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Abstract
Background: Fast dose calculation is critical for online and real-time adaptive
therapy workflows. While modern physics-based dose algorithms must com-
promise accuracy to achieve low computation times, deep learning models can
potentially perform dose prediction tasks with both high fidelity and speed.
Purpose: We present a deep learning algorithm that, exploiting synergies
between transformer and convolutional layers,accurately predicts broad photon
beam dose distributions in few milliseconds.
Methods: The proposed improved Dose Transformer Algorithm (iDoTA) maps
arbitrary patient geometries and beam information (in the form of a 3D projected
shape resulting from a simple ray tracing calculation) to their corresponding
3D dose distribution. Treating the 3D CT input and dose output volumes as a
sequence of 2D slices along the direction of the photon beam, iDoTA solves
the dose prediction task as sequence modeling.The proposed model combines
a Transformer backbone routing long-range information between all elements
in the sequence, with a series of 3D convolutions extracting local features of
the data. We train iDoTA on a dataset of 1700 beam dose distributions, using
11 clinical volumetric modulated arc therapy (VMAT) plans (from prostate, lung,
and head and neck cancer patients with 194–354 beams per plan) to assess its
accuracy and speed.
Results: iDoTA predicts individual photon beams in ≈ 50 ms with a high gamma
pass rate of 97.72 ± 1.93% (2 mm, 2%). Furthermore, estimating full VMAT
dose distributions in 6–12 s, iDoTA achieves state-of -the-art performance with
a 99.51 ± 0.66% (2 mm, 2%) pass rate and an average relative dose error of
0.75 ± 0.36%.
Conclusions: Offering the millisecond speed prediction per beam angle
needed in online and real-time adaptive treatments, iDoTA represents a new
state of the art in data-driven photon dose calculation. The proposed model
can massively speed-up current photon workflows, reducing calculation times
from few minutes to just a few seconds.
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2 PHOTON DOSE PREDICTION VIA TRANSFORMERS

1 INTRODUCTION

Modern radiotherapy techniques such as intensity mod-
ulated radiation therapy (IMRT) or volumetric modulated
arc therapy (VMAT) critically rely on accurate and
fast calculations of the radiation dose delivered within
the patient by photon beams, typically shaped by
multi-leaf collimators (MLC).1 With modern workflows
moving towards online or real-time adaptation, fast dose
calculations are critical for quick plan evaluation, re-
optimization and finally being able to account for motion
due to breathing or anatomical changes.

Commercial treatment planning systems mainly use
pencil beam (PB),2 collapsed cone (CC),3,4 or Monte
Carlo (MC) dose engines. While both PB and CC algo-
rithms are usually faster than MC, the assumptions
and approximations they use to solve photon parti-
cle transport result in less accurate results. Conversely,
MC methods—the gold standard in dose calculation—
simulate individual stochastic particle trajectories abid-
ing the physical laws of nuclear interactions and track
the deposited dose along these paths. By averaging
results from enough particles (typically several mil-
lions), MC methods achieve very high accuracy even
in the most complex patient geometries, at the cost of
high computation times. Current commercial treatment
planning systems mainly use improved PB or CC vari-
ations yielding close-to-MC accuracy, for example, the
anisotropic analytical algorithm (AAA)5,6 based on the
PB convolution2 in Eclipse (Varian Medical Systems)
or the CC convolution algorithm in Pinnacle (Philips).3

Some recent MC implementations also use the par-
allelization capabilities of graphics processing units
(GPUs) to reduce dose calculation times from several
hours to minutes.7–9 Despite these advances, the need
for accurate and fast dose calculation algorithms is still
unmet in most clinical workflows, as neither PB nor MC
are fast enough for real-time treatment plan correction.

Recently, deep learning models have been applied
to several steps of the radiotherapy workflow,10 mainly
as U-net convolutional architectures11 or Generative
Adversarial Networks.12 Most works aim to aid treatment
planning by predicting clinically optimal doses based on
historical data.As a result, they are constrained to a spe-
cific site, clinical optimum choice, and often fixed beam
configurations, limiting their generalization capabilities.
These models typically directly predict the full dose dis-
tribution using computed tomography (CT) images,13

organ masks,14–18 or additional information about the
photon beam configuration19 as input. To further aid
treatment planning, few studies additionally provide the
beam intensities needed to deliver the predicted dose
distribution.20,21

Aiming at predicting dose distributions in generic
setups, several subsequent studies present dose calcu-
lation models that estimate beam or full dose distribu-
tions from CTs and additional physics input such as high

noise MC22–24 or PB doses25,26;fluence maps,for exam-
ple, resulting from simple ray tracing calculations;27,28

energy released per unit mass29; or a combination
of the previous with additional beam information.30,31

The reason for their success are the convolutional
layers that excel at capturing local features and are
heavily optimized for GPU hardware, but are less
appropriate for modeling long-range dependencies, for
example, changes along the beam direction through the
patient.

Although some of the most recent models can quickly
predict dose distributions in most cases with good
accuracy,30–32 there is room for improvement with newer
architectures that require less input information and
can model distant features in the data. Recent trans-
former architectures33 are particularly well-suited to
process local and distant features, yielding excellent
results in a wide range of sequence modeling tasks.34–36

For smaller datasets, Transformers perform particularly
well when combined with convolutional layers.37 Based
on these synergies between convolutions and Trans-
formers, a recent study presented a transformer-based
algorithm predicting proton beamlet 3D dose distribu-
tions as a sequence of 2D slices in the beam depth,with
state-of -the-art performance and speed.38,39

In this study, we present a deep learning model
that can predict dose distributions in few milliseconds
with clinically acceptable accuracy. As in concurrent
work,40 we harness the power of hybrid transformer and
3D convolutional architectures, adapting the previous
transformer-based proton dose calculation model38 to
predict the dose of much bigger photon broad beams.
As shown in Figure 1, the proposed improved Dose
Transformer Algorithm (iDoTA) combines a series of
3D convolutional layers modeling local dose and tissue
variations, with a Transformer backbone routing infor-
mation along the depth of the entire photon beam. The
model treats input 3D CT and projected shape vol-
umes (containing beam geometrical information) as a
sequence of 2D slices in the direction of the beam,fram-
ing dose calculation as sequence modeling to produce
a sequence of 2D dose slices forming the 3D dose dis-
tribution. After comparing iDoTA to the best-performing
data-driven models, we demonstrate its superior speed
and accuracy for photon dose calculation tasks, being
capable to speed up beam prediction times down to few
milliseconds and reducing treatment plan computation
times to few seconds.

2 METHODS AND MATERIALS

In this section, we present the problem setup and archi-
tecture of the iDoTA model,used to predict photon beam
doses from 3D CT and projected shape inputs. Addi-
tionally, we describe the dataset and training procedure
used to optimize the model parameters, as well as the
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PHOTON DOSE PREDICTION VIA TRANSFORMERS 3

F IGURE 1 Model overview. A deep learning data-driven model learns the mapping y = f𝜽 (x, r) between input 3D CT x and projected
shape r volumes, and the corresponding output 3D dose distributions y. The problem is formulated as a sequence prediction task, where all
input and output cubes are treated as a sequence of 2D slices in the beam’s eye view. Each 2D slice is mapped into a vector via a series of
down-sampling convolutional blocks. A transformer backbone routes information between all elements of the resulting sequence. Finally, a
several up-sampling convolutional operations transform each vector into a 2D dose distribution map.

F IGURE 2 Model architecture. The proposed model solves the dose prediction task as sequence modeling, mapping two input sequences
of 2D CT slices x and projected shapes r with beam shape information into a sequence of 2D dose distributions y. First, a series of
down-sampling convolutional blocks merges and compresses the two sequences from the data into a sequence of feature vectors z (referred to
as tokens). A Transformer encoder with causal self -attention routes long-range dependencies along the beam direction. Finally, a series of
up-sampling convolutional blocks transform the output tokens into a sequence of 2D dose distributions. In each block, the exact same 3D
convolution operation is applied to all sequence elements, extracting local features from the preceding and following element in the sequence.

evaluation metrics used to assess iDoTA’s performance
as a generic photon dose calculation engine.

2.1 Proposed framework

Photon dose calculation involves estimating the radi-
ation dose delivered in the patient geometry. If the
machine parameters do not change, the predicted dose
distribution mainly depends on the irradiated geometry
and the beam geometrical information such as the MLC
aperture shape, the beam angle and the relative posi-
tion of the isocenter. We assume that all the necessary
beam shape information is captured in a 3D projected
shape r ∈ ℝD×H×W of depth D, height H and width W ,
containing the result of a simple ray tracing operation
propagating the photon beam shape through the patient
geometry CT scan x ∈ ℝD×H×W . The outcome of the
dose calculation operation predicted by our model is
another grid y ∈ ℝD×H×W with the 3D distribution of
dose per monitor unit (MU).

As shown in Figure 2, the patient CT x and the 3D pro-
jected shape r are inputs to iDoTA,which during training

implicitly learns the mapping y = f𝜽(x, r) via a cascade
of neural networks layers with parameters 𝜽. Framing
the dose prediction task as modeling a sequence of D
elements in the direction of the photon beam, we com-
bine the strengths of both convolutional and transformer
architectures into a single model. The input geome-
try x can be expressed a sequence of D images in
the direction of the beam {x i|x i ∈ ℝ1×H×W ,∀i = 1,… , D},
while the projected shape 3D input r is similarly viewed
as a sequence 2D slices {r i|r i ∈ ℝ1×H×W ,∀i = 1,… , D}
containing beam information. Likewise, the final dose
volume y is also expressed as the sequence of 2D dose
slices {y i|y i ∈ ℝ1×H×W ,∀i = 1,… , D}).

2.2 Model architecture

As seen in Figure 2, the proposed architecture combines
a series of convolutional blocks modeling local features
with a transformer backbone that processes information
along the entire beam depth.

∙ First, a series of down-sampling convolutional blocks
extract local features of the data into a sequence
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4 PHOTON DOSE PREDICTION VIA TRANSFORMERS

of vectors {zi|zi ∈ ℝN,∀i = 1,… , D}—referred to as
tokens in the remainder of the paper—of size N.
Each block contains a 3D convolutional layer with
kernel size equal to 3, modeling local features from
the immediately preceding and succeeding elements
in the sequence, followed by a layer normalization,41

a rectified linear unit (ReLU) activation function and
a max-pooling operation. All such operations in the
block are applied in parallel to every element of the
input sequence.Due to the max-pooling operation, the
height H and width W of the slices are halved after
each block. A total of L blocks result in L resolution
levels. After the last block, we apply a final convolu-
tion with K filters and flatten the resulting features into

tokens of dimension N = (H

2
)L × (W

2
)
L
× K.As a result,

we obtain a sequence of D tokens containing local
features about the corresponding input slices,e.g., the
third token z3 represents local features from the inputs
x3, r3 and their neighboring slices.

∙ A Transformer backbone routes information between
the extracted features along the depth of the entire
volume, with the self -attention mechanism33 mak-
ing the information exchange dynamic, that is, each
token zi is independently transformed based on its
content and information selectively gathered from
other sequence elements. To account for the relative
distance between tokens, we add a learnable posi-
tional embedding pi ∈ ℝN to each token zi , that is,
a sequence of vectors {pi|pi ∈ ℝN,∀i = 1,… , D} is
learned and added to the token sequence before the
first operation in the Transformer. We use the pre-
Layer Normalization architecture,42 which consists of
a Layer Normalization (LN)41 operation, followed by
a self -attention operation,33 and two fully-connected
layers with Dropout43 and a Gaussian Error Linear
Unit (GeLU) activation.44

∙ Finally, a series of L up-sampling convolutional blocks
convert the token sequence into the output dose
volume. For each level, we append (along the fea-
ture dimension) the sequence previously obtained
from the same level down-sampling convolutional
block, similar to U-net type architectures. The up-
sampling block’s architecture is identical to that of its
down-sampling counterpart, except for the use of a
nearest-neighbor up-sampling interpolation operation
instead of the max-pooling.

2.3 Projected shape and dose
calculation

Apart from the values in the CT, the additional 3D pro-
jected shape input r encodes beam information such as
the MLC aperture shape, the angle or relative distance
between the isocenter and the source, including basic
material information with a simple correction based on

tissue densities. Such projected shape is generated via
an algorithm that estimates the dose at each voxel
through the percentage depth dose (PDD), corrected
by an off -axis factor. The PDD is measured at 100 cm
source-to-surface distance (SSD) with a 10 cm × 10 cm
field size, adjusting for different SSDs using the May-
neord factor. The depth for determining the percentage
dose is the water equivalent distance, calculated via ray
tracing for all voxels.The off -axis correction factor is cal-
culated by sampling from a diagonal beam profile for a
40 cm × 40 cm field size at 10 cm depth, projecting it to
different depths using the lateral distance of the voxel
to the center beam axis and the longitudinal distance
from the voxel to the source. This ray tracing calcula-
tion estimates the dose using the commissioning data
and is optimized for speed over accuracy, taking around
0.1 ms per beam in a GPU. The corresponding ground
truth dose distributions (to be predicted by the model)
are obtained via the AcurosXB V15.6.05 algorithm in the
Varian Eclipse TPS system (with the option of calculat-
ing dose to medium). Both the dose and the projected
shapes have similar ranges from 0 to ≈ 3, with units
cGy/MU.

2.4 Dataset

iDoTA is trained to predict individual photon beams
using a training dataset of 17 clinical patient CTs with
disease sites of brain, head neck, lung, abdomen and
pelvis. All CTs were recorded using a General Electrics
LightSpeed CT scanner with 2.5 mm × 2.5 mm × 2.5 mm
resolution.For each patient,100 different co-planar pho-
ton beams were computed, using, for each beam, a
random gantry angle and an isocenter location ran-
domly selected within the patient,and an aperture shape
that was generated by randomly sampling leaf posi-
tions, keeping the couch angle fixed. After calculating
the dose per MU and projecting the aperture shape,
we cropped 3D CT x ∈ ℝ96×96×64, projected shape r ∈
ℝ96×96×64 and dose y ∈ ℝ96×96×64 blocks covering a vol-
ume of approximately 240 × 240 × 160 mm3,so that the
beam always travels in the same direction along the first
dimension D = 96 with angles between -45◦ and 45◦.All
1700 input CT volumes are normalized to the range [0,1]
dividing by using the maximum value of 3071 observed
across the entire dataset. Likewise, we normalize both
projected shapes and dose distributions using the maxi-
mum dose value of 3.075 cGy/MU in the dataset.During
training, 10% of the samples are set aside for validation
purposes, that is, finding the best model configuration.

We evaluate the best model using an independent test
dataset of 584 beam dose distributions corresponding
to a prostate and a lung patient unseen during training.
Additionally, to assess iDoTA’s performance in predict-
ing full dose distributions composed of many photon
beams, we obtain 11 additional clinical VMAT treatment
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PHOTON DOSE PREDICTION VIA TRANSFORMERS 5

plans with 2 arcs and 99–178 control points per arc, cor-
responding to one brain, three HN, three lung, and four
prostate cancer patients.

2.5 Training details

We train iDoTA using the mean squared error as a loss
function, with mini-batches of 4 samples and the layer-
adaptive LAMB optimizer,45 finding the combination of a
low batch size and the LAMB optimizer to be critical for
convergence. During training, we augment the dataset
size via rotations (in steps of 90◦, perpendicular to the
direction of the beam) and random shifts along the beam
direction (shifting the entire volume up to 15 positions
along the first dimension). Training consists of 10 cycles
with 120 epochs/cycle, where the learning rate is set to
10−3 at the beginning of each cycle, and halved every
15 epochs.

After hyper-parameter tuning using the validation
data, the best-performing model has H = 4 transformer
heads,L = 4 levels with K = 10 filters in the last encoder
convolution. The four down-sampling operations in the
encoder transform the input slices with dimensions H =

96 and W = 64 into tokens of size N = H∕24 × W∕24 ×

K = 240.All training and experiments are run in a Nvidia
A40® GPU using Tensorflow.46

2.6 Evaluation metrics

For evaluation purposes, we compare iDoTA’s predic-
tions to the corresponding ground truth dose distribu-
tions in the independent test set of patients unseen
during training. The main method to assess dosimet-
ric differences is the gamma analysis,47 based on the
intuition that two neighboring voxels with a similar dose
result in equivalent biological effects. Intuitively, a voxel
in the predicted dose distribution passes the gamma
evaluation Γ(𝛿 mm,Δ%) if another voxel with a similar
value—deviating less than Δ% of the maximum dose—
is found within a sphere of radius 𝛿 mm in the ground
truth dose grid. We compute three gamma evaluations
Γ(1 mm, 1%), Γ(2 mm, 2%) and Γ(3 mm, 3%), and calcu-
late the gamma passing rate by dividing the number
of passed voxels by the total amount of eligible voxels,
that is, voxels with values within 10% and 100% of the
maximum dose.

As an additional metric to measure explicit voxel dose
differences, we compute the average relative error 𝜌,
expressed as a percentage of the maximum dose in the
grid. As for the gamma pass rate, the average relative
error is calculated only for voxels with values within 10%
and 100% of the maximum dose. For model predictions
y, and corresponding ground truth 3D dose distribu-
tions ŷ (both with nv = D × H × W voxels), the average

relative error is calculated using the L1-norm as

𝜌 =
1
nv

‖
‖y − ŷ‖‖L1

max ŷ
× 100. (1)

3 RESULTS

To assess iDoTA’s suitability as a generic photon dose
calculation tool and determine its improvements with
respect to other data-driven algorithms, we compute
the different evaluation metrics on the independent
test data. In particular, we compare iDoTA’s accuracy
and speed to previous approaches when predicting
both individual photon beam prediction and full dose
distributions from clinical VMAT plans.

3.1 Individual beams

We compute the Γ(1 mm, 1%), Γ(2 mm, 2%) and
Γ(3 mm, 3%) gamma pass rate and the error 𝜌 for the
584 beams in the test dataset.In Table 1 we compare the
mean, standard deviation and minimum values to those
reported in previous studies achieving state-of -the-
art performance, that is, the convolutional architectures
for photon dose prediction in standard linear acceler-
ator (Linac)30 and MR-Linac settings.31 Additionally,
we train and evaluate a purely convolutional version
of iDoTA without the transformer encoder, referred to
as iDoTA-conv. The overall lower pass rates achieved
by iDoTA-conv demonstrate the added benefit of com-
bining transformers and convolutions. In general, iDoTA
achieves better pass rates than previous convolutional
models, with higher means and smaller standard devia-
tions. Most importantly, the minimum gamma pass rate
across all test samples is >20% higher than that of the
3D-U-net based architectures.

iDoTA can better predict photon beams in pelvic
anatomies than in lung scans, which is likely caused by
the more heterogeneous nature of lung geometries (i.e.,
the contrasts between bony structures,air,and water-like
tissues). Figure 3 further confirms iDoTA’s superiority
for the pelvic cases over lung, showing Γ(1 mm, 1%),
Γ(2 mm, 2%), and 𝜌 distributions with lower lung pass
rates and higher errors. Figure 4 visually compares
the target and predicted beam dose distributions for
the worst-performing lung and pelvic samples, and an
average-performing pelvic beam. The overall errors are
low and mostly occur at the beam lateral falloff, which
may be caused by the coarse resolution of the input pro-
jected shapes. Since the average relative error in test
data of 2.18% is similar to the final error in validation
data of 2.19 ± 1.08%, and relatively close to the error
for training data of 1.54 ± 0.64%, we conclude that the
model generalizes well.
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6 PHOTON DOSE PREDICTION VIA TRANSFORMERS

TABLE 1 Model accuracy for individual broad beams.

Γ(1,1) Γ(2,2) Γ(3,3)
Treatment site Model Mean ± std Min Mean ± std Min Mean ± std Min

Pelvic 3D-Unet30 89.9 ± 5.1 44.5 97.8 ± 3.0 55.2 99.4 ± 2.5 62.5

3D-Unet31 87.6 ± 8.3 47.5 97.9 ± 2.6 68.2 99.5 ± 1.0 77.5

iDoTA - conv 85.8 ± 8.6 32.5 97.0 ± 4.6 52.8 99.2 ± 2.1 76.2

iDoTA (ours) 89.0 ± 5.4 66.9 98.1 ± 1.7 87.7 99.6 ± 0.5 94.7

Lung iDoTA - conv 84.3 ± 4.1 65.5 95.6 ± 2.0 86.9 98.8 ± 0.8 94

iDoTA (ours) 84.1 ± 4.7 68.9 96.9 ± 2.0 90.1 99.2 ± 0.8 94.2

Gamma pass rates for photon beams are computed using three different criteria in the gamma evaluation. The reported values, which include the mean, standard
deviation (std), and minimum across all test samples from pelvic and lung cancer patients, are compared to other state-of -the-art deep learning models as reported
in their respective studies. To determine the added benefit of using transformers, a purely convolutional variant of iDoTA—without the transformer encoder, denoted
as iDoTA-conv—is trained and evaluated using the same training procedure and dataset.

F IGURE 3 Accuracy metrics distribution. (Left)Γ(1 mm, 1%). pass rate, (middle) Γ(2 mm, 2%) pass rate and (right) average relative error
distributions across all beams in the test dataset. The lower errors and higher pass rate values in orange correspond to beams in the pelvic
area, while blue distributions are from lung samples.

3.2 Full dose distributions

For 11 additional patients outside the training dataset
with clinical VMAT plans available, we compare the
Γ(1 mm, 1%), Γ(2 mm, 2%) and Γ(3 mm, 3%) gamma
pass rate to the values reported in previous studies.
In particular, iDoTA’s accuracy and inference times are
compared to those of: convolutional U-net architectures
predicting each beam in the plan individually;30–32 con-
volutional models de-noising MC dose distributions;23,24

and a concurrent 3D U-net and transformer model for
MR-Linac dose prediction.40

Table 2 shows the mean and standard deviation of
the gamma pass rates separately for pelvic, lung and
HN patients, comparing them to other models. With a
99.51 ± 0.66% (2 mm, 2%) pass rate, an average rel-
ative dose error of 0.75 ± 0.36% across all patients,
and higher pass rates in all treatment sites, iDoTA
outperforms all previous approaches. Additionally, the
average error 𝜌 in HN, lung and pelvic plans is 1.11%,
0.64%, and 0.45%, respectively. For the remaining
patient with a brain tumor, a Γ(1 mm, 1%), Γ(2 mm, 2%)
and Γ(3 mm, 3%) gamma pass rate of 93.5, 99.7, and
99.9, respectively. As seen in the individual beams,
iDoTA is more accurate in pelvic cases and less pre-

cise in HN anatomies, which is also likely due to the
bone,water and air (cavities) heterogeneities.Neverthe-
less, the overall pass rate is still significantly higher than
other approaches.Figure 5 shows very similar reference
and predicted dose distributions for a prostate and lung
VMAT plan, along with the corresponding Γ(2 mm, 2%)
map with mostly all voxels passing the gamma evalua-
tion. To further evaluate the similarity between ground
truth and predicted doses, Figure 6 shows dose volume
histograms (DVHs) from three test patients. The almost
perfectly overlapping DVH lines indicate that iDoTA’s
predictions are practically identical to the reference data.
Finally, Figure 7 visually compares the predicted and
ground truth dose distributions in heterogeneous lung
and head and heck geometries. The similarity between
both distributions and the Γ(2 mm, 2%) maps with almost
all passing voxels further demonstrate iDoTA’s accu-
racy even in the presence of sharp tissue-air and
tissue-bone contrasts.

3.3 Prediction times

Computation speed is critically important in adaptive
workflows. In Table 3, we compare iDoTA’s total time
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PHOTON DOSE PREDICTION VIA TRANSFORMERS 7

F IGURE 4 Individual beam test samples. (a) Worst performing pelvic test sample in the gamma evaluation, with Γ(2 mm, 2%) gamma
pass rate of 87.7%; (b) worst performing prediction in the gamma evaluation across the lung test samples, with Γ(2 mm, 2%) gamma pass rate
of 90.1%, and (c) average performing sample. Given the 96 × 96 × 64 3D volumes—a sequence of 96 2D slices of dimension 96 × 64 —all plots
show the central slice along the beam direction, that is, slice 32 out of 64. From top to bottom rows, the subplots show the 3D input CT grid, the
reference dose distribution, the model’s prediction and the dose difference between the predicted and reference beams.

needed to predict individual beams and full plans to
the reported values for models in previous studies. All
prediction times for all models include the time needed
to generate and prepare the inputs, predict the out-
put and (for full dose distributions) accumulate beam
doses. For individual beam prediction, iDoTA is signif-
icantly faster than any other competitor, being 30–60x
faster than the 3D U-net models and 6x faster than the
concurrent transformer model TransDose.40 Likewise,
iDoTA predicts full dose distribution from VMAT plans
(with 194–354 beams per plan) on average in 8 s, repre-
senting a 10–80x speed-up compared to the IMRT (with
≈ 10 beams) U-net models. With CPU settings (intel®

Core™ i7-8550U 1.8 GHz), iDoTA still remains compet-
itive with previous GPU-based models, predicting beam
doses in 1.48 ± 0.13 seconds and full plans in 300 to
600 s, depending on the number of beams.

4 DISCUSSION

4.1 Comparison to previous models

Framing photon dose calculation as sequence mod-
eling, iDoTA is able to predict beam doses with high
accuracy and speed,achieving an overall 97.72 ± 1.93%
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8 PHOTON DOSE PREDICTION VIA TRANSFORMERS

TABLE 2 Model accuracy for full clinical dose distributions.

Treatment site Model Voxels Γ(1,1) Γ(2,2) Γ(3,3)

Head & neck TransDose40 Full grid - 96.7 ± 2.3 -

Denoising 3D U-net24 Full grid 70.9 ± 2.9 89.4 ± 3.7 -

DoTA (ours) Full grid 80.5 ± 8.6 98.9 ± 0.9 99.9 ± 0.1

DoTA (ours) PTV only 74.6 ± 6.7 98.7 ± 0.4 99.9 ± 0.1

Pelvic TransDose40 Full grid - 97.9 ± 0.4 -

3D U-net30 Full grid 89.9 ± 3.3 99.5 ± 0.7 99.9 ± 0.3

3D U-net31 Full grid 82.2 ± 9.7 96.1 ± 3.1 99.4 ± 0.6

3D U-net32 Full grid 84.2 ± 2.9 99.0 ± 0.4 99.9 ± 0.1

Denoising 3D U-net23 Full grid - 95.4 ± 1.6 -

DoTA (ours) Full grid 95.8 ± 3.1 99.8 ± 0.2 99.9 ± 0.0

DoTA (ours) PTV only 85.0 ± 4.6 99.1 ± 0.7 99.9 ± 0.1

Lung TransDose40 Full grid - 96.7 ± 1.4 -

DoTA (ours) Full grid 94.3 ± 1.5 99.8 ± 0.2 99.8 ± 0.1

DoTA (ours) PTV only 84.6 ± 4.6 98.9 ± 1.0 99.9 ± 0.1

For different treatment sites, we display the gamma pass rates of full photon dose distributions, using three different criteria. We include the values from few of the
best-performing models as reported in their respective studies, as well as iDoTA’s pass rates calculated using only PTV voxels. All pass rates include the average and
standard deviation across all available dose distributions.

F IGURE 5 Dose distributions from VMAT plans. From left to right, the input CT, target and predicted dose distributions and Γ(2 mm, 2%)
gamma map are shown for two clinical VMAT plans from a (a) prostate and (b) lung cancer patient. To show details of the high dose region, we
display crops around the target volume.

Γ(2 mm, 2%) pass rate in lung and pelvic geometries.
This per-beam prediction precision translates into a
very high Γ(2 mm, 2%) pass rate of 99.51 ± 0.66% in
dose distributions from clinical VMAT plans, which also
outperforms all previous models. Compared to the
best-performing convolutional models30,31 (and even a
recently published VMAT model,32) iDoTA offers more
than 30x faster beam dose prediction even in the most
heterogeneous geometries, achieving better gamma

pass rates on average with lower spread, and 20%
higher pass rates in the most difficult samples. Further-
more, iDoTA only uses the 3D CT and beam intensity
to predict doses, in contrast to the 5 different input
volumes containing physics information required by the
3D U-nets,allowing for lower input generation times and
faster calculation times overall. iDoTA also convincingly
outperforms MC de-noising models,23,24 with a 5%–10%
increase in gamma pass rates and a 20–80x speed-up,
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PHOTON DOSE PREDICTION VIA TRANSFORMERS 9

F IGURE 6 Dose volume histograms from 3 VMAT plans. Three dose volume histograms from a (left) pelvic, (mid) brain and (right)
prostate test patients are shown, indicating the dose received by a specific fraction of the volume of an organ. All plots include the planning
target volume (PTV) and few of the surrounding organs at risk. Solid lines represent iDoTA’s predictions, while dotted lines indicate ground truth
values. The numeric values included next to each line represent the per-structure Γ(2 mm, 2%) gamma pass rate.

F IGURE 7 Dose distributions in heterogeneous anatomies. From left to right, the input CT, target and predicted dose distributions and
Γ(2 mm, 2%) gamma map are shown for three clinical VMAT plans. In all cases, high dose is delivered to heterogeneous anatomies, with (a) part
of the high dose region surrounded by air and ribs, (b) part of the high dose directly delivered to an area with a sharp change from lung air to rib
bone, and (c) the high dose region covering air and bone heterogeneous tissue. To show details of the high dose region, we display crops
around the target volume.
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10 PHOTON DOSE PREDICTION VIA TRANSFORMERS

TABLE 3 Average prediction time.

Photon beams Model Hardware Average time (ms)

TransDose40 GPU 310

3D U-net30 GPU 1500

3D U-net31 GPU 3000

3D U-net32 GPU 7000

DoTA (ours) CPU 1480

DoTA (ours) GPU 50

Full plans Model Hardware Average time (s)

Denoising U-net23 (<20 beam angles) GPU 150

Denoising U-net24 (<20 beam angles) GPU 660

3D U-net30 (<20 beam angles) GPU 60

DoTA (ours, 194–354 beam angles) CPU 450

DoTA (ours, 194–354 beam angles) GPU 8

iDoTA’s computing speed is compared to the fastest models in literature via the average computing time needed to predict a photon beam or full dose distribution.
The reported values include the time needed to generate and process the model inputs. iDoTA’s CPU prediction times are also included for comparison, as well as
the average number of beams in the evaluated treatment plans.

partially caused by the time needed to generate the
high-noise MC dose inputs. In general, iDoTA achieves
higher gamma pass rates than all previous convolu-
tional models,also compared to the purely convolutional
iDoTA-conv variant trained with identical dataset,
training procedure and architecture (except for the
transformer encoder). As in previous proton studies39

and the concurrent TransDose,40 these findings demon-
strate that the addition of the transformer—being able
to capture relationships between distant features, as
opposed to convolutions—seems to be beneficial for
dose prediction tasks.

Moreover, our method outperforms the concurrent
TransDose transformer model in both accuracy and
speed. Although TransDose is trained to predict
photon beams under magnetic fields for MR-Linac
applications—which could be a more difficult task to
learn—we hypothesize that part of iDoTA’s success is
due to differences in the model, that is, that the data-
demanding transformer architecture in iDoTA routes
information only between each of the 96 2D slices,
instead of the 5000 voxels that are input to the trans-
former in TransDose. As a result, iDoTA’s transformer
has less parameters, which can be favorable with
smaller datasets and accelerates inference.

With higher accuracy and lower computing times than
any other previously introduced deep learning model,
the proposed iDoTA represents a new state of the art in
data-driven photon dose calculation. iDoTA can predict
full dose distributions in 6–10 s, including CT cropping
and rotation time (≈ 25 ms per beam), ray tracing input
calculation (≈ 0.1 ms per beam) loading the model and
weights (≈ 2 s), inferring the beam dose distribution
(≈ 20 ms per beam) and accumulating the doses in the
final grid (≈ 5 ms per beam). As a result, iDoTA is an

order of magnitude faster than clinically used algorithms
or MC approaches adapted to GPU hardware.7–9 While
such MC-GPU implementations are several orders of
magnitude faster and almost as accurate as their CPU
counterparts, their total calculation times are still in
the order of minutes. Furthermore, iDoTA is 20x and
60x faster than the Eclipse Acuros XB and AAA algo-
rithms (Varian Medical Systems) used in ≈ 80% of the
clinics, which predict VMAT doses in 2–3 and ≈ 10
minutes, respectively.48,49 Most importantly, the photon
beams can be predicted in parallel in several batches
depending on the number of GPUs and their internal
memory, practically allowing for further reduction in total
calculation times.

4.2 Limitations

Like all other data-driven algorithms, iDoTA is trained to
emulate dose distributions from a specific machine and
settings. Deep learning algorithms have limited extrap-
olation capabilities outside the training domain, which
would require a different model each time the machine
configuration is changed (or even the CT scanner,
unless different CT machines are included in the training
dataset). In such cases, fine-tuning iDoTA starting from
the provided weights using a smaller dataset can save
time without significantly degrading performance.

Ideally, all machine characteristics would be given to
the model as separate inputs. Alternatively, to account
for geometrical information and machine characteristics,
iDoTA requires the additional input projected shape,
necessitating ray-tracing pre-calculations. As for the
machine parameters, such beam information could
be included in the input as separate tokens, e.g., the
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PHOTON DOSE PREDICTION VIA TRANSFORMERS 11

aperture shape could be given as 2D binary mask at
the beginning of the input sequence.

iDoTA is trained using a certain resolution and grid
dimensions, which must be fixed for both training and
inference. For dose prediction in finer grid resolutions,
iDoTA can be coupled to neural representation mod-
els capable of accurate super-resolution.50 Regarding
grid size, predicting dose distributions from treatment
plans or beams through anatomies larger than the pre-
determined voxel grid must be done in steps, obtaining
several input volumes and accumulating the outputs
along the beam depth. Conversely, all doses can be pre-
dicted for the same fixed grid covering the part of the
anatomy containing the structures of interests, which
neglects the (usually) low doses near patient entrance.
As observed in proton dose prediction,38,39 we expect
iDoTA to perform equally well for different grid settings,
with calculation times going up for larger grids and finer
resolutions, but still within sub-second speed for each
beam angle.

Finally, iDoTA is trained and evaluated on a dataset
that differs from the ones used in previous models,
which can affect the final evaluation metrics. Likewise,
the high-end GPU used in our experiments may affect
iDoTA’s reported prediction times. Nevertheless, we do
not expect our GPU to offer significant speed improve-
ments with respect to the one from previous studies,
especially if compared to the fastest alternative40 using
a modern GPU similar to ours. iDoTA’s intrinsic speed
is further confirmed by its competitive prediction times
even when using a CPU, as shown in Table 3, which
is partly due to using less parameters and a faster
input generation. For future work, we recommend a
comparison using a unified dataset and computational
environment.

4.3 Applicability

Conditioned only on the beam shape projection and
the CT, iDoTA is a versatile algorithm that can drasti-
cally reduce computing times in any application involving
repeated calculation of dose distributions, for example,
checking plan robustness by quickly predicting the dose
in each of the many possible error scenarios or anatom-
ical variations of the patient.51 Given a pre-treatment
CT, iDoTA can allow fast quality assurance by com-
paring the estimated and planned dose distributions,
with potential applications in online adaptive workflows.
Most critically, iDoTA provides the millisecond speed
needed in real-time adaptive treatments, which can be
further reduced if pre-computing all beam shape inten-
sity volumes for each angle in the treatment plan.Future
work could even include the magnetic field strength
as an additional token in the sequence, similar to the
energy token in previous transformer-based proton dose
prediction models.

5 CONCLUSION

Combining the convolutional layers extracting local
features with a Transformer backbone routing distant
information, iDoTA outperforms any previous deep
learning model in photon dose calculation. The pre-
sented iDoTA model predicts beam dose distributions
in few milliseconds with high accuracy. The per-beam
prediction speed translates into estimating full VMAT
dose distributions in less than 10 seconds on average,
instead of the several minutes required by clinical algo-
rithms or previous data-driven models. Given its speed
and versatility, iDoTA can accelerate several steps of
the radiotherapy workflow: from treatment planning and
quality assurance to real-time adaption.
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