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Abstract – Lubrication flows between two solid surfaces can be found in a variety of biological and
engineering settings. In many of these systems, the lubricant exhibits viscoelastic properties, which
modify the associated lubrication forces. Here, we experimentally study viscoelastic lubrication
by considering the motion of a submerged cylinder sliding down an incline. We demonstrate
that cylinders move faster when released in a viscoelastic Boger liquid compared to a Newtonian
liquid with similar viscosity. Cylinders exhibit pure sliding motion in viscoelastic liquids, in
contrast to the stick-slip motion observed in Newtonian liquids. We rationalize our results by
using the second-order fluid model, which predicts a lift force on the cylinder arising from the
normal-stress differences. The interplay between viscoelastic lift, viscous friction, and gravity
leads to a prediction for the sliding speed, which is consistent with our experimental results for
weakly viscoelastic flows. Finally, we identify a remarkable difference between the lubrication of
cylindrical and spherical contacts, as the latter do not exhibit any lift for weak viscoelasticity.
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Introduction. – Thin-film flows between solid surfaces
arise in a variety of biological, environmental, and en-
gineering settings. These lubrication flows facilitate the
relative motion of the solid boundaries by reducing their
friction, as in the case of mammalian synovial joints [1]
or industrial bearings [2]. A characteristic feature of lu-
brication is the slenderness of the geometry, which pre-
scribes the flow structure and induces a strong pressure
within the liquid. The build-up of pressure generates
forces on the boundaries, such as hydrodynamic friction
and normal loads. Lubrication flows have thus been the
focus of many studies, aided by analyses using long-wave
expansions [3].
Considering the motion between two rigid objects with

symmetric profiles, as in the case of a cylinder sliding par-
allel to a plane wall, the vertical lift force induced by the
hydrodynamic pressure vanishes for a Newtonian viscous
liquid. The pressure adopts an antisymmetric spatial pro-
file, leading to a zero lift force [4]. The pressure antisym-
metry can be broken by introducing elasticity in the solid

(a)E-mail: a.t.oratis@tudelft.nl (corresponding author)

boundary. For sufficiently soft walls, the coupling between
lubrication and the elastic deformation of the wall gener-
ates a lift force on the cylinder [5–11]. The lift force leads
to a larger separation with the wall and thus smaller lubri-
cation friction. Consequently, cylinders move faster past
soft walls as compared to rigid walls [12].
A lift force on the cylinder can also be generated by

introducing elasticity inside the lubricant, as is the case
for viscoelastic liquids. Indeed, polymers dissolved in
the liquid can stretch with the flow and exert forces on
the object arising from normal-stress differences [13].
For instance, when a pair of closely separated spheres
sediment in a viscoelastic liquid, they get attracted to
each other [14–17]. Replacing one of the spheres with a
planar wall leads to a similar effect, with the sphere being
attracted to the wall during its sedimentation [18–21].
Yet, when a cylinder moves parallel to a wall in a
viscoelastic fluid the attraction becomes repulsive [21,22].
Why viscoelasticity causes an attraction for spheres and
a repulsion for cylinders remains unclear.
In this letter, we experimentally study the effects of vis-

coelastic stresses on the sliding motion of a submerged
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Fig. 1: (a) Experimental images of a steel cylinder with radius R = 0.7 cm moving down an inclined plane with inclination
angle α = 5◦. The cylinder rotates as it moves in both Newtonian corn syrup solution (left) and PAM solution with c = 0.05
% (right). (b) The cylinder position xc against time t shows that it moves faster in the Newtonian liquid (blue circles) than
in the viscoelastic liquid (red circles), in which it exhibits stick-slip motion. (c) The cylinder rotation angle θ increases in time
for both liquids. Inset: magnified plot of the rotation in the PAM solution to highlight the stick-slip motion. (d) Experimental
images for the cylinder sliding at an inclination angle α = 15◦. The rotation is still apparent in the Newtonian liquid (left),
but is suppressed in the viscoelastic liquid (right). (e) The evolution of xc indicates a much faster descent when the cylinder is
immersed in the viscoelastic liquid. (f) The rotation angle θ increases with time for the Newtonian liquid, whereas the increase
in the viscoelastic liquid is negligible. Inset: magnification plot of rotation angle in the Newtonian liquid.

cylinder down an incline. We show that cylinders move
faster in viscoelastic liquids than in Newtonian liquids,
and explore to what extent these results can be interpreted
using the second-order fluid model.

Experimental protocol. – To study the effects of vis-
coelasticity on the sliding dynamics, we use a solution
comprised of water, commercially available corn syrup
(Chung Jung One), and polyacrylamide (PAM Mw =
5 × 106 g/mol, Sigma Aldrich). This combination of liq-
uids is a common recipe used to prepare Boger fluids and
probe the effects of liquid elasticity [23–27]. PAM is first
dissolved into water using a magnetic stirrer for 48 hours.
Five different solutions are prepared, whose PAM concen-
trations are c = 0.10, 0.25, 0.50, 0.75, and 1.00 wt.%. The
concentration at which the PAM polymer chains in wa-
ter begin to overlap is approximately c∗ ≈ 0.5 wt.% [28].
Therefore, our water-PAM solutions can be classified be-
ing near the transition from dilute to semi-dilute. The
water-PAM solutions are then dissolved in corn syrup at
a mass ratio 10:90 using a roller bank for four days. A
Newtonian liquid is prepared in the same manner, with-
out dissolving PAM into water. Each solution is measured
to have the same liquid density of ρ� = 1350 kg/m3.

The rheology of every solution is characterized using
a rheometer (MCR 502 with CP50-1, Anton Paar) in
a cone-plate configuration by measuring the shear stress
and first normal-stress difference (see the Supplementary
Material Supplementarymaterial.pdf (SM)). As the im-
posed shear rate γ̇ increases from 0.1 to 100 (1/s), the
viscosity η of each solution remains fairly constant, such
that the viscoelastic liquids can be classified as Boger
fluids [23]. The viscosity increases with the amount of
dissolved polymer and varies moderately between 400 ≤

η ≤ 670 mPa·s. The degree of viscoelasticity is char-
acterized by the first normal-stress difference coefficient
ψ1 = N1/γ̇

2, where N1 is the first normal-stress differ-
ence measured by the rheometer. The resulting normal-
stress difference coefficient for each solution is fitted to be
ψ1 = {0.5, 2.9, 7.2, 13, 13} ×10−2 Pa·s2 (see the SM).

Once the liquids are prepared, they are poured in a rect-
angular container of dimensions 30 × 20 × 20 cm. The
container is then rotated by an inclination angle α, which
we vary in the range 5◦ ≤ α ≤ 35◦. A cylinder is re-
leased inside the liquid and its motion recorded with a
camera (Nikon D850) at a frame rate of 60 frames per sec-
ond. We use aluminum, brass and steel cylinders, whose
densities are ρ = 2590, 7660, and 7970 kg/m3, respec-
tively. Three different aluminum cylinders are used with
radii R = 0.6, 1.0, and 1.5 cm, while the radii of the
brass and steel cylinders are R = 0.4 cm and R = 0.7
cm, respectively. The length of each cylinder is 10 cm,
much larger than the radius, such that the system can
be treated having a two-dimensional geometry. In addi-
tion, we also perform experiments with three steel spheres
(ρ = 7790 kg/m3), whose radii are R = 0.5, 0.8, and
1.0 cm.

Cylinders. – The motion of the steel cylinder in the
container for an inclination angle of α = 5◦ is illustrated in
fig. 1(a). When released inside the Newtonian liquid (i.e.,
corn syrup/water solution), the cylinder exhibits a mo-
tion close to pure rolling, as inferred from the orientation
of the dashed line on its cross-section. Similarly, for a vis-
coelastic solution with PAM concentration c = 0.05 wt.%,
the cylinder also rotates during its descent. Plotting the
center of mass position along the incline xc against time
t, we observe that the cylinder moves slightly faster in the
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Fig. 2: (a) The velocity of the cylinder U increases with the wall inclination angle α. For large values of ψ1 (blue squares),
U increases more strongly with α compared to the Newtonian case (green squares) and low polymer concentrations (yellow
squares). (b) The relative rotation velocity ωR/U against the inclination angle α. The relative rotation for the Newtonian
liquid and weakly gradually decreases as the wall slope get steeper. Conversely, the strongly viscoelastic liquids undergo a sharp
transition towards a rotation-free regime. The red and blue horizontal lines depict pure rotation ωR/U = 1 and pure sliding
ωR/U = 0, respectively. Each square corresponds to the average value over five runs and the error bars represent the standard
deviation.

Newtonian liquid (fig. 1(b)). The position xc appears to
be increasing continuously against time. Yet, xc increases
in a much more irregular manner in the viscoelastic liq-
uid. The slope does not remain constant and increases at
random intervals, indicative of stick-slip motion (see the
supplementary movie SuppVid1.mp4). The same trends
can be observed by examining the evolution of the cylinder
rotation angle θ (fig. 1(c)). The rotation angle increases
steadily for the Newtonian liquid and at a faster rate than
the viscoelastic solution, whose slope changes as the cylin-
der alternates between rolling and sliding (fig. 1(c), inset).
Increasing the inclination angle to α = 15◦ leads to a

significantly different sliding motion. While the cylinder
is still rolling in the Newtonian liquid, the rotation is sup-
pressed in the viscoelastic liquid (fig. 1(d)). The center of
mass position xc for the PAM solution no longer exhibits
stick-slip and increases much faster (fig. 1(e)). This result
is surprising at first glance, as the viscoelastic solution is
slightly more viscous than the Newtonian liquid. Impor-
tantly, the dashed line on the cylinder cross-section retains
its orientation (fig. 1(d)). As a result, the rotation angle
θ barely increases for the viscoelastic liquid, such that the
sliding is now rotation-free (fig. 1(f)). Conversely, the rota-
tion angle keeps increasing for the Newtonian liquid and
the cylinder undergoes a stick-slip motion (see fig. 1(e),
inset and the supplementary movie SuppVid2.mp4). The
higher sliding speed and absence of rotation in the vis-
coelastic liquid suggests a fundamental frictional change
at the base of the cylinder.
We hypothesize that a thin liquid film is entrained be-

neath the cylinder. The absence of contact would in-
deed drastically reduce the sliding friction, in line with
the absence of rotation in experiments. This phenomenol-
ogy resembles the classical frictional transition in lubri-
cated contacts. Specifically, the friction coefficient can be
expressed as a function of the dimensionless parameter
ηU/N , where U is the sliding velocity and N the normal

load per length [29,30]. For low values of ηU/N , the two
surfaces are in direct solid-solid contact (boundary lubri-
cation) and the friction coefficient of order 1. For larger
ηU/N , a continuous film lubricates the contact (hydro-
dynamic lubrication) and the friction coefficient is largely
reduced. An intermediate regime (mixed lubrication) sep-
arates these two cases, where there is partial contact be-
tween the surfaces. In this regime the friction decreases
with velocity, which is a condition to get stick-slip mo-
tion. In our experiments, the increase of the inclination
angle both increases the speed U and decreases the normal
load N . The combination of these effects indeed explains
why we observe a transition between a friction-dominated
rolling regime at low angles, to a pure sliding regime with
low friction at large angles.
To assess the effects of viscoelasticity on the sliding dy-

namics, we determine the cylinder velocity U and its rota-
tional speed ω by fitting the slope of xc(t) and θ(t), respec-
tively. The variation of the sliding velocity U and relative
rotational speed ωR/U , as a function of the inclination
angle α, is plotted in fig. 2(a), (b). The rotational speed
has been normalized, such that a value of ωR/U = 1 cor-
responds to slip-free rolling (red dashed line in fig. 2(b)),
while ωR/U = 0 corresponds to pure sliding (blue dashed
line in fig. 2(b)). We first focus on the Newtonian liquid
(yellow squares), for which the cylinder velocity increases
as the descent slope gets steeper, reaching values up to
U ≈ 2–3 cm/s. At low inclination angles, the relative ro-
tation is close to unity, such that the cylinder exhibits a
pure rolling motion without any slip (fig. 2(b)). As the
inclination increases, the relative rotation decreases, mov-
ing from slip-free rolling to stick-slip dynamics. The lack
of a pure sliding motion with increasing α, indicates that
the dynamics never reaches the lubrication regime. There
must always be some contact with the wall, suggesting a
mixed lubrication, where both solid friction and hydrody-
namic lubrication contribute to the sliding friction.

63002-p3
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We now turn to the case where a small amount of poly-
mers is dissolved in the liquid. For the viscoelastic liquids
with ψ1 = 0.005 and 0.029 Pa·s2 (green squares), we again
find an increase in the cylinder velocity with the inclina-
tion angle (fig. 2(a)). The cylinder velocities are slightly
smaller than the Newtonian liquid, with no significant
trend observed as ψ1 increases. The relative rotation in
both liquids is close to unity for small inclination angles
and decreases as the inclination angle becomes steeper
(fig. 2(b)). Yet, the relative rotation decreases at a slightly
lower rate than the Newtonian liquid and never reaches
the pure sliding regime for the range of inclination angles
tested. We thus observe that for weakly viscoelastic liq-
uids, the cylinder dynamics do not strongly deviate from
those observed in the Newtonian liquid. The cylinder un-
dergoes pure rotation or stick-slip motion with a slightly
smaller velocity and higher relative rotation. There is still
contact with the wall, which means that the friction re-
mains within the mixed lubrication regime.
Increasing the amount of dissolved polymers leads to

significant changes for both U and ω. For the viscoelastic
liquids with ψ1 = 0.07, 0.13, and 0.13 Pa·s2 (blue squares),
the cylinder velocities remain similar to the Newtonian liq-
uid for α < 10◦. Yet, beyond this inclination angle, the
velocity values are much larger (fig. 2(a)). The effects of
viscoelasticity are also reflected in the relative rotation.
For low inclination angles, the relative rotation is high.
However, unlike the Newtonian and weakly viscoelastic
cases, the cylinder undergoes stick-slip motions spanning
a large range in the relative rotation. The range of values
of the rotation for the same value of α is also reflected by
the large error bars in fig. 2(b). As the inclination angle
increases, the relative rotation undergoes an abrupt tran-
sition to pure sliding. The decrease in the relative rotation
is also accompanied by a significant decrease in the error
bars. Interestingly, the transition even leads to a slight
backspin, for which the rotation is negative ω < 0. The
effect of ψ1 on both U and ω is not strong, with slightly
higher velocities observed for the liquid with smaller ψ1,
suggesting a saturation of the elastic effects. The large
variation in stick-slip motions at low inclination angles
suggests a lower sliding friction on the cylinder, which
is indicative of a mixed lubrication regime. The abrupt
decrease in the relative rotation signals the transition to-
wards the hydrodynamic lubrication regime, in which the
continuous entrainment of a thin liquid film prevents the
contact between cylinder and wall. Therefore, sufficiently
strong normal-stress differences tend to suppress solid con-
tact and lead to pure sliding motions.
We proceed by considering only the data of pure sliding

(ωR/U < 0.1) and explore cylinders of different sizes and
materials, each following similar trends on the relative ro-
tation as the one shown in fig. 2. We first test how the
experimental sliding speed U compares to

USt =
ΔρgR2 sinα

η
. (1)

This “Stokes” velocity scale arises from a visco-
gravitational balance ΔρgR2 sinα ∼ ηU , where Δρ =
ρ − ρ� is the density difference. Plotting the experimen-
tal velocity against USt, we observe a scatter of the data
(fig. 3(a)). The lack of collapse of the data is not surpris-
ing, as this velocity scale does not include the effects of
lubrication. In the following we propose a mechanism that
can collapse the experimentally observed velocities.

Self-sustained elastic lift. – The pure sliding regime
requires a mechanism of self-sustained lift preventing solid-
solid contact, which can arise from the normal-stress dif-
ferences in viscoelastic liquids. To model the effects of
normal stresses, we use the second-order fluid, which is
the simplest constitutive relation that admits normal-
stress differences. For a two-dimensional flow with veloc-
ity boundary conditions, we can utilize Tanner’s theorem,
which admits a Newtonian velocity field and a modified
viscoelastic pressure [31,32]. Hence, by solving the ve-
locity and pressure field of the Newtonian problem, we
can obtain the viscoelastic stresses, which are required
to compute the forces exerted on the cylinder. We con-
sider the two-dimensional flow (êx, êz) caused by a cylin-
der sliding parallel to a wall at a gap distance h0. We
analyse the problem in the reference frame of the slid-
ing cylinder, such that the wall is moving with velocity
−U and the flow is steady. The geometry of the liq-
uid thickness can be approximated by a parabolic pro-
file h(x) = h0[1 + x2/(2h0R)]. For a sufficiently small
gap h0, the lubrication approximation, h0/R � 1, leads
to a velocity field u(x, z) = (1/2η)(dpN/dx)(z

2 − zh) +
U(z/h− 1), where we introduced the Newtonian pressure
field pN(x) = 2ηUx/h(x)2 [4]. Combining these two ex-
pressions with the second-order fluid model, the lift force
(per unit length) exerted on the cylinder can be computed
analytically [32,33], which yields the following expression:

L =
ψ1

4

∫ ∞

−∞

(
∂u

∂z

)2
∣∣∣∣∣
z=h(x)

dx =
π

2
√
2

ψ1U
2R1/2

h
3/2
0

. (2)

Interestingly, normal-stress differences do not generate a
torque on the cylinder, nor do they modify the viscous

drag [33], which is given by D = 2
√
2π(ηUR1/2/h

1/2
0 ).

We now have all the expressions required to deter-
mine the steady sliding velocity of the cylinder. The lift
due to the normal-stress differences L, as given by (2),
balances the weight component perpendicular to the wall,

π

2
√
2

ψ1U
2R1/2

h
3/2
0

= ΔρgπR2 cosα. (3)

The viscous drag D balances the component of the weight
parallel to the wall,

2
√
2π

ηUR1/2

h
1/2
0

= ΔρgπR2 sinα. (4)
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Fig. 3: Different ways of rescaling the cylinder velocity U . (a) The experimentally measured velocity U against the Stokes
velocity scale USt = ΔρgR2 sinα/η. (b) The velocity U against Uth, given by eq. (5), collapses the data. The theoretical
prediction (red line) captures the smaller values of the experiments, but overestimates the velocity beyond U ≈ 2 cm/s. (c) The
lubrication velocity scaling (USt/2

√
2)(h0/R)1/2 leads to a better collapse of the data using a value h0 = 5× 10−5 m.

Solving these two equations for U and h0 yields

Uth =
USt

64

(
ψ1ΔρgR

η2

)(
sin2 α

cosα

)
, (5)

hth =
R

512

(
ψ1ΔρgR

η2

)2 (
sin2 α

cosα

)2

. (6)

The theoretical sliding velocity has been expressed as the
product of USt, defined in (1), multiplied by the geomet-
ric factor sin2 α/ cosα and the dimensionless viscoelastic
parameter ψ1ΔρgR/η2. The latter takes the form of a
Weissenberg number ψ1USt/(ηR), with a strain rate given
by USt/R.
The experimentally measured velocity against the the-

oretical prediction of (5) is shown in fig. 3(b). The data
collapse in a much better fashion than the Stokes scaling
(fig. 3(a)). In addition, the theoretical prediction (red line)
captures the experimental data for low values of the ve-
locity U < 2 cm/s without any adjustable parameter. For
larger speeds, the prediction overestimates the cylinder ve-
locity and the experimental data appear to have a much
weaker dependence on Uth. The breakdown of our model
at high velocities can possibly be attributed to two main
factors. First, the second-order fluid model provides a de-
scription only for weakly viscoelastic flows, i.e., flows at
relatively low Weissenberg numbers. For a velocity value
of U ≈ 2 cm/s, above which (5) fails to capture the exper-
imental data, the horizontal force balance between grav-
ity and viscosity yields a typical thickness h0 ∼ 10−5 m.
The corresponding Weissenberg number of the lubrication
flow becomes Wi = ψ1U/(ηh0) ∼ 100, which is already
very large. At such values, the dependence of the normal
stresses on the shear rate might deviate from the quadratic
scaling expected from the second-order fluid. Non-linear
effects, such as finite extensibility or a shear-dependent
normal-stress coefficient ψ1(γ̇) are expected to come into
play [23], which could lead to a saturation of the nor-
mal stresses. Second, the polymer solutions used are in
the semi-dilute regime. As can be seen from the rheolog-
ical measurement in the SM, the normal stress exhibits a

dependence on γ̇ that is slightly weaker than the quadratic
fit used in the modeling.
For large cylinder velocities (U > 2 cm/s), the exper-

imental data do not exhibit a strong dependence on the
degree of viscoelasticity, as quantified by ψ1 (see fig. 2(a)).
We aim to describe the typical scaling of the cylinder
speed in this regime, where the cylinder-wall contact is
clearly still lubricated. Empirically treating h0 as a con-
stant thickness, the horizontal force balance (3) leads to
the velocity prediction U = (USt/2

√
2)(h0/R)1/2. The ex-

perimental sliding velocity agrees reasonably well with this
lubrication scaling in the range 2 ≤ U ≤ 10 cm/s, show-
ing a consistency with the lubrication theory (fig. 3(c)).
We empirically set the gap thickness to h0 = 5 × 10−5 m
such that the best agreement is obtained. We hypothesize
that a saturation of the normal-stress differences causes
the sliding velocity to transition from a regime dictated by
viscoelasticity, to a regime dictated by viscous lubrication.
The exact details of the saturation of the normal stresses
and the transition to lubrication require further analysis.

Spheres. – Having analyzed the dynamics of the slid-
ing cylinder, we now extend our study to spheres. Using
the same experimental set-up, we measure the speed and
rotation of a steel sphere with radius R = 0.5 cm. Fig-
ure 4(a) shows the velocity U against the inclination an-
gle α. We observe a strong phenomenological difference
with respect to the cylinders, as the addition of polymers
now decreases the sliding speed, regardless of the inclina-
tion angle (see the supplementary movie SuppVid3.mp4).
At low inclination angles, the spheres also undergo strong
stick-slip motion, for every polymer concentration. How-
ever, the stick-slip motion gradually disappears with in-
creasing inclination angles, even for the Newtonian and
weakly viscoelastic liquids. This result is also reflected in
evolution of the relative rotation ωR/U against the incli-
nation angle α (fig. 4(b)). At small inclination angles, the
relative rotation is high for all liquids tested. However,
the slip-free regime (ωR/U = 1) is never observed and the
spheres undergo stick-slip motion (see the supplementary
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Fig. 4: (a) The velocity U for a sphere with radius R = 0.5 cm against the inclination angle α. Increasing the value of ψ1

reduces the velocity. (b) The relative rotation speed ωR/U smoothly decreases with α, while viscoelasticity has a minor effect.
(c) The experimental velocity U against the Stokes velocity USt for different sphere sizes and polymer concentrations. The red
lines correspond to the Newtonian lubrication theory, given by (7), for h0/R = 10−3, 10−4, and 10−5.

movie SuppVid4.mp4). Increasing the inclination angle
leads to a smooth decrease of the relative rotation, which
saturates to a small value near 0, for angles larger than
20◦ for each liquid.
The polymer concentration does not strongly affect the

rotation, with smaller rotation occurring as ψ1 increases.
This observation is in qualitative agreement with a re-
cent experimental study, which demonstrated that nor-
mal stresses did not affect the lubrication of spherical
contacts [34]. The smooth transition towards low rela-
tive rotation suggests that the sphere gradually switches
from a mixed lubrication regime to a hydrodynamic lubri-
cation regime. This behavior is much different from the
response observed for the cylinders, where the pure slid-
ing regime was abruptly obtained (high viscoelasticity) or
never reached (low viscoelasticity). Therefore, the flow ge-
ometry may play an important role on how the transition
to the hydrodynamic lubrication regime is achieved.
We continue by testing the sphere velocities against the

Stokes velocity scale USt. We also include the data ob-
tained for steel spheres with radii of R = 0.8 cm and
R = 1 cm. While the Stokes velocity failed to cap-
ture the data for the cylinders (fig. 3(a)), the data for
all three spheres collapse onto a straight line (fig. 4(c)).
The Stokes velocity on the horizontal axis has a higher
order of magnitude than the velocities observed in our
experiments, which can be attributed to the effects of lu-
brication. A sphere moving parallel to a wall at a gap dis-
tance h0 � R experiences a horizontal viscous drag that
has been shown to follow the asymptotic expression D =
6πηUR[0.95+(8/15) ln(R/h0)] [35,36]. Balancing the vis-
cous drag with the weight component (4π/3)ΔρgR3 sinα
yields a velocity prediction

U = USt

[
4.29 +

12

5
ln

(
R

h0

)]−1

. (7)

The logarithmic term makes the dependence of U on h0

weak. To test this prediction, we plot (7) using values of
the ratio h0/R = 10−3, 10−4, and 10−5, which correspond
to a film thickness in the range of 0.05 to 10 μm. The re-
sulting curves have small differences and are in good agree-

ment with the experimental data (red lines in fig. 4(c)).
This agreement suggests that the decrease in velocity with
ψ1 is not due to normal-stress differences but the increase
of the solution viscosity (see the SM). Therefore, we can
conclude that normal-stress differences have a limited in-
fluence on the lubrication of the spherical contact.
Spherical and cylindrical contacts exhibit differences

even in Newtonian lubrication. During the translation
parallel to a wall, the flow induces a torque on the sphere
but not on the cylinder. The effect of geometry also ex-
tends to viscoelastic lubrication, where normal-stress ef-
fects are absent in spheres but apparent in cylinders. For
the two-dimensional flow below the cylinder, Tanner’s the-
orem allows for a direct calculation of the viscoelastic
stresses. However, this theorem does not apply for three-
dimensional flows, and thus computing the viscoelastic
stresses in spherical lubrication becomes non-trivial. The
necessity of computing the viscoelastic stresses can be
overcome via the reciprocal theorem, which directly yields
the lift force, but does not provide any information on
the actual stresses inside the contact region. This the-
oretical approach leads to an attractive force between a
sphere and wall or between two spheres [17,37], which is
consistent with experimental and numerical [18–21] obser-
vations. Yet, even if such normal stresses were present, it
is unclear if their contribution is significant compared to
viscous effects. The good agreement between the experi-
mental data and Newtonian lubrication theory (fig. 4(c)),
supports our claim that normal-stress differences have lit-
tle influence in lubricated spherical contacts.

Conclusion and outlook. – To summarize, we have
investigated the dynamics of cylinders and spheres mov-
ing down an inclined plane inside a viscoelastic liquid
bath. Our experiments revealed that when submerged
in highly viscoelastic liquids, cylinders adopt faster slid-
ing speeds compared to Newtonian liquids. The stretch-
ing of the dissolved polymers induces a lift force and
pushes the cylinder away from the wall, which promotes
the transition towards hydrodynamic lubrication and leads
to smaller sliding friction as compared to Newtonian liq-
uids. We showed that the second-order fluid model leads

63002-p6

http://stacks.iop.org/0295-5075/149/63002/mmedia


Viscoelastic lubrication of a submerged cylinder sliding down an incline

to an analytical expression for the lift, which can be used
to obtain a prediction for the cylinder sliding velocity.
The theoretical prediction captured well the observed slid-
ing speed for relatively low inclination angles. At larger
angles, the prediction overestimates the sliding velocity,
which is likely due to the saturation of the normal stresses.
Indeed, the second-order fluid model is strictly limited
for steady and weakly viscoelastic flows. Therefore, in-
voking more complex constitutive relations, such as the
Giesekus or FENE models, could provide a more accurate
description of normal-stress effects. The polymers lead to
an opposite effect for sliding spheres, whose velocity de-
creased with polymer concentration. The sliding speed
was well described by Newtonian lubrication theory, sug-
gesting that normal stresses have a minor influence on the
sphere motion. Therefore, the extreme slipperiness that is
often associated with polymer solutions relies on whether
normal stresses generate an upward lift force. The normal
stresses crucially depend on the flow geometry but also
on the direction in which the object is moving. Indeed,
viscoelastic lift forces also manifest in unsteady squeeze
flows [38], where they significantly prolong the drainage
of thin liquid films.
Our experimental findings open new perspectives in vis-

coelastic lubrication. A natural extension would be to
measure the film thickness and the sliding friction for
viscoelastic lubricants in the hydrodynamic regime [39].
Such experiments could elucidate how the thickness varies
for the cases with large sliding velocities, and whether
a transition from viscoelastic to viscous lubrication in-
deed exists. We expect our results to provide insight into
the dynamics of particle suspensions in viscoelastic liq-
uids [40,41], where polymer stretching complements the
particle interactions to the resulting normal stresses.
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