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Sampling-Based Model Predictive Control
Leveraging Parallelizable Physics Simulations

Corrado Pezzato ", Chadi Salmi

Javier Alonso-Mora

, Elia Trevisan

Abstract—We present a sampling-based model predictive control
method that uses a generic physics simulator as the dynamical
model. In particular, we propose a Model Predictive Path Integral
controller (MPPI) that employs the GPU-parallelizable IsaacGym
simulator to compute the forward dynamics of the robot and
environment. Since the simulator implicitly defines the dynamic
model, our method is readily extendable to different objects and
robots, allowing one to solve complex navigation and contact-rich
tasks. We demonstrate the effectiveness of this method in several
simulated and real-world settings, including mobile navigation with
collision avoidance, non-prehensile manipulation, and whole-body
control for high-dimensional configuration spaces. This is a pow-
erful and accessible open-source tool to solve many contact-rich
motion planning tasks.

Index Terms—Optimization and Optimal Control, Contact
Modeling, Whole-Body Motion Planning and Control, Model
Predictive Path Integral Control.

I. INTRODUCTION

S ROBOTS become increasingly integrated into our daily

lives, their ability to navigate and interact with the envi-
ronment is becoming more important than ever. From collision
avoidance to moving obstacles out of the way to pick up some
objects, robots must be able to plan their motions while account-
ing for contact with their surroundings. At the same time, robotic
platforms require many Degrees Of Freedom (DOF) to achieve
agile and dexterous movements. All this poses many challenging
problems to motion planners, such as collision-free navigation
in complex and dynamic environments, high DOF mobile ma-
nipulation, contact-rich tasks such as picking and pushing, and
in-hand manipulation. Solutions to these challenges exist but
are often specialized and not easily transferable to different sce-
narios. Learning-based approaches, for example, can leverage
physics simulators to train policies for complex tasks but require
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Fig. 1. Scheme of the proposed method using IsaacGym as the dynamic model
for MPPI. At each time step, IsaacGym is reset to the current world’s state x, and
random input sequences V" are applied for the horizon 7', to every environment.
MPPI uses the resulting rolled-out trajectories to approximate the optimal control
uy, given a cost function C.

extensive training and resources. For instance, [1] took years to
develop, utilizing 6144 CPU cores and 50 hours of training to
learn a policy for in-hand cube manipulation.

On the other hand, model-based approaches like Model Pre-
dictive Control (MPC) can solve challenging tasks [2]. However,
MPC often relies on constrained optimization, requiring con-
straint simplifications, precise modeling, and ad-hoc solutions
to handle discontinuous dynamics in contact-rich tasks [3], [4].
While utilizing motion memory for warm-starting optimization
can enhance performance [5], [6], the above limitations still
persist. Recently, Model Predictive Path Integral (MPPI) con-
trol [7] and its information-theoretic counterpart [8] addressed
optimal control problems via importance sampling, mitigating
challenges tied to constrained optimization algorithms dealing
with non-convex constraints and discontinuous dynamics. How-
ever, substantial modeling remains necessary.

In this paper, we propose a training-free model-based frame-
work for real-time control of complex systems, where one
designs only a cost function, not the problem’s dynamics and
contact models. We introduce the idea of using a general GPU-
parallelizable physics simulator, IsaacGym [9], as the dynamic
model for MPPI. This creates a robust framework that general-
izes to various tasks. An overview is given in Fig. 1.

A. Related Work

This section provides an overview of selected works fo-
cusing on motion planning and contact-rich tasks in robotics.
Motion planning pipelines are categorized as global and lo-
cal motion planning [10]. Local motion planning encompasses
approaches like operational space control, geometric methods
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such as Riemannian Motion Policies [11] and Optimization Fab-
rics [12], [13], and receding-horizon optimization formulations
like Model Predictive Control (MPC) [14] that may incorporate
learned components [15]. Most MPC algorithms rely on con-
strained optimization and assume smooth dynamics. However,
contact-rich tasks pose challenges due to their non-smooth and
hybrid nature, involving sticking and sliding frictions or entering
contacts, requiring extensive modeling and ad-hoc solutions for
pushing tasks [3], [4].

In contrast, Model Predictive Path Integral (MPPI) control [7],
[8] is a sampling-based MPC approach that approximates op-
timal control via parallel sampling of input sequences. MPPI
is gradient-free and well-suited for systems with non-linear,
non-convex, discontinuous dynamics and cost functions. It has
successfully controlled high-degree-of-freedom manipulators
in real-time [16], incorporating self-collision avoidance using
trained neural networks and collision-checking functions [17].
However, these approaches have limited interaction with the
environment. In [18], the authors propose ensemble MPPI, a
variation that handles complex tasks and adapts to parameter
uncertainty. Still, the task modeling remains unclear, and no
open-source implementation is available.

To alleviate the problem of explicit modeling, some works
have addressed the use of physics simulators for sampling-based
MPC. In [19], the authors use the RaiSim simulator to sample
waypoints for foot placement of a quadruped. Moreover, Howell
etal. [20] proposed a sampling-based MPC method that employs
MuJoCo [21] as a dynamic model for rolling out sampled
input sequences. This offloads modeling efforts to the physics
engine, simplifying controller design. However, MuJoCo’s par-
allelization capabilities are constrained by the number of CPU
threads, limiting real-time performance when many samples are
required to solve a task. Moreover, results are presented only in
simulation.

A high number of samples is particularly crucial in tasks
such as non-prehensile manipulation with robot manipulators.
Traditional approaches often involve sampling end-effector tra-
jectories on a plane, relying on additional controllers for robot
actuation and learned models for predictions [22], [23]. For
instance, Arruda et al. [22] use a forward-learned model trained
on 326 real robot pushes. This model is employed by an MPPI
controller to plan push manipulations as end-effector trajecto-
ries. Cong et al. [23] train a Long Short-Term Memory-based
model to capture push dynamics using a dataset of 300 ran-
domized objects. End-effector trajectories are sampled within
a rectangular 2D workspace. Both methods require a separate
controller to convert cartesian motions into joint commands, and
both perform push manipulation through a sequence of pushes,
resulting in discontinuous motion. These methods are not easily
transferable to other robots, particularly non-holonomic mobile
pushing.

B. Contributions

This paper presents a novel open-source implementation of
Model Predictive Path Integral (MPPI) control with a generic
physics simulator as the dynamical model. This enables the
method to solve many contact-rich motion planning problems.
The two key contributions of this work are:
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e The integration of the MPPI controller with the GPU-
parallelizable simulator IsaacGym, distinguishing our ap-
proach from prior works in MPPIL. Our method facilitates
collision checking and contact-rich manipulation tasks
leveraging the contact models and rigid body interactions
included in the simulator without requiring gradients. Our
solution allows smooth real-time control of real-world sys-
tems with high degrees of freedom, efficiently computing
hundreds of rollouts in parallel.

e A versatile method applicable to various motion planning
challenges, including collision avoidance, prehensile and
non-prehensile manipulation, and whole-body control with
diverse robots. We provide an open-source implementation
that can be readily reused and extended to heterogeneous
robots and tasks.

We perform many contact-rich tasks with several robotic plat-
forms and real-world experiments. We include omnidirectional
and differential drive robots and fixed or mobile manipulators
and compare against many specialized baselines.

II. SAMPLING-BASED MPC VIA PARALLELIZABLE
PHYSICS SIMULATIONS

In this section we describe the integration of MPPI with Isaac-
Gym, which enables real-time control of complex contact-rich
robotic systems with minimal modeling.

A. Background Theory on MPPI

In this section, we give an overview of the background theory
of MPPI. For more theoretical insights, please refer to the orig-
inal publications [7], [8]. MPPI is a method to solve stochastic
optimal control problems for discrete-time dynamical systems
such as

Tip1 = f(z,00), ve ~ N(ug, D), (1

where the nonlinear state-transition function f describes how the
state x evolves over time ¢ with a control input v,. MPPI samples
K noisy input sequences Vj. These sequences are then applied
to the system to simulate K state trajectories Qg, k € [1, K],
over a time horizon 7":

Qk’ = [I’Oaf(‘r()avo)a--.af(xT—th—l)]' (2)

Given the state trajectories () and a designed cost function C
to be minimized, the total state-cost Sj of an input sequence
V}: is computed by functional composition Sy, = C(Qy). Then,
each rollout is weighted by importance sampling weights wy,
computed via an inverse exponential of Sy with tuning parameter
B, normalized by 7. The minimum sampled cost p = miny Sk
is subtracted for numerical stability, leading to:

1 1 i
W = — exp <(Skp)> , Zwkzl 3)
" A k=1
The parameter § is also known as inverse temperature. The

weights are then used to compute the approximate optimal
control input sequence U*:

K
U= wVi “)
k=1
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Equations (3) and (4) demonstrate the approach taken to approx-
imate the optimal control. Equation (4) represents a weighted
average of sampled control inputs, while (3) assigns exponen-
tially higher weights to less costly inputs. The first input ) of
the sequence U™ is applied to the system. Then the process is
repeated.

B. Proposed Algorithm

We now describe how we use MPPI with IsaacGym, summa-
rized in Algorithm 1. We initialize an input sequence Uj,,;+ as a
vector of zeroes with a length of T, where 7' is the time horizon
in steps. We then sample K sequences of additive input noise &,
for exploring the input space around Uj,;;. The key concept is
that, instead of explicitly defining a nonlinear transition function
f, we use IsaacGym to compute the next state x;,1 given x; and
control input v;. This is done by reading the current state of the
environment, resetting the state of the simulator to the observed
values, and then applying the noisy control input sequence to
simulate the state trajectories in IsaacGym. Note that these K
state trajectories can be computed independently of each other.
We use this property to forward and simulate all the rollouts in
parallel, leveraging the parallelization capabilities of IsaacGym.
Instead of sampling from a Gaussian distribution, we follow the
strategy of a recent paper [16] that proposes to sample Halton
Splines instead for better exploration and smoother trajectories.
Similar to [16], we fit B-Splines to inputs sampled from a Halton
sequence using standard Python modules and then we evaluate
the spline at regular intervals to retrieve &. Unlike [16], we do
not update the variance of the sampling distribution. Instead,
we keep it as a tuning parameter, constant during execution.
Updating the variance as in [16] can lead to better convergence
to a goal, but it also leads to stagnation of the control over
time, which is harmful in the contact-rich tasks considered in
this paper. Once the task begins, we reset our K simulation
environments on IsaacGym to the current observed world state
x. In parallel, we can now roll out the sampled input sequences
V. into state trajectories () using K simulation environments
on IsaacGym and compute their corresponding cost Sy using
the designed cost function C. The cost is discounted over the
planning horizon 7" by a factor v [16]:

71
Sk = Z'th(xt,lmvt,k) ©)
Py

Next, we can compute the importance sampling weights wy, as in
(3). The normalization factor 7 is a useful metric to monitor, as
it indicates the number of samples assigned significant weights.
We use this to tune S for the next iteration such that 7 is
maintained within an upper and lower bound:

0.96; ifn > nmax
1.26; it n < Mmin (6)
B otherwise

ﬁtJrl =

Empirically, we observed in all performed tasks that setting
5 < n < 10 is a good balance for smooth behavior. Finally, an
approximation of the optimal control sequence U* can now be
computed via a weighted average of the sampled inputs (4). U+
is now updated with U*, time-shifted backward of one timestep

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 10, NO. 3, MARCH 2025

Algorithm 1: Proposed Approach.
1: Initialize:
Uinit = [0, e ,0]
& < sampleHaltonSplines()
while taskNotDone do
x < observeEnvironment()

2:

3

4:  resetSimulations(x)
5: fork=1...K
6.
7
8

DUinitGRT
>k=1..K

> in parallel do
Vi = Uinit + &k

[Qk, Sk] < computeRolloutCost(Vy, )

> (3)
> (6)

: wy < importanceSampling
9: B« updateBeta(S,n)
10: U =30 wiVa
110 Ujpir +— tzmeShzft(U*)
12 applyInput (uy)

so that it can be used as a warm-start for the next iteration,
Uinit = [u},...,ub_;,uk ;] € RT. The second last input in
the shifted sequence is propagated to the last input as well. From
the sequence U*, only the first input uy is applied to the system,
and the next iteration starts.

C. Exploiting the Physics Simulator Features

IsaacGym provides useful information and general models
that are particularly useful for robot control in contact-rich tasks.
Besides being useful to simulate the physical interaction of
rigid bodies, we leverage IsaacGym for collision checking and
tackling model uncertainty with domain randomization.

1) Collision Checking: Collision checking in robotics can
be challenging for a number of reasons, one of them being
computational complexity. This is particularly true if the task
requires continuous collision checking as the robot moves in
dense environments with complex object shapes. To overcome
this problem, approximations are often introduced with the
convexification of the space. However, this requires several
heuristics and can hinder robot motions in complex scenes.

Instead, we propose to tackle the problem of collision check-
ing by using the already available contact forces tensor from
IsaacGym, which is available for each simulation step. To avoid
collisions, we then define a cost function proportional to the
contact forces for the MPPI:

C1coll = Wec Z Fobsta (7)

where F;,; are the contact forces exerted on the different ob-
stacles. This allows us to perform continuous collision checking
at each time step over the horizon 7', with arbitrary complex
shapes. By heavily penalizing contacts with obstacles, the robot
will avoid collisions. On the other hand, by relaxing the weight
w, one can allow for certain contacts required for the task, such
as rolling a ball against a wall (Section III-C2b).

2) Tackling Model Uncertainty: IsaacGym is designed to
easily support domain randomization. We use this feature to
randomize the object properties in each environment in case of
contact-rich tasks, such that uncertainty is incorporated in every
rollout for the MPPI. Effectively, this allows to account for un-
certainty in environment perception. Specifically, starting from

Authorized licensed use limited to: TU Delft Library. Downloaded on February 17,2025 at 10:40:44 UTC from IEEE Xplore. Restrictions apply.
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Fig. 2. Examples for pure motion planning benchmark setups. Left: point
robot with 3 DOF. Right: manipulator with 7 DOF.

nominal physics properties, in every rollout objects are spawned
with uncertainty on mass and friction nominal values, sampled
from a uniform distribution. Additionally, the object size is
also randomized with additive Gaussian noise, see Section 111
for experiment-specific details. Therefore, every simulation is
different from the others, and all simulations are different from
the world such that we can account for model mismatch. In a
sense, we perform a sort of domain randomization in real-time
to address the challenge of model uncertainty and imperfect
perception.

III. EXPERIMENTS

We perform several experiments in three different cate-
gories: 1) motion planning and collision avoidance, 2) whole-
body control of high DOF systems in contact-rich settings,
and 3) non-prehensile manipulation. Experiments and simu-
lations are conducted on an Alienware Laptop with Nvidia
3070 Ti graphics card. The software implementation (https:
//autonomousrobots.nl/paper_websites/isaac-mppi) consists of
our open source Python package that can easily be installed,
tested, and extended to new robots and tasks. In real-world tests,
we used a Robot Operating System (ROS) wrapper to connect
the robot to the planner and a motion capture system to determine
the pose of manipulated objects. Our implementation allows for
position, velocity, and torque control. In this paper, all robots
are velocity-controlled except for the mobile manipulator in
Section III-B, which is torque-controlled.

A. Motion Planning and Collision Avoidance

We compare the performance of the proposed method in a
pure local motion planning setting, i.e. no interaction with the
environment. This aims to showcase the fact that our method
is comparable to state-of-the-art techniques when no contact
is involved. The main focus is the quantitative analysis of the
method compared to two baselines, specifically optimization
fabrics as presented in [12], [13] and a simple MPC formulation
solved with ForcesPro [24]. We make use of an already avail-
able benchmark setup, the localPlannerBench [25]. We present
results for two cases, namely a holonomic robot, and a robotic
arm (Franka Emika Panda). For all experiments, we randomize
five obstacles and the goal positions in N = 100 runs, see Fig. 2
for some examples. Solutions by the three methods are assessed
using four metrics, e.g. time to reach the goal, path length, solver
time, and minimum clearance. The compared methods show
minimal differences in path length clearance for both examples
(Fig. 3). However, our method consistently reaches the goal
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Fig.3. Results in pure motion planning problems for point robot with 3 DOF.
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(b) Comparison with ForcesPro MPC

Fig.4. Results in pure motion planning problems for a robot manipulator with
7 DOE.
TABLE I
SUMMARY OF MOTION PLANNING EXPERIMENTS
Metric Robot Fabric ForcesPro MPC MPPI
Average Point 1.0ms 2.5ms 55ms
Solver Time Panda 1.4ms 51ms 63ms
Average Point 7.4s 6.1s 2.7s
Time to Goal Panda 9.6s 4.2s 0.8s

faster (Figs. 3 and 4, and Table I). This is attributed to the perfect
representation of the robot’s collision shapes used in our method,
compared to the enclosing spheres in the ForcesPro MPC and
optimization fabrics. It should be noted that our approach in-
curs higher computational times (Table I) due to the physics
simulations performed by IsaacGym. Despite this, our method
remains competitive in motion planning applications and offers
significant advantages in contact-rich tasks, as demonstrated in
the following sections.

B. Prehensile Manipulation With Whole-Body Control

Our approach scales well with the complexity of the robot. In
Fig. 5, the task is to relocate an object from a table to an [z, y, 2]
location using a mobile manipulator with 12 DOF.

Although this is arguably a complex task for a robot, which
usually requires manual engineering of a sequence of move-
ments, such as navigation to a specific base goal, and pre-post

Authorized licensed use limited to: TU Delft Library. Downloaded on February 17,2025 at 10:40:44 UTC from IEEE Xplore. Restrictions apply.
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| Obstacle
Fig. 5. Whole-body motion of a mobile manipulator moving a cube from

initial to a desired location.

Fig. 6. Example of non-prehensile push task with a 7-DOF robot arm using
an object from [23].

grasps, the solution is rather simple with our method. In fact, we
specify the following cost function for the task:

Cpick = Odist + Cpose + Ccoll + Ovela (®)

where we consider the Euclidean distance of the end-effector to
the object and the object to the goal: Cy;s; = wi||prr — pol| +
wo,|lpa — pol|. We give an incentive to keep the robot in a
comfortable pose by penalizing deviations from a desired arm
and gripper pose, end-effector orientation, as well as imposing
a minimum end-effector height Cpose = Cparm + Crgrip +
Coee + Cree- We minimize collisions penalizing the forces on
the table C'.,;;. Lastly, we penalize high arm and base velocities
Crel = Cvarm + Cvpase since, in this experiment, we torque-
control the robot. By sampling all the DOF at once, including the
base and the gripper, we achieve a fluid motion from start to end
with no added heuristics for pick positions. We performed ten
pick-and-deliver tasks, and the time taken was 15.67 4+ 7.21 s.
The high standard deviation is because sometimes the cube falls,
but the robot can recover by picking it up again from the floor.
For smooth whole-body motions of high DOF systems like
this, many samples are required. Empirically, when the number
of samples exceeds 50, a GPU pipeline is computationally
cheaper than a CPU and scales better. Using IsaacGym, we can
compute all the 750 samples required for mobile manipulation
in parallel, computing the next control input online at 25 Hz.

C. Non-Prehensile Manipulation

One advantage of using a physics simulator is that one can
leverage generic physics rules for contacts, thus eliminating the
need for learning or engineering specialized contact models. We
demonstrate this in non-prehensile manipulation tasks involving
a7-DOF arm (Fig. 6) and two different mobile robots (Figs. 7, 8,
and 9). In Section III-C1, we apply our method to the two
pushing tasks tackled in [22], [23], and we compare with their

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 10, NO. 3, MARCH 2025

Fig.7. Non-prehensile task using an omnidirectional base. w; = 0.2, wo,, =
2,wo, = 3,wq = 0.6, w. = 10,717 = 8, dt = 0.04, K = 300.

Fig.8. Rolling ball non-prehensile pushing. Goal: Ball placement between two
obstacles. w; = 0.2, wo, = 0.1, wo, =0, weg = 0.1, w. = 0.001, T =28,
dt = 0.04, K = 300.

‘Obstacles

Fig. 9. Non-prehensile differential drive pushing. Same task as omnidirec-
tional base. wy = 0.1, wo,, = 2, wo,. =3, wq = 0.6, w. = 100, T' = 12,
dt = 0.04, K = 400.

final results. Additionally, in Section III-C2, we demonstrate the
ease of transferring our approach to different robots, including
differential-drive.

1) Comparison With Baselines for Pushing With a Robot
Arm: We consider two baselines for non-prehensile pushing.
In the first one, [22] tackles the problem of pushing a relatively
small object to a target pose with either O (Pose 1) or 90 deg
(Pose 2). They also consider sequences of push actions starting
far from the object. In the second baseline, [23] considers 5
relatively big objects and assumes the robot’s end effector is
close to the object during execution. Since we do not have access
to the same hardware, and the authors of the considered baselines
do not provide their models and data, we only compare against
their final results. We set up our simulation to match as close as
possible the tasks in the baseline using the available information
from the papers. Finally, we tune our method for the two tasks
separately for a fair comparison with the individual baselines.
The approach in [22] utilizes an MPPI in combination with
a learned model for predicting pushing effects on an object.
The authors sample 2D end-effector trajectories and then rely
on inverse kinematic solvers, achieving push manipulation as a
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TABLE II
SUMMARY OF COMPARISON WITH [22]

Approach Start pose Final cost
. Pose 1 0.057
Baseline [22] Pose 2 0.079
Ours (sim) Pose 1 0.029 +0.09
Pose 2 0.03 £0.12

sequence of disconnected pushes. In contrast, we use MPPI to
sample the control input directly as joint velocities in [saacGym.
By doing so, we achieve smooth continuous pushes where
end-effector repositioning emerges naturally, and learning is not
required. The cost function to be minimized for the task is:

Cpush = Cdist + Cpush align + Cee align- (9)
Cuist has the weighted distance robot-object, and object-goal.:

Yo —valls

where pa and )¢ are the goal’s position and orientation, while
pr and po denote the end-effector tip and block positions,
respectively. The cost function Cpysh align Promotes keeping
the object between the robot and the goal. It is computed as
cos(a)) + 1, where « is the angle between the robot-object
(pr — po) and goal-object (pe: — po) vectors and +1 is added
to make the cost term always non-negative [26]:

Cuist = wt||pr — pol| +wo,|lpa — pol| +wo,

(pr — po) - (P — Po)
llpr — pollllpe — poll

+1|. o

Cpush align = Wa

cos(a)

We promote the end-effector to maintain a downward orientation
at height dj, using pitch 6 and roll ¢:

Cee align = Wee, | ‘ [(ba 9] - [07 0] H + Weey, | |pRZ - dh| |

The cost is minimized when the end-effector is close to the
block at a certain height and orientation, and the block is be-
tween the end-effector and the goal at the desired goal pose.'
We perform the same task as in [22] and compare the final
results of pushing a squared object on a table surface to two
poses (Pose 1 and 2) with a robot arm equipped with a stick.
In Table II, we report our findings, with our method show-
ing double the accuracy. Our approach performs continuous
pushes, unlike the baseline that stops for replanning after each
short push. Thus, we complete either task in approximately
8 seconds, while the baseline takes approximately 4 minutes.
We used the same evaluation metric of [22] for the final cost
that is a weighted average of position and orientation errors:
L5(lpe, — po.|+ Ipc, —po,l) +0.011¢o — ¢l For every
run, the object is also randomized in the same way as the rollouts.
See the accompanying L. video for the actual behavior.

We further compare our approach with [23] in terms of the
success rate of non-prehensile manipulation. Particularly, we
consider the same task settings, pushing 5 different objects to 3

lTuning: wp =1, wo, = 16, w0, = 2, wee;, = 8, Wee,. = 0.5,w, = 0.8,
dt =0.04, T =8, K = 500.
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TABLE III
SUMMARY OF COMPARISON WITH [23]
Object
Approach Metric A B c D B
Baseline [23] Success [%] 93,5 909 939 916 89.5
Ours (sim) Success [%] 100 93.3 96.7 100 66.7

different goal poses. To do so we simply change the objects in
the simulation and slightly re-tune the MPPL.?

Since the trained models from [23] are not provided, we only
compare the final results, reported in Table III. Again, thanks
to the continuous pushes, our method takes about 3 seconds per
task, while the baseline needs about 24 seconds. We performed
10 pushes per object, totaling 150 pushes. For the non-prehensile
manipulation task with the robot arm, the mass and friction of
manipulated objects have 30% uncertainty, and table friction has
90% uncertainty on the nominal value, sampled uniformly. Size
is randomized with zero-mean additive Gaussian noise with a
2 mm standard deviation.

Our method outperforms both baselines in terms of time to
completion, accuracy, and success rate, except for one manip-
ulated object. We achieve this without limiting the sampling to
2D end-effector trajectories, without needing learned models,
and without requiring inverse kinematics solvers.

2) Extension to Different Robots: Our method is also easily
extensible to different robot platforms and objects because it
does not require specialized models or controllers that are robot
specific, as opposed to the baselines considered. We chose to use
an omnidirectional base, and a differential drive robot, to push
a box or a sphere to a goal from different initial configurations.
To do so, we only need to change the environment and robot
URDF in IsaacGym, and re-tune the cost function for pushing
due to different hardware.

a) Omnidirectional push of a box: The first task is the non-
prehensile pushing of a box with an omnidirectional base, see
Fig. 7. Success is defined when the box is placed at the goal
within 5 cm in the x — y direction and within 0.17 radians in
rotation. The robot cannot touch obstacles. The cost function
for the MPPI is the same as in (9), re-tuned without considering
end effector height and orientation since we now operate on a
plane. We add an explicit term for collision avoidance C.,; =

We Z Fobst:

Cpush = Cdist + Cpush align + CVcolly (1 1)

b) Omnidirectional push of a sphere: One can easily extend the
example above to different objects with very different dynamics.
We chose a sphere instead of a box, and we simply change the
object spawned in the simulation. For this task, we want to put the
ball in between the two walls, Fig. 8. We considered multiple
runs from two different starting poses, A and B. Results are
summarized in Table IV and the execution can be seen in the
accompanying video.

¢) Differential drive non-prehensile pushing: We perform dif-
ferential drive non-prehensile pushing, see Fig. 9, with the same

Tuning: wy = 5, wo,, = 25, wo, = 21, Wee,, = 30, wWee, = 0.3, wq =
45,dt = 0.04, T = 8, K = 500.
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(b) Pushing to the goal on the left with 90° rotation.

Fig. 10.
object without specifying any desired contact point.

TABLE IV
RESULTS WITH OMNIDIRECTIONAL BASE

Obj Env. Runs Time [s]
Bo Pose A 5 9.66 £ 0.84
X Pose B 5 12.84 £ 0564
Sohere __Pose A 5 376 £ 0.38
P Pose B 3 745 £ 0.59

cost function as before (see (11)) but re-tuned. One can change
the robot for the task by changing the URDF, neglecting all the
additional contact modeling required in a classical model-based
MPC. The time taken to push the box to the goal was 18.31 s.
In the mobile non-prehensile pushing experiments, objects to
manipulate are spawned with 30% uncertainty on mass and
friction sampled uniformly, while object size is randomized with
Gaussian noise with a standard deviation of 5 mm.

D. Real-World Experiments

To demonstrate the applicability of our approach, we transfer
to the real world a subset of the non-prehensile manipula-
tion tasks previously presented in Section III-C with both the
robot manipulator and the omnidirectional base. In particular, in
Fig. 10, we show the results of the 7 DOF manipulator pushing
a product to two different goals, similar to the simulations
corresponding to Table II. As presented in Fig. 1, the samples
are rolled outin K = 500 simulated environments in IsaacGym,
which, at each timestep, are initialized to the state of the real
world. Based on this, the optimal control is estimated and applied
to the real system.

When transferring to the real world, compared to the exper-
iments in Section III-C1, only the cost function weights were
re-tuned. The horizon, control frequency, number of samples,
structure of the cost function, and randomization of the sampled
environments remained unchanged.

From the experimental evaluation on the real robot, we ob-
serve that the time to complete the pushing tasks and the final
position errors are comparable to the results in the simulation

Pushing to two goals with a 7 DOF manipulator directly controlling all joint velocities. Our method allows the end-effector to re-position around the

Fig. 11.  Qualitative real-world experiments with disturbances. The behavior
can be seen in the accompanying video.

from Table II. Importantly, these results are achieved without
making assumptions on specific contact points. Thus, the robot
can naturally re-position itself and change contact location au-
tonomously. Additionally, our method allows us to sample joint
velocities directly; thus, we do not restrict the sampling to 2D
end-effector trajectories to be translated into joint commands,
as often seen in other approaches.

Lastly, to demonstrate robustness, we disturb the execution
of pushing tasks by hand with the manipulator and the omni-
directional base (Fig. 11). Since we do not assume the robot to
be behind the object to be pushed for successful execution, and
since the planning and execution happen in real-time at 25 Hz,
we can largely perturb the task and let the robot compensate.

IV. DISCUSSION

In this section, we discuss key aspects and potential future
work related to our solution. First, the computational demands
of planning and control with our method can be high when
extending the time horizon to several seconds. To keep the
time horizon limited for real-time control while preventing
being trapped in local minima, future work should incorporate
global planning techniques such as A*, RRT, and Probabilistic
Roadmaps (PRM) [27] to guide the local planner. Similarly to
warm starting predictive controllers [5], [6], one could make
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use of motion libraries of previous executions or learned poli-
cies along with random rollouts, to improve the sampling ef-
ficiency and exploration [28]. Second, in real-world scenarios,
uncertainties and discrepancies between simulated and actual
environments could present challenges for achieving precise
movements and manipulation. We utilized randomization of
object properties in the rollouts to address some uncertainties.
However, online system identification to converge to the true
model parameters is not performed. Enhancing the robustness
of the MPPI algorithm itself by reducing model uncertainty,
as demonstrated by [18], could further improve performance.
Third, tuning control algorithms for optimal performance is
time-consuming. Implementing autotuning techniques can auto-
mate the process and reduce manual effort. Finally, incorporating
additional sensor support, such as lidars and signed distance
fields, could be beneficial.

V. CONCLUSION

We presented a way to perform Model Predictive Path Integral
controller (MPPI) that uses a physics simulator as the dynamic
model. By leveraging the GPU-parallelizable IsaacGym sim-
ulator for parallel sampling of forward trajectories, we have
eliminated the need for explicit encoding of robot dynamics,
contacts, and rigid-body interactions for MPPI. This makes our
method easily adaptable to different objects and robots for a wide
range of contact-rich motion-planning tasks. Through a series of
simulations and real-world experiments, we have demonstrated
the effectiveness of this approach in various scenarios, includ-
ing motion planning with collision avoidance, non-prehensile
manipulation, and whole-body control. We showed how our
method can compete with state-of-the-art motion planners in
case of no interactions, and how it outperforms by a margin
other approaches for contact-rich tasks. In addition, we provided
an open-source implementation that can be used to reproduce
the presented results, and that can be adapted to new tasks and
robots.
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