative specific latent vari-
ables for the multinomial logit model (i.e., MNL) take the form of:
Uij ¼ bjXij þ eij ð6Þ

where, bj is a vector of coefficients to be estimated for outcome j, Xij is a vector of exogenous variables, Uij is a function of
covariates determining the injury-severity outcome, and eij is the random component assumed to follow a Gumbel distribu-
tion. Thus, the MNL probability expression is as follows (Washington et al., 2020; Ahmed et al., 2021a, 2021b):
Pi jð Þ ¼
exp½bjXij�PJ
j¼1exp½bjXij�

ð7Þ
4.4. Random parameters logit models with heterogeneity in means and variances

Lastly, to account for the multilayered unobserved heterogeneity of the crash data in terms of (a) factors varying across
the observations; (b) factors affecting the mean of the parameter density function of the random parameters (and thus shifts
in the peak of the distribution of the betas); and (c) factors affecting the variance of the parameter density function of the
random parameters (and thus changes in the tails of the distribution of the betas). The random parameters logit models with
heterogeneity in means and variances (RPLHMV) are estimated to identify factors influencing the driver injury-severity are
introduced (Mannering et al., 2016; Eker et al., 2019; Ahmed et al., 2020; Ahmed et al., 2021c; Pantangi et al., 2021):
bij ¼ bj þHijZij þ rijEXP wijWij
� �þ tij ð8Þ
where, bj is the mean parameter estimate across all drivers, Zij are vectors of explanatory variables that influence the
mean, Hij are vectors of corresponding estimable parameters, Wij are vectors of explanatory variables that capture hetero-
geneity in variances, rij, wij is a vector of corresponding estimable parameters, and tin is a disturbance term. Then, the out-
come probability of the RPLHMV model formulation can be expressed as (Washington et al., 2020):
PiðjjuÞ ¼
Z exp bjXij

� �
P

i2I exp bjXij
� � f ðbjjuÞdbj ð9Þ
where,piðjjuÞ is the probability of injury severity level j conditional on f ðbjjuÞ, and f ðbjjuÞ is the density function of bj

With u refers to a vector of parameters (means and variances).
The RPLHMV model is estimated with a simulated maximum likelihood method, and 1,000 Halton draws are used to

achieve stable parameter estimates (McFadden and Train, 2000). In terms of the distribution of the random parameters,
the normal distribution is used to achieve the best goodness-of-fit (Anastasopoulos and Mannering, 2011; Behnood and
Mannering, 2017a, b; Fountas and Anastasopoulos, 2017; Fountas et al., 2018).

Pseudo-elasticities are computed to quantitatively describe the impact of explanatory variables on the driver injury-
severity. In this paper, all variables used in the estimated models are binary indicator variables. Therefore, the pseudo-
elasticities quantify the change in outcome probability when an explanatory variable changes from ‘‘0” to ‘‘1”
(Washington et al., 2020).

5. Likelihood ratio tests for temporal and parameter transferability

We conducted chi-square distributed likelihood ratio tests to determine whether there is any difference between injury-
severity outcomes for each traffic barrier type and whether these differences change over time. To begin, for each time period
(2016–2017 and 2018–2019), likelihood ratio tests were conducted to compare injury-severity outcomes for each traffic bar-
rier type. The test statistic is (Washington et al., 2020):
8
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v2
t ¼ �2½LL bcombined;t

� �� LL bw�beam;t

� �� LL bcable;t

� �� ð10Þ
where, LL bcombined;t

� �
is the log-likelihood at the convergence of the model using all of the available traffic barrier crashes data

in the year t (either year 2016–2017, or 2018–2019), LL bw�beam;t

� �
is the log-likelihood at the convergence of the model using

w-beam barriers data only in year t, LL bcable;t

� �
is the log-likelihood at convergence using cable barriers data only in year t.

The test results (see Table 4) show that the null hypotheses that the identified factors between different time periods are the
same can be rejected with over 99.99% confidence.

Next, the temporal stability of injury-severity outcomes for each traffic barrier type is tested. The test statistic is
(Washington et al., 2020):
v2
barriers ¼ �2½LL b2016�2019;barriers

� �� LL b2016�2017;barriers

� �

�LL b2018�2019;barriers

� �� ð11Þ
where, LL b2016�2019;barriers

� �
is the log-likelihood at convergence using 2016–2019 time period data, LL b2016�2017;barriers

� �
is the

log-likelihood at convergence using only 2016–2017 time period data, and LL b2018�2019;barriers

� �
is the log-likelihood at conver-

gence using only 2018–2019 time period data. It also can be concluded that the null hypotheses that the identified factors
among the two traffic barriers are the same can be rejected with over 99.99% confidence. In other words, statistically signif-
icant temporal instability exists among the two traffic barriers.

To further test the temporal instability of the estimated parameters between any two of the time periods involving the
two different types of traffic barrier (w-beam barriers and cable barriers), we used the following alteration of the likelihood
ratio test (Mannering, 2018; Washington et al., 2020; Hou et al., 2022):
v2
t;t0 ¼ �2½LL bt;t0

� �� LL btð Þ� ð12Þ
where, LL bt;t0
� �

is the log-likelihood at the convergence of the model using the converged parameters from the t time period
of data on the t0 the time period of data, and LL btð Þ is the log-likelihood at the convergence of the model using the t time
period of data. The results of these tests (see Tables 5.1–5.3) are consistent with the transferability tests presented in Tables
4-5.1 and show that the null hypothesis that the identified factors among the two traffic barriers are the same across the
same time periods can be rejected. The combination of the likelihood ratio tests in Tables 4 through 5.3 provides strong evi-
dence that separate models are warranted by the study period.

6. Model estimation results

6.1. Empirical assessment of ordered and unordered discrete outcome modeling frameworks

The issue of selecting between multinomial logit and generalized ordered logit models has been discussed in Balusu et al.
(2018). It is shown that the mixed generalized ordered models have significant issues in applications to safety (e.g., threshold
variance problem). Also, mixed generalized ordered models are sometimes argued to be parsimonious; however, this is usu-
ally associated with specification errors (e.g., omitted variables or restrictive functional form).

To further explore the two frameworks, we provide an empirical assessment of the performance of the ordered and unor-
dered discrete outcomemodels for examining the impact of exogenous factors determining the driver injury-severity of traf-
fic barrier crashes in mountainous regions. Therefore, we estimate six model alternatives: (1) GOL, (2) RTRPGOL, (3) MNL, (4)
RPL, (5) RPLHM, and (6) RPLHMV model. To test the performance of the ordered and unordered models, we compute the
Akaike Information Criterion (AIC) and the corrected (for the number of parameters) AIC - AICc, the Bayesian Information
Criteria (BIC), and the R-Squared and adjusted R-Squared. Smaller AICs values, and higher adjusted R-Squared values indicate
a better model fit (Washington et al., 2020). The goodness-of-fit measures for the estimatedmodels are presented in Table 6.1

As can be seen from the table, the results are consistent across goodness-of-fit measures (AIC/AICs/BIC) for the estimated
models.

Table 6 provides some interesting findings: (a) the RTRPGOL model is statistically superior to the GOL model for the
ordered framework; (b) the RPLHMV model provides a superior statistical fit as compared to its other two logit model coun-
terparts for the unordered framework; (c) the MNLmodel statistically outperforms (even though marginally) the GOL model;
(d) the RTRPGOL model is statistically superior to the MNL and RPL models (except for the 2016–2017 w-beam barriers
model); and (e) the RPLHMV is statistically superior to the RTRPGOL model (across all models and goodness-of-fit measures).
ddition to the aforementioned goodness-of-fit measures, a series of likelihood ratio tests (Washington et al, 2020) were conducted between the two
models (testing the statistical superiority between the GOL and the RTRPGOL models), and among the three unordered models (testing the statistical
rity between the following model pairs: MNL and RPL, RPL and RPLHMV, and MNL and RPLHMV). The test is v2 ¼ �2½LL bmodelAð Þ � LL bmodelBð Þ�, where LL

A) and LL(bmodel B) are the log-likelihoods at convergence of the competing models A and B, respectively. The test is chi-squared distributed, and has
of freedom equal to the difference in the number of parameters between the two models. The test results were consistent with the finding of the

ss-of-fit measures, in that the RTRPGOL statistically outperforms its GOL modeling counterpart at a 0.99 level of confidence, and that the RPLHMV is
ally superior to its MNL and RPL modeling counterparts also at the 0.99 level of confidence.
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Table 4
The v2 values for different time periods (degrees of freedom in parentheses and confidence level in brackets).

v2
2016�2017 v2

2018�2019

164.851 (17) [99.99%] 225.537 (19) [99.99%]

Table 5.1
The v2 values for different types of traffic barrier (degrees of freedom in parentheses and confidence level in brackets).

v2
w�beam v2

cable

85.53 (19) [99.99%] 95.006 (20) [99.99%]

Table 5.2
The v2 values for different time periods for the w-beam barrier model (degrees of freedom in parentheses and confidence level in brackets).

2016–2017 2018–2019

2016–2017 � 23.442 (19) [76.45%]
2018–2019 58.135 (16) [99.99%] �

Table 5.3
The v2 values for different time periods for the cable barrier model (degrees of freedom in parentheses and confidence level in brackets).

2016–2017 2018–2019

2016–2017 � 74.395 (22) [99.99%]
2018–2019 61.173 (15) [99.99%] �

Table 6
Goodness-of-fit measures for all estimated models.

Goodness-of-fit
measures

W-beam barriers Cable barriers

MNL GOL RPL RTRPGOL RPLHMV MNL GOL RPL RTRPGOL RPLHMV

2016– 2017 Number
of

observations 838 838 838 838 838 710 710 710 710 710
Log-likelihood at
zero

�721.80 �721.80 �721.80 �721.80 �721.80 �615.11 �615.11 �615.11 �615.11 �615.11

Log-likelihood at
convergence

�580.68 �602.78 �577.40 �592.30 �576.09 �451.19 �479.62 �446.99 �444.00 �440.91

Adjusted R-
Squared

0.175 0.145 0.178 0.159 0.179 0.245 0.196 0.250 0.237 0.258

AIC 1203.360 1245.560 1198.800 1224.600 1198.180 944.380 1001.240 937.980 964.000 929.820
AICc 1204.532 1246.628 1200.042 1225.628 1199.556 945.743 1002.543 939.473 968.417 931.552

BIC 1302.711 1346.911 1296.151 1325.951 1293.531 1040.251 1097.111 1031.851 1025.871 1019.691
2018– 2019 Number

of
observations 718 718 718 718 718 779 779 779 779 779
Log-likelihood at
zero

�609.47 �609.47 �609.47 �609.47 �609.47 �635.95 �635.95 �635.95 �635.95 �635.95

Log-likelihood at
convergence

�543.97 �550.68 �540.27 �516.04 �509.07 �474.81 �484.42 �468.27 �467.12 �441.92

Adjusted R-
Squared

0.078 0.070 0.081 0.106 0.114 0.228 0.212 0.238 0.240 0.270

AIC 1133.940 1141.360 1132.540 1108.080 1100.140 999.620 1020.840 990.540 990.240 957.840
AICc 1135.491 1142.605 1134.532 1112.465 1105.195 1001.326 1022.667 992.513 992.365 961.595

BIC 1239.199 1252.619 1231.799 1183.339 1169.399 1102.754 1121.974 1089.674 1087.374 1036.974

MNL: Multinomial logit model; RPL: Random parameters multinomial logit model; RPLHMV: Random parameters logit models with heterogeneity in means
and variances; GOL: Generalized ordered logit model; RTRPGOL: Random thresholds random parameters generalized ordered logit model.
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In all, the RPLHMV statistically outperforms the other five modeling alternatives, in terms of the selected goodness-of-fit
measures. These results are in line with Balusu et al. (2018).

To further compare the two best performing models, the RPLHMV and RTRPGOL, the Ben-Akiva and Lerman’s adjusted
likelihood ratio (BL) test statistic is computed as follows (Ben-Akiva and Lerman 1985; Yasmin and Eluru, 2013):
2 Bec
of the r
the vec
exercise
2022).
k ¼ U �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 q2

2 � q2
1

� �
L Cð Þ þ ðM2 �M1Þ

q� �� �
ð13Þ
where, q2
i represents the McFadden’s adjusted rho-square value for model i, L Cð Þ represents the log-likelihood at sample

shares,Mi is the number of parameters in model i, andU ð:Þ represents the cumulative standard normal distribution function.
The resulting k value for the comparison of the RPLHMV and RTRPHOL models is 0 in all traffic barrier models and across all
years, clearly indicating that the RPLHMV model offers a statistically superior fit as compared to the RTRPGOL. These results
are also in line with the Balusu et al. (2018) paper.

In the subsequent section, we discuss the results from the RPLHMV and RTRPGOL modeling frameworks.

6.2. Insights from the RPLHMV and RTRPGOL modeling frameworks.

The model estimation results for the w-beam barrier crashes are shown in Tables 7-8. For the 2016–2017 RPLHV model,
the dark-lighted indicator in the minor injury severity outcome was significant as a normally distributed random parameter,
wherein 73.35%2 of the observations resulted in an increase in the probability of minor injury (and in a reduction in the rest
26.65%). W-beam barriers are far less rigid as compared to concrete barriers, with the former being more prone to causing
the vehicle to rollover and run off the road in case of a collision. Consequently, more rigid barriers, such as concrete ones,
may be more suitable for mountainous roads than w-beam barriers. In addition, proper caution signage ahead of dark-
lighted locations can also help drivers avoid unnecessary improper braking and steering.

For the 2016–2017 RTRPGOL model, four variables – the constant, the truck indicator, the medium–low visibility indica-
tor, and the sunny indicator – were significant as normally distributed random parameters. Specifically, driving a truck, or
driving when visibility is poor (medium–low visibility conditions) increased the probability of more severe injury for 61.94%
and 84.89% of the drivers, respectively. On the other hand, driving during sunny weather conditions reduced the probability
of severe injury for 91.05% of the drivers. The threshold was a random parameter with a mean of 0.782, and a standard devi-
ation of 3.766. Given these distributional parameters, the intercept for the threshold increased its value for 58.22% of the
observations. In addition, three variables –the improper braking and steering, the over 55-mph speed limit, and the truck
indicators – were found to decrease the value of the threshold and thus increase the probability of severe injury.

For the 2018–2019 RPLHMV model, the cloudy weather indicator and the novice driving experience (between 3 and
10 years) indicator in the minor injury severity outcome were significant as random parameters, with a low probability
of minor injury for the majority of the observations (94.54% and 90.31%, respectively). The curved section indicator was
found to increase the mean of the cloudy weather indicator, making minor injuries more likely. Furthermore, the weekend
and dark-lighted indicators were found to increase the mean of this driving experience indicator, thus increasing the like-
lihood of minor injuries. Overall, nighttime (even lighted) crashes have been found in the literature to be related to injury
(frequently severe) in mountainous regions. Our finding seems to be consistent with the literature (Wen and Xue, 2020;
Yu et al., 2020a). To that end, highly efficient street lighting over long mountainous segments should be considered to
improve visibility during nighttime conditions. Note that in the 2018–2019 period (Table 8), the variance of the novice driv-
ing experience (between 3 and 10 years) indicator in the minor injury severity outcome was found to be affected by the
intersection indicators. The variable increased the variance of novice driving experience (between 3 and 10 years) in minor
injury outcomes, reflecting higher variability.

For the 2018–2019 RTRPGOL model, three variables – the sunny indicator, the cloudy indicator, and the weekend indi-
cator – were significant as normally distributed random parameters. Specifically, driving over the weekend, or during sunny
or cloudy conditions reduced the probability of severe injury for 74.89%, 82.09%, and 79.19% of the drivers, respectively. The
threshold resulted in a random parameter with a mean of 1.100, and a standard deviation of 0.897. Given these distributional
parameters, the intercept for the threshold increased its value for 89.00% of the observations. And three variables – the week-
end, the cloudy, and the dark-lighted indicators – were found to increase the value of the threshold and thus decrease the
probability of severe injury.

The model estimation results for the cable barrier crashes are presented in Tables 9-10. For the 2016–2017 RPLHMV
model, the curved section indicator in the minor injury severity outcome was statistically significant as a random parameter,
where 89.80% of the crashes had an increase in the probability of no injury (and the rest had a reduction). The expert driving
experience (15 years or greater) indicator was found to decrease the mean of the curved section indicator, making minor
injuries less likely. Again, it should be noted that in 2016–2017 (Table 9), the variance of the curved section indicator in
ause in random parameters with heterogeneity in the means, the mean of each parameter will change by observation, presenting the distributional split
andom parameter based on its mean and standard deviation of their normally distributed parameter density function is not applicable. For this reason,
tors of generated parameters are observed post-estimation, and the number of betas above and below zero are reported. Caution, however, should be
d when reporting these above and below zero values, as the parameter values are an approximation estimated with Bayesian techniques (Hou et al.,
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Table 7
Model results of RTRPGOL and RPLHMV for w-beam barrier crashes in 2016–2017 [No Injury (NI), Minor Injury (MI), and Severe Injury (SI)].

Variable RPLHMV-NI RPLHMV-MI RPLHMV-SI RTRPGOL

Coef. t-
stat

Coef. t-stat Coef. t-stat Coef. t-stat

Constant � � �1.466*** �3.61 �1.618*** �5.22 �1.831*** �3.86
Standard deviation of parameter density function � � � � � � 4.788*** 3.72
Driver characteristics
Driver under alcohol influence indicator (1 if driver under alcohol

influence, 0 otherwise)
� � 2.172*** 5.69 � � 1.076*** 4.74

No driver seatbelt use indicator (1 if driver without seatbelt, 0
otherwise)

� � � � 1.878*** 3.67 1.141** 2.00

Vehicle characteristics
Truck indicator (1 if truck, 0 otherwise) � � � � 0.644*** 3.17 1.354* 1.73
Standard deviation of parameter density function � � � � 4.457** 2.23
Non local vehicle indicator (1 if non-local vehicles, 0 otherwise) � � � � 0.515** 1.98 0.705*** 2.98
Roadway characteristics
Homogeneous section indicator (1 if crash occurred in a

homogeneous section, 0 otherwise)
� � �0.541** �2.05 � � �0.379 �1.63

Ramp indicator (1 if crash occurred in ramp, 0 otherwise) � � � � 0.697** 2.47 0.184 0.54
Curved indicator (1 if crash occurred in curved segments, 0

otherwise)
1.084*** 4.29 � � � � �0.179 �0.87

Wet surface indicator (1 if road surface condition was wet, 0
otherwise)

� � � � �1.527** �1.98 �1.376** �2.37

Speed limit indicator (1 if speed limit > 55 mph, 0 otherwise) � � � � 2.268*** 5.70 1.076*** 4.74
Environment characteristics
Daylight indicator (1 if daylight, 0 otherwise) � � � � 0.764** 2.11 0.686** 2.16
Dark lighted indicator (1 if dark lighted, 0 otherwise) � � 0.841*** 2.66 � � �0.038 �0.21
Standard deviation of parameter density function � � 1.349* 1.78 � � � �
Medium-low visibility indicator (1 if visibility between 50 and

100 m, 0 otherwise)
� � � � 0.746*** 3.66 2.652*** 3.88

Standard deviation of parameter density function � � � � � � 2.570* 1.82
Sunny indicator (1 if sunny, 0 otherwise) � � � � �1.231*** �4.99 �4.257** �2.44
Standard deviation of parameter density function � � � � � � 3.168** 2.28
l � � � � 0.782*** 2.64
Standard deviation of parameter density function � � � � 3.766*** 9.65
Threshold covariates
Improper braking and steering indicator (1 if improper breaking

and steering, 0 otherwise)
� � � � � � �1.104*** �5.57

Speed limit indicator (1 if speed limit > 55 mph, 0 otherwise) � � � � � � �1.257*** �4.27
Truck indicator (1 if truck, 0 otherwise) � � � � � � �1.900** �4.40

***, **, * ==> Significance at 0.99, 0.95, and 0.90 level of confidence, respectively.
RPLHMV: Random parameters logit model with heterogeneity in the means and variances model.
RTRPGOL: Random thresholds random parameters generalized ordered logit model.
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the minor injury severity outcome is affected by the high visibility indicator (visibility greater than 200 m), which increases
its variance (it makes the tail of the distribution of the parameter density function flatter, and thus offers a more uniformly
shaped distribution of the betas). This finding may be capturing the effect of drivers that perceive the high visibility condi-
tions on the curved section as safe (or low risk), in which case they are driving less carefully or with a lower level of alertness.

For the 2016–2017 RTRPGOL model, three variables – the homogeneous section indicator, the curved indicator, and the
daylight indicator – were significant as normally distributed random parameters. Specifically, driving on homogeneous sec-
tions or sections with curves increased the probability of severe injury for 66.75% and 65.61% of the drivers, respectively. On
the other hand, driving during daylight reduced the probability of severe injury for 56.00% of the drivers. The threshold was a
random parameter with a mean of 1.418, and a standard deviation of 2.333. Given these distributional parameters, the inter-
cept for the threshold increased its value for 72.83% of the observations. In addition, three variables – the over 55-mph speed
limit, no driver seatbelt use, and the truck indicators – were found to decrease the value of the threshold and thus increase
the probability of severe injury.

For the 2018–2019 RPLHMV models, the medium–low visibility (between 50 and 100 m) and the dark-lighted indicators
in the no injury severity outcome were statistically significant as random parameters. Specifically, in 87.78% of the observa-
tions, the medium–low visibility (between 50 and 100 m) indicator resulted in an increase in the probability of no injury
(and in a reduction in the rest 27.09%); whereas, in 87.08% of the observations, the dark lighted indicator resulted in a reduc-
tion in the probability of no injury (and in an increase in the rest 12.92%). The rainy/snowy/foggy weather indicator and the
winter season indicator were found to increase the mean of the medium–low visibility indicator, making no injuries more
likely. The curved section indicator was found to decrease the mean of the medium–low visibility indicator, making no inju-
ries less likely. The curved section and summer season indicators were found to increase the mean of the dark with road
12



Table 8
Model results of RPLHMV and RTRPGOL for w-beam barrier crashes in 2018–2019 [No Injury (NI), Minor Injury (MI), and Severe Injury (SI)].

Variable RPLHMV-NI RPLHMV-MI RPLHMV-SI RTRPGOL

Coef. t-
stat

Coef. t-stat Coef. t-stat Coef. t-stat

Constant � � �2.094*** �6.84 �1.809*** �6.47 0.644*** 2.62
Driver characteristics
Driver under alcohol influence indicator (1 if driver under alcohol

influence, 0 otherwise)
� � 3.521*** 4.65 � � � �

No driver seatbelt use indicator (1 if driver without seatbelt, 0
otherwise)

� � � � 2.013*** 6.38 0.979*** 3.33

Novice driving experience indicator (1 if driving experience
between 3 and 10 years, 0 otherwise)

� � �5.198** �2.50 � � �0.342 �1.41

Standard deviation of parameter density function � � 4.000** 2.43 � � � �
Heterogeneity in the mean of random parameter
Novice driving experience indicator (1 if driving experience

between 3 and 10 years, 0 otherwise): Weekends indicator (1 if
crash occurred during the weekends, 0 otherwise)

� � 3.312*** 2.59 � � � �

Novice driving experience indicator (1 if driving experience
between 3 and 10 years, 0 otherwise): Dark-no light indicator (1
if dark-no light, 0)

� � 2.973* 1.84 � � � �

Novice driving experience indicator (1 if driving experience
between 3 and 10 years, 0 otherwise): Dark lighted indicator (1 if
dark lighted, 0)

� � 5.071** 2.47 � � � �

Heterogeneity in the variance of random parameter
Novice driving experience indicator (1 if driving experience

between 3 and 10 years, 0 otherwise): Intersection indicator (1 if
intersection, 0)

� � 1.164* 1.93 � � � �

Vehicle characteristics
Truck indicator (1 if truck, 0 otherwise) � � � � 1.106*** 3.77 1.200*** 5.13
Roadway characteristics
Homogeneous section indicator (1 if crash occurred in a

homogeneous section, 0 otherwise)
� � �1.440** �2.34 � � �0.399 �1.48

Ramp indicator (1 if crash occurred in ramp, 0 otherwise) � � � � 1.000** 2.56 0.492 1.17
Curved indicator (1 if crash occurred in curved segments, 0

otherwise)
0.513* 1.79 � � � � 0.034 0.17

Wet surface indicator (1 if road surface condition was wet, 0
otherwise)

� � � � �0.724** �2.29 �1.009*** �3.60

Speed limit indicator (1 if speed limit > 55 mph, 0 otherwise) � � � � 1.659*** 3.11 0.694*** 2.92
Environment characteristics
Daylight indicator (1 if daylight, 0 otherwise) � � � � 0.507* 1.67 1.094*** 4.21
Low visibility indicator (1 if visibility below 50 m, 0 otherwise) � � � � 1.898* 1.72 0.427 1.26
Medium visibility indicator (1 if visibility between 100 and 200 m, 0

otherwise)
� � �0.875* �1.76 �1.237** �2.49 0.024 0.11

Sunny indicator (1 if sunny, 0 otherwise) � � � � � � �3.789*** �3.68
Standard deviation of parameter density function � � � � � � 4.124*** 3.43
Cloudy indicator (1 if cloudy, 0 otherwise) � � �2.644** �2.14 � � �7.082** �2.51
Standard deviation of parameter density function � � 1.651* 1.70 � � 8.710*** 2.66
Heterogeneity in the mean of random parameter
Cloudy indicator (1 if cloudy, 0 otherwise): Curved indicator (1 if

crash occurred in curved segment, 0 otherwise)
� � 1.089* 1.92 � � � �

Weekends indicator (1 if crash occurred during the weekends, 0
otherwise)

� � � � �0.646* �1.91 �1.584*** �3.45

Standard deviation of parameter density function � � � � � � 2.360*** 3.06
l � � � � � � 1.100*** 4.96
Standard deviation of parameter density function � � � � � � 0.897* 1.87
Threshold covariates
Weekends indicator (1 if crash occurred during the weekends, 0

otherwise)
� � � � � � 0.502** 2.56

Cloudy indicator (1 if cloudy, 0 otherwise) � � � � � � 0.483* 1.91
Dark lighted indicator (1 if dark lighted, 0 otherwise) � � � � � � 0.682*** 3.93

***,**, * ==> Significance at 0.99, 0.95, and 0.90 level of confidence, respectively.
RPLHMV: Random parameters logit model with heterogeneity in the means and variances model.
RTRPGOL: Random thresholds random parameters generalized ordered logit model.

D. Song, X. Yang, P. Ch. Anastasopoulos et al. Analytic Methods in Accident Research 39 (2023) 100282
streetlights indicator, making no injuries more likely; whereas, the winter season indicator was found to decrease the mean
of the darkness with road streetlights indicator, making no injuries less likely.

For the 2018–2019 RTRPGOL models, two variables –the curved indicator and the dark-lighted indicator – were signifi-
cant as normally distributed random parameters. Specifically, driving on sections with curves increased the probability of
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Table 9
Model results of RTRPGOL and RPLHMV for cable barrier crashes in 2016–2017 [No Injury (NI), Minor Injury (MI), and Severe Injury (SI)].

Variable RPLHMV-NI RPLHMV-MI RPLHMV-SI RTRPGOL

Coef. t-
stat

Coef. t-stat Coef. t-stat Coef. t-stat

Constant 1.198** 1.98 1.194** 2.10 � � �0.759*** �3.51
Driver characteristics
Driver under alcohol influence indicator (1 if driver under alcohol

influence, 0 otherwise)
� � 1.013*** 3.16 � � 0.802*** 2.77

No driver seatbelt use indicator (1 if driver without seatbelt, 0
otherwise)

� � � � 1.529*** 3.07 0.258 0.85

Vehicle characteristics
Truck indicator (1 if truck, 0 otherwise) � � � � �2.306*** �4.25 �0.059 �0.24
Roadway characteristics
Homogeneous section indicator (1 if crash occurred in a

homogeneous section, 0 otherwise)
� � �1.403*** �7.69 � � �1.061** �2.45

Standard deviation of parameter density function � � � � � � 1.498*** 2.80
Curved indicator (1 if crash occurred in curved segment, 0

otherwise)
� � 1.753*** 3.27 � � 2.234*** 3.50

Standard deviation of parameter density function � � 1.380*** 2.65 � � 5.560*** 2.91
Heterogeneity in the mean of random parameter
Curved indicator (1 if crash occurred in curved segment, 0

otherwise): Expert driving experience indicator (1 if driving
experience above 15 years, 0 otherwise)

� � �0.993** �2.28 � � � �

Heterogeneity in the variance of random parameter
Curved indicator (1 if crash occurred in curved segment, 0

otherwise): High visibility indicator (1 if visibility above 200 m,
0 otherwise)

� � 1.435*** 2.91 � � � �

Speed limit indicator (1 if speed limit > 55 mph, 0 otherwise) � � � � �2.176*** �3.92 1.556*** 5.29
Environment characteristics
Daylight indicator (1 if daylight, 0 otherwise) � � � � �1.129*** �4.82 �0.994** �1.96
Standard deviation of parameter density function � � � � � � 6.582*** 3.89
Medium visibility indicator (1 if visibility between 100 and 200 m,

0 otherwise)
� � � � �0.968** �2.17 �0.641*** �2.70

High visibility indicator (1 if visibility above 200 m, 0 otherwise) � � � � �1.247** �2.47 �0.032 �0.11
Summer indicator (1 if summer, 0 otherwise) � � �0.777*** �2.94 � � �0.220 �0.97
Early morning indicator (1 if time 00:00–7:00, 0 otherwise) � � 0.964*** 3.02 1.249*** 2.59 0.756** 2.41
Daytime off-peak indicator (1 if time 9:00–16:59, 0 otherwise) 0.770*** 3.28 � � � � �0.473 �1.59
l � � � � � � 1.418*** 5.37
Standard deviation of parameter density function � � � � � � 2.333*** 3.41
Threshold covariates
Speed limit indicator (1 if speed limit > 55 mph, 0 otherwise) � � � � � � �1.123*** �3.65
No driver seatbelt use indicator (1 if driver without seatbelt, 0

otherwise)
� � � � � � �0.520* �1.83

Truck indicator (1 if truck, 0 otherwise) � � � � � � �1.290*** �4.01

***, **, * ==>Significance at 0.99, 0.95, and 0.90 level of confidence, respectively.
RPLHMV: Random parameters logit model with heterogeneity in the means and variances model.
RTRPGOL: Random thresholds random parameters generalized ordered logit model.
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severe injury for 99.24% of the drivers. Whereas, driving during dark-lighted conditions reduced the probability of severe
injury for 68.33% of the drivers. The threshold was a random parameter with a mean of 1.509, and a standard deviation
of 0.841. Given these distributional parameters, the intercept for the threshold increased its value for 96.36% of observations.
And two variables were found to parametrically affect the threshold. The dark-lighted indicator increased the value of the
threshold and thus decreased the probability of severe injury; while the truck indicator decreased the value of the threshold
and thus increased the probability of severe injury.
6.3. Different effects of factors determining the driver injury-severity of crashes

In this section, the statistically superior RPLHMV model is leveraged to quantitatively describe the impact of explanatory
variables on the driver injury-severity, and explore how these factors change over the years (between 2016–2017 and 2018–
2019). The model estimation results indicate that several drivers-, vehicles-, road-, and environment-specific characteristics
significantly affect the injury-severity of drivers. Table 11 provides their magnitudes (derived from their pseudo-elasticities)
on injury severities with respect to the two traffic barrier types (w-beam and cable) in mountainous regions for the 2016–
2017 and 2018–2019 models. The crash injury-severities and the effects of explanatory variables vary across traffic barriers
and different periods for the same traffic barrier. To that end, statistically significant variables that show temporally stable
elasticities are likely more important for formulating long-term strategies to enhance traffic safety on mountainous roads.
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Table 10
Model results of RTRPGOL and RPLHMV for cable barrier crashes in 2018–2019 [No Injury (NI), Minor Injury (MI), and Severe Injury (SI)].

Variable RPLHMV-NI RPLHMV-MI RPLHMV-SI RTRPGOL

Coef. t-stat Coef. t-stat Coef. t-stat Coef. t-stat

Constant �1.663*** �4.15 �1.414*** �3.21 � � �1.763*** �6.82
Driver characteristics
Driver under alcohol influence indicator (1 if driver under

alcohol influence, 0 otherwise)
� � 0.948*** 3.39 � � 0.090 0.32

No driver seatbelt use indicator (1 if driver without seatbelt, 0
otherwise)

� � � � 1.096** 2.38 0.545* 1.80

Vehicle characteristics
Truck indicator (1 if truck, 0 otherwise) � � � � �2.369*** �4.94 �0.941 �0.80
Roadway characteristics
Homogeneous section indicator (1 if crash occurred in a

homogeneous section, 0 otherwise)
� � �1.290*** �4.75 � � �1.784** �2.00

Curved indicator (1 if crash occurred in curved segment, 0
otherwise)

� � 0.708* 1.79 � � 1.239*** 3.36

Standard deviation of parameter density function � � � � 1.371* 1.71
Speed limit indicator (1 if speed limit > 55 mph, 0 otherwise) � � � � �0.787** �2.20 0.565** 2.26
Environment characteristics
Daylight indicator (1 if daylight, 0 otherwise) � � � � �1.291*** �4.77 � �
Dark lighted indicator (1 if dark lighted, 0 otherwise) �2.851*** �4.03 � � � � �6.385* �1.94
Standard deviation of parameter density function 2.523*** 2.79 � � � � 13.388** 2.51
Heterogeneity in the mean of random parameter
Dark lighted indicator (1 if dark lighted, 0 otherwise): Curved

indicator (1 if crash occurred in curved segment, 0
otherwise)

1.175* 1.67 � � � � � �

Dark lighted indicator (1 if dark lighted, 0 otherwise): Winter
indicator (1 if winter, 0 otherwise)

�2.554*** �2.85 � � � � � �

Dark lighted indicator (1 if dark lighted, 0 otherwise): Summer
indicator (1 if summer, 0 otherwise)

1.889** 2.23 � � � � � �

Medium-low visibility indicator (1 if visibility between 50 and
100 m, 0 otherwise)

2.003*** 2.81 � � � � 1.087** 2.07

Standard deviation of parameter density function 1.721* 1.93 � � � � � �
Heterogeneity in the mean of random parameter
Medium-low visibility indicator (1 if visibility between 50 and

100 m, 0 otherwise): Curved indicator (1 if crash occurred
in curved segment, 0 otherwise)

�2.210*** �3.14 � � � � � �

Medium-low visibility indicator (1 if visibility between 50 and
100 m, 0 otherwise): Rainy/snowy/foggy indicator (1 if
rainy/snowy/foggy, 0 otherwise)

1.643** 2.01 � � � � � �

Medium-low visibility indicator (1 if visibility between 50 and
100 m, 0 otherwise): Winter indicator (1 if winter, 0
otherwise)

1.757** 2.15 � � � � � �

Sunny indicator (1 if sunny, 0 otherwise) � � � � �0.675* �1.92 �0.268 �0.86
Summer indicator (1 if summer, 0 otherwise) � � �1.189*** �2.94 � � �0.676*** �2.88
l � � � � � � 1.509*** 6.14
Standard deviation of parameter density function � � � � � � 0.841*** 2.59
Threshold covariates
Dark lighted indicator (1 if dark lighted, 0 otherwise) � � � � � � 1.740*** 3.08
Truck indicator (1 if truck, 0 otherwise) � � � � � � �1.900*** �4.15

*** **, * ==> Significance at 0.99, 0.95, and 0.90 level of confidence, respectively.
RPLHMV: Random parameters logit model with heterogeneity in the means and variances model.
RTRPGOL: Random thresholds random parameters generalized ordered logit model.
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Table 11 directly compares the effect of the relative temporal stability variables across traffic barrier types, injury severity
levels, and years.

6.3.1. Driver characteristics
As shown in Table 11, there are two statistically significant driver-related variables that exhibit relative temporal stabil-

ity. Among them, driving while drunk and unbelted (without wearing a seat belt) consistently affects all traffic barrier
crashes.

Both drunk and unbelted drivers are associated with an increased likelihood of severe injuries in all traffic barrier crashes
in mountainous regions. Alcohol can paralyze drivers’ nerves and impair their control ability (Yan et al., 2022), which is crit-
ical in avoiding traffic barrier crashes. The use of seat belts can protect the driver from secondary impact injuries by restrain-
ing them in their seat and preventing them from rushing forward when the vehicle impacts the traffic barriers.
Consequently, enforcement and, possibly, increasing penalties for such risk-driving behavior (drunk and unbelted driving)
is likely going to improve mountainous road safety.
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Table 11
Comparison of the effects of the independent variables (and their magnitudes, as derived from their pseudo-elasticities (%)) on injury severities with respect to
the two traffic barrier crashes in mountainous regions for the 2016–2017 and 2018–2019 models.

Variable W-beam barriers Cable barriers

2016–2017 2018–2019 2016–2017 2018–2019

SI MI NI SI MI NI SI MI NI SI MI NI

Driver characteristics
Driver under alcohol influence

indicator (1 if driver under
alcohol influence, 0
otherwise) [MI]

�65.42 30.46 �60.33 –23.09 14.36 �16.24 �12.16 3.32 �8.18 �18.18 4.09 �18.18

No driver seatbelt use
indicator (1 if driver
without seatbelt, 0
otherwise) [SI]

1.25 �6.07 �6.37 14.68 �56.64 �56.64 11.20 �5.39 �3.14 8.94 �2.74 �1.82

Novice driving experience
indicator (1 if driving
experience between 3 and
10 years, 0 otherwise) [MI]

� � � 0.61 �11.56 �1.94 � � � � � �

Vehicle characteristics
Truck indicator (1 if truck, 0

otherwise) [SI]
10.89 �5.66 �5.77 4.31 �9.06 �9.06 �29.03 3.78 2.25 �34.98 1.74 1.03

Non local vehicle indicator (1
if non-local vehicles, 0
otherwise) [SI]

4.59 �2.28 �2.35 � � � � � � � � �

Roadway characteristics
Homogeneous section

indicator (1 if crash
occurred in a homogeneous
section, 0 otherwise) [MI]

4.67 �28.91 4.67 2.11 �13.82 1.64 0.34 �4.37 0.37 35.72 �65.62 18.55

Ramp indicator (1 if crash
occurred in ramp, 0
otherwise) [SI]

3.14 �7.16 �7.66 2.73 �10.33 �10.33 � � � � � �

Curved indicator (1 if crash
occurred in curved
segment, 0 otherwise) [MI]

� � � � � � �6.79 12.38 �6.79 �16.43 30.91 �7.98

Curved indicator (1 if crash
occurred in curved
segment, 0 otherwise) [NI]

�41.23 �41.23 18.18 �11.75 �7.43 2.96 � � � � � �

Wet surface indicator (1 if
road surface condition was
wet, 0 otherwise) [SI]

�4.37 0.34 0.37 �14.03 1.62 0.91 � � � � � �

Speed limit indicator (1 if
speed limit > 55 mph, 0
otherwise) [SI]

76.67 –22.52 –23.46 30.59 �9.59 �3.56 �35.56 2.16 1.72 �24.12 2.16 1.72

Environment characteristics
Daylight indicator (1 if

daylight, 0 otherwise) [SI]
7.45 �3.53 �3.05 6.88 �1.37 �2.00 �35.25 3.30 4.51 �58.01 5.20 3.37

Dark lighted indicator (1 if
dark lighted, 0 otherwise)
[MI]

�10.96 35.47 �10.96 � � � � � � � � �

Dark lighted indicator (1 if
dark lighted, 0 otherwise)
[NI]

� � � � � � � � � 20.03 20.03 �17.83

Low visibility indicator (1 if
visibility below 50 m, 0
otherwise) [SI]

� � � 2.30 �0.28 �2.02 � � � � � �

Medium-low visibility
indicator (1 if visibility
between 50 and 100 m, 0
otherwise) [SI]

3.57 �0.42 �3.16 � � � � � � � � �

Medium-low visibility
indicator (1 if visibility
between 50 and 100 m, 0
otherwise) [NI]

� � � � � � � � � �0.40 �3.25 3.65

Medium visibility indicator (1
if visibility between 100
and 200 m, 0 otherwise)
[SI]

� � � �1.25 0.36 0.89 �1.22 0.23 1.00 � � �
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Table 11 (continued)

Variable W-beam barriers Cable barriers

2016–2017 2018–2019 2016–2017 2018–2019

SI MI NI SI MI NI SI MI NI SI MI NI

Medium visibility indicator (1
if visibility between 100
and 200 m, 0 otherwise)
[MI]

� � � 0.20 �1.30 1.09 � � � � � �

High visibility indicator (1 if
visibility above 200 m, 0
otherwise) [MI]

� � � � � � 0.84 �1.50 0.66 � � �

Sunny indicator (1 if sunny, 0
otherwise) [SI]

�2.97 0.18 2.78 � � � � � � �1.06 0.20 0.86

Cloudy indicator (1 if cloudy, 0
otherwise) [MI]

� � � 0.39 �0.67 0.28 � � � � � �

Summer indicator (1 if
summer, 0 otherwise) [MI]

� � � � � � 0.39 �1.12 0.74 0.24 �1.34 1.10

Early morning indicator (1 if
time 00:00–7:00, 0
otherwise) [SI]

� � � � � � 2.27 �1.30 �0.97 � � �

Early morning indicator (1 if
time 00:00–7:00, 0
otherwise) [MI]

� � � � � � �1.00 2.94 �1.94 � � �

Daytime off-peak indicator (1
if time 9:00–16:59, 0
otherwise) [NI]

� � � � � � �0.75 �3.25 3.99 � � �

Weekends indicator (1 if crash
occurred during the
weekends, 0 otherwise) [SI]

� � � �1.06 0.25 0.82 � � � � � �
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6.3.2. Vehicle characteristics
As shown in Table 11, there is only one statistically significant vehicle-related variable that exhibits relative temporal sta-

bility. The truck indicator is found to have the opposite effect on different traffic barrier crashes: it is found to increase the
likelihood of severe injuries in w-beam barrier models, while it decreases the likelihood of severe injuries in the cable barrier
model. The large size and heavy weight of trucks increase the kinetic energy when hitting w-beam barriers. Cable barriers
may effectively absorb the energy from the collision with trucks and result in low occupant impact force due to their flexible
properties.

6.3.3. Roadway characteristics
Table 11 shows that there are five statistically significant roadway-related variables that exhibit relative temporal stabil-

ity. Among them, the homogeneous section indicator has a consistent effect in all traffic barrier crashes. Ramp sections and
wet surfaces have a significant effect only in w-beam barrier crashes. The speed limit (segments with a speed limit greater
than 55mph) and the curved section indicator have the opposite effect on different traffic barrier crashes.

The homogeneous section indicator is found to be negatively associated with severe injuries in all traffic barrier models.
In other words, heterogeneous sections, whose geometrical characteristics (i.e., number of lanes, roadway width, etc.) change
throughout the length of the segment, increase the likelihood of severe injuries in all traffic barrier crashes in mountainous
regions. Consequently, warning signs should be used in front of heterogeneous sections to warn drivers of potential hazards.

Furthermore, the ramp section indicator is found to increase the likelihood of severe injuries only in w-beam barrier
crashes. The main cause of a high severe injury rate on ramp sections may be attributed to design misconfigurations of
w-beam barriers, especially for traffic barrier end treatments (Molan et al., 2021a). End treatments are critical in the occur-
rence of traffic barrier crashes, because they may increase the potential of a vehicle rollover due to their configurations.
Accordingly, road authorities should take reasonable measures to account for their limitations (e.g., through the use of blunt
and turned-down end terminals of w-beam barriers).

Moreover, wet surfaces are found to reduce the likelihood of minor injuries in the w-beam models. This is in line with
previous studies that have associated wet surface conditions with a reduced likelihood of severe injuries, due to the drivers’
speed reducing their speed to compensate for the seemingly reduced friction due to the wet conditions (Fountas et al., 2021;
Fountas and Anastasopoulos, 2017; Islam and Mannering, 2021).

Lastly, segments with curves and segments with high-speed limits (greater than 55mph) are found to have the opposite
effect on different traffic barrier crashes. Curved segments increase the likelihood of no injuries in the w-beam barrier model,
while they increase the likelihood of minor injuries in the cable barrier model. A curved segment is more likely to be asso-
ciated with a run-off-road crash. At the same time, cable barriers are far less rigid than semi-flexible or rigid barriers, with
the former being more prone to causing the vehicle to rollover and run off the road in case of a collision. Consequently, more
17



Table 12
Proposed strategies and proper resource allocation based on study findings.

W-
beam

Cable Guidelines

The opposite effect between different traffic barrier crashes
Curved section ; " Cable barriers are not suitable for curved sections; they can cause the vehicle to run off the road in case of a

collision.
Speed limit

(>55mph)
" ; The higher speed increases the kinetic energy in crashes. Buffered cable barriers may partially absorb the

energy to reduce drivers’ injury-severity, as compared to w-beam barriers.
Truck " ; The large size and heavy weight of trucks increase the kinetic energy when hitting w-beam barriers. Cable

barriers may effectively absorb the energy from the collision with trucks and result in low occupant impact
force due to their flexible properties.

Daylight " ; Higher speed of vehicles during daylight may increase the impact energy in crashes involving less buffered
w-beam barriers.

Single effect in one type of traffic barrier crashes
Summer ; The summer indicator decreases the likelihood of severe injuries in the cable barrier model.
Ramp section " Road authorities should take reasonable measures to minimize hazards associated with blunt or turn-down

end terminals of w-beam barriers for ramp segments.
Wet surfaces ; Attention should be exercised on dry surfaces, as they increase injury severity in w-beam barrier crashes due

to reduced buffering.
Consistent effect in all traffic barrier crashes
Driver under alcohol

influence
" " Enforcement and education programs about drunk and unbelted drivers should be enhanced.

No driver seatbelt
use

" "

Homogeneous
section

; ; Warning signs should be considered in front of heterogeneous sections to warn drivers of potential hazards.

": Indicates an increase in the estimated likelihood for severe injuries; ;: Indicates a decrease in the estimated likelihood for severe injuries.

D. Song, X. Yang, P. Ch. Anastasopoulos et al. Analytic Methods in Accident Research 39 (2023) 100282
rigid barriers, such as concrete barriers, may be more suitable for curved roads instead of cable barriers. In addition, seg-
ments with high-speed limits (greater than 55mph) have lower severity crashes involving cable barriers, and higher severity
crashes involving w-beam barriers. The reason for lower severity cable barrier crashes in higher-speed limit segments can be
attributed to the reduced buffering. The higher speed increases the kinetic energy in crashes. Buffered cable barriers may
partially absorb the energy to reduce drivers’ injury-severity as compared to w-beam barriers.

6.3.4. Environmental characteristics
Table 11 shows that there are two statistically significant environment-related variables that exhibit relative temporal

stability. Among them, the daylight indicator is found to have the opposite effect on different traffic barrier crashes. And
the summer indicator has a significant effect only in cable barrier crashes.

The daylight indicator increases the likelihood of severe injuries in the w-beam barrier model, while it decreases the like-
lihood of severe injuries in the cable barrier model. As compared to cable barriers that are flexible, w-beam barriers cannot
effectively absorb the energy from a crash due to their semi-rigid properties. In addition, the summer indicator decreases the
likelihood of severe injuries in the cable barrier model.

In view of the existing mountainous traffic barrier safety challenges, we present in Table 12 a set of strategies based on
the findings from the model estimation results of this paper.

7. Conclusion

Using crash data from mountainous regions in Guiyang City, China, from 2016 to 2019, this paper provides an empirical
assessment of the performance of ordered and unordered discrete outcome models for examining the impact of exogenous
factors determining the driver injury-severity of crashes involving two types of traffic barrier in mountainous regions: w-
beam barriers and cable barriers. To that end, six different models were estimated: (1) GOL, (2) RTRPGOL, (3) MNL, (4)
RPL, (5) RPLHM, and (6) RPLHMV model. The analysis went beyond a traditional cause-and-effect study by investigating
how these effects changed over time and across traffic barrier types. Three driver-injury levels were considered: no injury,
minor injury, and severe injury. The results of the estimated models showed that a wide variety of driver-, vehicle-, road-,
and environment-specific characteristics affect driver injury-severity. The key findings are summarized as follows:

(1) The model comparison results show that the MNL model is found to statistically outperform (although, marginally)
the GOL model in terms of goodness-of-fit measures, and the RTRPGOL model is statistically superior to the MNL
and RPL models. However, the RPLHMV model statistically outperforms the RTRPGOL model. To that end, the superior
RPLHMV model is leveraged to quantitatively describe the impact of explanatory variables on the driver injury-
severity, and investigate how these effects changed over time and across traffic barrier types. In addition, the results
of the temporal effects analysis show that some variables present relative temporal stability, which is important for
formulating long-term strategies to enhance traffic safety on mountainous roads.
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(2) The effects of the explanatory factors that exhibit relative temporal stability are found to vary across different traffic
barrier types.
3 A f
mounta
steering
(a) First, four explanatory variables are found to have the opposite effect on different traffic barrier crashes. For exam-
ple, the variables representing high-speed limits, high proportion of large trucks, and daylight, all increase the like-
lihood of severe injuries in the w-beam barrier model, while they decrease the likelihood of severe injuries in the
cable barrier model. The curved section indicator decreases the likelihood of severe injuries in the w-beam barrier
model, and increases the likelihood of severe injuries in the cable barrier model.

(b) Second, a number of explanatory variables are found to have a significant effect in only one type of traffic barrier
crashes. For w-beam barrier crashes, the ramp section and dry surfaces indicators increase the likelihood of severe
injuries.

(c) Third, variables reflecting drunk drivers, unbelted drivers, and heterogeneous segments, are all found to increase
the injury severity of all traffic barrier crashes.
The findings from this analysis also offer a number of practical implications. First, this study provided an empirical assess-
ment of the performance of ordered and unordered discrete outcome models, which may be helpful in choosing a suitable
way to model traffic barrier crash data. In addition, the study also untangled the multilayered role of unobserved hetero-
geneity in traffic barrier crashes. Decision-makers can gain deeper insights into the factors influencing the injury severity
of traffic barrier crashes and develop more reasonable countermeasures to reduce injury severity.3 Second, this study
revealed different effects of explanatory variables on different traffic barrier crashes. The results from this study are expected
to help policymakers to take necessary measures in reducing traffic barrier crashes in mountainous regions by forming appro-
priate strategies and by allocating properly their available resources at the pre-planning phase (see Table 12).

This study also has some limitations. For example, the factors affecting the injury-severities of crashes involving rigid-
type barriers (e.g., concrete barriers) or end-treatments could be further explored with the collection of additional data that
include their detailed geometric characteristics. Another research avenue is to investigate crashes involving additional road-
side barrier types in both urban and rural settings. This will provide a more comprehensive overview of the differences
among crash-injury severities involving various roadside barriers, and will help devise appropriate protection measures
to minimize crash injury-severity in mountainous regions.
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