
Log-Based Behavioral System Model Inference Using
Reinforcement Learning

Pandelis Symeonidis
Delft University of Technology

Delft, Netherlands

Mitchell Olsthoorn
Delft University of Technology

Delft, Netherlands

Annibale Panichella
Delft University of Technology

Delft, Netherlands

ABSTRACT

System behavior models are highly useful for the developers of
the system as they aid in system comprehension, documentation,
and testing. Even though methods to obtain such models exist,
e.g. profiling, tracing, source code inference and existing log-based
inference methods, they can not successfully be applied to the
case of large, real-time systems. Profiling and tracing add overhead
which may alter the system’s behavior and source code inference
does not scale for systems of this magnitude. Existing log-based
approaches also suffer due to the intrinsic scalability issues of de-
riving a minimal model as proven by Gold [13]. In this work, this
issue is tackled by applying Reinforcement Learning to the model
inference problem. First, an initial model is created from the traces
and then Q-Learning is applied to shrink this model into a con-
cise and accurate representation of the system. The approach is
evaluated using log traces produced by the XRP Ledger Consensus
Protocol 1. Its effectiveness is assessed based on the accuracy and
the conciseness of the inferred models as well as the execution
time of the algorithm to infer the model. Results show that the Q-
Learning implementation used in this work, is not able to converge
to consistent action values. These results might be implementation
specific meaning future work should experiment with and extend
the current implementation of the algorithm, or due to assumptions
made in this work about the underlying systems do not hold. Fu-
ture work should apply this approach to a different system so as to
assess its feasibility.

1 INTRODUCTION
Behavioral system models are becoming an increasingly important
tool for software verification, maintenance, and testing. They aid
software comprehension [5], anomaly detection [27], test case gen-
eration and can help in regression testing [10]. As systems grow
in size and complexity, deriving such a model manually becomes
increasingly difficult.

Many techniques have been proposed to understand the behav-
ior of a system [2, 5, 28, 30], one of them being source-code model
inference in which the system’s behavior is modeled by analyzing
the software’s source code [6]. However, as systems grow larger
the source code grows with them making this technique unscalable.
Techniques such as profiling and tracing have also been proposed
as a way to follow the data flow in the system. However, these
techniques do not scale well for large, real-time systems because
they instrument the code leading to overhead which could affect
the performance and change the behavior of the system. On the
contrary, logs are already incorporated in most software systems
and hence do not impose additional overhead. On top of that, logs
1https://xrpl.org/intro-to-consensus.html

contain semantically useful information about the system provid-
ing a more high-level behavioral view of the system. Hence, an
approach using logs could solve the shortcomings of some of the
existing techniques.

Existing log-based techniques ([20, 30]) perform well, deriving
highly accurate models. However, since deriving an exact yet min-
imal model is proven by Gold to be a NP-complete problem [13],
current techniques suffer from scalability issues. Attempts have
been made to tackle this using parallelization [31], however a fully
scalable approach is yet to be proposed. This work aims to tackle
the intrinsic scalability problem of inferring an accurate yet concise
model from a system’s log traces by approximating the model using
AI-based techniques.

Many finite state machine inference techniques belong to the
family of “state merging” techniques. In these algorithms, the first
step is to infer an initial model describing the input traces. A com-
mon approach is using a Prefix Tree Acceptor (PTA) which is the
most specific form of FSM accepting all the logs [7]. Then, an al-
gorithm is used to minimize it by merging states until a desirable
solution has been attained. In this work, the technique used to
merge states is Reinforcement Learning (RL) and specifically Q-
Learning (QL) as merging nodes in the initial model can be modeled
as a sequential decision process where it has to be decided how to
merge a specific region of nodes. The essence of RL is that an agent
learns through experience by interacting with their environment,
getting positive reinforcement, i.e. a reward, when making a “good”
choice, and negative reinforcement when making a “bad” choice.
In this case, we attempt to learn what the best way is to merge
a region inside the initial model, depending on its topology. That
is also the assumption we make about the underlying system, i.e.
that this topology is adequate to dictate how the region should be
merged.

This research aims to evaluate the novel RL-based model infer-
ence approach based on logs produced by the XRP Ledger Con-
sensus Protocol. The XRP Ledger is a distributed, real-time system
producing approximately 4 GB of logs every day. The approach is
assessed by evaluating the resulting models using accuracy and
conciseness-based metrics. On top of that, the scalability of the ap-
proach is evaluated by recording the execution time of the approach
for different data set sizes.

The initial results are discouraging. The Q-values learned by
the algorithm do not converge over time leading to incomplete
results. We identify to potential reasons. First, due to the current
representation of the state space being insufficient, action values are
not able to generalize to the entire model. Second, the assumption
made about the nature of the system described above seems to not
hold in this particular case study. Further work will thus have to

1

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering

BSc. Thesis, June 2021, Delft, Netherlands Symeonidis, et al.

test the assumption on a different system as well as expand on the
internal algorithm’s implementation. However, the model is able
to produce promising intermediately results reaching high levels
of compression albeit them being results of random walks through
the initial model.

The paper is structured as follows. Section 2 first first gives the
definitions of the most important concepts used in this work and
then highlights related work. Next, section 3 explains approach
proposed. After, section 4 introduces the research questions, the
experimental protocol, implementation details, and parameter set-
tings. Section 5 answers the research questions and highlights the
most important results. Section 6 discusses the threats to this work’s
validity, both externally and internally, and section 7 reflects on the
ethical aspects of this work including its reproducibility. Finally,
section 8 concludes this work and discusses potential future work.

2 BACKGROUND AND RELATEDWORK
This section highlights the most important concepts used in this
work (2.1) and analyzes existing related work in the topic of model
inference based on system traces (2.2)

2.1 Background
The model inference technique presented in this work is based on
a set of log traces, S. A log trace is a sequence of log statements. A
log statement consists of two parts. The first part is a timestamp,
recording the date and time the log statement was created. The
second part is the log message which contains information about
the logged event (set by the developer). This log message consists
of a static part called the log template which identifies the event
using a regular expression, and a dynamic part which consists of
information inserted into the template at run-time. For instance, in
the log statement: 2020-Mar-01 16:22:46.57 Sending X to Y, the
first part in bold is the timestamp and the rest is the log message. The
X and Y are dynamic as they may vary and thus the log template
can be described using the following regular expression: Sending
[A-Z] to [A-Z]. We define the set of all unique log templates of the
system as E.

To identify a log statement by its log template the Syntax Tree
(ST) is used. The ST is an in-memory prefix tree [14], represented
by the 3-tuple 𝑆𝑇 = ⟨N ,M, 𝑟 ⟩, where N , is the set of nodes in the
tree,M, is the set of directed edges in the tree and 𝑟 is the root of
the tree. Each node in the ST holds a regular expression. Each of
the leaves of the ST, is associated with a log template of E, such
that ⟨𝑛0𝑛1 · · ·𝑛𝑘 ⟩ = 𝑒 → 𝑛0 = 𝑟 ∧ ∀𝑖0≤𝑖≤𝑘 ⟨𝑛𝑖 , 𝑛𝑖+1⟩ ∈ 𝑀 .

The inferred model is represented with a Finite State Machine
(FSM). A FSM is a model of computation represented by a 5-tuple
⟨Q, Σ, 𝛿 , 𝑞0, F ⟩, with a set of states Q, an input alphabet Σ (set
of symbols), a starting state 𝑞0, a set of final states F and a state-
transition function 𝛿 : Q × Σ→ Q, which describes the transitions
in the model. In this work when using the term FSM we assume it
is deterministic. That means, the range of the transition function 𝛿

is always a single state. If it were not deterministic it could return
multiple states.

The proposed technique takes as input an initial FSM and at-
tempts to minimize it while keeping it as accurate as possible. The
initial model used is the Unique State Graph (USG) which is a FSM

where each state in Q, represents, i.e. accepts, one or more log
template 𝑒 ∈ E. We describe this as 𝑒 ∈ 𝑞 if the state 𝑞 represents
log template 𝑒 . The USG is defined under the following constraint:
∀𝑒 ∈ E, ∃≤1𝑞 ∈ Q, (𝑒 ∈ 𝑞).

To minimize the USG, Reinforcement Learning (RL) is used. RL
is an area of AI focused on an agent learning what decisions to
make in order to maximize some future cumulative reward [24].
Formally, this problem is modeled as finding the optimal policy
of a Markov Decision Process (MDP) [16]. It is defined by a state
space, S, an action space,A, and by the "one-step dynamics" of the
system defining the resulting states and rewards of specific actions.
These are described by a function:

𝑝 (𝑠 ′, 𝑟 |𝑠, 𝑎) = 𝑃𝑟 {S𝑡+1 = 𝑠 ′,R𝑡+1 = 𝑟 |S𝑡 = 𝑠,A𝑡 = 𝑎} (1)

giving the probabilities of each possible next state and reward
while being at a particular state and taking a particular action.

Reinforcement learning algorithms aim at estimating value func-
tions, 𝜐𝜋 (𝑠), which given a state, 𝑠 estimate how “good" it is to be
in this state given a specific policy, 𝜋 . "Goodness" is defined as the
expected return when following this policy. A policy is defined as
a function giving the probabilities 𝜋 (𝑎 |𝑠) of taking action 𝑎 while
being at state 𝑠 . Intuitively, the policy describes the agent’s decision-
making. Moreover, we define the action-value function, 𝑞𝜋 (𝑠, 𝑎),
giving the expected return when at a specific state, 𝑠 , and taking
action, 𝑎, after which continuing using policy 𝜋 .

Finally, the goal of a reinforcement learning algorithm is to find
a policy 𝜋 that maximizes the reward over the long run. This can
be reduced to finding the optimal value function or action-state
function as using these functions we know what action is best to
take at each state.

2.2 Related Work
Several approaches have been used to infer FSMs from a system’s
execution traces. One of the first approaches, proposed in 1972 by
Biermann and Feldman, is the k-Tail algorithm [2]. In this approach,
the log traces are parsed into an initial model, the Prefix Tree
Acceptor (PTA), representing all possible execution paths. Then, this
PTA is minimized by merging states using a heuristic. Namely, to
merge two states if they share the same future of length k. Another
approach, the Evidence-Driven State Merging (EDSM) algorithm,
also known as BlueFringe, proposed by Lang et al. in 1998 won the
Abbadingo competition [18] and was also later used as a benchmark
in the STAMINA competition [29]. This work finds equivalent states
to merge in the PTA by confining its search to an area close to the
root of the PTA and using the heuristic that states with the greatest
overlapping suffixes are more likely to be equivalent[29].

Other techniques have been proposed to infer different types of
models. For instance, the tool MINT, proposed by Walkinshaw in
2016 [30], builds an Extended FSM (EFSM) [4] by combining the
EDSM algorithm and a data classifier, where the classifier learns
patterns between the data values relating to an event and the events
that follow. This work aims to tackle issues of inflexibility and
non-determinism in other EFSM inference approaches like GK-
tails. In short, GK-tails proposed by Lorenzoli et al. in 2008 [20],
builds on the k-tails algorithm where state transitions also hold
corresponding data values. When states are merged, the values on
each transition become more general.

2

Log-Based Behavioral System Model Inference Using Reinforcement Learning BSc. Thesis, June 2021, Delft, Netherlands

As Gold pointed out [13], deriving a minimal yet consistent
model is an undecidable problem. To deal with this inherent scala-
bility issue of model inference, distributed approaches have been
proposed using the Map-Reduce framework [8]. For instance, a dis-
tributed version based on k-tails, called k-tails𝑀𝑅 , splits the traces
into groups based on the event type and then collects all sub-traces
of the same group to create a FSM [31]. However, this approach is
very application-specific since the input data needs to be encoded to
be used by the Map-Reduce framework. Another approach, SCALER
[23], creates a FSM for each component of the system and then com-
bines them by making use of dependencies between components
as reflected in the traces of the system.

3 APPROACH
The model inference technique follows a "state merging" methodol-
ogy ([7, 29, 30],) consisting of two parts: creating an initial model of
the log traces and then minimizing it to a still accurate but concise
representation of the system. This section first discusses how the
initial model is obtained (3.1 and then describes the approach used
to minimize it using RL (3.2).

3.1 Initial model
The initial model inference takes as input the set of log traces, S,
and returns the initial FSM, as described in algorithm 1. With the
use of the Syntax Tree, the log traces are parsed into the Unique State
Graph (USG) as defined is section 2.1. Since the USG is by definition
unique in terms of the log templates, E, it can have a maximum
number of nodes equal to |E |. This greatly assists in tackling the
scalability issues of other approaches as the model to be minimized
is already highly concise. Moreover, the use of the USG solves the
issue of non-determinism in the graph. A non-deterministic graph
has various disadvantages relating to its analysis as there is an
explosion of possible paths when following a specific sequence [15].
Since, the nodes in the USG are unique, a case of non-determinism
is impossible.

Other work uses as an initial model use a Prefix Tree Acceptor
(PTA), a tree-shaped automaton that exactly accepts the input log
traces, S [29]. This approach was considered in this study, however,
as we aim to tackle the scalability problems of related methods, the
extensive magnitude of the PTA discouraged its use. Empirically,
a data set of 160 log traces, results in a PTA with 160,322 nodes
whereas the corresponding USG has 87 nodes with 157 transitions.
Furthermore, the size of the initial DFA used in the "state merging"
model is detrimental to the execution time of the approach. More-
over, the use of the PTA resurfaces the issue of non-determinism
which, as explained, we strive to avoid. Thus, even though the PTA
is the most accurate initial model, its excessive size as well as the
scalability and determinism-related qualities lead to the choice of
the USG.

It is important for this approach to note the following assump-
tions about the underlying system:

AS.1 Every unique log template originates from a single point in
the system’s codebase, i.e. each template represents a unique
state of the system.

AS.2 The topology of the USG around a specific node encodes
enough information to dictate how this region best should
be merged.

Algorithm 1: USG parser
input :The Syntax Tree, 𝑠𝑡 , the set of all log traces, S, an

empty starting node 𝑠0
output :The inital model (USG)

1 𝑛𝑜𝑑𝑒𝑇𝑜𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑀𝑎𝑝 ← empty mapping
2 𝑚𝑜𝑑𝑒𝑙 ← empty FSM
3 foreach 𝑡𝑟𝑎𝑐𝑒 ∈ S do
4 𝑛𝑜𝑑𝑒 ← 𝑠0
5 foreach 𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡 ∈ 𝑡𝑟𝑎𝑐𝑒 do
6 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 ← 𝑠𝑦𝑛𝑡𝑎𝑥𝑇𝑟𝑒𝑒.𝑔𝑒𝑡 (𝑠𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡)
7 if 𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 ∈ 𝑛𝑜𝑑𝑒𝑇𝑜𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑀𝑎𝑝 then
8 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔← 𝑛𝑜𝑑𝑒𝑇𝑜𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑀𝑎𝑝 [𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒]
9 𝑎𝑑𝑑𝐸𝑑𝑔𝑒 (𝑝𝑟𝑒 𝑓 𝑖𝑥𝑇𝑟𝑒𝑒, 𝑛𝑜𝑑𝑒, 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔)

10 𝑛𝑜𝑑𝑒 ← 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔

11 else
12 𝑐ℎ𝑖𝑙𝑑 ← 𝑛𝑒𝑤𝑆𝑡𝑎𝑡𝑒 (𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒)
13 𝑛𝑜𝑑𝑒𝑇𝑜𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝑀𝑎𝑝 [𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒] ← 𝑐ℎ𝑖𝑙𝑑

14 𝑎𝑑𝑑𝐶ℎ𝑖𝑙𝑑 (𝑝𝑟𝑒 𝑓 𝑖𝑥𝑇𝑟𝑒𝑒, 𝑐ℎ𝑖𝑙𝑑, 𝑝𝑎𝑟𝑒𝑛𝑡)
15 𝑛𝑜𝑑𝑒 ← 𝑐ℎ𝑖𝑙𝑑

16 end
17 end
18 return model
19 end

3.2 The Approach
Taking as input the Unique State Graph (USG) described in section
3.1, the aim is to condense the model while keeping it an accu-
rate representation of the system. The definition of accurate is not
absolute. As Gold [13] and Angluin [1] showed in 1978 obtaining
a complete accurate yet miniaml FSM is an undecidable problem.
Thus, the actual goal of model inference techniques is to approx-
imate such models, as Lang showed is possible in 1992 [17]. This
fact, in combination with the ability of this problem to modeled
as a subsequent decision process where an agent decides how to
merge nodes in the graph motivates the use of RL in this work.

The big picture of the algorithm is as follows. The agent traverses
the graph from its starting node in a depth first manner. At each
node, it calculates the state it is in based on the topology of the
region around it. The agent observes this state and takes either a
random action with a small probability or the best action it has
found so far out of a defined set of allowed actions. The possible
actions include different ways to merge the current node with its
children. After the action has been taken, the resulting model is
evaluated and a reward is given trading off accuracy for compres-
sion. If it performs a merge that worsens the model (i.e. gets a
negative reward) the negative reward is given and the episode is
ended. After, the agent restarts from the starting node of the USG
and this process is repeated until either the whole model has been

3

BSc. Thesis, June 2021, Delft, Netherlands Symeonidis, et al.

traversed or no progress is observed over a predefined number of
time steps.

Specifically, the popular vanilla Q-Learning (QL) algorithm is
applied. QL is one of the most popular RL algorithms and is straight-
forward to implement, a which is crucial given the restricted time
frame of this study. QL aims at estimating the optimal action-state
function, 𝑞𝜋 (𝑠, 𝛼). It is described by the following equation:

𝑄 (𝑆𝑡 , 𝐴𝑡) ← 𝑄 (𝑆𝑡 , 𝐴𝑡)+𝛼 [𝑅𝑡+1+𝛾 max
𝛼

𝑄 (𝑆𝑡+1, 𝛼)−𝑄 (𝑆𝑡 , 𝐴𝑡)] (2)

This shows that after the agent takes an action 𝐴𝑡 at state 𝑆𝑡 at
time step 𝑡 , it updates its Q-value based on the immediate reward it
receives and the maximum expected return from the next state, 𝑆𝑡+1.
The actual policy used by the agent can vary, but the most popular
is the 𝜖-greedy policy ([24]) which is defined as follows: with a
probability 𝜖 , a random action is selected and with a probability
1 − 𝜖 , the best action is chosen based on the Q-values. This way
a trade-off between exploration and exploitation exists where the
agent can explore new actions in order to learn their Q-values but
also exploit already knownQ-values to make the best decisions. The
value of 𝜖 is dropped over time as the agent should stop exploring
and focus on the best learned values. The general formulation of
the algorithm is shown in algorithm 2.

Algorithm 2: Q-learning
input :The learning rate, 𝛼 , the 𝜖-greedy parameter 𝜖 , the

discount factor, 𝛾 , the environment, 𝑒𝑛𝑣
1 while stop is False do
2 𝑑𝑜𝑛𝑒 ← 𝐹𝑎𝑙𝑠𝑒

3 𝑠𝑡𝑎𝑡𝑒 ← 𝑟𝑒𝑠𝑒𝑡 (𝑒𝑛𝑣)
4 while done is False and stop is False do
5 𝑎𝑐𝑡𝑖𝑜𝑛𝑠 ← 𝑔𝑒𝑡𝑉𝑎𝑙𝑖𝑑𝐴𝑐𝑡𝑖𝑜𝑛𝑠 (𝑒𝑛𝑣)
6 𝑟𝑎𝑛𝑑𝑜𝑚 ← 𝑟𝑎𝑛𝑑 (0, 1)
7 if random < 𝜖 then
8 𝑎𝑐𝑡𝑖𝑜𝑛 ← random action
9 else
10 𝑎𝑐𝑡𝑖𝑜𝑛 ← max𝛼 𝑄 [𝑠𝑡𝑎𝑡𝑒, 𝛼], 𝑎 ∈ 𝑎𝑐𝑡𝑖𝑜𝑛𝑠
11 end
12 𝑠 ′, 𝑟 , 𝑑𝑜𝑛𝑒, 𝑠𝑡𝑜𝑝 ← 𝑠𝑡𝑒𝑝 (𝑒𝑛𝑣, 𝑎)
13 𝑄 [𝑠, 𝑎] ← 𝑄 [𝑠, 𝑎] +𝛼×(𝑟 +𝛾 max𝛼 𝑄 (𝑠 ′, 𝛼)−𝑄 [𝑠, 𝑎])
14 𝑠 ← 𝑠‘
15 end
16 end

Formally, the environment the agent operates in is defines as
follows.

3.2.1 State Space. The state the agent is in depends on the topology
of the USG around a specific node. It consists of a combination of
the following variables:
• The number of outgoing edges (5 options). A number, 0-4,
representing the amount of edges. Option 4, represents ≥ 42

2The reason behind this is that having a 4 way or more split in code is a rare situation
and can practically only be achieved using a switch statement which we do not come
across often in code.

• Normalized Shannon’s entropy (NSE) [22] on the outgoing
edges probabilities’ (5 options). Using the frequency counts
on the USG, the probabilities of following an edge are cal-
culated. Then, the NSE is calculated using equation 3 and
discretized into five buckets of length 0.2 representing the 5
options.

𝑆 = − 1
𝑙𝑜𝑔(𝑛)

𝑛∑
𝑘=1

𝑝𝑘 ∗ 𝑙𝑜𝑔(𝑝𝑘) (3)

Thus, there are 5 × 5 = 25 unique states the agent can be in.

3.2.2 Action Space. The action space spans different ways in which
the current node can be merged into its children based on the fre-
quencies on their respective edges. In this approach, we allow only
one type of merge. This merge is a union between the respective
log templates on the nodes. More concretely, if 𝛿 (𝑠0, 𝑋) = 𝑠1 and
𝛿 (𝑠1, 𝑌) = 𝑠2 and we merge 𝑠0𝑎𝑛𝑑𝑠1, we have a node 𝑠0∪1 with
𝛿 (𝑠0∪1, 𝑋) = 𝑠0∪1 and 𝛿 (𝑠0∪1, 𝑌) = 𝑠2. The reason behind this de-
cision is two-fold, one it is commonly used in related work [7]
and second due to the cost to implement other types of merges
considering the restricted time-frame of this study.

The complete action space can be seen in table 1. Actions are
constricted based on the state the agent is in. For instance a 2-way
merge is not possible if the node only has one child. This action-
validity matrix can be found in appendix B, in table 5, where a 1
represents an action is allowed and a 0 an action is not allowed.

Table 1: Action space with unique identifiers. Each
action represents a way to merge a node with its out-
going children based on the frequencies on their re-
spective edges.

Id Action

0 Dont merge
1 Merge all children into current node
2 Merge most frequent child
3 Merge second most frequent child
4 Merge third most frequent child
5 Merge two most frequent children
6 Merge two least frequent children
7 Merge two most and least frequent children

3.2.3 Reward. The agent is rewarded after every merge by trading
off accuracy for conciseness. Since the initial model is highly accu-
rate as described in section 3.1, the goal is to trade some accuracy
for a more concise model. Specifically, after a merge, the resulting
model is evaluated based on the model’s f1-score, specificity, and
compression as explained in detail in section 4.4. Using these met-
rics the accuracy (𝛼) and the conciseness (𝑐) are computed in terms
of the average of the f1-score and specificity and the compression
ratio respectively. Thus we have,

𝛼 = 0.5 × (2 × 𝑟𝑒𝑐𝑎𝑙𝑙∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑟𝑒𝑐𝑎𝑙𝑙+𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛) + 0.5 × 𝑠𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑖𝑡𝑦

𝑐 = 1 − # 𝑛𝑜𝑑𝑒𝑠
𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑛𝑜𝑑𝑒𝑠

4

Log-Based Behavioral System Model Inference Using Reinforcement Learning BSc. Thesis, June 2021, Delft, Netherlands

Then the following cases are identified based on the change in
accuracy, 𝛿𝛼 , and the change in compression, 𝛿𝑐:

• if 𝛼 < accuracy threshold, reward = 𝛿𝛼

• if 𝛿𝛼 < 0, reward = 𝛿𝑐

• else if 𝛿𝑐 > 0, reward = 𝛿𝑐 * 10
• else if 𝛿𝑐 <= 0, reward = 𝛿𝛼

Intuitively, as long as the accuracy is above a threshold value
defined by the user of the algorithm, we reward the agent positively
for reducing the accuracy for a gain in compression, analogously
to the size of the compression gain. If the action manages to both
increase accuracy and compression we give a scaled reward to
signify the value of this action. If both accuracy and compression
decrease or the threshold is exceeded, a negative reward equal to
the loss of accuracy is awarded. The motivation being that the
punishment should scale with the degree of decrease in accuracy

3.2.4 State transitions and episodes. Transitions from state to state
happen by traversing the USG in a depth first fashion. The agent
starts at the starting node of the USG keeping track of a set of
visited nodes so as to avoid visiting the same node twice and getting
stuck in cycles. It marks the current node as visited, adds all of the
outgoing nodes which have not yet been visited to the stack. After
performing an action in this state it pops the first node in the stack
and sets that as the current node. However, if the action resulted in
merging an unvisited node into the current one, we keep this node
as our current one as it has connections to other unvisited nodes.
Once a negative reward is encountered, the episode is ended. The
reason behind this is we want to encourage the agent to traverse
the model without performing merges that will negatively impact
the model. Thus, once the whole USG has been traversed without
receiving a negative reward we stop the algorithm and take the
model produced by this traversal as the final model.

3.2.5 Algorithm hyper-parameters. The QL algorithm consists of
multiple parameters, namely:

• The learning rate, 𝛼 , dictates how much the new value is
accepted vs the old one. So, a learning rate of 0 means we
do not learn anything new and keep the old value and the
larger 𝛼 becomes, the more weight is given to the new value
• The discount factor, 𝛾 , dictates how much importance is
given to future rewards. A discount factor of 0 means no
importance is given to the future rewards at all and the agent
learns to take actions that maximize its immediate reward.
• The value of 𝜖 , dictates the exploration vs exploitation trade-
off. It gives the probability the agent will explore, by picking
a random action, versus being greedy and picking the best
action.

4 EMPIRICAL STUDY
This section discusses the details of the empirical study starting by
presenting the research questions this study aims to answer (4.1),
the benchmark used (4.2), implementation details and parameter
settings (4.3) and details about the experimental protocol followed
(4.4).

4.1 Research Questions
The goal of this empirical study is to evaluate the effectiveness of
the reinforcement learning-based approach in deriving a concise
and accurate state model from a set of log traces. On top of that,
the scalability of this approach is assessed. The research questions
are as follows.
RQ1. How accurate and how concise is the model inferred by the

RL-based technique?
RQ2. How well does the RL-based algorithm scale?

4.2 Benchmark
This work makes use of logs produced by the XRP ledger, a real-
time system producing approximately 100GB of log data every day,
across all components and all levels. However, we focus on the
Consensus Protocol, a major component of the system. This com-
ponent is very well documented, produced an abundance of logs,
and has been used in previous studies [21] where it was modeled
both empirically and theoretically. This allows us to compare the
models produced in this approach with the theoretical counterpart
and evaluate the results of the approach.

4.3 Implementation and parameter settings
The approach was implemented as a Python 3.8 program and is
publicly available at [26]. The reinforcement learning implementa-
tion is done using the OpenAI gym library [3], the de facto standard
library in reinforcement learning research. OpenAI gym is a frame-
work aiming at standardizing RL research, consisting of multiple
standardized environments and agents but also providing the ability
to fully customize the approach.

As far as the hyper-parameter settings are concerned, their val-
ues are shown in table 2. These values are based on related work
([11]) and accepted standard values in literature. The time frame
of this study did not allow for careful fine-tuning of these parame-
ters however these values even though not fine-tuned still produce
acceptable results and future work could look into optimizing them.

Table 2: Model hyper-parameters

Parameter Value

𝛼 0.2
𝜖 0.3 decayed to 0.1
𝛾 0.7

accuracy threshold 0.9
k (KFCV) 5

4.4 Experimental Protocol
The research questions are answered by evaluating the models
produced by the approach using the metrics introduced in section
4.4.1 and by evaluating the scalability of the approach as explained
in section 4.4.2.

4.4.1 Accuracy and conciseness. To answer RQ1, we evaluate the
model based on its accuracy and conciseness. To evaluate the
model’s accuracy, a data set was created consisting of training

5

BSc. Thesis, June 2021, Delft, Netherlands Symeonidis, et al.

and test traces following a 4:1 split. Concretely, 800 traces with an
average of 800 statements each, were picked randomly as a training
set. The test set consists of 100 positive samples and 100 negative
samples. The 100 positive samples consist of 100 additional log
traces produced by the Consensus Protocol which the model should
accept. The 100 negative samples consist of 100 negative traces, i.e.
log traces the model should reject. To acquire negative samples, we
adopt a technique used in related work ([23, 29]) in which existing
traces are mutated. Specifically, we apply three different types of
mutations:
• Remove a random log statement
• Swap two consecutive log statements
• Swap two random log statements

To verify the mutated trace is indeed an incorrect one, we use
the initial model. If it accepts the trace, the trace is actually correct.
Hence, mutations are applied until it is rejected.

Accuracy is evaluated following related work [9, 30] based on
recall, specificity, precision, and the f1-score. To evaluate the model
the test traces are used as input to the model, leading to one of
the following results: True Positive (TP), True Negative (TN), False
Positive (FP), or False Negative (FN).

Based on these classes the metrics are calculated as follows:
• Recall: How many of the positive traces are accepted

𝑅𝑒𝑐𝑎𝑙𝑙 =
#𝑇𝑃

#𝑇𝑃 + #𝐹𝑁
• Specificity: How many of the negative traces are rejected

𝑆𝑝𝑒𝑐𝑖 𝑓 𝑖𝑐𝑖𝑡𝑦 =
#𝑇𝑁

#𝑇𝑁 + #𝐹𝑃
• Precision: How many of the accepted traces are actually
positive

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
#𝑇𝑃

#𝑇𝑃 + #𝐹𝑃
As far as conciseness is concerned, the model is evaluated based

on three metrics:
• Compression ratio

1 − 𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑠𝑖𝑧𝑒

𝑈𝑛𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑒𝑑 𝑠𝑖𝑧𝑒
= 1 − # 𝑛𝑜𝑑𝑒𝑠

𝑖𝑛𝑖𝑡𝑎𝑙 𝑛𝑜𝑑𝑒𝑠
• Number of nodes
• Number of transitions

To calculate the metrics, k-fold cross validation (KFCV) is used
[12]. This method, also used in other model inference studies ([30]),
splits the data set into k partitions. The k-1 folds are used as a
training set and the remaining fold as a test set. This is repeated k
times, until all folds have been used as the test set, hence making
efficient use of the whole data set. The metrics are then calculated
by averaging over the k folds.

4.4.2 Scalability. To evaluate the scalability of the approach, we
recorded the running time of the algorithm on different sized data
sets. In particular, 5 data sets were created ranging from 100 to 1000
traces with an interval of 200 following a 4:1 split into training and
test sets. KFCV was then used on each data set and the average run
time across the k folds was calculated. All experiments were run
on a Windows machine with an Intel(R) Core(TM) i7-8750H CPU
at 2.20GHz with 16 GB of RAM.

5 RESULTS
In this section, we report and analyze the results of the study by
answering the research questions presented in section 4.1, namely
about the accuracy and conciseness of the inferred model in section
5.1 and the scalability of the RL-based approach in section 5.2.

5.1 Accuracy and conciseness
The amount of time steps completed in each episode of the QL
algorithm across episodes is plotted in figure 1. As seen in the graph,
the amount of steps randomly fluctuates around approximately 40
steps. The algorithm did not manage to converge and stopped due to
not making any progress across 10 episodes. This indicates that the
agent was not able to traverse the entire USG. These observations
can be attributed to two factors.

Firstly, these results suggest that using the current state repre-
sentation, as explained in section 3.2.1, the action values can not
generalize to the whole model and thus the agent is not able to
traverse the whole graph. The 25 unique states, used to model the
topology around a node based on its outgoing edges and their fre-
quencies, appear to be too broad and thus the algorithm is unable
to converge to one specific action being optimal for each state.

Secondly, assumption AS.2, regarding the topology of the USG,
appears to not hold in this case. If it did hold, the agent would have
been able to learn the optimal action for each state in the graph and
use it to traverse the USG. However, since it is not able to perform
a complete traversal this points to the assumption not holding for
the underlying system.

20

40

60

0 1000 2000 3000
Episode

S
te

ps

Figure 1: Amount of time steps until the episode is
ended plotted across all episodes.

Table 3, shows some of the most important results gathered
during the execution of the approach. As visible in the table, the
initial model, i.e. the USG, is highly accurate with a recall of 0.98
and specificity of 1. As far as conciseness is concerned, it consists
of an average of 102 nodes and 200 transitions. Moreover, we have
collected the best, worst, and average model produced across the
run of the algorithm. This "goodness" is described in terms of the
number of time steps completed in the episode resulting in the
corresponding model. Since the goal of the approach is to manage
a complete traversal through the USG, the number of time steps

6

Log-Based Behavioral System Model Inference Using Reinforcement Learning BSc. Thesis, June 2021, Delft, Netherlands

Table 3: Evaluation of recall, specificity, precision, compression and number of nodes and transitions for the best, worst
and average model produced by the approach.

Model Recall Specificity Precision Compression Nodes Transitions

initial (USG) 0.98 1.00 1.00 0.00 102 200
best 0.99 0.84 0.86 0.56 44 100
worst 0.99 0.81 0.84 0.08 94 167
average 0.99 0.85 0.87 0.34 67 131

completed is analogous to the percentage of the graph traversed.
As can be seen in the table, the compression improves with the
traversal length reaching a maximum of 56% with 44 nodes and
100 transitions. Also, we notice that the recall is constantly high,
whereas specificity is the measure that varies the most. This can be
explained as follows. As the recall in the USG is already at a value
of 0.98 and the merges performed during the approach only make
the model more general, all positive traces accepted by the USG
will always be accepted, hence it can only increase. However, as
merges are completed and the model generalizes, more negative
traces might get accepted that were previously rejected.

Furthermore, it is worth pointing out some other interesting
results. In table 6 found in the appendix, we highlight some runs
of the algorithm that did manage to converge. These mostly apply
to models based on small a data set (100 traces) since they have
a simpler topology and thus can be traversed with more ease by
the agent. One such run managed to condense the initial USG by
91% while keeping both recall and specificity at 90% which is a
promising result. Another run on a data set of 600 traces managed
to converge in only 3 episodes condensing the initial model by 69%
and achieving a value of 1 for recall and 0.88 for specificity.

Given these results, it can be concluded that the reward function
manages to successfully trade off accuracy for an increase in the
conciseness of the model. However, since the action values are not
able to converge, these results are most likely constructs of almost
random traversals and merges through the graph managing to get
to the end without negatively affecting the model. Thus, the results
in table 6 are mostly the product of random walks through the USG
and not based on meaningful information priorly learned.

We conclude that,

RQ1.Under the current state representation, assumptionAS.2 does
not hold in this case and thus we cannot generalize the actions for
the whole model. However, the reward function seems to guide the
agent to successfully trade off accuracy for conciseness leading to
promising, although randomly generated, final models.

5.2 Scalability
Figure 2 displays the execution time of the approach based on
varying data set sizes. As visible, the correlation between the two
variables seems to be linear despite one outlier. This decrease of
the runtime at the 800 trace data set could suggest that the runtime
of the algorithm is related to the topology of the USG. Each data
set produces a similar (in terms of nodes) yet different (in terms of
connections) USG and the convergence of the approach depends
on the existence of patterns in the topology of the graph.

Nevertheless, a linear relationship would coincide with the theo-
retical complexity analysis of the approach. As the approach takes
as input the USG, which node count is capped by the unique log
templates produced by the system, the input model is practically
the same for each run of the algorithm. The only thing affecting
its execution time is the model evaluation after each action. This
part passes the test set (positive and negative traces) through the
resulting model and classifies them accordingly. These classes are
then used to compute the metrics described in the experimental
protocol (section 4.4). Thus, the evaluation’s time complexity is
𝑂 (𝑛) where 𝑛 is the size of the data set. Hence, the whole approach,
theoretically, also scales linearly with the size of this data set.

10000

20000

30000

250 500 750 1000
Data set size (amount of logs)

E
xe

cu
tio

n
tim

e
(s

)

Figure 2: Approach execution time in seconds for dif-
ferent data set sizes.

However, it has to be noted that as these execution time values
are the result of KFCV, the runs either terminate because of the
algorithm converging or due to the algorithm not converging and
the stopping condition being reached. A high amount of variance
was observed for the k different runs. Given that the majority of
runs do not converge (as seen in table 6), this could be attributed
to the randomness associated with the learning phase each run can
take arbitrarily long to reach the stopping condition. This leads us
to conclude that the results about the scalability of the approach
are inconclusive and should be further examined. We conclude that,

RQ2. The results are inconclusive due to the algorithm not con-
verging. However, initial results seem to depict a linear relationship
which agrees with our theoretical complexity analysis.

7

BSc. Thesis, June 2021, Delft, Netherlands Symeonidis, et al.

6 THREATS TO VALIDITY
This section outlines the threats to the validity of this work, exter-
nally (6.1) and internally (6.2), and how we mitigate them in this
work.

6.1 Threats to external validity
Threats to the external validity of this study refer to the general-
izability of this work. The study is based on a specific case study,
the Consensus Protocol of the XRP Ledger. On top of this, we make
an assumption based on this specific system, AS.2. As discussed
in the results (5), this assumption does not seem to hold in this
specific case. However, we cannot draw a general conclusion as the
assumption is possible to still hold for other systems. Future work
will, thus, need to test this hypothesis.

A second assumption is made, namely AS.1. In this case, this
assumption was manually tested by examining the source code.
However, this assumption might not hold for other systems or
may not be able to be tested due to there being no access to the
source code. In that case, the USG, used as an initial model,will not
be a representative model of the underlying system and thus this
approach will not hold.

6.2 Threats to internal validity
Threats to the internal validity of this study include threats to the
quality of the evaluation performed. First, an argument could be
made about the choice of metrics used to evaluate the inferred
models. For accuracy, we choose the f1-score, recall, specificity,
and precision following related work [19, 30] and DFA inference
competitions (Abbadingo [18] and STAMINA [29]). For conciseness,
again following related work ([23, 30]), we evaluate the number
of nodes and the number of transitions as well as the amount by
which the model has been compressed.

Moreover, a threat to the internal validity could be the choice
of the data set used in the work. Firstly, the traces were acquired
from an official node of the XRP ledger. Secondly, regarding the
size of the data set, doubts could be raised if it is large enough to
evaluate the scalability of the approach. Comparing to alternative
approaches ([23]) which use a maximum of 35K log statements,
we evaluate on significantly more traces. Namely 800 traces each
consisting of an average of 800 statements, thus 640K statements
in total.

7 RESPONSIBLE RESEARCH
Traditional ethical concerns like conflicts of interest or human re-
search subjects do not apply in this case because of the nature of
the work. However, a crucial aspect to be considered is its repro-
ducibility. To adhere to the scientific method and to ensure work
is credible it must be reproducible. Without reproducibility, the
work loses its credibility as it cannot be validated by the scientific
community. For this reason, a lot of emphases was put on making
sure this work is fully reproducible. Firstly, the implementation of
the algorithm presented is publicly available [26]. Moreover, the
data set used in the study is also publicly available [25] and the
values of the parameters used are cited in table 2. This way, any-
one who wants to validate the results by running the algorithm
or experiment with the work itself is able to do so. All external

requirements with their specific required versions are documented
and extensive documentation has been written, both inside the code
and as an external document which is all available with the code.

Furthermore, due to the nature of RL algorithms, this work con-
tains the element of randomness. Specifically, when the agent is
exploring it is randomly picking an action. On top of this, when
evaluating the inferred model using k-fold cross validation, ran-
domness is involved in splitting the data set. To cope with statistical
variation due to this randomness all results presented in this work
are averages taken from various independent runs of the algorithm.
Moreover, for this work to be fully reproducible the option to seed
the random generator is given and the seed used to achieve the
results in this work is also given, meaning the random number
generator will produce the exact sequence of numbers every time
ran. Specifically, the seeds used can be found in the appendix in
table 4.

8 CONCLUSIONS AND FUTUREWORK
This paper aims to present and evaluate a novel Reinforcement
learning-based model inference algorithm based on a system’s log
traces. The principal motivation behind this approach is to attempt
to tackle the intrinsic scalability issue of deriving a consistent FSM.
Hence, an AI-based approach is proposed which infers a model
by first parsing the traces into an initial model and minimizing
it. The approach implements the popular Q-Learning algorithm
by traversing the initial model and at each node, deciding how
to merge, if at all, the specific region based on its topology, i.e.
number of states and edge frequencies. After taking action, the
resulting model is evaluated and a reward is given to the agent for
successfully trading off accuracy for conciseness. If the reward is
negative the process is restarted until the action values learned can
generalize to the whole model and thus complete a traversal.

The empirical evaluation of the final models is based on a data set
of 1000 traces (800 statements each) produced by the XRP Ledger
Consensus Protocol. Results show that using the state representa-
tion used in this work the action values are not able to generalize
to the whole model and thus the algorithm does not manage to
traverse the whole initial model. This is, probably, because of the
assumption made throughout this work, i.e. that the topology of
the graph around a node contains the information necessary to dic-
tate how to merge this region, does not hold in this case. However,
throughout each attempt to traverse the initial model, the reward
function guides the agent successfully trading of the accuracy of
conciseness and although randomly generated, providing promis-
ing results. As far as the scalability of the approach is concerned,
since the algorithm does not converge, no definite conclusions can
be drawn. Theoretically, however, because of the choice of using
the Unique State Graph as the initial model, meaning the size of the
initial model remains constant, the execution time of the approach
should scale linearly with the test set used to evaluate the model.

Future work should look into applying this approach to other
systems, to examine if the assumption mentioned holds and leads
to more promising results. On top of this, the state space should be
experimented with by enriching it with more information such as
the number of incoming edges and frequencies of incoming edges.
However, it is important to point out that there is a tradeoff between

8

Log-Based Behavioral System Model Inference Using Reinforcement Learning BSc. Thesis, June 2021, Delft, Netherlands

the size of the state space and the learning time of the approach.
The larger the state space, the more action values will have to be
learned leading to additional learning time.

Moreover, in this study, only a particular kind of merge was
executed. Future work could attempt to include other types of
merges, for instance, merging nodes A and B leads to a single node,
C, accepting exactly the sequence A→ B. Additionally, other types
of actions could be considered. For example, completely removing
a specific branch or merging a set of children into one child.

Finally, due to the restricted time frame of the work, we were
not able to optimize the hyper-parameters of the model and fol-
lowed related work as well as standard values used in the literature.
Thus, future work could look into fine-tuning the Q-Learning hy-
perparameters as well as the accuracy threshold set in the reward
function.

REFERENCES
[1] Dana Angluin. 1978. On the complexity of minimum inference of regular sets.

Information and control 39, 3 (1978), 337–350.
[2] Alan W Biermann and Jerome A Feldman. 1972. On the synthesis of finite-state

machines from samples of their behavior. IEEE transactions on Computers 100, 6
(1972), 592–597.

[3] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. 2016. Openai gym. arXiv preprint
arXiv:1606.01540 (2016).

[4] Kwang-Ting Cheng and Avinash S Krishnakumar. 1993. Automatic functional
test generation using the extended finite state machine model. In 30th ACM/IEEE
Design Automation Conference. IEEE, 86–91.

[5] Jonathan E. Cook and Alexander L. Wolf. 1998. Discovering Models of Software
Processes from Event-Based Data. ACM Trans. Softw. Eng. Methodol. 7, 3 (July
1998), 215–249. https://doi.org/10.1145/287000.287001

[6] James C Corbett, Matthew B Dwyer, John Hatcliff, Shawn Laubach, Corina S
Pasareanu, Hongjun Zheng, et al. 2000. Bandera: Extracting finite-state models
from Java source code. In Proceedings of the 2000 International Conference on
Software Engineering. ICSE 2000 the New Millennium. IEEE, 439–448.

[7] Christophe Damas, Bernard Lambeau, Pierre Dupont, and Axel Van Lamsweerde.
2005. Generating annotated behavior models from end-user scenarios. IEEE
Transactions on Software Engineering 31, 12 (2005), 1056–1073.

[8] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing
on large clusters. Commun. ACM 51, 1 (2008), 107–113.

[9] Seyedeh Sepideh Emam and James Miller. 2018. Inferring extended probabilistic
finite-state automaton models from software executions. ACM Transactions on
Software Engineering and Methodology (TOSEM) 27, 1 (2018), 1–39.

[10] M.D. Ernst, J. Cockrell, W.G. Griswold, and D. Notkin. 2001. Dynamically discov-
ering likely program invariants to support program evolution. IEEE Transactions
on Software Engineering 27, 2 (2001), 99–123. https://doi.org/10.1109/32.908957

[11] Eyal Even-Dar, Yishay Mansour, and Peter Bartlett. 2003. Learning Rates for
Q-learning. Journal of machine learning Research 5, 1 (2003).

[12] Yoav Freund and Robert E Schapire. 1997. A decision-theoretic generalization of
on-line learning and an application to boosting. Journal of computer and system
sciences 55, 1 (1997), 119–139.

[13] E Mark Gold. 1978. Complexity of automaton identification from given data.
Information and control 37, 3 (1978), 302–320.

[14] Michael T Goodrich, Roberto Tamassia, and Michael H Goldwasser. 2014. Data
structures and algorithms in Java. John Wiley & Sons.

[15] Robert M Hierons, Kirill Bogdanov, Jonathan P Bowen, Rance Cleaveland, John
Derrick, Jeremy Dick, Marian Gheorghe, Mark Harman, Kalpesh Kapoor, Paul
Krause, et al. 2009. Using formal specifications to support testing. ACMComputing
Surveys (CSUR) 41, 2 (2009), 1–76.

[16] Ronald A Howard. 1960. Dynamic programming and markov processes. (1960).
[17] Kevin J Lang. 1992. Random DFA’s can be approximately learned from sparse

uniform examples. In Proceedings of the fifth annual workshop on Computational
learning theory. 45–52.

[18] Kevin J Lang, Barak A Pearlmutter, and Rodney A Price. 1998. Results of the ab-
badingo one DFA learning competition and a new evidence-driven state merging
algorithm. In International Colloquium on Grammatical Inference. Springer, 1–12.

[19] David Lo, Leonardo Mariani, and Mauro Santoro. 2012. Learning extended FSA
from software: An empirical assessment. Journal of Systems and Software 85, 9
(2012), 2063–2076.

[20] Davide Lorenzoli, Leonardo Mariani, and Mauro Pezzè. 2008. Automatic gen-
eration of software behavioral models. In Proceedings of the 30th international

conference on Software engineering. 501–510.
[21] M. Roelvink. 2020. Log inference on the Ripple Protocol: testing the system with

an empirical approach. (2020).
[22] Claude Elwood Shannon. 1948. A mathematical theory of communication. The

Bell system technical journal 27, 3 (1948), 379–423.
[23] Donghwan Shin, Salma Messaoudi, Domenico Bianculli, Annibale Panichella,

Lionel Briand, and Raimondas Sasnauskas. 2019. Scalable inference of system-
level models from component logs. arXiv preprint arXiv:1908.02329 (2019).

[24] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[25] Pandelis Symeonidis, Tommaso Brandirali, Calin Georgescu, and Thomas
Werthenbach. 2021. XRP Ledger Consensus Protocol Traces Dataset. https:
//doi.org/10.5281/zenodo.5090200

[26] Pandelis Symeonidis, TommasoBrandirali, Thomas Werthenbach, and Calin
Georgescu. 2021. Pandelissym/WhatTheLog: Log-Based Behavioral System Model
Inference Using Reinforcement Learning. https://doi.org/10.5281/zenodo.5090175

[27] Alfonso Valdes and Keith Skinner. 2000. Adaptive, model-based monitoring for
cyber attack detection. In International Workshop on Recent Advances in Intrusion
Detection. Springer, 80–93.

[28] Neil Walkinshaw, John Derrick, and Qiang Guo. 2009. Iterative refinement of
reverse-engineered models by model-based testing. In International Symposium
on Formal Methods. Springer, 305–320.

[29] Neil Walkinshaw, Bernard Lambeau, Christophe Damas, Kirill Bogdanov, and
Pierre Dupont. 2013. STAMINA: a competition to encourage the development
and assessment of software model inference techniques. Empirical software
engineering 18, 4 (2013), 791–824.

[30] Neil Walkinshaw, Ramsay Taylor, and John Derrick. 2016. Inferring extended
finite state machine models from software executions. Empirical Software Engi-
neering 21, 3 (2016), 811–853.

[31] Shaowei Wang, David Lo, Lingxiao Jiang, Shahar Maoz, and Aditya Budi. 2015.
Scalable parallelization of specification mining using distributed computing. In
The Art and Science of Analyzing Software Data. Elsevier, 623–648.

A SEED VALUES
In table 4 we note all seeds used throughout this study to ensure
full reproducibility.

Table 4: Seeds used.

run seed

KFCV data set creation 0
KFCV (fold 1) 0
KFCV (fold 1) 1
KFCV (fold 1) 2
KFCV (fold 1) 3
KFCV (fold 1) 4

B ACTION SPACE
Table 5 highlights the allowed actions at each particular state. Next
to the unique identifier of each state we include the decoded (human
readable) version of the state. This is a concatenation of the two
variables making up the state space: the number of outgoing edges
and the entropy of the outgoing edges’ probabilities. We repeat all
possible actions the agent can take in table 1.

9

https://doi.org/10.1145/287000.287001
https://doi.org/10.1109/32.908957
https://doi.org/10.5281/zenodo.5090200
https://doi.org/10.5281/zenodo.5090200
https://doi.org/10.5281/zenodo.5090175

BSc. Thesis, June 2021, Delft, Netherlands Symeonidis, et al.

Table 1: Action space with unique identifiers. Each
action represents a way to merge a node with its out-
going children based on the frequencies on their re-
spective edges (repeated from page 4).

Id Action

0 Dont merge
1 Merge all children into current node
2 Merge most frequent child
3 Merge second most frequent child
4 Merge third most frequent child
5 Merge two most frequent children
6 Merge two least frequent children
7 Merge two most and least frequent children

Table 5: Action validity matrix. A value of 1 symbol-
izes an action is allowed in a specific state whereas a
0 symbolized said action is not allowed.

Actions

State (decodeda) 0 1 2 3 4 5 6 7

0 (0.0) 1 0 0 0 0 0 0 0
1 (0.1) 1 0 0 0 0 0 0 0
2 (0.2) 1 0 0 0 0 0 0 0
3 (0.3) 1 0 0 0 0 0 0 0
4 (0.4) 1 0 0 0 0 0 0 0
5 (1.0) 1 0 1 0 0 0 0 0
6 (1.1) 1 0 1 0 0 0 0 0
7 (1.2) 1 0 1 0 0 0 0 0
8 (1.3) 1 0 1 0 0 0 0 0
9 (1.4) 1 0 1 0 0 0 0 0
10 (2.0) 1 0 1 0 0 0 0 0
11 (2.1) 1 1 1 1 0 0 0 0
12 (2.2) 1 1 1 1 0 0 0 0
13 (2.3) 1 1 1 1 0 0 0 0
14 (2.4) 1 1 1 1 0 0 0 0
15 (3.0) 1 0 1 0 0 0 0 0
16 (3.1) 1 1 1 1 1 1 1 1
17 (3.2) 1 1 1 1 1 1 1 1
18 (3.3) 1 1 1 1 1 1 1 1
19 (3.4) 1 1 1 1 1 1 1 1
20 (4.0) 1 0 1 0 0 0 0 0
21 (4.1) 1 0 0 0 0 0 0 0
22 (4.2) 1 0 0 0 0 0 0 0
23 (4.3) 1 0 0 0 0 0 0 0
24 (4.4) 1 0 0 0 0 0 0 0

aThe decoded states indicate the two components of the state space. The first part is
the number of outgoing edges and the second the entropy of the outgoing edges’

probabilities

C ADDITIONAL RESULTS
Table 6 lists the complete results gathered throughout the evaluation
process. We underline the runs of the algorithm that managed to

converge by completing a traversal through the USG. Moreover, we
highlight other interesting results.

10

Log-Based Behavioral System Model Inference Using Reinforcement Learning BSc. Thesis, June 2021, Delft, Netherlands

Table 6: Additional results. Underlined episodes signify converged runs of the algorithm. Highlighted cells point out
other interesting results.

Data set size Seed Episodes
Accuracy Conciseness

DurationRecall Specificity Precision Compression Nodes Transitions

100 0 3000 0.90 0.80 0.82 0.42 56 101 6732
100 1 182 0.90 0.90 0.90 0.91 8 23 564
100 2 2551 0.90 0.90 0.90 0.84 15 38 7804
100 3 56 1.00 0.90 0.91 0.85 15 42 237
100 4 13 0.90 0.90 0.90 0.82 17 45 18
400 0 507 1.00 0.82 0.85 0.18 89 170 3963
400 1 1172 0.98 0.85 0.87 0.14 93 176 11738
400 2 1635 0.95 0.88 0.88 0.30 76 151 14146
400 3 439 1.00 0.75 0.80 0.16 92 177 3031
400 4 84 0.92 0.78 0.80 0.18 80 136 393
600 0 361 0.98 0.82 0.84 0.21 84 161 3649
600 1 3000 0.95 0.87 0.88 0.36 70 152 37569
600 2 120 1.00 0.77 0.81 0.16 92 168 941
600 3 253 1.00 0.67 0.75 0.19 82 139 2150
600 4 3 1.00 0.88 0.90 0.69 34 79 51
800 0 70 0.99 0.80 0.83 0.13 85 167 1005
800 1 550 0.99 0.81 0.84 0.17 80 149 6693
800 2 586 0.98 0.80 0.83 0.17 82 149 6055
800 3 464 1.00 0.86 0.88 0.33 65 116 5763
800 4 178 0.99 0.84 0.86 0.15 83 157 3033
1000 0 348 1.00 0.80 0.83 0.07 95 168 7944
1000 1 66 1.00 0.85 0.87 0.08 94 166 858
1000 2 1627 0.99 0.82 0.85 0.08 94 167 31747
1000 3 85 0.98 0.80 0.83 0.08 94 167 1185
1000 4 1538 0.98 0.76 0.80 0.08 94 167 31170

11

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Background
	2.2 Related Work

	3 Approach
	3.1 Initial model
	3.2 The Approach

	4 Empirical Study
	4.1 Research Questions
	4.2 Benchmark
	4.3 Implementation and parameter settings
	4.4 Experimental Protocol

	5 Results
	5.1 Accuracy and conciseness
	5.2 Scalability

	6 Threats to validity
	6.1 Threats to external validity
	6.2 Threats to internal validity

	7 Responsible Research
	8 Conclusions and Future Work
	References
	A Seed values
	B Action space
	C Additional results

