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obesity (Wang et al., 2008);

urban sprawl (Van Herzele and Wiedemann, 2003);

sustainability (European Commission, 2011);

competition between cities (Braw, 2013);

value of real estate (Braw, 2013);
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runability index

Choi (2013), Saelens and Handy (2008), Koohsari et al. (2015)
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runability index

an indication of space potential to be used 
for recreational active travels

prediction of changes

encouragement of recreational activities

assurance of quality
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lack of scientific knowledge how spaces 

are used for recreation:

data collection is expensive and time 

consuming;

cannot be performed the same way in different 

countries;

cannot be performed on a big scale;

cannot be repeated often.
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Mobile Sports Tracking Application 

data:

big data

public data

crowdsourced data

comparable data

up-to-date data

growing data
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no interface

data is very big

privacy issues

Euclidean space

Mobile Sports Tracking Application 

data:

big data

public data

crowdsourced data
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up-to-date data

growing data
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How can GPS data,

generated by

mobile sports tracking applications,

be used

to assess, analyse and model

the recreational usage

of an urban space network?
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Open Street Map

Chin et al. (2008), Girres and Touya (2010), 

Gil (2014), Mooney (2015)

Mobile tracking

Shoval (2008), Van der Spek et al. (2009; 

2013; 2014), Zambonelli (2011)

Sports tracking application data

Piorkowski (2009), Ferrari & Mamei (2011, 

2013), Oksanen et al. (2013)

Space Syntax, Page Rank, Random 

walk, eigenvector centrality...

Hillier & Hanson (1984), Hillier et al. (2005, 2007, 

2009, 2012), Gauvin et al. (2005), Crucitti et al. 

(2006), Turner (2007), Gebel et al. (2007), Jiang 

(2009), Blanchard & Volchenkov (2008)

Walkability Index

Henderson (2005), Cohen et al. (2006, 2007) Leslie 

et al., (2007), Floyd et al. (2008), Maroko et al.

(2009), Brown et al. (2009), van Dyck et al. (2010),

Troped et al. (2010), Cutumisu (2011), Yamada et 

al. (2012), Choi (2013) 
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Mobile Sports Tracking Application:

high popularity rate in Europe

free data access
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Case Study Cities:

within EU

extra-large (500 000 – 1 000 000 inhabitants)

distinct characteristics

𝑟𝑎𝑡𝑖𝑜 =
𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 𝑢𝑠𝑒𝑟𝑠

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
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https://www.endomondo.com/workouts/453360586
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total data acquisition time: 1 248 h

number of http requests sent: 15 600 000

number of lines in .csv files: 5 964 008 (38%)

...that passed filter: 3 610 735 (23%)

distinct users registered: 911 588

tracks per user: 4
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total data acquisition time: 1 248 h

number of http requests sent: 15 600 000

number of lines in .csv files: 5 964 008 (38%)

...that passed filter: 3 610 735 (23%)

distinct users registered: 911 588

tracks per user: 4
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City Population No. of

application

users

No. of GPS

tracks

Ratio

users/popul

ation

Vilnius 558 165 3950 10 165 0.007

Valencia 814 218 3583 9 443 0.005

Gothenburg 520 374 2 195 6 720 0.004
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LANDSAT 8
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EUROSTAT URBAN ATLAS
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OPEN STREET MAP
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paths for non-motorised means of 
transport

must be generalised with 30m granularity

no duplicates, pseudonodes or invalid geometries

common datasets for all cities

must be up-to-date
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filtering outliers

snapping to the network

evaluating actual recreational usage
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filtering outliers

snapping to the network

evaluating actual recreational usage

rec_usage += 1
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filtering outliers

snapping to the network

evaluating actual recreational usage
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filtering outliers

snapping to the network

evaluating actual recreational usage
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application users:

smart-device owners

75% men, 25% women

15 to 50 years old (97%)

misuse of the application
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application users:

smart-device owners

75% men, 25% women

15 to 50 years old (97%)

misuse of the application

BIG
DATA
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where recreational activities happen

where recreational activities do not happen

WHY
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walkability index:

land use mix

+

street connectivity (street network configuration)

+

population density

+

greenness

Henderson (2005), Cohen et al. (2006, 2007) Leslie et al., (2007),
Floyd et al. (2008), Maroko et al. (2009), Brown et al. (2009), van 
Dyck et al. (2010), Troped et al. (2010), Cutumisu (2011), Yamada et 
al. (2012), Choi (2013)

runability index:

land use mix (recreational&residential)

+

betweeness centrality

+

residential density

+

greenness



greenness

Normalised Difference Vegetation Index 
(NDVI)

average of NDVI values per street segment

normalised per each city
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greenness

Normalised Difference Vegetation Index 
(NDVI)

average of NDVI values per street segment

normalised per each city
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residential density

land covered with residential buildings

≠
population density

63
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LAND_USE_MIX =  1

Residential Recreational Other

land use mix

entropy score

𝑙𝑎𝑛𝑑_𝑢𝑠𝑒_𝑚𝑖𝑥 =

−1 𝑖
𝑏𝑖
𝑎
∗ ln(

𝑏𝑖
 𝑖 𝑏𝑖

)

ln(𝑁)

where

bi – area of a separate land use group within the buffer zone

a – total area of a buffer



65 of 90

LAND_USE_MIX =  0 .75

Residential Recreational Other

land use mix

entropy score

𝑙𝑎𝑛𝑑_𝑢𝑠𝑒_𝑚𝑖𝑥 =

−1 𝑖
𝑏𝑖
𝑎
∗ ln(

𝑏𝑖
 𝑖 𝑏𝑖

)

ln(𝑁)

where

bi – area of a separate land use group within the buffer zone

a – total area of a buffer
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LAND_USE_MIX =  0

Residential Recreational Other

land use mix

entropy score

𝑙𝑎𝑛𝑑_𝑢𝑠𝑒_𝑚𝑖𝑥 =

−1 𝑖
𝑏𝑖
𝑎
∗ ln(

𝑏𝑖
 𝑖 𝑏𝑖

)

ln(𝑁)

where

bi – area of a separate land use group within the buffer zone

a – total area of a buffer



67

land use mix

entropy score

𝑙𝑎𝑛𝑑_𝑢𝑠𝑒_𝑚𝑖𝑥 =

−1 𝑖
𝑏𝑖
𝑎
∗ ln(

𝑏𝑖
 𝑖 𝑏𝑖

)

ln(𝑁)

where

bi – area of a separate land use group within the buffer zone

a – total area of a buffer



betweeness centrality

Normalised Angular CHoice (NACH)

how often a network edge lies on a shortest path 
between all the nodes of the network, or its part within 
a certain radius, divided by the total sum of all possible 
shortest paths

when

shortest path = least angle change

68



RADIUS

metric

local (500m)

walkable 
(1000m)

runnable 
(2500m)

topological

local (3 steps)

walkable

runnable

angular

local (2 turns)

walk/runnable 
(3 turns)

global (n)
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betweeness centrality

Normalised Angular CHoice (NACH)

how often a network edge lies on a shortest path 
between all the nodes of the network, or its part within 
a certain radius, divided by the total sum of all possible 
shortest paths

when

shortest path = least angle change
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aggregators

arithmetic mean (greenness, landusemix, centrality, res.density)

geometric mean(greenness, landusemix, centrality, res.density)

fuzzy AND: min(greenness, landusemix, centrality, res.density)

fuzzy OR: max(greenness, landusemix, centrality, res.density)

1 (greenness)

x

1 (res_density)

x

3 (land_use_mix) 

x 

9 (centrality)

x 

4 (aggregators)

= 

108 Possibilities

X

3 cities 
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RMSE

R-squared

Greenness   +

+   land use mix 500m r +   NACH n

4

residential density 2500m + 
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runability index

predicts were recreational activity does not happen 
but fails at predicting were it does

overestimates urban territories-in-between

underestimates central parks and coastal paths:
greenness vs. „blueness“

85 of 90

walkability index ≠ runability index
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walkability index ≠ runability index

walkability index

how would a person 
navigate in a network?

area-specfic

general measure

walkable distance

runability index

would a person 
navigate in a network 
at all?

space-specific

needs to be calibrated 
for each particular city

runnable distance
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walkability index ≠ runability index

walkability index

how would a person 
navigate in a network?

area-specfic

general measure

walkable distance

runability index

would a person 
navigate in a network 
at all?

space-specific

needs to be calibrated 
for each particular city

runnable distance

How can GPS data,

generated by

mobile sports tracking applications,

be used

to assess, analyse and model

the recreational usage

of an urban space network?



the data can be

automatically acquired and processed

to be used as a ground truth

for validation and callibration 

of Runability Index,

which aims to predict space usability for recreation,

by means of visualisation and statistical analysis

given that a valid underlying

urban space network

is constructed.
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for the future research...

collaboration with a sports tracking application

user statistics

GPS tracks used to upgrade the Urban Space Network

varying buffer width

non planar network

heavy traffic streets – obstructions, not spaces

different recreational activities explored separetely

other types of activities: recreational cycling, 
orienteering, roller skiing, skateboarding, etc.
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for the future research

collaboration with a sports tracking application

user statistics

GPS tracks used to upgrade the Urban Space Network

varying buffer width

non planar network

heavy traffic streets – obstructions, not spaces

different recreational activities explored separetely

other types of activities: recreational cycling, 
orienteering, roller skiing, skateboarding, etc.

for the Runability Index

additional factors:

microclimatic characteristics,
traffic,
air pollution,
presence of resting places,
surface cover,
width of a sidewalk,
safety

analysis in network space:

not in a sense of being in an attractive area but in a 
sense of being connected to other attractive spaces
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questions?


