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In volume fluorescence microscopy, refractive index matching is essential to minimize aberrations. There are, however,
common imaging scenarios where a refractive index mismatch (RIM) between immersion and a sample medium cannot
be avoided. This RIM leads to an axial deformation in the acquired image data. Over the years, different axial scaling
factors have been proposed to correct for this deformation. While some reports have suggested a depth-dependent axial
deformation, so far none of the scaling theories has accounted for a depth-dependent, non-linear scaling. Here, we derive
an analytical theory based on determining the leading constructive interference band in the objective lens pupil under
RIM. We then use this to calculate a depth-dependent re-scaling factor as a function of the numerical aperture (NA),
the refractive indices n1 and n2, and the wavelength λ. We compare our theoretical results with wave-optics calculations
and experimental results obtained using a measurement scheme for different values of NA and RIM. As a benchmark,
we recorded multiple datasets in different RIM conditions, and corrected these using our depth-dependent axial scaling
theory. Finally, we present an online web applet that visualizes the depth-dependent axial re-scaling for specific optical
setups. In addition, we provide software that will help microscopists to correctly re-scale the axial dimension in their
imaging data when working under RIM.

Published by Optica Publishing Group under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work

mustmaintain attribution to the author(s) and the published article’s title, journal citation, andDOI.
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1. INTRODUCTION

Optical sectioning has enabled imaging of large volumes by a
fluorescence microscope (FM), as realized in confocal, two-photon
microscopy [1], structured illumination microscopy (SIM) [2],
and light sheet microscopy [3]. For optimal imaging, aberrations
need to be minimized by avoiding a RIM between the detection
microscope objective immersion medium n1 and specimen n2 [1].
Failing to do so results in the blurring of the point spread function
(PSF) of the microscope and therefore a loss in resolving power, as
well as in a deformation of the recorded volume along the optical
axis.

This axial deformation arises from the refraction of the periph-
eral rays on the RIM interface, causing an axial shift of their focal
point with respect to the focal point of the paraxial rays [4]. This
effect can be characterized using focal shift 1 f = AFP−NFP,
where AFP is the actual focal position (the real position of the
object) and NFP is the apparent or nominal focal position (the
microscope z-position where the object is found in focus) [1]. Just
as the true lateral distances are recalculated back from an image
using the magnification of the objective M, so ought the AFPs

(i.e., the true axial distances) be re-scaled using the re-scaling factor
ζ = AFP/NFP. The accurate knowledge of the re-scaling factor
enables reliable quantitative volumetric microscopy.

While it is generally unfavorable to have a refractive index mis-
match for, e.g., illumination intensities in confocal microscopy,
there are common imaging scenarios in which a mismatch is still
present in the most optimal configuration [1,4]. For instance, as
the resolving power of the microscope depends on the NA of the
detection objective, high-NA oil immersion objectives (n1 = 1.52)
are used to image water-like specimens (n2 ≈ 1.33). In addition,
embedding and fixation media rarely match exactly, in terms
of refractive index, the immersion media of air, water, silicone,
glycerol, or oil objectives, leading to the axial deformation of the
imaged volumes.

Refractive index mismatches are often more pronounced in
integrated cryogenic fluorescence and/or correlative microscopy
[5–8]. In such systems, light and electron microscopies are com-
bined in a single setup, and air objectives are often used for imaging
specimens with a higher refractive index. The use of air objectives
is a straight-forward choice, as the specimen resides in a vacuum
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chamber for electron microscopy. In cryogenic fluorescence
microscopy the specimen is cooled to temperatures below 120 K,
which makes the use of a non-touching air objective favorable, as
any other (touching) immersion objectives are challenging in terms
of engineering [9–12].

The development of the confocal microscope, along with its
optical sectioning capability, allowed for 3D imaging, and hence
the need for axial scaling theories arose. In the paraxial approxi-
mation, the axial distances are simply re-scaled using the ratio
of the two refractive indices [13], which works well for low-NA
objectives. Visser et al. presented a scaling theory that is based on
the contribution of the high-angle (or marginal) rays to the axial
scaling [14]. More recently, several scaling theories have been
presented that result in re-scaling factors somewhere in between
the paraxial and high-angle approximations [4,15,16]. The most
accurate method to determine axial scaling is full wave-optics
calculations of the microscope’s point spread function under RIM
[17–19]. As these calculations are computationally expensive and
complex, they are hardly used by microscopists to calculate the
axial re-scaling factor.

The re-scaling factor can also be measured experimentally
by observing the NFP of a fluorescent bead or interface through
a medium with refractive index n2, while knowing the AFP of
said bead or interface. This can be done by constructing a sam-
ple cell where the fluorescence is present far from the coverslip,
which is later filled with a liquid with n2 [4,20,21]. The AFP can
be obtained through imaging with an objective where n1 = n2

[4,20,21] or by measuring Fabry–Pérot fringes in the transmission
spectrum of the cell [21]. Alternatively, the apparent axial defor-
mation of a spherical object, larger than the PSF of the microscope,
can be used to measure the axial scaling [14,22]. Recently, a differ-
ent approach was presented where a coverslip was step-wise coated
with a low-index polymer (n2 ≈ 1.33) and the AFP was measured
using stylus profilometry [23]. With this method, the axial scaling
can be measured in the range of a few microns from the coverslip,
while the former methods are used to measure tens of microns away
from the coverslip.

While the explicit axial scaling theories in literature are all depth
independent, there exist some reports in literature that this factor
is actually depth dependent. In 1993, Hell et al. wrote “. . . it can be
expected that the regions close to the cover glass are slightly more scaled
than those in deeper regions of the specimen.” [17]. Later, wave-optics
calculations showed a non-linear dependence of the focal shift
1 f on the imaging depth for high-NA objectives and large RIMs
[18,19]. For instance, Sheppard and Török reported a non-linear
dependence of the focal shift 1 f at a depth <30 µm from the
coverslip using wave-optics calculations (NA= 1.3, n1 = 1.52,
n2 = 1.33) [18], where the re-scaling factor was 5% larger close to
the coverslip than at large distances. More recently, the measure-
ments by Petrov et al. showed significant non-linear axial scaling
for imaging depths<4 µm [23].

There is, up to now, no straightforward equation that can be
used to explicitly calculate the re-scaling factor as a function of
depth. Moreover, a depth dependence of the re-scaling factor has
not been measured experimentally for large depths, and for several
NAs and multiple RIM conditions.

Here, we present an analytical theory that calculates the depth-
dependent re-scaling factor as a function of the NA, the refractive
indices n1 and n2, and the wavelength λ. The gist of the theory
is in the determination of the leading constructive interference

band in the objective lens’ pupil under RIM. We compare the the-
ory to both full wave-optics calculations and experiments. In the
experiments, we have imaged the gap between two substrates that
were brought closer to each other step by step. By filling the space
between the substrates with a liquid with index n2 we were able to
measure the NFP, while the AFP was determined independently
from the microscope by the piezo-stage holding the top substrate.
We have measured the re-scaling factor ζ for several objectives
with various NAs, immersion refractive index n1, and sample
refractive index n2, with both RIMs where n1 < n2 and n1 > n2 in
a wide range of depths and compared them to the analytical theory
and the wave-optics calculations. We demonstrate that the axial
re-scaling of 3D microscopy data, recorded with a refractive index
mismatch, using the depth-dependent re-scaling factor outper-
forms the re-scaling using existing linear re-scaling theories from
literature. Finally, we provide the reader with an online web applet
where one can visualize the depth-dependent axial re-scaling factor
for their specific optical setup and Python software to re-scale data
acquired under RIM.

2. SCALING OF AXIAL DISTANCES DUE TO
REFRACTIVE INDEX MISMATCH

A. Geometrical Optics

Given a fluorescent object emitting light in an ideal, spherical
fashion, a flat interface with a refractive index mismatch will cause
disturbance to the fluorescent light propagation–in the form of
refraction. When an objective lens is collecting light under RIM,
this effect will be more pronounced with increasing NA of the
objective lens (OL) (and therefore collection angle); see Fig. 1(a)
for the overall geometry.

This is further illustrated using geometrical optics in Fig. 1(b)
through Fig. 1(d), where a light source is located 10µm away from
the interface between n1 and n2. In Fig. 1(b) no RIM is present
(n1 = n2 = 1.0), where the undisturbed wave-fronts and rays are
shown in solid blue and black, respectively. The dotted horizontal
line depicts the interface with the RIM. Figures 1(c) and 1(d)
show two cases where RIMs are present, respectively, for n1 < n2

and n1 > n2. The black rays follow Snell’s law when crossing the
interface, resulting in the wave-fronts (solid blue) deviating from
the ideal spherical shape (dashed blue). The caustic surface (pur-
ple) indicates where geometrical optics breaks down. From this
simple illustration, we see that the effect of RIM becomes more
pronounced with increasing collection angles (numerical aperture)
and increasing RIM contrast1n = |n2 − n1|.

When imaging with a microscope, there are two (independent)
axial coordinates to be considered: the actual depth of the fluores-
cent emitter zA, as measured from the RIM interface (zA = 10 µm
in Fig. 1) and the nominal depth of the focal plane of the micro-
scope into the sample zN . A 3D image stack recorded with a
microscope under RIM has zN as an axial coordinate. Similar to
using the magnification M to re-calculate the true lateral dimen-
sions, the axial coordinates should be re-scaled using the re-scaling
factor ζ ≡ zA/zN to obtain a 3D stack with the actual depth zA as
an axial coordinate.

Geometrical optics can produce several estimates for the re-
scaling factor ζ . The paraxial rays are nicely focused, even under
RIM, producing the estimate [13]

ζparaxial = n2/n1. (1)
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Fig. 1. Effects of RIM demonstrated with geometrical optics. (a) OL imaging a fluorescent object (green star) without and with refractive index mis-
match, left and right, respectively. The dotted boxes are detailed out in (b)–(d). (b) A fluorescent object (green star) sits zA = 10 µm deep from the refractive
index interface (dotted line) between n1 and n2. With n1 = n2 = 1.0, rays (black) and wave-fronts (blue) are depicted. (c) In the case where n1 = 1.0, n2 =

1.33 the ideal spherical wave-fronts (dashed blue) are deformed (solid blue) after crossing the refractive index (RI) interface. Rays are depicted in red to indi-
cate RIM and the caustical surface (purple) shows where geometrical optics breaks down. (d) In the opposite RIM case, where n1 = 1.52, n2 = 1.33, again
the wave-fronts are deformed under RIM and total internal reflection occurs. The NA is (b), (c) 0.95 and (d) 1.4.

Another geometrical optics estimate comes from Visser et al.,
obtained from the marginal rays still fitting into the NA [14]:

ζmarginal =

√
(n2

2 −NA2)

(n2
1 −NA2)

. (2)

The two re-scaling factor values ζparaxial and ζmarginal are
irreconcilable in modern high-performance objective lenses
(with NA→ 0.95× n1). For the example shown in Fig. 1(c),
ζparaxial = 1.33 and ζmarginal = 2.98, while for Fig. 1(d)
ζparaxial = 0.88 and ζmarginal→ 0. Although these estimates are
derived from geometrical optics, ζparaxial and ζmarginal do provide
lower and upper bounds when n1 < n2 (reverse when n1 > n2) and
are still useful checks in the wave-optics treatment.

B. Analytical Expression Describing Depth-Dependent
Axial Scaling

When considering the PSF of a wide-field microscope under RIM
two intrinsic length scales need to be considered: (i) several strictly
geometrical parameters n1, n2, zA, zN , and NA, and (ii) the physi-
cal parameter of the (vacuum) wavelength of light used λ= 2π/k,
which is independent of the exact RIM geometry, where k is the
wave number. With changing imaging depth, the geometrical
parameters zA, zN do change, while the wavelength of light λ
does not. Following the derivation outlined below, we find it is
exactly the interplay between the two length scales that yields a
depth-dependent re-scaling factor:

ζ =

{
min[ζuniv, ζcrit], if n2 ≥ n1

max[ζuniv, ζcrit], otherwise
, (3)

with

ζuniv =
n2

n1
×
(1− ε)+ m

n1

√
ε(2− ε)

1−
(

n2
n1

)2
ε(2− ε)

,

ζcrit = Re

n1 −

√
n2

1 −NA2

n2 −

√
n2

2 −NA2

 ,
m2
= n2

2 − n2
1,

ε =
λ/4

zAn2
×

{
+1, if n2 ≥ n1

−1, otherwise
,

where ζ is the axial re-scaling factor (ζ ≡ zA/zN), n1 the immer-
sion refractive index, n2 the sample refractive index, λ the
wavelength (in vacuum), zA the actual depth of the imaged object,
and NA the numerical aperture. The re-scaling factor ζ is a combi-
nation of the depth-dependent and NA-independent ζuniv, which
approaches the paraxial limit ζparaxial for large depths, and the
depth-independent and NA-dependent ζcrit at shallow depths. ζcrit

becomes relevant at such shallow depths where the assumptions
used to derive ζuniv breakdown (see for details Section 2.D).

C. Derivation of Analytical Theory through Wave-Optics

With geometrical optics ambiguous in defining the re-scaling
factor ζ we have to turn to wave-optics. The most complete wave-
optics theory describing aberrations occurring under RIM was
developed by Hell et al. [17]. Their calculation scheme takes into
account the vectorial nature of light and is, in essence, equivalent
to the three-fold application of the scalar model described in [24].
The scalar model in turn is based on the general diffraction integral
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applied to the ray fans in RIM [25–27]. A scalar (radially symmet-
ric) PSF of a wide-field microscope under RIM is an integral over
Bessel beams:

PSF (x , y , zA, zN)=

∣∣∣∣∫ A(θ)× J0(r kr )× e i8(θ) sin θdθ

∣∣∣∣2,
(4)

where the PSF is dependent on both the actual depth zA and on
the nominal depth zN , as an image with intensities I (x , y , zN)

is a convolution of fluorophore distribution f (x , y , zA) and the
PSF(x , y , zA, zN). Furthermore, r =

√
x 2 + y 2 as the PSF is

cylindrically symmetric, the amplitude factor A(θ)= 1/
√

cos θ is
due to the Abbe-sine condition, J0 is the Bessel function, i2

=−1,
and the integral is taken over the NA of the objective lens. The
effects of RIM are engraved in the phase function8(θ):

8(θ)= k′z(θ)× zA − kz(θ)× zN, (5)

where kz and k′z are the axial wave numbers of the Bessel beams,
respectively, for a matched case and one undergoing RIM. In the
full vectorial treatment, there are three integrals of the form of
Eq. (4): I0, I1, and I2 (one for each of the E-vector directions, with
different orders of Bessel functions). The first integral I0 has a
Bessel function of the order zero and is, in essence, the diffraction
integral used in the scalar-light theory. The other two integrals I1

and I2 of the full vectorial theory contain the same phase function
8(θ) as in I0, and, moreover, they vanish at r = 0. Thus, we will
consider only the scalar-light version of the wave-optics Eq. (4) for
finding an explicit analytical form of the re-scaling factor ζ in the
following paragraphs.

Compared to the ambiguous behavior of geometrical optics,
Eq. (4) provides a clear prediction of the behavior of a microscope
imaging under RIM. For a given depth zA of a fluorescent object
there is a focal plane depth zN(zA) where the PSF is maximal
(i.e., the object is in focus), and ζ(zA)≡ zA/zN(zA). Under
RIM, two intrinsic length scales need to be considered: (i) several
strictly geometrical parameters n1, n2, zA, zN , and NA, and (ii) the
(vacuum) wavelength λ= 2π/k, which is totally independent

of the RIM geometry. These two length scales are fused together
in Eq. (4) via the phase function 8(θ). With changing imaging
depth, the geometrical parameters also change (e.g., the path
length difference between the paraxial and the marginal rays).
Reversely, the wavelength of light does not depend on the depth.
So it is the interplay between geometrical and physical length scales
that results in a depth-dependent re-scaling factor ζ(zA) 6= const.

To find ζ without calculating the integrals like Eq. (4) we esti-
mate the maximum of such an integral by finding the leading terms
of a simpler integral:

Iapprox =

∣∣∣∣∫ e i8(θ)dθ

∣∣∣∣2. (6)

To estimate the maximum positions of Iapprox and assuming that
e i8 is oscillating fast (for example, at large depth), we try to find the
stationary points θ∗ where d8/dθ = 0 [28]. The structure of8(θ)
in the case of n1 < n2 is shown in Fig. 2. The axial wave numbers
under RIM and without RIM, k′z and kz, belong to the Ewalds’
spheres [Fig. 2(a), red and black], with k′r (θ)≡ kr (θ)= k1 × sin θ
conserved under RIM due to Snell’s law. Radial wave number
conservation allows the use of sin θdθ = dkr /k2, making Eq. (4)
more similar to Iapprox. The two integrals [Eqs. (4) and (6)] are
taken over spherical segments having the same width, but different
radii due to RIM, where the larger sphere is flattened compared
to the smaller one. The RIM phase-function 8(θ) re-scales these
spheres in the axial directions in zA and zN ; see Fig. 2(b). The
stationary points θ∗ are found where the two re-scaled spheres are
running in parallel to each other (dashed lines, d8/dθ = 0). There
is always a stationary point at θ = 0, and a stationary point might
appear for a single non-zero θ . For a given zA and zN , there is an
interference between the contributions from the two critical points
(e i8(0) and e i8(θ∗)), which controls the shape of the PSF. And when
the interference is the most constructive, then the object appears in
focus.

To find the non-zero stationary point θ∗ we rewrite 8 using
Ewalds’ spheres and Snell’s law:

(a) (b)

kr

kzk0

k'

k0 × NA

θ

kz(θ)

k'z(θ)

kr

z × kz

k
1  ×

 z
N  

θ

k
2  ×

 z
A  

Φ(θ)

dΦ

dθ
= 0

ΔzN 
 

Φ(0)

Fig. 2. Structure of8(θ) for n1 < n2, where the diffraction integral in k-space is illustrated with the arcs of Ewalds’ spheres. k ′z and kz are the axial wave
numbers with and without RIM. (a) After transition to a new medium the NA is preserved (due to the Snell’s law) while a different Ewalds’ sphere is used,
going from black (no RIM) to red (under RIM). (b) The RIM phase-function8(θ) re-scales (multiplies) the spheres in the axial directions in zA (red) and
zN (black), and the phase derivative can be set to zero only at one point on the arc depending on the exact values of zN and zA (for non-zero θ ). The Ewalds’
sphere curvature under RIM changes with changing depth (red translucent,1zN) and with it the stationary point d8/dθ = 0.



Research Article Vol. 11, No. 4 / April 2024 / Optica 557

k′z(θ)
2
= k′2 − kr (θ)

2, kz(θ)
2
= k2
− kr (θ)

2,

so that when differentiating8 by kr ,

d8
dkr
=−

kr

k′z
zA +

kr

kz
zN, (7)

and at a stationary point θ∗ : d8
dθ = 0 (k∗r :

d8
dkr
= 0),

k′z
kz

∣∣∣∣
θ∗

=
zA

zN
, (8)

that is, the larger radius and thus flatter spherical segment were
multiplied by the larger depth zA and the smaller radius and more
curved spherical segment by the smaller zN (respectively, red and
black in Fig. 2). The distance in the vertically stretched segments
is the phase function 8(θ) as sketched in Fig. 2(b). The single
intermediate stationary point has to be a minimum for n1 < n2, as
the difference k′z(θ)− kz(θ) in Fig. 2(a) increases for larger angles
θ (radial wave numbers kr ) than it is at θ = 0 (kr = 0):

zA > zN,

k′′z (0)− kz(0) < k′′z (θmax)− kz(θmax),

8(0) <8(θmax).

The stationary phase points of the integral in Eq. (6) correspond
to the rays of geometrical optics [26–28]. Hence, the re-scaling fac-
tor must fall within the bounds set by ζparaxial and ζmarginal. Contrary
to the purely geometrical optics approach, we have now two contri-
butions to balance: the paraxial one e i8(0) and the intermediate one
e i8(θ∗).

We estimate for which zA/zN the two stationary point con-
tributions e i8(0) and e i8(θ∗) build the largest constructive
interference. The relative strengths of the two leading contri-
butions in the integral Iapprox [Eq. (6)] depend on the width of
the stationary points of 8, and hence on the second derivative
of 8. The contributions of stationary-points in Eq. (4) are also
weighted by pupil-amplitude factor A(θ). Instead of finding the
exact weight of each contribution, we study how the phase func-
tion8(θ) behaves in several focal positions zN(zA), which can be
determined by full vectorial PSF calculations.

This is shown in Fig. 3(a) for NA= 0.95, n1 < n2. The phase
function at the second stationary point lies between−π

3 and− 2π
3

from the phase function at the first stationary point. Therefore, we
select the following condition when deriving an explicit formula
for ζ :

8(θ∗)−8(0)≈−
π

2
, (9)

where a fixed−π/2 separation is assumed, as if the two stationary
points constitute a single and uninterrupted constructive interfer-
ence area when the microscope is in focus. With this approximate
condition set, Snell’s law, and the Ewalds’ spheres scaling Eq. (8)
established, we solve a quadratic equation to derive an explicit
formula for ζ . From Eq. (9) and the definition of ζ we have

8(0)= n2k0zA − n1k0zN,

8(θ∗)= k′z(θ
∗)zA − kz(θ

∗)zN,

k′z(θ
∗)−

kz(θ
∗)

ζ
= n2k0 −

n1k0

ζ
−

π

2zA
,

ζ
k′z(θ

∗)

k0
−

kz(θ
∗)

k0
= n2ζ ×

(
1−

λ/4

n2zA

)
− n1,

where the dimensionless parameter ε ≡ λ/4
n2zA

appears. This param-
eter embodies the before-mentioned interplay between the purely
geometrical and purely physical length scales of the RIM. Applying
Eq. (8),

k′z(θ
∗)2 − kz(θ

∗)2

kz(θ∗)k0
= n2ζ(1− ε)− n1. (10)

Using Ewalds’ spheres, Snell’s law, and Eq. (8) yields

k′z(θ)
2
+ kr (θ)

2
= n2

2k2
0,

kz(θ)
2
+ kr (θ)

2
= n2

1k2
0,

k′z(θ)
2
− kz(θ)

2
= (n2

2 − n2
1)k

2
0 ≡m2k2

0,

kz(θ
∗)2(ζ 2

− 1)=m2k2
0 .

Going back to the left hand-side of Eq. (10),

k′z(θ
∗)2 − kz(θ

∗)2

kz(θ∗)k0
=

m2k0

kz(θ∗)
=m

√
ζ 2 − 1,

and hence for the equation

m
√
ζ 2 − 1= n2ζ(1− ε)− n1, (11)

ζ 2

(
(1− ε)2 −

(
m
n2

)2
)
− 2

n1

n2
ζ(1− ε)+ 1= 0, (12)

which, when solved for ζ leads to

ζ(zA)=
n2

n1
×
(1− ε)+ m

n1

√
ε(2− ε)

1−
(

n2
n1

)2
ε(2− ε)

. (13)

When imaging under the RIM condition n1 > n2, the deriva-
tion is similar, with some slight differences. The red and black
colors in Fig. 2 should be switched, which changes the second
stationary point from a minimum to a maximum:

zA < zN,

k′′z (0)− kz(0) < k′′z (θmax)− kz(θmax),

8(0) >8(θmax).

as is shown in Fig. 3(b) where the second stationary point is
observed between +π/3 and +2π/3 from the first. With a fixed
separation of +π/2 assumed, we start the derivation with a
reversed sign on the right-hand side of Eq. (9) and thus obtain a
reversed sign of ε. Together with m2 < 0 the same formula Eq. (13)
therefore remains valid for the case of n1 > n2.

D. Critical Value at Shallow Depths

At very large depths, the re-scaling factor ζ approaches the paraxial
regime [Eq. (1)], as ε→ 0. At very shallow depths (i.e., large ε)
Eq. (13) becomes problematic: ζ(zA = 0)=∞ when n2 > n1

and ζ(zA = 0)= 0 for n2 < n1, going beyond the bounds of the
geometrical optics [ζmarginal in Eq. (2)]. This is related to the fact
that the actual value of the NA of the objective lens was omitted in
the derivation so far. At ever decreasing depths, the second critical
point θ∗ moves to higher wave numbers kr and higher angles θ
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Fig. 3. RIM phase function difference 8−8(0) taken in the focal position zN(zA), determined from the wave-optics calculations for fluorophore
depths zA set to 10µm (red), 20µm (green), 50µm (blue), and 100µm (black). (a) Objective NA of 0.95, n1 = 1.0, n2 = 1.33 (solid lines) and n2 = 1.52
(dashed lines). (b) Objective NA of 1.4, n1 = 1.52, n2 = 1.33 (solid lines) and n2 = 1.0 (dashed lines). For both cases, the second stationary point is
somewhere betweenπ/3 and 2π/3 from the paraxial stationary point at kr /k0 = 0.

(peak of the phase difference in Fig. 3) until it falls outside the
NA of the optical system [Fig. 2(a)]. Hence, there is some (NA-
dependent) depth below which the assumptions we used to derive
Eq. (13) break down. We will hence derive a NA-dependent critical
value of re-scaling ζcrit to be used at small depths.

With the whole range of phase function values8(θ) becoming
smaller than π/2 at small depths, the earlier condition on the sep-
aration of the critical points [Eq. (9)] cannot be satisfied anymore
within the confines of the NA. At such small depth, the entire pupil
participates in constructive interference and the breakdown condi-
tion can be written as

8(0)=8(θ∗)−
π

2
=8(θmax). (14)

From the definition of8(θ) and kr (θmax)= k0 ×NA,

n2k0zA − n1k0zN =

√
n2

2 −NA2k0zA −

√
n2

1 −NA2k0zN,

and as ζ ≡ zA
zN

one gets

ζcrit =
n1 −

√
n2

1 −NA2

n2 −

√
n2

2 −NA2
. (15)

Equation (15), together with the universal NA-independent
expression for ζ Eq. (13), forms Eq. (3) and describes the
depth-dependent axial scaling when imaging under RIM.

E. Re-scaling Microscopy Data

When re-scaling microscopy data from the native zN coordinate
into the true depth coordinate zA, it is convenient to use the re-
scaling factor as a function of the nominal depth zN instead of
the actual depth zA utilized in Eq. (13). In this case, a different
dimensionless parameter δ can be used for the derivation:

δ ≡
λ/4

n1zN
, (16)

and Eq. (12) can be re-written as

m
√
ζ 2 − 1= n2ζ − n1(1+ δ),

ζ 2
− 2

n2

n1
(1+ δ)ζ +

(
m
n1

)2

+ (1+ δ)2 = 0,

yielding the re-scaling factor as a function of zN :

ζ(zN)=
n2

n1
× (1+ δ)+

m
n1

√
δ(2+ δ). (17)

3. METHODS

A. Wave-Optics Calculations

For the wave-optics calculations of the PSFs we adapted the most
complete description from Hell et al. [17]. The radially symmetric
fields (of both excitation and emission light) are represented as
integrals over component Bessel beams. The wave-optics is linked
with geometrical optics through an elegant mathematical corre-
spondence between Bessel beams and light-cone sections of the ray
manifold [25,26,29]. The effects of RIM are taken into account
as (RIM-dependent) phase shifts of the component Bessel beams,
resulting in a new interference pattern of the field and thus in a
new PSF shape. The (dimensionless) intensity of a focal spot can be
found by computing three integrals I0, I1, and I2:

PSF= |I0|
2
+ 4|I1|

2
+ |I2|

2. (18)

Integrals Ii each have a Bessel function of the first kind
J i (r kr (θ)) weighted by some coefficients of geometric origin.
The common factors are sin θ (from the Jacobian),

√
cos θ (from

Abbe’s sine condition), and e i8(θ) (the RIM induced phase shifts).
The argument of the Bessel functions is r kr (θ)= r × n2k0 sin θ .
Taking into account the light polarization, the following factors
appear: I0 contains a factor of (1+ cos θ), I1 a factor of sin θ ,
and I2 a factor of 1− cos θ . For each polarization orientation
s and p , the partial transmission is taken into account as ts (θ)
and tp(θ) coefficients. Thus, the polarization factors become
tp(θ)+ ts (θ) cos θ in I0, ts (θ) sin θ in I1, and tp(θ)− ts (θ) cos θ
in I2. The integrals then become
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I0 =

∫ θmax

0
J0(r kr (θ))e i8(θ) sin θ(tp(θ)+ ts (θ) cos θ)

√
cos θ sin θdθ,

I1 =

∫ θmax

0
J1(r kr (θ))e i8(θ)ts (θ) sin θ

√
cos θ sin θdθ,

I2 =

∫ θmax

0
J2(r kr (θ))e i8(θ)(tp(θ)− ts (θ) cos θ)

√
cos θ sin θdθ,

with θmax = Re(arcsinNA/n2) the maximum angle of the light
cone, the phase function

8(θ)= k0 ×

(
n2zA cos θ − n1zN

√
1− n2

2/n
2
1sin2θ

)
,

and the transmission coefficients ts (θ) and tp(θ):

ts(θ)=
2 cos θ

cos θ +
√

1− n2
2/n

2
1sin2θ

,

tp(θ)=
n1

n2

2 cos θ

cos θ +
√

1− n2
2/n

2
1sin2θ

.

The computations of the integrals were performed through
a MatLab script producing 2D PSF cross-sections (r × zN ,
10× 20 µm) on an N2

= 2048× 2048 pixel grid from M = 2000
Bessel beam components. To minimize the number of Bessel func-
tion invocations, each of the integrals Ii was represented as a double
matrix product:

Ii = J N×N
i × AM×M

i × E M×N,

where J N×N
i is the matrix containing the Bessel function, AM×M

i is
the diagonal matrix created from all the position-independent fac-
tors, and E M×N is the matrix containing the zN-dependent phase
change of M Bessel beams.

For every RIM condition, a series of 2D PSF cross-sections
(lateral× axial, X Z planes) was generated with the actual depth
zA changing from 0.2 to 5 µm with a step of 0.2 µm. Step sizes of
0.5 and 1.0µm were used respectively from 5.5 to 25µm and from
26 to 150 µm. The axial center of the calculated PSF frame was
shifted with the actual depth zA using the paraxial scaling factor
z0

N = zA(n1/n2). In the lateral center of each frame, the Z profile
was extracted and passed through a Butterworth low-pass filter
(fifth order, sampling and critical frequencies f s = 0.1 nm−1,

fc = 0.003 nm−1) to remove high-frequency ringing oscillations.
The axial focal position z∗N was determined by taking the maxi-
mum of the filtered profile and the re-scaling factor was computed
as ζ = zA/z∗N .

B. Axial Scaling Measurements

We measured the depth-dependent axial scaling using a fluores-
cence microscope setup described earlier [9], for different refractive
index mismatches and numerical apertures, as listed in Table 1. A
schematic of the measurement scheme is shown in Fig. 4(a), where
a sapphire ball (BA, Ceratec, 2 mm diameter, grade 10) is separated
from a coverslip (CS, Thorlabs #CG15CH2, 22× 22 mm, #1.5H
thickness). The sapphire ball was glued to a glass strip (GS) with
a small droplet of UV curable glue (Norland Optical Adhesive
63). Fluorescent beads (FB, diameter 190 nm, excitation 480 nm,
emission 520 nm, Bangs Labs #FSDG002) were dropcasted on the
coverslip using a micropipette. Both surfaces were cleaned with
acetone and isopropyl alcohol and dried with nitrogen. The glued
sapphire ball was dipped in the solution and dried three times to
apply the beads to the surface. Beads on both surfaces were imaged
by acquiring a z-stack with the fluorescence microscope using
an excitation wavelength of 485 nm (Lumencor SPECTRA X),
dichroic mirror (Semrock #FF410/504/582/669-Di01-25x36),
and an emission filter (Semrock #FF01-525/30-25). The objec-
tive lens was mounted upright and was moved by stick-slip piezo
positioners (SmarAct GmbH) in X , Y , and Z. The correction
collar setting of the OL was optimized to minimize spherical aber-
rations when imaging beads on the coverslip. The glass strip with
a sapphire ball was mounted to the sample shuttle holder (SSH),
Fig. 4(b). This holder was moved by piezo positioners, and hence
the distance between the coverslip and the ball was controlled.
Details on the positioning systems can be found in [9].

We used different objective lenses, but all were compatible with
the Nikon CFI60 optical system, and were used together with a
200 mm tube lens (Nikon #MXA20696). Care was taken to center
the pupil of the objective lens to the center of the tube lens, after
which the objective lens was solely moved along the optical axis.
With the distance between ball and coverslip set, a z-stack was
acquired by moving the objective lens. In Fig. 4(c) the maximum
intensity projection along Y is shown for such a z-stack, where the
fluorescent beads were imaged using a 100×, 0.85 NA objective
(Nikon #MUE35900) in the absence of a refractive index mis-
match (n1 = n2 = 1.0). The bottom fluorescent signal originates

Table 1. Overview of Microscope Objectives and Refractive Indices in the Measurements

NA Nikon # M Pixel Size [nm] FOV [µm] Correction Collar n1 n2

0.70 MRH08630 60× 108.3 110.9 Yes 1.0 1.0
| | | | | | 1.0 1.34
| | | | | | 1.0 1.52
0.85 MUE35900 100× 65 133.12 Yes 1.0 1.0
| | | | | | 1.0 1.34
| | | | | | 1.0 1.52
0.95 MRD00605 60× 108.3 110.9 Yes 1.0 1.0
| | | | | | 1.0 1.34
| | | | | | 1.0 1.52
1.25 MRD77400 40× 162.5 166.4 No 1.34 1.34
1.40 MRD01901 100× 65 133.12 No 1.52 1.52
| | | | | | 1.52 1.34
| | | | | | 1.52 1.0
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Fig. 4. Experimental setup, and data analysis procedure, used to measure depth-dependent axial scaling. (a) Schematic showing the movable optical
objective lens (OL) and sapphire ball (BA) at opposite sides of the static coverslip (CS), with fluorescent beads (FB) on their surfaces. (b) Photograph
showing the objective lens (OL), coverslip (CS), and sapphire ball (BA). The ball is glued to a glass strip (GS), which is mounted to the sample shuttle holder
(SSH). Scale bar 3 mm. (c) Maximum intensity projection along the Y axis of a recorded z-stack where n1 = n2 = 1.0. The bottom fluorescent signal orig-
inates from beads residing on the coverslip, and the signal at the top from beads on the sapphire ball, shown by the visible curvature. (d) Schematic showing
three different distances between ball and coverslip, going from clear separation (I) to contact (II) and deformation of the coverslip (III). The dashed lines
indicate the position of both ball (red) and coverslip (black). (e) Position of the coverslip and ball versus the set ball-coverslip distance zS (top) and the same
data near the coverslip (bottom). (f ) Landing curve (in zN coordinates), plotted against the set depth zS (top). The fit values from a piecewise linear fit
are used to determine the contact point between ball and coverslip, and this yields the observed focal depth zN versus the actual depth zA from which the
re-scaling factor ζ = zA/zN was calculated (bottom).

from fluorescent beads residing on the coverslip. The signal at the
top comes from the beads on the sapphire ball, as recognized by the
visible curvature.

The AFP was varied by changing the distance between ball and
coverslip, and the contact point between them was first approxi-
mately set by having both the fluorescent beads on the coverslip
and bottom side of the ball in focus of the microscope. Next, the
starting AFP (zA, typically around 100 µm) was set by moving
the ball away from the coverslip and the AFP was reduced step by
step [see Fig. 4(d), I through III]. At each set depth zA, a z-stack is
recorded around the coverslip and ball separately (by moving the
objective lens,−4 to 8µm and−8 to 8µm, respectively, both with
a step size of 0.25 µm). To ensure the second z-stack was acquired
around the beads on the surface of the ball, we used ζmarginal and
ζparaxial estimates for <20 µm and >20 µm, respectively. At the
end of the measurement sequence the ball was forced into contact
with the coverslip, slightly deforming it by setting negative values
of AFP on purpose (to about –2µm); see Fig. 4(d), III.

The 3D positions of all fluorescent beads in the recorded z-stack
were acquired using the PSF Extractor software [9,30] and the
X , Y , and Z locations of all fluorescent beads were extracted.
From these, the position of the coverslip zCS was determined by
taking the median of the z positions of the beads on the coverslip,
and a least squares paraboloid fit on the coordinates of the beads

residing on the ball surface was used to determine the lowest point
of the ball zB . These z positions are plotted against the set depth zS

in Fig. 4(e) for the ball (black) and coverslip (red). Around 5.5 µm
the ball and coverslip make contact, effectively deforming the
coverslip at lower set depths. The coverslip position was subtracted
from the lowest point of the ball (zN = zB − zCS) and plotted
against (zS ); see Fig. 4(f ) (top). A piecewise linear function of the
form

zN(zS)=

{
zN0, if zS ≤ zS0

zN0 + (zS − zS0)/m, otherwise

is used to determine the offset zN0 between coverslip and ball,
the inflection point zS0, and the slope of the curve m. The fit is
performed using a Levenberg-Marquardt non-linear least squares
algorithm. We fit the data from−2 to 20µm around the inflection
point, and pass the measured values to the uncertainty param-
eter sigma in scipy.optimize.curve_fit [31]. This artificially
increases the uncertainty with increasing depth, and ensures that
the inflection point can be found reproducibly for all datasets.
The fit values are used to calculate the AFP for each set depth
zA = zS − zN0 +mzS0. The result is shown in Fig. 4(f ) (bottom),
where the observed nominal depth zN versus the actual depth
zA is plotted, from which the re-scaling factor (ζ = zA/zN) was
computed.
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C. Re-scaling of 3D Microscopy Data

To demonstrate and test the re-scaling of 3D microscopy data,
we recorded z-stacks of fluorescent beads embedded in an agarose
hydrogel for n1 < n2, n1 = n2, and n1 > n2, where the n1 = n2

case serves as a ground truth for the re-scaling of the mismatched
cases. To prepare the sample, we first coated a coverslip with fluo-
rescent beads (190 nm, excitation 480 nm, emission 520 nm,
Bangs Labs #FSDG002) by dropcasting from isopropyl alcohol
(IPA). Next, an agarose gel was prepared (2w%) by mixing Milli-Q
water and agarose (Low EEO, Fisher Scientific) and heating to
boil in a microwave. 25 µL of the same beads in IPA were added to
225 mL agarose gel while warm. The mixture was pipetted into a
glass sample cell composed of a microscope slide to which two small
pieces of microscope slide as spacers were glued (using Norland 81
optical adhesive) roughly 0.5 cm apart, on top of which a #1.5
coverslip (180 µm thickness) was glued. After filling the cell with
the agarose gel containing the beads, the cell was sealed with optical
adhesive. After each gluing step, the sample was cured by exposure
to UV light (∼350 nm) for 90 s, and during the last curing step the
beads were protected using a piece of aluminum foil.

Confocal z-stacks of the same volume were repeatedly recorded
with different objectives using a Nikon C2-SHS C2si confocal
on a Nikon Eclipse Ti inverted microscope with a 488 nm exci-
tation laser. If the microscope objective had a correction collar,
we optimized its position to minimize spherical aberrations while
inspecting beads on the coverslip before the recording of the z-
stack. We used the following procedure to record the z-stacks (with
a 500 nm z step size). On the back of the sample (i.e., the side of
the microscope slide) a spot was drawn using a felt marker. We then
imaged this spot in bright field using a 10× /0.4 NA air objective
and chose a reference feature in this spot to find back the same
position in the sample. Next, we switched to the 100× /1.4 NA
oil objective, and recorded a confocal z-stack including the cov-
erslip interface. We then removed the immersion liquid from the
sample, and found the same position again using the 10× /0.4 air
objective. At this position, we again recorded a z-stack, but now
with the 100× /0.85 NA air objective. Finally, we recorded at the
same position a (ground truth) z-stack using a 40× /1.25 NA
water objective. For single bead comparison, we cropped volumes
in the three stacks comprising the same beads in the ground truth
(water immersion) stack and the axially deformed stacks (air, oil
immersion). We determined the coverslip-to-sample interface
as the intensity peak of the beads deposited on the coverslip and
cropped the z-stack above the coverslip.

Re-scaling of the data was done either using the linear theo-
ries [4,13,15,16] where the voxel size in z was simply corrected,
or using the depth-dependent re-scaling. For the latter, the AFP
of each slide in the stack was calculated using Eq. (17), with the
Lyakin scaling factor as the critical value instead of Eq. (15). Next,
a linear z-stack was generated with a z step size corresponding to
the original stack and a range corresponding to the final AFP. The
intensities in this z-stack were interpolated (using inverse distance
weighting) from the two nearest slices in the (non-linear) AFP
z-stack. A Jupyter Notebook to perform the linear and non-linear
re-scaling is available at [32].

D. Refractive Index Measurements

The refractive indices of the immersion oils used in this study were
measured using an Abbe refractometer (Atago 3T). The indices
were measured at T = 25◦C and at a wavelength λD = 589.3 nm.
Using a measured dispersion value, the indices were converted
using Cauchy’s relation to λ= 520 nm [33]. This resulted in the
following refractive indices: n25

520 = 1.5197 (type DF immersion
oil, Cargille) and n25

520 = 1.3421 (Immersol W 2010 immersion
oil, Zeiss).

4. RESULTS

A. Validation through Wave-Optics Calculations

We first validate the derived analytical expression by comparing it
to wave-optics calculations, performed as described in Section 3.A.
This is shown in Figs. 5(a) and 5(b), respectively, for RIM contrasts
of n1 = 1.0→ n2 = 1.33 and n1 = 1.52→ n2 = 1.33. The axial
re-scaling factor ζ is plotted versus depth, as obtained through
analytical expression Eq. (3) (colored solid) and as calculated using
wave-optics (colored dashed). For n1 < n2 [Fig. 5(a)] the re-scaling
factor increases at shallow depths, where the re-scaling (constant)
maximum is determined by the numerical aperture of the opti-
cal system (i.e., the zA-independent value of ζcrit). At increasing
depths it levels towards the n2/n1 limit, following the universal
(i.e., NA-independent) curve ζuniv. The wave-optics calculations
deviate from the analytical expression due to some oscillations
remaining after data processing of the computed 2D PSFs. Despite
this, they follow the general trend in the NA-independent regime
[ζuniv in Eq. (3)] for the different NAs plotted. At shallow depths,
the plateau from the analytical expression [ζcrit in Eq. (3)] is repro-
duced by the wave-optics calculations, though the exact re-scaling
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Fig. 5. Axial re-scaling factor ζ versus AFP for different NAs and RIM contrasts, obtained through analytical expression Eq. (3) (colored solid) and as
calculated using wave-optics (colored dashed). For each NA the re-scaling factor as calculated by Lyakin et al. is included as a black solid line [16]. (a) ζ as a
function of AFP for NAs of 0.95, 0.85, and 0.70 at n1 = 1.0 and n2 = 1.33. (b) ζ as a function of AFP for a NA of 1.4 at n1 = 1.52 and n2 = 1.33.
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factor value fits between the analytical expression and the re-scaling
factor as calculated by Lyakin et al. [16].

In the case of n1 > n2 [Fig. 5(b)] the re-scaling factor as given
by Eq. (3) decreases at shallow depths, also reaching a plateau value
determined by the numerical aperture. For this RIM contrast the
plateau is very small, yielding a fast changing re-scaling factor in
the first 10µm after the refractive index interface. Imaging deeper,
the re-scaling factor again levels towards the n2/n1 limit. The
wave-optics calculations show less extreme axial scaling at shallow
depths, while we find good agreement for depths>15 µm.

B. Validation through Experiments

Five different objective lenses are used to measure depth-
dependent axial re-scaling factors as explained in Section 3.B,
varying in numerical aperture, immersion refractive index n1, and
magnification. Immersol W 2010 immersion oil (Zeiss, n25

520 =

1.3421) and type DF immersion oil (Cargille, n25
520 = 1.5197)

were used in experiments. We will first discuss two cases in
detail below, n1 = 1.0→ n2 = 1.34 for a NA of 0.85 and
n1 = 1.52→ n2 = 1.34 for a NA of 1.4. For the other cases
listed in Table 1, figures are presented in Supplement 1 and will be
discussed afterwards.

1. NA=0.85, n1=1.0, n2=1.34

In Fig. 6, the axial re-scaling factor ζ is plotted against the actual
depth zA. The measurements (solid blue dots) are plotted along-
side the wave-optics calculations (dashed blue lines), analytical
solution (solid black lines), and literature theories (solid colored
lines). From our individual sets of measurement data, the mean
(solid black dots) is computed by binning along zA, plotted in
the center of each bin (bin sizes of 1 and 10 µm, respectively, for
0 to 10 µm and 10 to 100 µm). We estimate an upper error limit
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Lyakin (2017)
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Fig. 6. Axial re-scaling factor ζ versus AFP for a NA of 0.85, imaging
under a RIM contrast of n1 = 1.0→ n2 = 1.34. Measurement data (solid
blue dots) are plotted alongside the wave-optics calculations (dashed
blue lines), analytical solution [solid black lines, Eq. (3)], and depth-
independent theories (solid lines). Two sets of measurement data are
plotted individually and from these data the mean (solid black dots) is
computed by binning along zA , plotted in the center of each bin (bin
sizes of 1 and 10 µm, respectively, for 0 to 10 µm and 10 to 100 µm).
The measurement error (shaded blue area) is the sum of the measurement
standard deviation and an estimated upper error limit.

of (100 nm/zN + 100 nm/zA)ζ , in determining the various z
positions, composed of errors from: (i) positioning of the piezo
stages, (ii) determining the position of ball and coverslip by fluores-
cent bead localization, and (iii) fitting uncertainties in the landing
curve. The total measured error for the re-scaling factor (shaded
blue area) is the sum of the rolling standard deviation of the mea-
surements and the upper error limit. It increases significantly at
shallow depths, which is confirmed by acquiring data without RIM
present, and applying the same data analysis as shown in Figs. S4
and S10.

Results are shown for a RIM contrast of n1 = 1.0→ n2 = 1.34
in Fig. 6, where the uncertainty in the measurement data increases
at shallow depths, while at larger depths the measurements cap-
ture the decay of the re-scaling factor but are slightly higher than
the wave-optics calculations and analytical theory. Although we
have taken care to align the optical system, we do expect some
misalignment and/or residual optical aberrations to be the cause
of this deviation. Especially, residual spherical aberration induced
by a non-perfect correction collar setting could influence the
measurements.

Looking at the exact value of the plateau at shallow depths, the
analytical expression overestimates the re-scaling factor compared
with the measurements and wave-optics calculations. In fact, both
re-scaling factors from Lyakin and Stallinga give better agreement
with the measured data [15,16] and in practical terms seem to pro-
vide a better value for ζcrit. At extreme depths of zA = 10 mm the
depth-dependent re-scaling factor approaches the n2/n1 = 1.34
limit set by Carlsson et al. (not shown in Fig. 6) [13]. At more real-
istic imaging depths of 100 µm, the median from Diel coincides
with the depth-dependent re-scaling factor and their mean gives a
good agreement at zA = 40 µm.

2. NA=1.4, n1=1.52, n2=1.34

In Fig. 7, the axial re-scaling factor ζ is plotted against the actual
depth zA. We find good agreement between measurement data
and the analytical theory when imaging under a RIM contrast
of n1 = 1.52→ n2 = 1.34, as shown in Fig. 7. The measure-
ments presented agree with the analytical theory and only start to
drop more at shallow depths (<4 µm). The relative error when
approaching zA = 0 increases for zA and zN as the error in both
is affected by determining the point at which the sapphire ball
touches the coverslip. We have also included re-scaling factors
as measured by Petrov et al. where they use a method with much
smaller measurement errors (see also inset) [23]. Combining the
measurement data from Petrov at shallow depths, and our own
measurements data at larger depths, we find very good agreement
with the analytical theory presented. Although the analytical
expression provides a plateau for the re-scaling factor ζcrit = 0.64,
this is not reproduced in the measurement data from Petrov.

Our wave-optics calculations also match the analytical theory
at larger depths, but deviate below zA = 4 µm. At the same time,
they do overlap with wave-optics calculations from Egner and Hell
[19]. At these shallow depths, an offset of a few tens of nanometers
in the NFP has a dramatic effect on the re-scaling factor and hence
super-critical angle fluorescence (SAF) effects are significant [34].
Although SAF is not included in the analytical derivation, it is
considered in the wave-optics calculations through the Fresnel
transmission coefficients when using the vector PSF model. The
axial deformation is, however, enhanced by SAF, as the NFP shifts
< 40 nm away from the objective [34]. Therefore, the difference in

https://doi.org/10.6084/m9.figshare.25392217
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Fig. 7. Axial re-scaling factor ζ versus AFP for a NA of 1.4, imag-
ing under a RIM contrast of n1 = 1.52→ n2 = 1.34. Measurement
data (solid blue dots) are plotted alongside the wave-optics calculations
(dashed blue lines), analytical solution [solid black lines, Eq. (3)], and
depth-independent theories (solid lines). Three sets of measurement data
are plotted individually and from these data the mean (solid black dots)
is computed by binning along zA , plotted in the center of each bin (bin
sizes of 1 and 10 µm, respectively, for 0 to 10 µm and 10 to 100 µm).
The measurement error (shaded blue area) is the sum of the measurement
standard deviation and an estimated upper error limit. Measured data
and theory as presented by Petrov et al. and wave-optics calculations from
Egner and Hell are included [19,23].

the re-scaling factor between the wave-optics calculations and the
analytical theory has already been reduced by the incorporation of
SAF in the calculations.

Up to depths of zA = 1 µm, there is a ∼250 nm difference in
the NFP found between ζ = 0.64 (analytical theory) and ζ = 0.78
(wave-optics calculations). This is too large to be caused by the
chosen method of determining the focal position (i.e., maximum
axial intensity [19] versus minimal lateral width [23]). As such,
we do not have a fitting explanation for the discrepancy between
the wave-optics calculations and the analytical theory along with
measurements from Petrov et al.

3. Other ImagingScenarios

The measurement data for the remaining cases listed in Table 1
are shown in Figs. S1 through S11, where the re-scaling factor ζ is
plotted against zA, alongside the wave-optics calculations, analyti-
cal solution, and depth-independent theories. For each objective
lens used we acquired data without a refractive index mismatch
present and applied the same data analysis procedures as for axially
scaled measurements (Figs. S1, S4, S6, S9, S10). In all cases, the
spread in the measurement data increases below zA = 10 µm as
uncertainties in determining both zA and zN increase. At higher
depths, no reproducible deviations away from ζ = 1.0 are found
in these data, and we note a maximum error of about 2% in the
measurements. The data shown in Fig. S9 are of special interest
where we have used a water immersion objective to verify our
measurement method and analysis when having immersion oil
(n = 1.34) present between the coverslip and sapphire ball. We
find a mean re-scaling factor of 0.99± 0.05 (standard deviation)
over the entire depth range, and apart from the increased scatter

near zA = 0, the re-scaling factor remains approximately constant
(ζ = 1.0) as a function of depth for each individual dataset.

The objective lens with the lowest numerical aperture that we
used in our measurements had a NA of 0.7, of which the results
are presented in Figs. S2 and S3 (n1 = 1.0→ n2 = 1.34 and
n1 = 1.0→ n2 = 1.52). In both cases, the wave-optics calcula-
tions reproduce the analytical expression, while the measurements
only reproduce the general trend for higher RIM contrast of
n1 = 1.0→ n2 = 1.52. In the case of n1 = 1.0→ n2 = 1.34,
the measurement uncertainties obscure a clear trend in the
measurement data.

The RIM of n1 = 1.0→ n2 = 1.52 for the 0.85 NA objective
lens is shown in Fig. S5. Both the wave-optics calculations and
measurement data reproduce the behavior of the re-scaling factor
as predicted by the analytical expression. Comparing against the
measurement data, Lyakin and Stallinga again provide the best
critical value ζcrit.

In the case of the 0.95 NA air objective (Figs. S7 and S8), again
the wave-optics calculations reproduce the analytical expression
over the entire depth range. For the measured data, however, the
trend of the NA-independent regime ζuniversal is reproduced, but
the measurements fail to replicate the strong increase to the plateau
given by ζcrit below zA = 20 µm. Along with depth-dependent
re-scaling being more prominently present with increasing NA, so
is the sensitivity to any remaining (i.e., spherical or tilt) aberrations
in the optical setup. We have taken care to minimize these, but we
estimate that residual aberrations lower the effective NA, obscuring
the rise to the plateau in the measurements.

For the 1.4 NA oil immersion objective, we present the RIM
case of n1 = 1.52→ n2 = 1.0 in Fig. S11. Again the general
depth-dependent behavior is reproduced in the measurements, but
the re-scaling factor is underestimated at the coverslip while it is
overestimated when imaging deeper into the sample.

C. Axial Re-scaling of 3D Microscopy Data

To test axial re-scaling of 3D microscopy data using our
depth-dependent theory, we recorded confocal z-stacks of
beads suspended in an agarose hydrogel, from the coverslip to
100 µm depth (zN). These z-stacks were recorded using the
100× /0.85 NA air, 40× /1.25 NA water, and 100× /1.4
oil objectives (see Table 1). As the refractive index of the agarose
gel (n2 = 1.3356 [35]) is very close to the refractive index of the
immersion medium of the water objective, we can use these z-
stacks as a ground truth for the axial re-scaling of the data. We
recorded the z-stacks at the exact same location in the sample to
allow for direct comparison of the same beads in different imaging
scenarios.

1. n1 <n2

The case of n1 < n2 is particularly relevant for cryo-fluorescence
microscopy where air immersion is used to observe a frozen or vitri-
fied sample. Thus, we evaluate a typical situation with NA= 0.85,
n1 = 1.0, and n2 = 1.336 [9]. Before re-scaling the data, we quan-
titatively compare the re-scaling factors of the depth-dependent
and linear theories, as plotted in Fig. S12. As we have found that the
theories of Lyakin and Stallinga result in approximately equal re-
scaling factors, we choose to plot only the Lyakin re-scaling factor.
As the critical value of the depth-dependent re-scaling factor, we
use the Lyakin re-scaling factor. Therefore, the depth-dependent
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re-scaling factor is 1.532 close to the coverslip and falls off to∼1.4
deeper into the sample (see Fig. S12a). When plotting the focal
shift1 f as a function of depth (AFP) we see that depth-dependent
focal shift equals the Lyakin focal shift close to the coverslip and
gradually transitions to the Diel (median) focal shift at larger depth
(see Fig. S12b).

To see how significant the difference between the theories is for
this imaging scenario, we plot the absolute and relative difference
between the depth-dependent and linear theories as a function
of depth (AFP). Figure S12c shows that for Lyakin the difference
is obviously zero near the coverslip, but quickly increases to a
large difference (>1 µm) after a depth of >25 µm. On the other
hand, Diel (median) differs significantly (∼1 µm) at a depth of
20 µm, but is the linear theory with the smallest relative difference
at >50 µm depth. Finally, Diel (mean) is in between the other
two linear theories, having a smaller difference close to the cov-
erslip than Diel (median), and a smaller difference at large depth
than Lyakin. Where the relative difference between the depth-
dependent theory and the theories of Lyakin and Diel median can
exceed 5%, the relative difference for the Diel mean theory is below
3% (see Fig. S12d).

Figure 8 shows the re-scaling of the 3D microscopy data of
beads in an agarose hydrogel with NA= 0.85, n1 = 1.0, and
n2 = 1.336. Overlays are plotted of the re-scaled z-stacks (grays)
and the ground truth z-stack recorded with the water immersion
objective (reds). As n1 < n2, the recorded z-stack was stretched in
the axial direction to return to the ground truth axial distances.

Deep into the sample (zA ≈ 90 µm), Diel (mean) shows the
largest re-scaling error where the z-stack is overstretched, whereas
the depth-dependent and Diel (median) re-scaling collapses onto
the ground truth data, although the PSF is elongated in the axial
direction due to spherical aberrations induced by the refractive
index mismatch. Closer to the coverslip (zA ≈ 20 µm), both the
depth-dependent and Diel (mean) re-scaling overlap with the
ground truth z-stack, whereas Diel (median) has a slight (absolute)
error as the axial distances have not been stretched enough. This
agrees with the re-scaling factors plotted in Fig. S12.

2. n1 >n2

The case of n1 > n2 is relevant for oil immersion observation
of samples in water. Thus, we here evaluate a typical situation
with NA= 1.4, n1 = 1.52, and n2 = 1.336. We quantitatively
compare the re-scaling factors of the depth-dependent and linear
theories in Fig. S13. As NA>n2, we cannot use Diel (mean). The
depth-dependent re-scaling factor equals the Lyakin re-scaling
factor close to the coverslip, but surpasses the Diel (median) at
zA ≈ 30 µm. The same trend is seen in the focal shift1 f . In this
imaging scenario, the axial positional difference between Lyakin
and the depth-dependent re-scaling theory increases after a few
micrometers in depth, resulting in a significant difference >6%.
While the absolute difference between Diel (median) and the
depth-dependent theory is small close to the coverslip (<1 µm)
and∼2 µm um at large depths, the relative error is large (∼20%)
close to the coverslip and small at large depths (∼2%).
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Fig. 8. Axial re-scaling of 3D microscopy data with NA= 0.85, n1 = 1.0, n2 = 1.336 using the depth-dependent and linear theories. Maximum
intensity projections along Y of the (re-scaled) confocal z-stack of beads embedded in an agarose hydrogel. The stacks have been re-scaled using the depth-
dependent (left), Diel (mean) (middle), and Diel (median) (right) re-scaling factors. Overlays are plotted of the re-scaled z-stacks (grays) and the ground
truth z-stack recorded with the water immersion objective (reds). The two bottom rows are cut-outs of the upper row, where the cut-outs at larger depths
appear noisier due to the intensity re-scaling due to fluorescence intensity loss at large depths. The beads are slightly displaced in X due to imperfections in
the manual overlay of the z-stacks.
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Fig. 9. Axial re-scaling of 3D microscopy data with NA= 1.4,
n1 = 1.52, n2 = 1.336. Maximum intensity projections along Y of the
(re-scaled) confocal z-stack of beads embedded in an agarose hydrogel.
The stacks have been re-scaled using the depth-dependent (left) and Diel
(median) (right) re-scaling factors. Overlays are plotted of the re-scaled
z-stacks (grays) and the ground truth z-stack recorded with the water
immersion objective (reds). The two bottom rows are cut-outs of the
upper row. The beads are slightly displaced in X due to imperfections in
the manual overlay of the z-stacks.

In Fig. 9 the re-scaling of the 3D microscopy data is plotted. As
n1 > n2, the recorded z-stack was compressed in the axial direc-
tion to return to the ground truth axial distances. At larger depth
(zA ≈ 65 µm), the depth-dependent re-scaling nicely coincides
with the ground truth, whereas the axial distances in the Diel
(median) re-scaling have been compressed too much (see second
row). Closer to the coverslip (zA ≈ 15 µm) the depth-dependent
re-scaling again nicely coincides with the ground truth, but the
Diel (median) re-scaling has been compressed too little.

3. QuantitativeComparison

To quantify how well the acquired data can be corrected using
the depth-dependent re-scaling factor, we localize all individual
fluorescent beads present in the data recorded using the PSF-

Extractor software [30]. We compare the z position found in
the re-scaled data to the ground truth value zA and divide this
difference over zA. This is shown in Fig. 10 for both imaging
scenarios, where we bin the data (bin size 10 µm), plot the mean
of each bin along with the standard deviation as the error bar,
and plot the data centered with respect to the bin. In Fig. 10(a)
(NA= 0.85, n1 = 1.0, n2 = 1.336), we omit the first bin (0 to
10µm) as it only contains three data points. The depth-dependent
theory outperforms both Diel theories in the axial re-scaling of this
data, where we note a maximum error of 2% when using depth-
dependent axial re-scaling, whereas the error for the linear theories
approaches 5%.

The same analysis and data processing are done for NA= 1.4,
n1 = 1.52, n2 = 1.336, to quantify the error in re-scaling using the
Diel (median) and depth-dependent theory; see Fig. 10(b). There
is not one theory that outperforms the other over the depths mea-
sured here. Still, the depth-dependent theory results in a smaller
error closer to the coverslip, as is to be expected following Fig. 7. In
addition, this measurement did not include beads near the cover
glass (zA < 20 µm) where a relative difference up to 20% between
the two theories is expected (see Fig. S13).

We should note that the objective lens used in this experiment
did not have a correction collar. This means that we could not
completely get rid of spherical aberration (SA) when imaging close
to the coverslip. The presence of SA near the coverslip contradicts
the optical conditions in the derivation of the analytical theory and
therefore affects the legitimacy of the depth-dependent re-scaling
factor, resulting in a higher re-scaling error. This shows that proper
re-scaling also requires an optimization of the correction collar
before the acquisition of the 3D microscopy data.

D. Software for Depth-Dependent Re-scaling

1. Re-scalingAcquired z-stacksUsingPython

To re-scale the z-stack acquired under RIM, we have written
Python software, which is available at https://github.com/
hoogenboom-group/SF [32]. Jupyter Notebooks are used to read
image data and, based on the specific imaging conditions, use
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Fig. 10. Relative error of the re-scaled z position compared to the ground truth zA as recorded using a water immersion objective. The relative error is
binned along zA in bins of 10µm and the mean of each bin is plotted in the center of each bin. The standard deviation is plotted as an error bar. The dashed
gray line indicates zero and acts as a guide to the eye. (a) Results for NA= 0.85, n1 = 1.0, n2 = 1.336, where we measure an error in the axial re-scaling using
the depth-dependent theory below 2%, whereas the linear theories result in errors close to 5%. (b) Results for NA= 1.4, n1 = 1.52, n2 = 1.336, where we
find that the maximum error in the axial re-scaling using the depth-dependent and Diel (median) linear theory is 5%.
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inverse distance weighting to rescale the intensities along the axial
coordinate correctly. The same axial pixel size from the original
data is used, but depending on the RIM mismatch, the re-scaled
z-stack will map a shorter or larger axial range.

2. InteractiveOnline Tool for Plotting theRe-scaling Factor
versus ImagingDepth

We have made an online interactive tool where the depth-
dependent re-scaling factor can be plotted and compared to
existing depth-independent scaling theories using Plotly Dash

[36], the source code of which is available at [32]. The code is acces-
sible via the URL https://axialscaling.pythonanywhere.com/. The
refractive indices n1 and n2, the NA, and the wavelength λ can be
varied. In addition, the focal shift1 f can be plotted for the depth-
dependent re-scaling factor, as well as for two depth-independent
scaling theories. Both the re-scaling factors and the focal shift
resulting from the depth-dependent theory can be exported to file.
All the measurement data and wave optics calculation results found
in this manuscript and the accompanying Supplement 1 are also
included in the interactive plot.

5. DISCUSSION

The various re-scaling theories found in the literature can be
understood as a result of different (overt or covert) assumptions
on which maximum constructive interference contribution is
leading. For example, Lyakin et al. used an analysis similar to
ours, but explicitly sets the critical point θ∗ such that k′z(θ

∗)=
1
2 × (k

′
z(0)+ k′z(θmax)), and then from Eq. (8) follows [16]

ζLyakin =
n1 +

√
n2

1 −NA2√
4
(
n2

2 − n2
1

)
+

(
n1 +

√
n2

1 −NA2

)2
. (19)

The same value was proposed earlier by Stallinga while pos-
ing different criteria of minimal variation of the phase function:
θ∗ :min〈(8−8(θ∗))2〉 [15]. For Diel et al. the ζmedian corre-
sponds to setting θ∗ : kr (θ

∗)= 1/2kr (θmax)=
1
2 k0 ×NA [4],

such that

ζmedian =

√√√√n2
2 −

NA2

4

n2
1 −

NA2

4

. (20)

These estimates for ζ are geometrical in nature, where the actual
wavelength is not taken into account–with the radii of the Ewalds’
spheres being cancelled out of the fraction in Eq. (8). This results
in an implicit omission of the interference nature of the PSF under
RIM. Somewhat less obviously, the criterion of Stallinga is also
geometrical [15]. While it does demand minimal variation in the
value of 8 in order to achieve the highest possible constructive
interference, it does not take into account that the well minimized
phase function can become several 2π in range (when both zA

and zN are large enough) and thus lead to destructive interference
anyway.

In order to be able to correct for depth-dependent axial scaling
in experiments where imaging under RIM is unavoidable, it is cru-
cial that (i) the position of the coverslip (or more general, the RIM
interface) is determined precisely and (ii) spherical aberration at the

interface is reduced to an absolute minimum by selecting the cover
glass the objective is optimized for, or by optimizing the position of
the correction collar. In practical terms, this would require that the
objective lens used is fitted with a correction collar, which is often
the case for high-NA objective lenses.

One such case would be cryo-fluorescence microscopy used in
the cryo-electron tomography workflow, where a RIM is generally
present due to the large temperature difference between the optical
objective and the sample. With fluorescence microscopy, targets
can be identified in frozen hydrated cells and consequently suffi-
ciently thin sections can be prepared by ablating the excess cellular
material surrounding the target with a focused ion beam [37–39].
The aimed thickness of this frozen section is approximately 100 to
200 nm, which makes it crucial to precisely determine the target
position with respect to the RIM interface (outer cell surface) [40].
If axially scaled distances measured with the light microscope are
not corrected, targeting errors in the range of 300 to 1200 nm will
occur with cell thicknesses ranging up to micrometers. Moreover,
the depth dependence of these errors will be important when
fabricating sections out of thicker ice while using fluorescence
microscopy to find targets in, for instance, organoids, as can be
done in high-pressure frozen samples [41,42].

With the provided software [32], one can easily plot the depth-
dependent re-scaling factor for the relevant imaging scenario, but
also re-scale their 3D microscopy data, without having to judge
which linear theory will hold in this scenario or perform full wave-
optics calculations. We should note, however, that although the
data will be axially re-scaled, our software does not provide any
correction of the shape of the point spread function (PSF) due
to spherical aberrations. To correct for this, one would require
deconvolution with a depth-dependent PSF as demonstrated
in [43].

Our measurements are limited by the relatively high uncer-
tainty in determining the re-scaling factor near zA = 0. It would
therefore be interesting, for future research, to use the method from
Petrov et al. to measure the re-scaling factor for the scenario with a
0.85 NA air objective when imaging n1 = 1.0→ n2 = 1.33.

6. CONCLUSION

We have presented an analytical theory to correct for the depth-
dependent axial deformation when imaging with light microscopy
in the presence of a refractive index mismatch between the sam-
ple and the microscope objective immersion medium. Using the
resulting equation, a re-scaling factor as a function of depth can
be calculated from imaging parameters’ numerical aperture (NA),
the refractive indices of the objective (n1) and sample (n2), and
the wavelength (λ), for a RIM with both n1 < n2 and n1 > n2. We
performed wave-optics calculations to verify the theory and find a
very good agreement between the two. In addition, we performed
experiments to measure the axial scaling, where we find a good
agreement at larger depths, whereas closer to the coverslip, the
measurements suffer from large uncertainties. We do find good
agreement with the accurate measurements done by Petrov et al.
[23] in the case when imaging with a high-NA oil immersion
objective into a water sample.

Next, we tested the depth-dependent theory versus existing lin-
ear theories in the literature on 3D microscopy data with a known
ground truth. We find that for NA= 0.85, n1 = 1, n2 = 1.33 the
depth-dependent theory outperforms existing linear theories for
depths up to 80 µm with a maximum relative error of 2%. For

https://axialscaling.pythonanywhere.com/
https://doi.org/10.6084/m9.figshare.25392217
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NA= 1.4, n1 = 1.52, n2 = 1.33, the depth-dependent theory
performs as good as the best linear theory in literature. However,
we think its performance was compromised by the presence of
a small spherical aberration near the coverslip, which could not
be corrected for as the objective did not have a correction collar.
Moreover, we could not compare close to the cover glass (<10 µm),
where the linear theory used in the comparison was expected to
break down.

Finally, we have presented a web applet to be used by micro-
scope users to calculate the re-scaling factor for their imaging
parameters. In addition, we have shared software to re-scale 3D
data sets using the depth-dependent scaling factor.

Our re-scaling theory is the first to include the depth depend-
ence of axial scaling due to a refractive index mismatch. It will
be of use in imaging scenarios where the refractive indices of the
sample and objective cannot be matched, such as in integrated,
cryogenic, and correlative light and electron microscopy setups, or
in the imaging of water-like samples using high-NA oil immersion
objectives.
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