

Delft University of Technology

ConTrib: Universal and Decentralized Accounting in Shared-Resource Systems

de Vos, M.A.; Pouwelse, J.A.

DOI
10.1145/3428662.3428789
Publication date
2020
Document Version
Final published version
Published in
DICG'20: Proceedings of the 1st International Workshop on Distributed Infrastructure for Common Good

Citation (APA)
de Vos, M. A., & Pouwelse, J. A. (2020). ConTrib: Universal and Decentralized Accounting in Shared-
Resource Systems. In DICG'20: Proceedings of the 1st International Workshop on Distributed Infrastructure
for Common Good (pp. 13–18). ACM DL. https://doi.org/10.1145/3428662.3428789

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3428662.3428789
https://doi.org/10.1145/3428662.3428789

ConTrib: Universal and Decentralized Accounting in
Shared-Resource Systems

Martijn de Vos
Delft University of Technology

Johan Pouwelse
Delft University of Technology

Abstract
Preventing the abuse of resources is a crucial requirement
in shared-resource systems. This concern can be addressed
through a centralized gatekeeper, yet it enables manipulation
by the gatekeeper itself. We present ConTrib, a decentral-
ized mechanism for tracking resource usage across di�erent
shared-resource systems. In ConTrib, participants maintain a
personal ledger with tamper-proof records. A record describes
a resource consumption or contribution and links to other
records. Fraud, maintaining multiple copies of a personal
ledger, is detected by users themselves through the continu-
ous exchange of records and by validating their consistency
against known ones. We implement ConTrib and run experi-
ments. Our evaluation with up to 1’000 instances reveals that
fraud can be detected within 22 seconds and with moderate
bandwidth usage. To demonstrate the applicability of our
work, we deploy ConTrib in a Tor-like overlay and show
how resource abuse by free-riders is e�ectively deterred.
This longitudinal, large-scale trial has resulted in over 137
million records, created by more than 86’000 volunteers.

CCSConcepts: •Computer systems organization!Peer-
to-peer architectures; • Networks ! Peer-to-peer proto-
cols.

Keywords: Shared-resource Systems, Universal Accounting,
Decentralized Accounting, Tragedy of the Commons

ACM Reference Format:
Martijn de Vos and Johan Pouwelse. 2020. ConTrib: Universal and
Decentralized Accounting in Shared-Resource Systems. In 1st Inter-
national Workshop on Distributed Infrastructure for Common Good
(DICG ’20), December 7–11, 2020, Delft, Netherlands.ACM, New York,
NY, USA, 6 pages. h�ps://doi.org/10.1145/3428662.3428789

1 Introduction
Preventing the abuse of user-volunteered resources is a key
requirement in shared-resource systems [10]. Often, such

DICG ’20, December 7–11, 2020, Delft, Netherlands
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8197-0/20/12.
h�ps://doi.org/10.1145/3428662.3428789

systems are safeguarded from abuse by having a single oper-
ator controlling every aspect of the system, essentially acting
as a gatekeeper. Companies like Uber and AirBnb are prime
examples of gatekeepers to markets where user resources
(cars and houses) are o�ered and consumed on a global scale.

Even though the practice of acting as a central gatekeeper
is widely adopted, it is a concerning development. Recently,
“big tech” companies have obtained signi�cant dominance in
the market for digital services [11]. Companies like Google,
Amazon, Facebook and Apple are omnipresent in our current
society and even have the means of acting as small states,
inhabited by billions of users worldwide [1]. Unfortunately,
this tremendous concentration of power enables the abuse
of resources by the operator itself, potentially a�ecting a
large portion of users. For example, it has been demonstrated
that Uber actively manipulates their ride-hailing market for
commercial interests, undermining platform fairness [5].

Decentralized solutions are increasingly considered as an
alternative to shared-resource systems with centralized gate-
keeping. In contrast to centralized architectures, decentral-
ized networks are fully maintained by participating members
with near-equal authority. Compared to centralized systems,
decentralized architectures tend to be more resilient against
large-scale abuse of its resources [24]. However, peers in a
sustainable decentralized system are required to coordinate
the exchange of resources themselves. Therefore, prevent-
ing abuse of shared resources is a non-trivial and largely
unsolved challenge in decentralized networks.

Adopting an accounting mechanism to record all resource
consumption and contributions by individuals is a viable
approach to address abuse in decentralized shared-resource
systems [18]. Several accounting solutions have been intro-
duced; however, many of these systems make assumptions
on the application domain and are not universal enough to be
reused across di�erent shared-resource systems [13, 19, 20].
Blockchain technology also provides accounting capabili-
ties and empowers users with a distributed ledger to se-
curely store their interactions [25]. However, we consider
blockchain unsuitable for accounting purposes since bulk
storage on the distributed ledger is prohibitively expensive.

In this work, we introduce ConTrib, a universal and decen-
tralized accounting mechanism to prevent abuse in shared-
resource systems. Shared-resource systems can leverage Con-
Trib to securely record resource contributions and consump-
tions, or interactions, within tamper-proof records. Records
are linked together in a personal ledger and can point to

13

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/

DICG ’20, December 7–11, 2020, Del�, Netherlands Martijn de Vos and Johan Pouwelse

other records by including their hashes. Users continuously
exchange random records with others and verify the consis-
tency of hash pointers included in incoming records. This
simple, yet e�ective approach enables quick detection of
fraud, the situation where an adversary operates multiple
versions of its personal ledger in secret. We implement Con-
Trib and evaluate the e�ectiveness and bandwidth overhead
of fraud detection. Real-world experiments with up to 1’000
instances reveal that fraud can be detected with 22 seconds
under a conservative strategy for record exchange.
To show the practicality and matureness of ConTrib, we

address the abuse (overuse) of anonymous bandwidth by
free-riders in Tribler. Tribler is our decentralized �le-sharing
software, downloaded by more than 1 million users [23].
We leverage ConTrib to account bandwidth exchanges in
Tribler and refuse services to free-riders during periods of
congestion. Our 36-months deployment trial has resulted in
over 137 million records, created by over 86’000 volunteers.

The main contribution of this work is three-fold:

1. The universal ConTrib mechanism, enabling account-
ability in shared-resource systems (Section 2).

2. An implementation and evaluation of ConTrib, reveal-
ing fraud detection times within 22 seconds (Section 3).

3. A large-scale trial of ConTrib with 86’000 volunteers,
addressing anonymous bandwidth abuse (Section 4).

2 ConTrib Design
ConTrib is an accounting mechanism for decentralized sys-
tems in which users have to manage access to shared re-
sources, e.g., CPU power, bandwidth or �les. A key challenge
in accountable shared-resource systems is that users have a
natural incentive to misrepresent their prior interactions to
hide abuse, e.g., by strategically withholding or modifying
information [18]. ConTrib must ensure the correctness of
accounted interactions, and address fraud targeted at the
data structure. We de�ne fraud in the context of this work
as the manipulation or hiding of accounted interactions. We
consider the accounting of untruthful interactions, that is,
the recording of interactions that have not actually occurred
in the system, outside the scope of this work.

In this section, we present the design of ConTrib. The Con-
Trib design is inspired by the tamper-proof properties of the
blockchain data structure, but avoids the need for network-
wide consensus, minimizing computational overhead and
bandwidth usage [26]. We �rst outline our system and threat
model. We then show how interactions are recorded in Con-
Trib. Finally, we elaborate on the detection of fraud.

2.1 System and Threat Model
ConTrib builds upon a peer-to-peer network overlay. We
assume that each peer knows the network address of a subset
of all peers. The communication channels between peers
can be unreliable and unordered, i.e., the arrival time on

network messages is not upper-bounded. Each peer owns a
cryptographic keypair with a public and private key. Their
public key uniquely identi�es the peer in the network, and
the private key is used to sign records and outgoing network
messages. We consider threats in the network layer, e.g., the
Sybil and Eclipse Attack, beyond the scope of this work.
Our threat model involves malicious users that manipu-

late the records in their personal ledger. This manipulation
manifests by users operating multiple copies of their per-
sonal ledger, possibly by sending di�erent copies to distinct
users or withholding records. We assume that the compu-
tational capabilities of adversaries are bounded and that
cryptographic primitives (e.g., hashing) are secure.

2.2 Recording Interactions
We now outline how an interaction between users a and b
is recorded. In ConTrib, this interaction is accounted using
two distinct records: one proposal created by a and one con-
�rmation created by b. This process works as follows. First,
user a creates a proposal, say P . P contains the public key of
a and b, a type, a payload, and a digital signature over the
record content by a. The type �eld is a short string identi-
�er that identi�es the application in which the interaction
has occurred. The payload is an arbitrary blob of data that
describes the interaction. This �eld is provided by the ap-
plications using ConTrib. After a includes all �elds in the
proposal, the record is persisted to a’s database, sent to in-
teraction partner b, and disseminated to f random users in
the ConTrib network. We refer to f as the fanout value.

When user b receives P from a, b veri�es its validity (this
process is discussed in Section 2.3). If P is deemed valid, b
determines if the payload in P truthfully describes the inter-
action. If not, b ignores the incoming proposal. Otherwise, b
creates a con�rmation C that con�rms P . This con�rmation
contains the same �elds as P , and also includes the hash of
P . We call this hash in C the con�rmation pointer. After the
creation ofC ,b persistsC to its database, sends it to a, and dis-
seminates both C and P to f random users. Upon reception
of C by a, a validates C . Now, both parties own the digitally
signed proposal and con�rmation that together account a
bilateral interaction. The process of recording interactions is

B 00100
10001 C

B

C 00100
10001 B

C # 38# 2

B 00100
10001 A

B

A 00100
10001 B

A # 37# 54

A 00100
10001 E

A# 55

C 00100
10001 D

A# 1

Figure 1. A part of the ConTrib data structure with �ve
users and six records: four proposals and two con�rmations
(indicated by dashed borders).

14

ConTrib: Universal and Decentralized Accounting in Shared-Resource Systems DICG ’20, December 7–11, 2020, Del�, Netherlands

54

55 # 55R1 R2

R3

(a) Scenario I : Records R1 and R2 have the
same creator and sequence number. To-
gether, they provide an irrefutable proof
of fraud.

55

54

54

54 Different hash

R1
R2

R3 R4

(b) Scenario II : R1 and R2 point to a record
with the same sequence number and cre-
ator, but a di�erent hash. This reveals an
inconsistency.

54

54

R1

R2 # 54

9

R3

R4
Different hash

(c) Scenario III : R1 and R3 con�rm a record
with the same sequence number and cre-
ator, but a di�erent hash. This reveals an
inconsistency.

Figure 2. Di�erent scenarios which allows a user to either expose a fraudster, or to detect an inconsistency (without assigning
the blame). Same-coloured records belong to the a single creator (blue for a, green for b and red for c). Solid and dashed records
indicate proposals, respectively con�rmations. Opaque records are not in possession by the user.

lightweight since it requires minimal computational power
and data exchange. We also note that users can engage in
the recording of multiple interactions simultaneously.

To ensure that the illegitimatemodi�cation of records after
their creation can be detected, we organize all records of the
same user in a tamper-evident personal ledger. To index the
records in a personal ledger, each record includes a sequence
number s 2 Z that starts from 1 and is incremented for
subsequent records. Each record now also includes the hash
of the prior record in the personal ledger, and n additional
hashes ofn prior, random records. We refer to the hashes that
point to prior records in the same personal ledger as prior
pointers. The inclusion of multiple prior pointers speeds up
the detection of illegitimatemodi�cations. The required prior
records pointed to by some record R are deterministically
given by a pseudo-random function � that takes the public
key of the record creator and the sequence number of R as
input. � returns a set with at most n sequence numbers of
prior records that should be pointed to. All ConTrib instances
must use the same implementation of � , which we achieve by
bundling the implementation of � in the ConTrib software.
The modi�cation of a record in the personal ledger now
changes the hash of the record and therefore invalidates
hash pointers in subsequent records.
Accounting interactions within proposals and con�rma-

tions records yields the graph structure in Figure 1. Figure 1
shows a part of the ConTrib graph with six records, created
by three distinct users. We show required �elds (e.g., the sig-
nature and payload) in each record. Same-coloured records
are part of a single personal ledger, and con�rmations have
a dashed border. For presentation clarity, we only show the
hash pointer to the prior record in one’s personal ledger.

2.3 Detecting Fraud
Fraud in ConTrib proceeds when an adversary forks its per-
sonal ledger and operates multiple personal ledgers. This
would result in pairs of records with the same sequence num-
ber and creator, but with a di�erent hash. A key objective
of ConTrib is to detect such con�icting records. We remark

that ConTrib is built around fraud detection instead of pre-
vention. We argue this is reasonable for two reasons. First,
shared-resource systems can usually tolerate low amounts of
fraud for short periods [17]. Second, the prevention of fraud
is usually a resource-intensive process that requires users
to reach a network-wide consensus on all created records,
e.g., using classical BFT algorithms or Proof-of-Work [26].
We assume that the punishment of detected fraud attempts
is realised by the applications using ConTrib, i.e., by not
contributing resources to the fraudster for some time.

Fraud in ConTrib is detected by sharing records with ran-
dom users, and by verifying the consistency of included hash
pointers in incoming records against known ones. Users ex-
change records with others in two ways. First, as explained
in Section 2.2, records are sent to f random users upon cre-
ation (push-based exchange). Second, users in ConTrib con-
tinuously requesting random records in the personal ledger
of other users (pull-based exchange). The collective e�ort of
users enables quick fraud detection in ConTrib.

Fraud is detected by the validation procedure of incoming
records. This procedure �rst veri�es the validity of the record
itself, e.g., by verifying the digital signature and structure. A
critical step during validation is the veri�cation of the (hash)
pointers included in a record. Each user keeps track of all
encountered pointers in a dictionary, which is queried and
updated when encountering new pointers. An inconsistency
between hashes, introduced by the modi�cation and sharing
of a record in a personal ledger, can now be detected by
querying stored hashes in the dictionary.

We further elaborate on fraud detection through the vali-
dation of hash pointers. Figure 2 highlights three scenarios
in which a user can either expose an adversarial user (sce-
nario I) or detect an inconsistency without assigning the
blame yet (scenario II and III). Each scenario shows a subset
of records stored in or missing from the database of a user
(faded records are missing). In Figure 2, the record colour
identities its creator. Scenario I (Figure 2a) shows a part of the
personal ledger of user a. User a forked its personal ledger,
and thus committed fraud, since records R1 and R2 have the

15

DICG ’20, December 7–11, 2020, Del�, Netherlands Martijn de Vos and Johan Pouwelse
● ● ● ● ● ● ● ● ● ●0.02.55.07.510.0

200 400 600 800 1000
Network size

D
et

ec
t t

im
e

(s
.)

Strategy ● PULL PULL+PUSH PULL+RAND PULL+RAND+PUSH

●

●

●
●

●

●

●

●
● ●

0

5

10

15

20

200 400 600 800 1000
Network size

Av
g.

 fr
au

d
de

te
ct

io
n

tim
e

(s
.)

(a) Fraud detection times

0.00

0.25

0.50

0.75

1.00

0 100 200
Fraud detection time (s.)

EC
D

F
(b) Fraud detection times for 1’000 instances

● ● ● ● ● ● ● ● ● ●

20

30

40

50

200 400 600 800 1000
Network size

Av
g.

 b
an

dw
id

th
 u

sa
ge

 (K
B/

s.
)

(c) Bandwidth usage

Figure 3. The fraud detection times and bandwidth usage of ConTrib, for di�erent record exchange strategies, and while
scaling the record creation rate with the network size. We �x the fanout (f) to 10.

same creator and sequence number. When another user, say
b, receives R1 while already having R2, or vice versa, the
record pair (R1,R2) is su�cient evidence to prove that a has
deliberately committed fraud and forked its personal ledger.
We refer to this record pair as a fraud proof.

Figure 2b shows the scenario where a user receives pro-
posal R1 and already has con�rmation R2, or receives con�r-
mation R2 while already having proposal R1. The user does
not have R3 and R4. The included prior pointer in R1 di�ers
from the con�rmation pointer in R2. This indicates an in-
consistency that is either introduced by user a forking its
personal ledger (at height 54) or by b having included an
invalid hash pointer in R2. A user that encounters this sce-
nario during record validation sends the record pair R1 and
R2 to f other random users in the hope that one of them pos-
sesses R3 or R4. Figure 2c highlights another scenario where
a user encounters two con�rmations, R1 and R3, created by
di�erent users, that point to a record with the same public
key and sequence number, but a di�ering hash. Again, this
indicates a fork of the personal ledger of a, or it can be the
result of an invalid pointer in one of the con�rmations. The
validating user now shares the pair (R1, R3) with others.

3 Implementation and Evaluation
We implement ConTrib in the Python 3 programming lan-
guage. We leverage our existing networking library to build
a peer-to-peer overlay. We adopt an event-driven program-
ming model using the asyncio library and use the UDP pro-
tocol for data exchange between peers. Each record contains
at most ten pointers to prior records in the same personal
ledger. The full implementation of ConTrib, including tests
and documentation, is published on GitHub.1

Experiment Setup. We evaluate ConTrib on our nation-
wide university cluster which hardware speci�cations can

1See h�ps://github.com/Tribler/py-ipv8/tree/master/ipv8/a�estation/
trustchain

be found online [2]. Precisely, we assess the e�ciency of
detecting forks in ConTrib by measuring the time between
committing fraud and its initial detection. During our ex-
periments, every user records an (arti�cial) interaction with
another random user. For network sizes from 100 to 1’000
users, each user forks its personal ledger with a probability
of 10% by removing the last record in its personal ledger
and re-using its sequence number for the next record. Each
user commits this fraud at most once. All users start with an
empty personal ledger and database.We run each experiment
ten times and average all results.
We explore the e�ect of combinations of three di�erent

record exchange strategies on fraud detection time and band-
width usage. With the PULL strategy, each user requests �ve
contiguous records at a random index in the personal ledger
of another (random) user every half a second. The PUSH strat-
egy pushes new records to f random users upon creation.
We �x the fanout f to ten during all experiments. With the
RAND strategy, users also return �ve random records sam-
pled from their database upon a record request. Users forking
their personal ledger refrain from sending the newly created
record to f random users when the PUSH strategy is active,
to avoid detection.
Figure 3 shows the fraud detection times and bandwidth

usage, for di�erent record exchange strategies and network
sizes (n). Figure 3a shows the average fraud detection times
in second for increasing network sizes. The PULL+PUSH and
PULL+RAND+PUSH strategies show fraud detection times un-
der �ve seconds, even for n = 10000. We explain this e�ect
as follows: pushing created records to random users leads
to a high probability of at least one user receiving con�ict-
ing records. The PUSH strategy is thus an e�ective strategy
for fraud detection. The average detection times increase
roughly linearly when increasing the network size for the
PULL+PUSH and PULL+RAND+PUSH strategies. Fraud detection
times increase when only using a PULL strategy. However,

16

ConTrib: Universal and Decentralized Accounting in Shared-Resource Systems DICG ’20, December 7–11, 2020, Del�, Netherlands

under this strategy and for n = 10000, it still only takes 22
seconds on average to detect fraud.
Figure 3b shows an ECDF of the detection times for dif-

ferent strategy and n = 10000. We observe that some fraud
instances are only detected after a few minutes. We attribute
this to the randomness involved in the fraud detection pro-
cess. For the PULL strategy, 50% of all fraud attempts are
detected within 20 seconds. This median decreases to just
2.5 seconds for the PULL+RAND+PUSH strategy.

Figure 3c shows the average bandwidth usage while vary-
ing the network size. Overall, bandwidth usage remains
roughly constant when increasing the network size. This
is because the record creation rate scales with the network
size, keeping the average bandwidth usage constant. The
overhead of the PUSH strategy decreases for higher values
of n since f is �xed. With n = 10000, the PULL+RAND+PUSH
strategy requires 41.2 KB/s on average whereas the PULL

strategy only requires 17.4 KB/s. When deploying ConTrib
in a bandwidth-constrained environment (eg., IoT), one can
reduce the fanout or increase the interval at which records
are requested, at the cost of increased fraud detection times.

4 Addressing Resource Abuse at Scale
We now present a large-scale deployment trial of ConTrib to
address free-riding behaviour in our academic �le-sharing
system named Tribler. Tribler is downloaded by over 1.5 mil-
lion users and features a Tor-like overlay that anonymously
onion-routes BitTorrent tra�c. A downloader in Tribler uses
one-hop circuits to download content. Currently, this over-
lay su�ers from an undersupply of exit nodes which are
gateways that fetch (unencrypted) content from BitTorrent
swarms and forward data to downloaders. This undersupply
results in frequent network congestions and overall degrada-
tion of download speeds for all users. We leverage ConTrib
to account all bandwidth contributions as an exit node, and
consumptions as a downloader. We then give preferential
treatment to users that have substantially contributed to the
network by running an exit node.

Bandwidth Accounting. With ConTrib, each peer can
earn bandwidth tokens by operating an exit node. Download-
ers remunerate exit nodes for their services by transferring
bandwidth tokens. Each interaction recorded with ConTrib
contains the token amount transferred, and the current to-
ken balance of the involved users. We plan on addressing
linkability concerns by having each node aggregate and de-
lay payouts, a technique introduced in the work of Palmieri
et al. [22]. Still, bandwidth accounting with ConTrib does
not leak the identity of a downloader to others, nor reveals
any data being exchanged between users.

We grant preferential treatment to downloaderswith higher
token balances during congestion at an exit node. To this end,
we modify exit nodes such that each circuit consumes an
available slot at their side. We distinguish between random

and competitive slots. When a request for a circuit arrives at
an exit node, Tribler �rst determines if there is a random slot
available and if so, assigns the new circuit to it. If no random
slot is available, Tribler queries the bandwidth token balance
of the circuit initiator i by requesting the latest record in its
personal ledger. Upon receiving this balance, Tribler checks
eligibility for a competitive slot. If there is an unoccupied
competitive slot, it assigns the new circuit to it. If all com-
petitive slots are �lled, the circuit of the initiator with the
lowest amount of bandwidth tokens, say p, is destroyed if
the token balance of i is higher than the token balance of
p. This pre-emptive approach frees up the competitive slot
for the circuit of i . As a result, peers with a higher token
balance have more chance to claim a competitive slot in pe-
riods of congestion, compared to free-riders, and thus they
experience higher and more stable download speeds.

Refusing Services to Free-Riders. We implement the
bandwidth accounting logic and slot mechanism in Tribler,
and release a new version of our software. We also deploy a
dedicated crawler that builds a dataset by fetching ConTrib
records from random users in the network. This crawler se-
lects a random user every two seconds, and requests missing
records. This has resulted in more than 137 million records,
created by over 86’000 individuals during 36 months. In addi-
tion, our crawler found 127’135 instances of fraud in ConTrib.
To evaluate the e�ectiveness of ConTrib accounting, we

deploy 48 additional exit nodes in the Tribler network. Each
exit node has a total of 10 random slots and 20 competitive
slots, resulting in a total of 1’440 slots. We log the bandwidth
token balance when a circuit initiator is unable to claim a
slot at one of our exit nodes. In total, we observe over 1.2
million reject events during a three-week period.
Figure 4 shows an ECDF with the bandwidth token bal-

ances of all users (dotted green line) and the balances of
reject events (solid red line). We �lter out all users and reject
events with balances higher than 50GB or lower than -500GB.
The median token balance of all users is -713MB and that
of reject events -181.4GB, demonstrating that our mecha-
nism targets users with low balances. This deployment trial

0.00

0.25

0.50

0.75

1.00

−500 −400 −300 −200 −100 0
Bandwidth balance (GB)

EC
D

F

Type
Reject event

All

Figure 4. ECDF showing the distribution of bandwidth token
balances users and individual rejects events at exit nodes.

17

DICG ’20, December 7–11, 2020, Del�, Netherlands Martijn de Vos and Johan Pouwelse

shows that ConTrib is e�ective at detecting and addressing
free-riding behaviour in Tribler.

5 Related Work
There have been various proposals to enhance decentral-
ized networks with accounting capabilities to deter faulty
nodes and prevent resource abuse. PeerReview and FullRe-
view are accountability mechanisms that record message
exchange between peers, and use dedicated witness sets to
detect whether a peer deviates from the protocol [8, 14]. In
contrast to our work, these solutions are designed for the
low-level logging of all messages exchanged in the network.
LiFTinG and AcTinG are protocols for the tracking of free-
riding behaviour in gossip-based systems, but they cannot
easily be reused in a di�erent context [13, 19]. Similarly, Os-
ipkov et al., devise a distributed system for the accounting
of storage activities in �le storage networks [20].
Otte et al. present TrustChain, a Sybil-resistant reputa-

tion algorithm and distributed ledger [21]. Their data struc-
ture resembles ConTrib, however, we identity that peers
in TrustChain cannot engage in the recording of multiple
interactions simultaneously, limiting throughput and appli-
cability. Crosby et al. present a tree-based data structure for
tamper-evident logging [6]. Their data structure is designed
around the logging of unilateral events, whereas ConTrib is
optimized to account bilateral interactions.
In line with our deployment trial (Section 4), there has

been considerable e�ort to incentivize relay and exit node
operators in the Tor network. One of the earlier approaches
is Gold Star where directory servers keep track of users pro-
viding good services to the community [9]. Other approaches
like BRAIDS and LIRA, reward relay and exit nodes with
credits that can be redeemed for prioritized tra�c [15, 16].
These solutions assume a centralized bank or a group of semi-
trusted nodes for credit management. TorCoin proposes a
mechanism where relay and exit nodes “mine” a Bitcoin-
derived cryptocurrency. TorCoin, however, requires central-
ized circuit management. [12]. Finally, some shared-resource
systems leverage blockchain technology and use monetary
incentives to provide communal services, e.g., storage (File-
coin [3]) and BitTorrent bandwidth (BitTorrent token [4]).

6 Conclusion and Future Directions
We have presented ConTrib, a universal accounting mecha-
nism to address abuse in shared-resource systems. The Con-
Trib data structure uses records and hash pointers to capture
bilateral interactions. Each user maintains a personal ledger
with tamper-evident records. Forking of a personal ledger
is detected by the exchange and validation of records. We
have implemented ConTrib and have demonstrated with
experiments that our mechanism detects forking within sec-
onds. A large-scale deployment trial, involving over 86’000

users, demonstrated how ConTrib addresses free-riding in
our peer-to-peer software.
We envision and encourage the deployment of ConTrib

for use-cases beyond shared-resource applications. We are
currently exploring the accounting capabilities of ConTrib
in the context of decentralized trading, order matchmaking
and self-sovereign identity [7].

References
[1] Federico Ast. The new federalism: blockchain will decentralise big

tech’s power on the internet. LSE Business Review, 2018.
[2] Henri Bal et al. A medium-scale distributed system for computer

science research: Infrastructure for the long term. Computer, 49(5):54–
63, 2016.

[3] J Benet and N Greco. Filecoin: A decentralized storage network. Tech-
nical report, 2018.

[4] Inc. BitTorrent. Bittorrent token (btt): Tokenizing decentralized �le
sharing.

[5] Ryan Calo and Alex Rosenblat. The taking economy: Uber, information,
and power. Colum. L. Rev., 117:1623, 2017.

[6] Scott Crosby et al. E�cient data structures for tamper-evident logging.
In USENIX Security, pages 317–334, 2009.

[7] Martijn de Vos et al. Xchange: A blockchain-based mechanism for
generic asset trading in resource-constrained environments. arXiv
preprint arXiv:2004.05046, 2020.

[8] Amadou Diarra and othersn. Fullreview: Practical accountability in
presence of sel�sh nodes. In SRDS, pages 271–280. IEEE, 2014.

[9] Roger Dingledine et al. Building incentives into tor. In FC, pages
238–256. Springer, 2010.

[10] Brett M Frischmann. Two enduring lessons from elinor ostrom. Journal
of institutional economics, 2013.

[11] Jon Frost et al. Bigtech and the changing structure of �nancial inter-
mediation. Economic Policy, 2019.

[12] Mainak Ghosh et al. A torpath to torcoin: Proof-of-bandwidth altcoins
for compensating relays. Technical report, Naval Research, 2014.

[13] Rachid Guerraoui et al. Lifting: lightweight freerider-tracking in gossip.
In Middleware, pages 313–333. Springer, 2010.

[14] Andreas Haeberlen et al. Peerreview: Practical accountability for
distributed systems. SIGOPS, 41(6):175–188, 2007.

[15] Rob Jansen et al. Recruiting new tor relays with braids. In CCS, pages
319–328, 2010.

[16] Rob Jansen et al. Lira: Lightweight incentivized routing for anonymity.
Technical report, Naval Research, 2013.

[17] Ramayya Krishnan et al. The virtual commons: Why free-riding can
be tolerated in �le sharing networks. ICIS, page 82, 2002.

[18] Michel Meulpolder et al. Bartercast: A practical approach to prevent
lazy freeriding in p2p networks. In IPDPS, pages 1–8. IEEE, 2009.

[19] Sonia Ben Mokhtar et al. Acting: Accurate freerider tracking in gossip.
In SRDS, pages 291–300. IEEE, 2014.

[20] Ivan Osipkov et al. Robust accounting in decentralized p2p storage
systems. In ICDCS, pages 14–14. IEEE, 2006.

[21] Pim Otte et al. Trustchain: A sybil-resistant scalable blockchain. Future
Generation Computer Systems, 107:770–780, 2020.

[22] Paolo Palmieri and Johan Pouwelse. Paying the guard: an entry-guard-
based payment system for tor. In FC, pages 437–444. Springer, 2015.

[23] Johan Pouwelse et al. Tribler: a social-based peer-to-peer system.
Concurrency and computation: Practice and experience, 2008.

[24] Wesley W Terpstra et al. Bubblestorm: resilient, probabilistic, and
exhaustive peer-to-peer search. In SIGCOMM, pages 49–60, 2007.

[25] Sarah Underwood. Blockchain beyond bitcoin, 2016.
[26] Marko Vukolić. The quest for scalable blockchain fabric: Proof-of-work

vs. bft replication. In iNetSec, pages 112–125. Springer, 2015.

18

