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Deep Position-Sensitive Tracking
Yufei Zha , Tao Ku , Yunqiang Li, and Peng Zhang , Member, IEEE

Abstract—Classification-based tracking strategies often face
more challenges from intra-class discrimination than from inter-
class separability. Even for deep convolutional neural networks that
have been widely proven to be effective in various vision tasks, their
intra-class discriminative capability is still limited by the weakness
of softmax loss, especially for targets not seen in the training
dataset. By taking intrinsic attributes of training samples into
account, in this paper, we propose a position-sensitive loss coupled
with softmax loss to achieve intra-class compactness and inter-class
explicitness. Particularly, two additive margins are introduced to
encode the position attribute for decision boundary maximization,
which is also utilized with the proposed loss to supervise the
fine-tuned features on the pre-trained model. With the nearest
neighbor ranking measurement in the feature embedding domain,
the whole scheme is able to reach an optimized balance between
the feature-level inter-class semantic separability and instance-
level intra-class relative distance ranking. We evaluate the proposed
work on different popular benchmarks, and experimental results
demonstrate that our tracking strategy performs favorably against
most of the state-of-the-art trackers in the comparison of accuracy
and robustness.

Index Terms—Visual tracking, softmax loss, position-sensitive
loss, ranking.

I. INTRODUCTION

V ISUAL tracking [1]–[3] is usually regarded as a high-
level analysis based on fundamental image classifica-

tion/retrieval models, depending on representative features gen-
eration, and tracking accuracy and robustness have been signif-
icantly improved when a variety of deep CNNs have been used
in recent studies [4]. Although there are some technical overlap-
ping topics between tracking and image classification/retrieval
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[1], such as the object’s semantic categorization, object track-
ing has its particularity: category unknown with dynamic lo-
calization, which has become a challenging source limiting the
performance further improvement.

The recently proposed tracking-by-detection approach di-
rectly employs the CNN feature embedding to model object
appearance for accurate identification. The DeepSRDCF [5] uti-
lizes the feature pre-trained by imagenet-vgg-2048 [6] on the
ImageNet dataset [7] to provide superior tracking performance
compared to the hard-crafted features. Similarly, the hierarchi-
cal CNN features are also simply integrated into the DCF track-
ing framework [8], [9] with fixed coefficients [10] or adaptive
weights [11] to represent the object, and the lightweight net-
works are also designed to learn the CNN feature or generic
representation [4] for the object from the tracking dataset. Unfor-
tunately, such a straightforward integration mechanism is hard
to robustly track the unknown object that is not included in the
training dataset according to an inter-class semantic separabil-
ity feature embedding. To overcome this issue, a discriminative
feature embedding is required when tracking is on-the-fly.

In fact, in the field of image retrieval tasks [13], [14], the query
images usually do not appear in the retrieval image library. For
this challenge, some efforts [15], [16] have developed a discrimi-
native feature embedding to enhance the intra-class compactness
through improving the loss function of the network. However,
they still focus on the feature-level semantics of the given image
patch to verify that the input image pair is similar or not. It is not
consistent with tracking tasks to accurately locate the object in
the frames. Thus, the position relationship between sample and
the true object in instance-level is required to be considered in
the loss function to learn the discriminative feature embedding,
which is helpful to promote the tracking performance.

Summarily, the feature embedding extracted from the net-
work that is mainly based on the softmax loss [4] is able to
semantically discriminate the foreground from background, but
its limitations for tracking tasks are also obvious:

1) Such inter-class separability of the feature embedding
is difficult to distinguish an unknown object that is
not contained in the training dataset. It is impractical
to gather all the possible objects for training, and the
prediction by the CNN feature embedding is not al-
ways applicable. Thus, the learned feature embedding
is required to be discriminative and generalized enough
for identifying a new unseen object for tracking tasks.
Discriminative power is characterized by the intra-class
compactness and inter-class separability. However, the
softmax loss only encourages the inter-class seman-
tic separability of the feature embedding, which makes
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Fig. 1. Softmax Loss V.S. Position-Sensitive Loss. Figure 1(a) shows the sam-
ple x1 in the yellow and sample x2 in the blue are gathered in terms of the true
object labeled with the red box in the sequence bolt from the OTB2015 dataset
[12]. The feature embedding trained by the softmax loss and by the proposed
position-sensitive loss are shown in Figure 1(c) and 1(d), respectively. Here, the
overlap between x1 and the true object is smaller than the overlap between x2

and the true object. The corresponding features f1, f2 and w are extracted by a
network with respect to the samples x1, x2 and the true object, respectively. The
bigger the inner-product value between the features w and f is, the more similar
the sample x and the true object is. In Figure 1(b), many samples are gathered
with different overlaps according to the true object. The relationship between
the overlap and the inner-product score is shown in Figure 1(e) and 1(f), where
they are trained by the softmax loss and the proposed position-sensitive loss,
respectively.

the tracker unable to follow the object effectively and
robustly.

2) The absence of localization confidence makes it difficult to
perceive the differences of samples that have been iden-
tified as the same class since their intra-class semantic
meanings are similar. As shown in Figure 1(c), the pro-
jection of the feature f1 on the feature w is the same as
the feature f2, which means that the softmax loss treats
f1 and f2 identically even the overlaps between sample
x1 and x2 with respect to the object have a big differ-
ence. When numerous samples are gathered with differ-
ent overlaps according to the object position in one frame
as in Figure 1(b), the relationship between the overlaps
and the inner-product scores trained by the softmax loss
in Figure 1(e) shows that the softmax scores are ranked

according to the samples’ semantic meanings rather than
the overlaps between the samples and the true object. In
a tracking task, accurate localization can be both a goal
and a condition, and it also means that the object posi-
tion attribute should be taken into account during network
training, which becomes a motivation of this study.

In our study, two additive margins are designed to encode
the object position attribute and then coupled with softmax loss
to re-define a novel position-sensitive loss for the discriminative
feature embedding learning. By explicitly encouraging instance-
level intra-class relative distance ranking and feature-level inter-
class separability between the learned feature embedding f1 and
f2 in Figure 1(d), the difference in similarity between samples
x1, x2 and the true object can be captured because the new
loss takes both the semantic and the position attribute into ac-
count, which leads to accurate sample selection: x2 instead of
x1, as the tracking results. Comparing to the softmax scores,
the position-sensitive scores are proportional to the overlaps be-
cause the proposed loss depends on both the semantic and the
position attributes of the sample as shown in Figure 1(f).

The main contributions of our work can be summarized as
follows:
� We propose a position-sensitive loss to learn a discrimi-

native feature embedding, which can explicitly encourage
intra-class compactness and inter-class separability. Com-
pared with the traditional CNN features, the learned fea-
tures help to distinguish the invisible objects not included
in the training dataset.

� We introduce two additive margins into the common soft-
max loss. The margin is used to encode the position at-
tribute of the training data. During training, the overlap
between the sample and ground truth is also supervised
to maximize the decision boundary for discriminative fea-
ture embedding. As a result, a sample including the whole
object will achieve a high score.

� We use the proposed loss to fine-tune the backbone network
in base on the pre-trained model l [4], [6] on the tracking
datasets [17]. Thus, the learned feature embedding not only
has good separability between different categories but also
sorts the samples according to their overlaps with respect
to the object.

The remainder of the paper is structured as follows. In
Section II, we review most closely related work, our approach
is described in Section III and Section IV, experimental re-
sults are presented in Section V and conclusions are drawn in
Section VI.

II. RELATED WORK

Visual tracking has been studied extensively over the past
decades. Comprehensive reviews on object tracking and bench-
mark evaluations can be found in [18]. In this section, we mainly
discuss the deep trackers and the related topic of feature embed-
ding learning with a large margin.

Tracking based on CNN features: Compared with the
hand-crafted features [8], [19], CNN features have demonstrated
powerful representation ability for visual tracking tasks in recent
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literature [2], [4], [20]–[23]. In the early works, the last layer [24]
or hierarchical layers [10] of CNN features fine-tuned on the pre-
trained model from the ImageNet [7] dataset are employed to
describe the the object’s variations.

In order to learn the specific CNN feature embedding for
tracking tasks, the tracking datasets [12], [25] are also employed
as the training data and the model is trained with the softmax
loss [4], [22], [23] or a contrastive loss [26], [27] in an end-
to-end way. The softmax loss is employed to learn inter-class
separability feature embedding to identify the object from the
background, and then the object’s bounding box is inferred in the
following frames either by regressing directly [23], [26], or esti-
mating with correlation filter [28], or bounding boxes regression
[23]. Specifically, in the work [4], the softmax function is used
as a binary classifier to distinguish the object and background
on the tracking dataset to achieve the CNN feature embedding
for the generic object.

The feature embedding can be trained by the contrastive loss
and is simultaneously used to metric the similarity between
the object and the sample through Siamese network [29] with
the Y-shaped network architecture [26]. Additionally, SORT
[30] learned a deep association metric offline and introduce
measurement-to-track associations to query the nearest neigh-
bor for multiple objects tracking, and low- and high-dimensional
features [31] were fused to track generic human motion.

In our study, the CNN feature embedding is learned by the
proposed new loss based on the softmax loss and used to deal
with the unseen object [32] in the training dataset since the
learned feature embedding is inter-class separability and intra-
class ranking.

Discriminative feature embedding learning: In most
CNNs, the softmax loss [33] is used to learn the feature em-
bedding with richer identity-related information. In order to en-
hance the discriminative power of the softmax loss, the center
loss [34] is proposed as regularization attached to softmax loss,
which simultaneously learns a center for the feature embed-
ding of each class and penalizes the distances between the deep
features and their corresponding class centers. Also, the nor-
malized feature embedding is added to the softmax [35] loss to
promote the performance. Specifically, when both the feature
embedding and parameters are normalized simultaneously [35],
the formulation of cross-entropy loss can be consistent with the
distance-based metric learning. Namely, the distance is equal
to the cosine distance [36], and it still has the same formula-
tion with the softmax loss. Recently, a generalized large margin
softmax [15] adds a margin between the angle of different cate-
gories, which explicitly encourages intra-class compactness and
inter-class separability.

Different from the above multiplicative angular margin, our
work is similar to the additive cosine margin [16] which in-
corporates angular margin and cosine margin into the losses to
enhance the discriminative power of the softmax loss. Instead of
treating the margin as a hyperparameter, two additive margins
are designed to encode the position attribute of the sample and
enlarge decision boundary according to the overlap between the
sample and the object. As a result, the sample containing the
whole object is going to achieve a high score.

Fig. 2. Feature learning pipeline. The network architecture includes the fol-
lowing parts: (1) the inputs that include the sampled patches gathered from the
frame, (2) the convolution sub-network that includes convolutional layers, ReLU
layers, and pooling layers, (3) the full connection layers and (4) the loss layer
that calculates the loss both by the labels and positions. The output value of the
network is between 0 and 1 that denotes the probability of the sample belonging
to the object or background.

III. DEEP POSITION-SENSITIVE TRACKING

A. Overview

In current tracking frameworks, the softmax loss is widely
used to learn the CNN feature embedding to distinguish the
foreground from the background. However, the samples around
the object are always considered as positives, but they have dif-
ferent metrics in terms of the ground truth. Such weakness in
inter-class separability would eventually reduce the accuracy of
localization and lead to tracking failure due to ignored intra-
class ranking. To solve this problem, a novel position-sensitive
loss is introduced and incorporated with a deep neural network
to learn a discriminative feature embedding for object tracking,
which is illustrated in Figure 2.

In this framework, the incorporated position-sensitive loss is
used to constrain the training process by encouraging the intra-
class ranking and the inter-class separation, and the network
output is the probability of a sample belonging to the object
or background. Each convolution layer contains a ReLU and a
dropout unit shown in Figure 2 and the SGD (Stochastic Gradient
Descent) optimizer is adapted to train the network. Unlike the
regression model encoding the position as labels, we incorporate
the position attribute intrinsically into the classification model.
As a consequence, both the semantic and the position attribute
of the samples can be taken into account for learning.

B. Preliminaries

The following notations are used in the rest of this paper.
Given training dataset {Ii, yi,mi|i = 1, 2, . . . , N}, Ii ∈ Rn

is the i-th input sample, and the corresponding label is yi ∈
{1, 2, . . . , C}. The position attribute mi ∈ [0, 1] of the i-th sam-
ple Ii can be calculated by the definition of CLE or IoU margin,
and xi denotes the feature embedding extracted by the deep net-
work.

We define the CLE based margin asmcle(p, q) = e−||Cp−Cq ||2

and IoU based margin as miou(p, q) = |p∩q|
|p∪q| , where p and q de-

note the bounding boxes of the sample and the object, respec-
tively. The Cp and Cq denote their center locations, and the op-
erators ∩ and ∪ are the intersection and union of two bounding
boxes.
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Fig. 3. Position margin. The decision boundary learned by the softmax loss is
shown in Figure 3(a), where the samples with different labels have been separated
on the two sides of the decision boundary. Figure 3(b) shows the learned decision
boundary by the position-sensitive loss where mi is the position margin of the
sample xi with respect to the ground truth. The unordered margin is meaningful
separability in inter-class samples while helpless in intra-class samples.

In our study, the inter-class separability is used to measure
how well two different clusters are separated from each other.
While the intra-class compactness is employed to encourage
the samples with the same label to gather together.

C. Position-Sensitive Loss

In tracking evaluation, the position information can be mea-
sured by the center location error (CLE) and intersection over
union (IoU) between the bounding boxes for precision, which
can be also regarded as suitable metrics for representing the
sample position attribute. To improve the discriminability of the
feature embedding, the relative position relationship between
the sample and the object is utilized as the marginal supervision
to build position-sensitive loss.

With the softmax loss, these samples can be effectively clas-
sified into different categories by the learned feature embed-
ding. But in tracking tasks, the sample classification needs to
enlarge the intra-class ranking as well as the inner-class sepa-
rability. The softmax loss can be reformulated as the last full-
connected layer input {xi ∈ Rd, i = 1, . . . , N} with weights
{wi ∈ Rd ∈, i = 1, . . . , C}:

Lsoftmax = − 1

N

N∑

i=1

log
ew

T
yi

xi

∑c
j=1 e

wT
j xi

, (1)

where C is the number of classes.
Our target is to rank the samples that have the same category

by introducing position attribute as the soft margin in the softmax
loss:

Lposition = − 1

N

N∑

i=1

log
ew

T
yi

xi−mi

ew
T
yi

xi−mi +
∑c

j=1,j �=yi
ew

T
j xi

.

(2)
The following discussion about position margin may help to
understand position-sensitive loss clearly.

D. Position Margin

The samples with the different categories will be separated
according to the hyper-planes generated under the supervising
signal of the softmax loss shown in Figure 3(a). Unfortunately,

the learned feature embedding is limited to present unseen ob-
jects. Luckily, the parallel hyper-planes will be achieved shown
in Figure 3(b) due to the item mi in the position-sensitive loss
represented in the formulation 2. We define the region bounded
by these hyperplanes as the positioning margin according to the
item mi. For samples with the same category, the smaller the
position margin, the further away from the decision boundary.
Summarily, this position margin can be derived from inter-class
semantic separability and intra-class position ranking accord-
ingly.

Inter-class semantic separability: When C is set to 2, the
loss becomes a two-class classification problem as:

p1 =
ew

T
1 xi−mi

ew
T
1 xi−mi + ew

T
2 xi

, (3)

p2 = 1− p1 =
ew

T
2 xi

ew
T
1 xi−mi + ew

T
2 xi

, (4)

where p1 and p2 denote the probabilities that xi belongs to class
1 and class 2. Ifxi is a member of class 1, we prefer that p1 > p2,
that is,

ew
T
1 xi > ew

T
2 xi+mi > ew

T
2 xi . (5)

The model w trained by the softmax loss can separate the
samples into different categories, but fail to reflect their intra-
class ranking as shown in Figure 3(a). Comparatively, model w
trained by the position-sensitive loss is able to identify that the
samples with a large margin of m have a bigger inner product.
This means that the proposed loss encourages that the closer the
margin between the sample and ground truth is, the larger score
the inner product of the model and sample is. The equation 5
illustrates such differences, the margin mi enables model w1 to
be more discriminative than the one trained by the traditional
softmax loss.

Intra-class position ranking: For two-class problem, to
avoid the softmax loss degenerating into logistical regression,
the probabilities of samples can then be formulated as x1 and
x2, when they both belong to the class 1.

p1 =
1

1 + e−(wT
1 x1−m1)

, p2 =
1

1 + e−(wT
1 x2−m2)

. (6)

The probability of sample x1 is supposed to be bigger than
the sample x2, when the corresponding margin is m1 > m2,
correspondingly p1 > p2:

e−wT
1 x1 < e−(wT

1 x2+Δm) < e−wT
1 x2 , (7)

where Δm = m1 −m2. If the position margin m1 of sample
x1 is bigger than the margin m2 of sample x2, denoting that
the inner product of sample pair (x1,w) is bigger than (x2,w)
with a generated distance Δm. This means that when a network
is trained by increasing the spatial position of the sample, the
probability of the sample can be given a margin according to its
Δm. The rank of the sample with a small position with respect
to the true object will be advanced, and vice versa.
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Algorithm 1: Training of Position-Sensitive Loss
Require: The feature of the softmax layer:
{zi ∈ Rd×C};

The labels: {yi ∈ {1, 2, . . . , C}}; The position
margins: {mi ∈ [0, 1]}.

Ensure: The Loss: L; The derivation: ∇L.
1: q : index(zi ∈ y)
2: zi(q) = zi(q)−mi;
3: zmax = max z;
4: ez = exp(z − zmax);
5: Forward:
6: L = zmax + log

∑
ez − z(q);

7: Backward:
8: ∇L = ez/

∑
ez;

9: ∇L = ∇L(q)− 1.

E. Optimization

The proposed position-sensitive loss incorporates both the se-
mantic label and position attribute of the sample into the base of
the softmax loss, its back-propagation derivation can be written
as:

∂Li

∂wk
=

[
− δ(yi, k)+

δ(yi, k)e
wT

yi
xi−mi + (1− δ(yi, k))e

wT
k xi

ew
T
yi

xi−mi +
∑

ew
T
j xi

]
xi,

(8)

where δ() is the indication function. The derivation of the inputs:

∂Li

∂xi
=

∑c
j=1,j �=yi

(wj −wyi
)ew

T
j xi

ew
T
yi

xi−mi +
∑c

j=1,j �=yi
ew

T
j xi

. (9)

The calculation of Eq. 8 and Eq. 9 is similar to the traditional
softmax loss, but the score of the correct category is subtracted
by the marginmi of the corresponding samplexi. Whenmi = 0,
this derivation will turn back to its original form of the softmax
loss.

The training procedure is shown in the Algorithm 1. The line 2
in Algorithm 1 is used to subtract the position margin of the cor-
responding sample, and other operations still follow the original
softmax loss.

IV. ONLINE TRACKING

As shown in Figure 4, The feature embedding of the object
and samples are extracted by the trained network and the dis-
tance measurement is then directly used to evaluate the similarity
between the object and samples. In the feature embedding do-
main, the nearest sample to the object is considered as the instant
output.

For instance, given an object t, the embedding feature f(t)
is regarded as a query, a set of N samples around the previous
object position are extracted from the current frame, and they
can be denoted as S = {z1, z2, . . . ,zN}, which includes both
background and distractors. Those samples act as the input for
the network including both background and distractors. Here

Fig. 4. Feature embedding. The red five-pointed star is the feature embedding
of the true object, while the feature embedding of the samples in the gallery
are denoted as blue circles. The sample with margin m = 0.9 has the nearest
European distance with respect to the true object.

zi → xi denotes the mapping from the sample domain to the
feature embedding domain. Thus, E = {x1, . . . ,xN} is the set
of the feature embedding. Then the Euclidean distances between
the object and samples can be calculated as:

Di = ||f(t)− f(xi)||22. (10)

After that, the nearest sample is considered as the tracking result
of the current frame.

i∗ = arg min
i=1,2,...,N

Di. (11)

V. EXPERIMENTS

The proposed work is implemented using MatConvNet tool-
box [37], and the performance is evaluated on two public bench-
mark dataset of OTB [12] and VOT2016 [38]. The average speed
is around 1 fps without any code optimization on the testing plat-
form of Intel I7 3.6GHz and GeForce GTX 1080Ti.

A. Implementation Details

Network architecture: By replacing the softmax loss with
position-sensitive loss shown as with red color in Figure 2,
we build our network based on the architectures of MDNet
[4] and VGG-M [37]. There are three convolutional layers
(conv1,conv2, and conv3) utilized to extract the feature embed-
ding, and two full connected layers (fc4 and fc5) to calculate
the final similarity score. The number of filters in each layer are
96, 256 and 512 with a uniform size of 3-by-3 and two full con-
nection layers have 512 units each. The inputs are 107-by-107
RGB images and the output value is between 0 and 1.

Training data setup: The dataset ALOV300++ [39] is em-
ployed as training data, which of 315 video sequences. This
dataset consists of the real-life videos from YouTube with 64 dif-
ferent types of targets ranging from human face, a person, a ball,
an octopus, microscopic cells, a plastic bag to a can. Note that
12 videos in ALOV300++ [39] are not included in the training
data because they also appear in OTB2015 [12] and VOT2016
[38]. Positives are sampled around the ground truth with overlap
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more than 0.7, and the random samples with overlaps less than
0.5 are chosen as negatives.

Off-line training: For each iteration of off-line training, we
construct a mini-batch with samples collected from a single
frame like MDNet [4]. We randomly sample 8 frames in the
selected sequence, and gather 32 positives, 96 negatives from
each frame, and then re-arrange them into a batch of 256 pos-
itives and 768 negatives. Instead of back-propagating in each
iteration, we accumulate the gradients from backward passes in
multiple iterations, and the network is updated at every 50 itera-
tions in our experiments. The weights of the three convolutional
layers are transferred from the corresponding parts in VGG-M
network vgg14 pre-trained on ImageNet [40] while the fully
connected layers and the loss layer are trained from scratch.

Online tracking: The feature embedding extracted by the
convolutional layers is treated as the generic representation of
an object, which means the pre-trained network needs to be fine-
tuned on the first frame of each testing video. 500 positives and
5000 negatives are collected in terms of the same IoU criteria
during the off-line stage. While the training data for online updat-
ing are collected in each frame, where 50 positives (> 0.7IoU)
and 200 negatives (< 0.3IoU) are gathered in terms of the lo-
cation estimations in current frame. To avoid redundant compu-
tation, we only keep their feature representations instead of the
image patches and carry out updating every 10 frames.

Optimization: The proposed network is trained by a stochas-
tic gradient descent (SGD) method. For off-line learning, we first
freeze all the layers except the full-connected layers and train
the network with the loss layer for 1000 epochs with learning
rate 0.01. Then, we unfreeze all the layers to do training one
more time with the learning rate group [0.00001, 0.0001, 0.001]
of convolution layers, full connection layers and loss layer re-
spectively. During the online updating, the number of iterations
for fine-tuning is set to 15 and the learning rate is set to 0.0003.
The weight decay and momentum are fixed to 0.0005 and 0.9,
respectively.

B. Ablation Study

To analyze each component, we conduct an ablation study on
the OTB50 dataset [41], and the precision rate and success rate
are used as our evaluation criteria. Unlike softmax loss focusing
on classification error rate, our loss pays attention both on the
position ranking and the semantic separability of the learned
feature embedding.

Position-sensitive loss v.s. softmax loss: The network con-
sists of a backbone sub-network and a head sub-network. In order
to fairly verify the superiority of the proposed loss in this paper,
we evaluate different loss defined by the head sub-network, and
its input is provided by the backbone sub-network. The experi-
ments are performed on the ALOV300++ [39] dataset for train-
ing and the OTB50 dataset [41] for testing. Figure 5 shows that
the proposed position-sensitive loss has effectively improved the
tracking precision (0.758) and the AUC score(0.647), in compar-
ison to 0.708 and 0.606 obtained by the softmax loss. The reason
is that the position-sensitive loss takes the position ranking into
account with the semantic separability of the softmax loss. The

Fig. 5. Performances of position-sensitive loss and softmax Loss. The green
line is the performance with the softmax loss for object semantic, on the contrary,
the performance of the position-sensitive loss is shown in red line.

TABLE I
PRECISION AND SUCCESS ON CLE AND IOU

overall performance has been improved nearly 5% on the OTB50
dataset mainly because the learned feature embedding has dis-
criminative capability based on the object’s difference position.
And this advantage also enhances the separability between the
object and background containing objects’ parts.

Margin comparison: Two margins: center location error
(CLE) and intersection over union (IoU), are also tested on the
OTB50 and the results in Table I. The similar scores show that
both margins are effective in position attribution description.
The CLE margin is slightly better than the IoU margin in terms
of accuracy score, but its AUC score is slightly worse. The rea-
son behind might be that the features learned with CLE margin
mainly focus more on the center coordinates, but the IoU mar-
gin expects a better overlap between the sample and the ground
truth.

Intra-class ranking: To verify the intra-class ranking of sam-
ples on OTB50, the sequence bolt is chosen for visualized anal-
ysis shown as Figure 6. The blue plot and red plot represent
the scores of feature embedding trained with softmax loss and
position-sensitive loss respectively. The horizontal axis denotes
the overlap changes and the vertical axis denotes the correspond-
ing similarity scores. It can be found that the scores trained with
position-sensitive loss approximate a linear proportion of the
overlaps between the corresponding sample and the real object.
Namely, the scores of samples (a) and (b) based on softmax loss
are close, then they will be considered to have the same seman-
tic. But the difference between samples (a) and (b) can be found
by the position-sensitive loss: the closer the sample near the real
object, the higher the score of the sample.

C. Comparison With the State-of-the-Art

The verification of the proposed tracker is carried out on the
popular benchmark datasets of OTB2015 [12] and VOT2016
[38], and we compare with the other state-of-the-art tracking
works including TCNN [42], CCOT [43], Staple [44], Deep-
SRDCF [5], EBT [45], DAT [46], DSST2014 [47], TGPR [48]
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Fig. 6. Scores of the position-sensitive loss and the softmax loss. The horizon-
tal axis is the overlaps between samples and the true object, while the similarity
scores between the samples and the true object are shown in the vertical axis.
The blue and red dots are used to represent the scores of the corresponding
feature embedding trained by the softmax loss and by position-sensitive loss,
respectively. The sample (a), (b) and (c) are gathered with the overlaps 0.95,
0.58 and 0.18, respectively. The corresponding scores are 0.2, −5 and −4 by
the softmax loss, and 0.4, −5 and −13 by the position-sensitive loss.

Fig. 7. Average expected overlaps with rank. The X-axis is in descending
order. It shows our DPST tracker outperforms the compared trackers greatly on
average expected overlaps with a score of 0.3602.

and DFT [49] to demonstrate our advantage. Especially, the re-
cent works [50]–[52] are performed based on the basic MDNet
[4] tracker. Besides, the recent trackers based on the shrinkage
loss [53] and triplet loss [54] with Siamese network are also
compared with the proposed loss.

D. VOT2016 Dataset

By using the VOT toolkit [17], we obtain Figure 7 and Table II
to compare our tracker with others on VOT2016 challenge. We
also choose a reset-based evaluation methodology which has
been applied in VOT challenges [17], where 3 primary measures
[38] , e.g. accuracy, robustness and expected average overlap are
used to analyze performance.

Figure 7 shows the average expected overlap scores for ex-
periment baseline, and Table II reports the average scores, ranks

of accuracy, the number of failures, ranks of robustness, the av-
erage scores and the overall rank of the expected overlap scores.
As illustrated in Figure 7 and Table II, our tracker obviously out-
performs most of the compared trackers and rank excel sightly
the TCNN [42] and CCOT [43] in the expected overlap evalu-
ation. Meanwhile, our tracker achieves the second score of 0.9
for the robust score.

The CCOT [43] tracker is a state-of-the-art tracker, which
achieved the top rank at the Visual Object Tracking challenge
2016. It has introduced a novel formulation for training con-
tinuous convolution filters to pose the learning problem in the
continuous spatial domain. The EAO of our method is 0.3602 ,
while 0.3310 for CCOT [43] tracker. This may be due to the fact
that feature embedding adopted in the tracking is different.

Our feature embedding is trained offline to achieve more pow-
erful ability to represent the object and adapt to the target varia-
tion through online learning. However, the feature in the CCOT
[43] tracker is pre-defined deep features that are learned for
the image classification task. TCNN tracker collaborates multi-
ple CNNs to estimate target states and determine the desirable
paths for online model updates in the tree. However, it requires
making multiple decisions for each frame since only one score
of the candidate is generated at a time. It achieves good score
0.9589 on the VOT2016 dataset.

These experimental results and analyses on VOT2016 dataset
[17] illuminate that the proposed tracking algorithm performs
well against most of the recent state-of-the-art trackers in both
accuracy and robustness.

E. OTB Dataset

The one pass evaluation [12] is employed for tracking eval-
uation because it only needs to initialize the object in the first
frame, and the whole tracking process will not be influenced by
supervised information until the end. For the metric measure-
ments used in our experiment, the center location error with a
threshold of 20 and overlap ratio with a threshold of 0.5 are
utilized to generate the precision and success plots. Here, we
mainly report the results on the OTB2015 [12] dataset since the
other one is a subset.

Overall performance: Tracking algorithms are evaluated on
the OTB dataset with both distance precision and overlap success
rate [12] using one-pass evaluation (OPE) protocol, where each
tracker is evaluated in the initial frame with ground truth until the
end of each sequence. Figure 8 shows the plots of the distance
precision rate and the overlap success rate with the OPE against
other methods on OTB2015 [12]. We list the quantitative results
of the distance precision rate at 20 pixels, the area-under-the-
curve (AUC) score and tracking speed in Table III. The results
show that the proposed algorithm performs well against the state-
of-the-art trackers in the area under the curve (AUC) score and
distance precision rate (DP) at a threshold of 20 pixels. It can
be seen that, compared with the other algorithms, the proposed
DPST tracker has achieved the best performance in accuracy and
success, which are 91.9% and 68.6%, respectively. Also, our
algorithm achieves a certain improvement compared with the
baseline MDNet [4] (AUC: 67.8% and DP: 90.9%) and tracker
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TABLE II
BASELINE EVALUATION ON VOT2016. THE BASELINE IS A RE-SET BASED EVALUATION ACCURACY AND ROBUSTNESS ARE ANALYZED BY CORRESPONDING

SCORES AND RANKS. THE EXPECTED AVERAGE OVERLAP IS ALSO INCLUDED IN THE BASELINE. THE RED, GREEN, AND BLUE NUMBER DENOTE THE 1ST, 2ND,
AND 3RD RANK IN EACH ROW RESPECTIVELY

Fig. 8. Distance precision and overlap success plots on the OTB2015 [12]
dataset. Quantitative results on the 100 benchmark sequences using OPE. The
legend of distance precision contains threshold scores at 20 pixels, while the
legend of overlap success contains area-under-the-curve score for each tracker.
The proposed algorithm performs favorably against the state-of-the-art trackers.

with the shrinkage loss [53] (AUC: 66.0% and DP: 90.9%).
Overall, the proposed algorithm performs favorably against the
state-of-the-art methods on the OTB2015 dataset [12].

Attribute-based evaluation: We analyze the tracker per-
formance using 11 annotated attributes in the OTB2015 [12]
dataset: illumination variation (IV35), out-of-plane rotation
(OR59), scale variation (SV61), occlusion (OCC44), deforma-
tion (DEF39), motion blur (MB29), fast motion (FM37), in-
plane rotation (IR51), out-of-view (OV14), background clutter
(BC31), and low resolution (LR9) (number of videos for each
attribute is appended to the end of each abbreviation). Figure 9
and Figure 10 present the results under one-pass evaluation re-
garding these challenging attributes and the proposed tracker
is able to handle the challenges of motion blur, fast motion,
background cluster, out-of-plane rotation, occlusion, illumina-
tion variation, in-plane rotation, and out-of-view very well. This
should be attributed to the feature embedding robustness against
the deformation and rotation based on the position-sensitive loss.

Quantitative evaluation: Figure 11 shows the qualitative
comparisons with the performing tracking methods: MDNet [4],
CCOT [43], MEEM [58], CNN-SVM [64], ECO [65], DSST
[47], PTAV [56] and the proposed method on ten challenging
image sequences including bird1, box, diving, jumping, motor-
Rolling, matrix, basketball, trellis and bolt2. Overall, our tracker
is able to locate the object well in these complex scenes.

TABLE III
COMPARISONS WITH STATE-OF-THE-ART TRACKERS ON OTB2015 [12]

BENCHMARK SEQUENCES. OUR METHOD PERFORMS FAVORABLY AGAINST

EXISTING METHODS IN THE AREA UNDER THE CURVE (AUC) SCORE AND

DISTANCE PRECISION RATE (DP) AT A THRESHOLD OF 20 PIXELS. THE FIRST

AND SECOND BEST VALUES ARE HIGHLIGHTED BY

RED AND BLUE COLORS, RESPECTIVELY.

F. Failure Analysis

We show some tracking failures by the proposed tracker in
Figure 12. For the diving and jump sequences, the person in
the presence of drastic in-plane changes and fast motion, the
model can not adjust to the object quickly yet to the background.
In the Bike sequence, the search region is not enough to cover
the object since the object re-appears far away from where it
disappears. For the Coupon sequence, the distractor that has the
same semantics with the object is around the object, thus our
approach cannot identify the distractor.

Experiments show that the performance improvement of our
tracker on the tracking dataset, especially on the VOT2016
dataset. This dataset is more complex than the OTB2015 dataset,
where the scale, rotation, and deformation of the object are
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Fig. 9. Attribute-based distance precision metric on the OTB2015 dataset [12], where the legend of distance precision contains threshold scores at 20 pixels.
Performance evaluation on benchmark attributes: illumination variation (35), out-of-plane rotation (59), scale variation (61), occlusion (44), deformation (39),
motion blur (29), fast motion (37), in-plane rotation (51), out-of-view (14), background clutter (31), and low resolution (9). The later digits mean the number of
videos with that attribute. The proposed algorithm performs well against state-of-the-art results.

Fig. 10. Attribute-based distance precision metric on the OTB2015 dataset [12], where the legend of overlap success contains area-under-the-curve score for each
tracker. Performance evaluation on benchmark attributes: illumination variation (35), out-of-plane rotation (59), scale variation (61), occlusion (44), deformation
(39), motion blur (29), fast motion (37), in-plane rotation (51), out-of-view (14), background clutter (31), and low resolution (9). The later digits mean the number
of videos with that attribute. The proposed algorithm performs well against state-of-the-art results.
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Fig. 11. Sample tracking results on challenging image sequences (from left to right and top to down are bird1, box, diving, jumping, motorRolling, matrix,
basketball, trellis,and bolt2), respectively. We show some tracking results of MDNet [4], CCOT [43], MEEM [58], CNN-SVM [64], ECO [65], DSST [47], PTAV
[56] methods, as well as the proposed algorithm.

Fig. 12. Failure cases on the diving, bike, jump and Coupon sequences on the
OTB2015 [12] . Red boxes show our results and the blue ones are ground truth.

more challenging. In summary, it is sufficient to prove that the
position-sensitive loss can improve location accuracy.

VI. CONCLUSION

In this paper, two position margins are designed coupled with
the softmax loss to learn discriminative feature embedding by the
network for visual tracking task. Since the semantic and position
attribute of samples is taken into account, the new loss introduces
intra-class compactness and relative ranking into the softmax
loss to achieve an accurate location for the unseen object. The
experimental results show that the proposed tracker exceeds the

comparison trackers and achieves excellent performance on the
OTB2015[12] and VOT2016 [38].

We also summarize the potential directions to improve our
approach and shed light on our future works. The recent track-
ing datasets such as TrackingNet [66], LaSOT [67] can also be
used to train the network. Besides, the speed of our algorithm
is not satisfactory for the real-time application. The reason is
that our method requires sampling candidate regions, which are
passed through a CNN pre-trained on a large-scale dataset and
fine-tuned at the first frame in a test video. Since every candidate
is processed independently, it suffers from high computational
complexity in terms of time and space. Like the Mask R-CNN,
RoIAlign can be employed to accelerate feature extraction pro-
cedure.
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