IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 11, NO. 6, DECEMBER 2003 861

Correspondence

Comments on the Benchmarks in “A Proposal the data set is described as follows: “The modeling of this problem be-
for Improving the Accuracy of Linguistic comes very complex due to the large quantity of relevant variables and
Modeling” and Related Articles to the fact that the problem-solving goal is not only to obtain an accurate
model but also a user-interpretable model representing the nonlinear re-
Johannes A. (Hans) Roubos and Robert Babu lationships existing in the problem as well as putting some light on the

reasoning process performed by human experts.” In the following, we
S ~ show that this modeling problem is not that complex and that standard
Abstract—in the above paper, the so-called accurate linguistic modeling regression techniques yield accurate and interpretable models.

(ALM) method was proposed to improve the accuracy of linguistic fuzzy . . . . g
models. A number of examples are given to demonstrate the benefits of the Rice overall evaluation was done by experts on the basis of five char

approach. We show that; 1) these examples are not suitable as benchmarksacteristics: flavor, appearance, taste, stickiness, and toughness. These
or demonstrators of nonlinear modeling techniques and 2) better results characteristics are used as real-valued inputs to the model. The output
can be obtained by using both standard regression tools as well as other js the overall evaluation given on a real scale (positive and negative

fuzzy modeling techniques. We argue that benchmark examples that are | ,|,65) The data set contains 105 samples of different rice kinds and
used in articles to demonstrate the effectiveness of fuzzy modeling tech-

niques should be selected with great care. Critical analysis of the resuilts all the \(ariables are normalized in.the inter{@l1]. Ff).r traini.ng and. .
should be made and linear models should be regarded as a lower bound on e€valuation purposes, the data set is randomly partitioned into training

the acceptable performance. data (75 samples) and test data (30 samples). Repeated training and
Index Terms—tinguistic fuzzy model, rice data, spline model validation runs are performed to obtain statistically relevant results [1],
Takagi—-Sugeno (TS) fuzzy model. [9], [10].

A. Linear Regression
I. INTRODUCTION

) . Without having any prior knowledge about the problem, one usually
Fuzzy moc_iels_ differ from nonsymbolic methods S_UCh as neurf'ﬁjst analyzes the data through correlation analysis. Fig. 1 shows strong
networks mainly in that they can represent knowledge in a transpargnka; correlations between some of the inputs and the output. This

manner usingF-THEN rules. Linguistic interpretability and trans-njicates that a linear regression model may already be adequate for
parency are therefore important aspects in fuzzy modeling [2]—[@]is data

Recently, we have witnessed a strong emphasis on approaches focusigg) e, the small number of potential regressors, any standard input-

on the prediction performance and accuracy of fuzzy systems. NeWe tion technique can be used, such as forward or backward selection,
construction techniques are b_elng mtroduced and their performancgtgpwise regression and even exhaustive search. By using exhaustive
usually assessed by using simulation examples and real-world d%?arch,we found that a linear model using input$o - and an offset

The paper by Cordén and Herrera [1] is an example of one sughe harameters in total) gives the best cross-validation mean-squared
article. The authors acknowledge the fact that linguistic models Wil jiction erroMSE = 0.0014 averaged over ten runs; see Table I:

fixed and evenly spaced membership functions result in models with

poor approximation properties. They propose dleeurate linguistic ) .
. . . = 0.1490s 1615 5464 256124 — 0. 1.
modeling(ALM) method which allows consequents with two fuzzy” 0.149021 4 0.16152; + 0.5464w3 + 0.256 x4 — 0.0631. (1)

sets and thereby improves the accuracy. - -
yimp Y Il%germsofpredlctlon accuracy, this linear model outperforms the fuzzy

Three examples are given to demonstrate the benefits of the p . . .
posed technique: The “rice data,” a bivariate function, and a mo%;n_odels from [1] and other related literature. Also, the interpretation of

eling problem encountered in electricity distribution. In this paper, V\}e's model is quite straightforward. Al the considered features posi-

discuss the first two examples (the data set of the third example V\Eg{gly contrlbute t.o the o.ver.all rice evaluation and that the largest pa-
eter is associated with inpui (taste).

not available to us). We show that these examples are not suitablé ) . ; .
) P dﬂterestlngly, a linear model using only givesMSE = 0.0021 on

benchmarks or demonstrators of nonlinear modeling techniques test dat hich i It d as the best f del in 1
that better results can be obtained by using both standard regresgioe est data, which is a result as good as the best fuzzy model in [1]
related works of the authors

tools as well as other fuzzy modeling techniques. As the rice data &l
was also used by other researchers, we have included their results in _
our discussion, too. y = 10879 )

As the singleton fuzzy model reported in [8] achieves a slightly better
result, a question arises whether the performance of the linear regres-
The “rice data” problem was originally introduced in [8]. Later, itsion model can be improved by using nonlinear regression (including

was used as a benchmark by several other authors [1], [9]-[12]. In [fijzzy models).

Il. RICE TASTE EVALUATION

B. Polynomial Regression

Manuscript received November 18, 2001; revised October 15, 2002,BY using a range of input-selection techniques, polynomial regres-
December 17, 2002, and February 6, 2003. sion models can be constructed. A simple exhaustive search over model
The authors are with the Delft Center for Systems and Control, Delft Univer-
sity of Technology, 2628 CD Delft, The Netherlands (e-mail: hans@ieee.org;1Some of the performance indexes have been converted from the original ones
r.babuska@dcsc.tudelft.nl). to the index used in [1] (e.g., the error in [8] and [9] was the summed quadratic
Digital Object Identifier 10.1109/TFUZZ.2003.819822 error divided by two).
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Fig. 1. Scatter plots of the rice data.
TABLE |

RESULTSOBTAINED BY VARIOUS AUTHORS FOR THERICE DATA PROBLEM. THE MSE VALUES ARE AVERAGES OVER 7—12 (ROSSVALIDATION RUNS (* =

NOT GIVEN IN THE REFERENCH

Method # Rules # Labels 0.5 MSE¢rain 0.5 MSE¢est
Polynomial model with four inputs [this paper] — — 0.0011 0.0012
Linear model with four inputs [this paper] 1 — 0.0012 0.0014
TS fuzzy model with three inputs [this paper] 2 — 0.0012 0.0014
Linear model with one input [this paper] 1 — 0.0020 0.0021
D-MOGUL [10] 21 24 0.0026 0.0021
WM-method [10] 27 24 0.0026 0.0027
ALM I-based [1] 136 18 0.0014 0.0028
ALM WM-based [1] 12 18 0.0019 0.0029
ALM WM-based [1] 5 12 0.0034 0.0040
SA+CH-method [10] * 52 0.0003 0.0108
Singleton model, gradient [8] 243 15 0.0006 0.0013
Singleton model, heuristic + gradient [8] 32 10 0.0009 0.0016
Heuristic method [9] >32 30 0.0007 0.0029
Singleton model, heuristic + gradient [8] 3125 25 0.0001 0.0033
Heuristic method [9] 32 15 0.0029 0.0040
structures including the original inputs and products of two input vari- 0.2 ! ! :
ables (bilinear models) results in the following model: E
0.15+- [ ST g i
y = 0.1371x2 + 0.580423 4+ 0.333221 24 + 0.19412425. 3 w,/
Again, the individual parameters should not be difficult to interpret by a 0.1b " ,’, . ]
experts. The product terms represent combined effects of the attributes = ,/
involved. One can see in Table | that this model is marginally better /
than the best fuzzy model from the literature, while using only four 0.05- . o ,f' ; i
parameters (compared to 243 parameters used in [8]). However, this 4 é
does not suggest that fuzzy models are inferior to other techniques, as e : :
shown in Section II-C. 0 D S s S0 SN
0 2 4 6 8 10

C. Fuzzy TS Model Number of rules
By using an automated technique based on Gustafson—Kessel (@g 2._ Average MSE over ten runs for_the tra_ining (s_olid line) and test (dashed
fuzzy clustering [13], a two-rule Takagi—Sugeno (TS) fuzzy model Wélge rice data for the TS fuzzy model with an increasing number of rules.
constructed from the data. Two rules represent the maximum reason-
able complexity, as by adding more rules the cross-validation error in-2) If x4 is High,then y = 0.205921 + 0.67742x5 + 0.233524 —
creases quite rapidly (Fig. 2 ). This confirms the observations made in  0.0651.
Section II-A on the remarkable accuracy of the linear model. The performance of this model is identical to that of the linear model
In the TS model, input, is partitioned into two fuzzy subsets la-(1). Note, however, that the TS model only uses three input regressors,
beled as 'Low’ and '"High'. The corresponding rules are as follows. rather than four. The consequent parameters of the individual rules can
1) be interpreted in a similar way as in the linear model. Comparing the
two rules, one can see that the coefficient in front ofs larger in the
second rule, which means that has more influence on whenz, is
high. This corresponds well with the interpretation of the polynomial
model (3).

Ifz4is low, then

y =0.12432, + 0.601725 + 0.275724 — 0.0074. @)
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Fig. 3. Output surfaces for functiorfsl throughF4.

[ll. APPROXIMATION OF BIVARIATE FUNCTIONS TABLE 1

. . 3 o LooKuUP TABLE APPROXIMATION OF FUNCTION F};
In addition to the rice data, Cord@t al. used several bivariate func-

tions to demonstrate their methods [1], [14]-[19]. Four frequently ust z;\z3 || 0.000 | 0.035 | 0.192 | 0.439 | 0.818 | 0.966 | 1.000
examples are shown in Fig. 3. 1.000 || 100 | 9.8 | 10.0 | 10.0 | 10.0 | 100 | 10.0
Note that functionsF'l and F'2 are reasonably interesting for the "9.966 0.7 5.0 8.7 9.6 99 10.0 | 10.0
study of linguistic fuzzy modeling as their behavior can be summarizi—( 818 0.0 1.3 3.0 77 95 99 10.0
by using a relatively small number of fuzay-THEN rules. However, ~(.439 0.0 04 23 5.0 85 97 10.0
functions F'3 and F'4 are characterized by a complex behavior witt™ 192 0.0 0.1 05 15 5.0 36 10.0
a large number of local extrema and therefore are not likely to yie™(.035 0.0 0.0 0.1 03 1.4 3.0 92
any useful fuzzy models. It will be shown that simple lookup table 000 0.0 0.0 0.0 0.0 0.0 0.2 0.0
give more accurate and transparent results than those reported in"trie

literature.
The standard MrLAB functiongriddata was used to approximate
A. FunctionF} the training data on a grid of 49 points (this is the same number of
The following function was used in [1], [14], and [15]: rules as the smallest fuzzy model from the literature, see Table V).
The positions of the two extreme grid points in each input domain
Fi(z1,9) = 10 - -"?1’ — 1% 5) were fixed to 0 and 1, respectively. The remaining five points
’ x1 — 22109 + @2 were selected randomly from the uniform distribution and then

. , - optimized by at most ten iterations of the Levenberg-Marquardt
with 21, x> € [0,1] and F' (1, x2) € [0.10]. A training data set algorithm (using the standard AiLAB function 1sqnonlin). Out
with 676 sampleswas obtained for, z2 € {0,0.04,...,1} with S - :
A A . of ten randomly initialized runs, the following coordinates of the
F1(0,0) = 10 andFi(1,1) = 0. The test set contains 67 randomly_ . . . ) -
S . grid points for bothxz; andx2 give the best fit on the training data
distributed data pairs.

. L . 10,0.0347, 0.1918, 0.4390, 0.8175, 0.9655, 1]. The correspondin
Note that the use of noise-free training data placed on a grid cover | ’ ; 9 55, 1] P g

; - L2 IIo%kup table values (model outputs) at the Cartesian product of the
the entire domain makes the approximation task very easy. A more re.

alisti h Id be t te the training dat doml gri-d points are given in Table Il.

Istic approach would be to génerate the fraining data randomly (P riA linguistic interpretation in terms of rules with double consequents
haps de_llbe_rately avo_l_dlng parts of _the d_omaln) and to test the mon'(iI% the terminology of [1]) is easily obtained by choosing, for instance,
generallzatlon.capablllty on the ef‘“re grld: N five triangular membership functions for the output (very small, small,

Many techniques can be applied to this approximation problem.

Here, we show that standard cubic-spline approximation with n'ﬁledlum, large and very large) and listing the labels for which/the

; L : value has nonzero membership degrees, see Table Ill. This is the sim-
merical optimization of the knots results in a model of the sam

) . . Slest case of linguistic approximation [20]. This rule base is similar to
co_mplexny, but of con&deraply higher accuracy than the best I'E‘]e one given in Table 1V in [1], however, the spline model is five times
guistic fuzzy model from the literature. We also demonstrate that the
same kind of rule-based interpretation can be given as with the AL

ore accurate.
Table IV summarizes the results obtained with the spline model and
method [1].

several other models from the literature. Note that in terms of numerical
2Cordén et al. use 674 samples, omitting the data points at (0, 0) and (1grformance, the spline model is superior to all the models, but the TS
which are not defined by (5). model, which has at least three times more parameters. By increasing
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Fig. 4. F; surfaces by grid interpolation with 16 (left) and 49 (right) grid points.

TABLE IlI TABLE V

LINGUISTIC RULE BASE CORRESPONDING TO THHLOOKUP TABLE FOR F} RESULTS OBTAINED FOR FUNCTION F)
21\ “ ES ‘VS [ . I ME |LA VL EL Method #Rules 2 MSEiain 3 MSEieq
EL |[[VL VL VL VL VL VL VL
VL | VS/SM|ME | LA/VL|LAVL|VL _|VL _|VL T2115] 49 0.0066 0.0066
LA VS VS/SM | ME LA/VL |LA/VL | VL VL GK [thlS paper] 4 00087 0007 1
ME |[VS VS/SM| VS/SM| ME  |LA/VL|LA/VL|VL M2 [15], [14] 62 0.3358 0.2626

SM VS VS VS/SM | VS/SM |ME LA/VL|VL
VS VS VS VS VS/SM | VS/SM | ME LA/VL
ES VS VS VS VS VS VS VS

C. FunctionsFs and Fy
F3 is the following bi-variate function:

TABLE IV , r1 . 2 o s 2
RESULTS OBTAINED FOR FUNCTION F} Fy(ay,22) = €™ -sin” 29 + €™ - sin” a4 (7)
Method #Rules & MSEirain & MSEge with 21,22 € [-8,8]. In [15], Mamdani and TS models were con-

; ; structed based on 1089 training and 108 test data pairs, generated sim-
spline model [this paper] 49 0.007 0.004 ilarly to F,. The models found contain 49 to 100 rules, with 0.5 MSE
TS model EFS [15] 49 0.015 0.002 in the range 28 69168 971 for the training data and 19 838—41 000 for
Genetic learning [17] 81 0.015 0.014 the validation datdFrom the plots shown in [1] it is clear that none of
GR + MF [16] 80 0.025 0.017 the models found approximates the original surface well. Moreover, it
GFS [14] 67 0.019 0.021 can easily be demonstrated that the presented fuzzy models have no
ALM [1] 55 0.019 0.022 advantage over standard interpolation methods. A simple fixed-grid

interpolation (MATLAB's functiongriddata) with 16 uniformly dis-
tributed grid points gives 0.BISE = 36 705 for training and 0.5
the number of rules to 81, the performance of the spline model improdSE = 35781 for testing, respectively. With 49 grid points, 0.5

by a factor of six. MSE = 13316 is obtained for training and 0.BISE = 10502 for
validation (see Fig. 4).
B. FunctionFs Similar results can also be shown for functiéh[14], [15], [19],

which is given by
In [14] and [15], Mamdani and TS models were constructed for the

following function: Fy(xy, ) = of + 25 — cos(1821) — cos(18x2) (8)

) ) 3 withz¢, 22 € [—1,1]. Here, 1681 training data pairs (uniformly spaced
Fo(zi,z2) = 21 + 23 @1,22 € [-5,5] (6)  oninput grid with 41x 41 values) and 168 random test data pairs were
used. More accurate approximations farare given in [18], however,
using 1681 training data pairs (uniformly spaced on a4l grid) the number of rules becomes extremely large. Models with 200 to 3000
and 168 random test data pairs. A summary of the results is giverrines were presented fdf;, while only 1681 training data points are
Table V. The Mamdani model fits the data reasonably well, howevevailable. On the other hand, also models with 7-15 rules were given,
the output surface is irregular, as shown in [14]. Better results weggich are clearly too simple to approximakg. The 0.5 MSE given
obtained with the TS model, but the number of rules (49) is very largér the training data is between 0.50 and 0.58 which is close to the
for such a smooth surface. performance one obtains by taking the average value of the data as
By applying a fuzzy modeling method based on GK clustering arglconstant model (0.61). The performance obtained for the validation
genetic optimization [3], a four-rule TS model was obtained whose per-
formance is similar to the 49-rule TS model given in [15], see Table V. 3The performance on the validation data is better than the performance on the

. . . . ining data set because of the random choice of the former one. The uniformly
Nc_)te t_hat spl_lne anq polynor_nlal regression models S|_m|Ia_r to th0§§aced training data include the extrema of the function which are difficult to
applied in Section Il give for this function a zero approximation errofpproximate. These extrema, however, have a low chance of being randomly

for both the training and the test data. selected.
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data is even worse with the nine-rule model (BISE = 0.66). These [2]
results are rather meaningless, which could have been discovered by
using the variance accounted for (VAF) performance index instead of

the MSE. 3]

IV. DiscussioN ANDCONCLUSION 14

We argued that the numerical examples used in [1] and a number of°]
related articles are not suitable as benchmarks or demonstrators of non-
linear (fuzzy) modeling methods. The rice data data very easy to model
by simple linear models, whose accuracy is in fact superior to that of[6]
most fuzzy models reported in the literature (see Table I). A bilinear
model and a properly tuned two-rule TS fuzzy model give a slightim-
provement over the linear model. All these models are transparent and
easy to interpret. This data set thus does not appear suitable for demon-
strating either accuracy or interpretability aspects of fuzzy modeling [8]
techniques. One can also question the approximation power of the pro-
posed ALM method [1] and the other methods from the cited literature, 9]
as the results given for the training data are in some cases considerab}y
worse than those achieved with the linear model (Table I). Some of the
fuzzy models also seem to suffer from severe over-fitting, as up to 36101
times lower accuracy has been reported for the validation data.

Next, we discussed the bivariate functiafisthroughF, that have
been used as examples in several publications [14]-[19], [21]. In thedé1]
examples, the training data are generated on a uniform grid, while the
validation data are random. This choice makes the approximation ta Ez]
very easy. The usual approach is to generate training data randomly
and to test the model generalization capability on the entire grid. This
is much more realistic, as with real systems, one is often not able di3]
allowed to design experiments to obtain data on a grid. A typical exl14
ample is the identification of a dynamic system in which case the data
distribution is dictated by the process dynamics and the choice of the
input sequence. In addition, real data will always be corrupted by noisg 5]
and other disturbances.

For training data placed on a regular grid, standard spline methodﬁﬁl
can easily be applied. The spline model obtained in this paper for func-
tion F is twice as accurate as the best fuzzy linguistic model reported
in the literature (with the same number of interpretable rules). Notd17]
that spline models have the same interpretation as linguistic (singleton)
fuzzy models [22]. Some of the linguistic models reported for functions[18]
F3 andFy perform worse than the baseline model using just the mean
of the output data. Other models contain more rules (and therefore p§k9]
rameters) than data points in the training data set.

Summarizing, we propose that benchmark examples used to demon; ]
strate the effectiveness of fuzzy modeling techniques should be selectgc?
with great care. The problem should not be too simple. While the use gb1]
small simple examples has a high pedagogical value, one must be aware
of the fact that the results do not automatically carry over to more com;
plex problems. At the same time, many methods can be found that Wi[FZ]
solve the simple problem well (as shown in this article). The quality
of the proposed technique should be evident from a comparison with
state-of-the-art regression or classification techniques. Critical analysis
of the results should be made and linear models should be regarded
as a lower bound on the acceptable performance. Fuzzy models cer-
tainly have the potential to outperform other technigues, but this must
be clearly shown by comparisons with nonfuzzy approaches. Only in
this way, fuzzy techniques can gain higher credibility outside the fuzzy
community.
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