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Abstract
Template attacks (TAs) are one of the most powerful side-channel analysis (SCA) attacks. The success of such attacks relies
on the effectiveness of the profiling model in modeling the leakage information. A crucial step for TA is to select relevant
features from the measured traces, often called points of interest (POIs), to extract the leakage information. Previous research
indicates that properly selecting the input leaking features could significantly increase the attack performance. However, due
to the presence of SCA countermeasures and advancements in technology nodes, such features become increasingly difficult
to extract with conventional approaches such as principle component analysis (PCA) and the Sum Of Squared pairwise
T-difference-based method (SOST). This work proposes a framework, AutoPOI, based on proximal policy optimization to
automatically find, select and scale down features. The input raw features are first grouped into small regions. The best
candidates selected by the framework are further scaled down with an online-optimized dimensionality reduction neural
network. Finally, the framework rewards the performance of these features with the results of TA. Based on the experimental
results, the proposed framework can extract features automatically that lead to comparable state-of-the-art performance on
several commonly used datasets.

Keywords Side-channel analysis · Points of interest selection · Deep reinforcement learning · Proximal policy optimization

1 Introduction

Since the pioneering work of Paul Kocher with differential
power analysis (DPA) [14], many improvements have been
made in side-channel analysis (SCA).

Among the newly developed attacks, the template attack
(TA) is considered one of the most potent candidates [4]. TA
contains two phases: a profiling phase and an attack phase. In
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the profiling phase, the attacker creates templates of the leak-
age information based on a similar or identical device under
the attacker’s control. Then, an attacker uses these templates
to retrieve the hidden assets from leakages acquired from the
device under attack. The most classical approach to build-
ing templates is forming a multivariate normal distribution
for each cluster with a mean vector and a covariance matrix
[19]. More advanced techniques, such as machine learning
(ML) and deep learning (DL), have been recently applied in
profiling SCA [2, 10, 11, 18, 22], which proves their compet-
itiveness/superiority in breaking various devices compared
with the conventional statistic-based approaches. One of the
main advantages of DL-based approaches is their limited (or
no) requirement for leakage preprocessing. However, such
methods are criticized due to the complexity of the model
and the lack of interpretability.

On the other hand, Template Attacks could be more favor-
able since they are based on a statistical model with limited
tunable hyperparameters. Unfortunately, the effectiveness
of the TA heavily relies on the preprocessing of the leak-
age measurements [22], more specifically, points of interest
(POI) selection, which tries to capture the most relevant
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features from within the measurements and uses these to
mount an attack. Indeed, POI selection is an essential step
in the SCA life cycle and can dictate the performance of,
arguably, one of the strongest attacks [16, 38]. However,
a proper POI selection can be challenging due to environ-
mental noise and countermeasures. Even worse, most SCA
research is benchmarked on preprocessed datasets with pre-
defined (and unrealistic) narrow time windows, which may
lead to a reduced drive to research proper POI selectionmeth-
ods. From an attacker’s perspective, “how to find the optimal
strategy for POI selection for a given dataset?” is still an
unanswered question [19].

Fortunately, finding an optimal strategy to reach a goal
is one of the strengths of reinforcement learning (RL).
RL has already been employed in the field of SCA and
produced state-of-the-art performance when optimizing net-
work architectures for deep learning attacks [27]. This work
introduces a deep reinforcement learning-driven framework
called AutoPOI for auto-matic points of interest selec-
tion. The framework generally provides a fire-and-forget
method, devised as an alternative to manually selecting
POIs. AutoPOI automatically selects several points of inter-
est (POIs) and subsequently scales down the dimensions
further by delivering an optimized dimensionality reduction
network based on the triplet network [38]. Since this frame-
work automatically combines the conventional POI selection
method and the DL-based method, it reduces the amount of
work and domain knowledge needed for the proper points of
interest selection.

The contributions of this work are the following:

– This work is the first to propose the use of Deep
Reinfo/032/nt Learning for POI selection through the
AutoPOI framework.

– The results show that state-of-the-art attack performance
can be achieved with AutoPOI, alleviating the need for
predefined narrow time windows.

– With the extracted features from theAutoPOI framework,
the Template Attack reaches outstanding attack perfor-
mance compared to the state-of-art.

This paper is divided into several sections. Section2 gives
background information into policy-based reinforcement
learning and Proximal Policy Optimization. Then, Sect. 3
provides insight into the related work in SCA, emphasizing
points of interest selection. Section4 introduces the proposed
framework and explains how Proximal Policy Optimization
is used for points of interest selection. Section5 describes the
experimental setup and the datasets used for benchmarking.
Section7 gives the results and discussion for each dataset.
Finally, a conclusion and future work are outlined in Sect. 8.

2 Background

2.1 Notation

For the mathematical equations in this paper, numerical vec-
tors are denoted with a bar; matrices are denoted in bold
capitals, and sets are denoted with calligraphic letters. For
SCA, a set of leakage traces T consists of traces ti . Each
trace is associated with either a plaintext di or a ciphertext
ci . The key space is defined as the set of all keys,K consisting
of individual keys ki and the correct key k∗. For reinforce-
ment learning, we denote the learnable parameters associated
with a neural network, at a certain timestep t , as θt .

2.2 Profiling side-channel analysis

Profiling side-channel analysis assumes an attacker has a
clone device identical (or at least similar) to the device to be
attacked. During the profiling phase, an attacker first mea-
sures leakage traces from the cloned device, then creates
profiles based on these leakages. Finally, these profiles are
applied to the device under attack; the secret information is
predicted based on the profiles’ output.

UsingTemplateAttack as an example, given a key k j and a
trace t̄i , the conditional probability p(k j |t̄i ) an be calculated
using Bayes Theorem, as shown in Eq. (1). An extension to
multiple traces is shown in Eq. (2).

p(k j |t̄i ) = p(ti |k j )p(k j )
∑K

l=1(p(ti |kl)p(kl))
(1)

p(k j |T) =
(∏T

i=1 p(ti |k j )
)

p(k j )

∑K
l=1

((∏T
i=1 p(ti |kl)

)
p(kl)

) (2)

Often, the intermediate data, instead of the key, is used to
build the templates. An attacker controls the parameters used
for the template, namely the plaintext di or ciphertext ci and
the key ki . The template of each intermediate data hdi ,ki is
defined according to a multivariate normal distribution with
a mean vector and a covariance matrix (m̄,C) [19], such that
hdi ,ki = (m̄,C)di ,ki . Therefore, the probability p(ti |kl) can
be transformed to p(ti |hdl ,kl ). Furthermore, the probability
is then calculated using a maximum likelihood equation as
depicted in Eq. (3).

p(t |(m̄,C)di ,ki ) = exp
(− 1

2 (t − m̄)TC−1(t − m̄)
)

√
(2π)T det(C)

(3)

The maximum likelihood for each template is calculated
for each trace, which is then mapped to key guesses based
on their relationship with the targeted intermediate data. The
key guess with the highest maximum likelihood is k∗.
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2.2.1 Points of interest selection

Points of interest (POI) selection is themethod of distinguish-
ing between relevant (to the secret information) and irrelevant
or redundant features within the traces [22]. In general, there
are three approaches for POI selection:

– Feature selection methods.
– Dimensionality reduction methods.
– Deep learning-based methods.

Feature selection methods create a subset of the input fea-
tures anduse these as the attack features.One of themost used
Feature Selectionmethods is signal-to-noise ratio (SNR) [29]
[19] and is a measurement to compare the amount of the
desired signal against the unwanted amount of noise.Another
technique is theSumOfSquaredT-Differences (SOST) intro-
duced in work by Gierlichs et al. [9]. Both methods select
POIs based on a top-n approach.

Dimensionality reduction methods transform the original
features, using statistical analysis or mathematical opera-
tions, to a new subspace of features and use the subspace for
the attack. Two methods for Dimensionality Reduction used
for POI selection are principal component analysis (PCA)
[12] and linear discriminant analysis (LDA) [8]. PCA and
LDA find a linear combination of the variables to separate
the data according to the variance. Themain difference is that
LDA considers the class label, whereas PCA ignores these.

Deep learning-based methods transform raw features into
a new set of features. With the recent shift from statistical
analysis for POI selection to Machine Learning techniques,
Wu et al. [38] introduced the triplet network for feature
extraction. The triplet network uses similarity learning to
distinguish greater similarities between leakages of the same
label while simultaneously increasing the distance of leak-
ages with differing labels.

This work introduces a new approach to POI selec-
tion based on Deep Reinforcement Learning, the AutoPOI
framework. The framework is based on the Proximal Policy
Optimization algorithm and provides an automated method
of finding and combining relevant POIs tailored to a dataset.

2.2.2 Hypothetical leakagemodels

Side-channel analysis usually consists of adopting a divide-
and-conquer approach and attacking a key in chunks to
recover it fully. When targeting the AES, a typical choice
of length for these chunks is a byte, which corresponds to the
amount of data that goes through the AES S-Boxes.

Different leakage models can be adopted in practice; their
results may vary depending on the target device. The Ham-
mingWeight (HW) leakagemodel classifies a byte according
to its HW, while the Identify (ID) model classifies a byte

according to each of its 256 possible values. A typical
approach for AES is to target the S-box output of the first
round or the S-box input of the last round when considering
the HW or ID models. Another type of leakage model is the
result of the XOR between two values. Often the Hamming
Weight of this XOR is calculated and is referred to as the
Hamming Distance. A typical approach for AES is to com-
pute theXOR (orHWof theXOR, i.e., HD) between the final
output and the S-box input of the last round. In this paper, all
leakage models are considered benchmarks for each dataset.

2.2.3 Metrics

Guessing entropy (GE) [34] is commonly used to evaluate
the effectiveness of SCA. The Guessing Entropy is based on
a guessing vector g = [g1, . . . , g|K |]. Here, |K | denotes the
search space of the key, in the case of AES |K | = 256 for
a byte. g contains the key candidates in decreasing order of
probability: g1 is the most likely, and g|K | is the least likely
key candidate.

GE is the average ranking of the correct key k∗ among the
other key guesses, where the averaging is done over multiple
attacks. The GE is calculated for each new test trace pro-
cessed, resulting in a vector describing the evolution of the
GE with the number of test traces processed. This is called
the ranking vector.

An attack is successful if it achieves a GE of 0 (the correct
key is assigned with the highest rank among all key candi-
dates). If the target of the attack is not the full key but only one
byte, it is commonly referred to as Partial Guessing Entropy.
This work uses these terms interchangeably.

2.3 Reinforcement learning

Reinforcement learning (RL) [35] is the act of learning
through taking actions from observations made within an
environment while being given an increasing reward for cor-
rect actions taken. A graphical representation can be found
in Fig. 1. An agent makes observations from the environment
called states. In time step t , the agent receives state St from
the environment and acts by following a specific policy π

or transition probability T by taking action At . The environ-
ment takes action into account, gives a reward Rt based on
a reward function f (St , At ), and returns a new state St+1.
When the agent reaches a predetermined terminal state, the
environment sends a done signal to the agent. From there on
out, a new sequence of states, actions, and rewards begin.

2.4 Deep reinforcement learning

Deep reinforcement learning (DRL) is the class of RL algo-
rithms that use Artificial Neural Networks.
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Fig. 1 A graphical representation of a generic RL environment [35]

2.4.1 Q-Networks

Thework byMnih et al. [20] describes the development of the
Deep Q-Network (DQN) algorithm in their efforts to create
a single algorithm capable of solving a wide range of chal-
lenging tasks. Instead of a Q-table that stores the values that
map states to actions, the value is predicted by a neural net-
work using states as inputs. Then, according to the ε-greedy
strategy, as shown in Eq. (4), DQN samples an action.

as =
⎧
⎨

⎩

argmax
a∈A

Q(s, a) 1 − ε

random a ε
(4)

Themethod defines ε as the probability of taking a random
action from the action space. ε = 1.0 is akin to pure arbitrary
action sampling, and ε = 0.0 is akin to deterministically
taking action with the highest Q-value.

To stabilize the network’s learning and emulate the learn-
ing of past experiences in humans, Experience Replay [17]
is used. The idea behind Experience Replay is for an agent
to build an action model of executable actions and their con-
sequences. This way, the agent can learn from the model
what actions produce favorable outcomes without actually
executing them. It is implemented by initializing a dataset
D of past experiences. Then, at each timestep t , the algo-
rithm adds experience containing the state st , the action at ,
the reward rt , and the followup state st+1, to the experience
dataset D. At each learning iteration, the algorithm gathers
a random batch from D and uses it to update the network’s
weights.

Each timestep t , the network is trained by minimizing the
loss function Lt of the neural network concerning theweights
θ , with the following equation:

Lt (θt ) = Es,a∼p(·)[(yt − Qθt (s, a))2] (5)

with

yt =
{

rt terminal st+1

rt + γ maxa′ Qθt−1(st+1, a′) non-terminal st+1
(6)

Here, the expectation to be minimized is the squared dif-
ference in future discounted rewards yt , which are calculated

with the previous parameters θt−1, and the current rewards
Qθt (s, a). Note that the expectation is calculated given a
known state s and action a according to a probability over
all actions.

2.4.2 Actor-critic architecture

In contrast with value-based RL algorithms, such as the pre-
viously mentioned DQN algorithm, policy-based methods
directly approximate the optimal policy π∗. Commonly, this
is achieved by using stochastic gradient ascent algorithms.
Unfortunately, two issues arise when calculating policy gra-
dients: noisy and high variance [36]. To solve these issues,
Williams [37] introduced a baseline bt (st ) to be subtracted
from the policy gradient.

∇θ J (θ) =
T −1∑

t=0

∇θ logπθ (at |st )(Gt − bt (st )). (7)

One common method is choosing the estimate of the
value function V (st ) as the baseline. Since the baseline only
depends on the state, it will not impact the gradient of the
policy. The idea behind this is that the algorithm constantly
checks if a specific action at is better or worse than the aver-
age action, given the state st . This is more commonly known
as the advantage function:

A(at , st ) = Q(at , st ) − V (st ). (8)

This approach forms the basis of the actor-critic archi-
tecture, as depicted in Fig. 2, where the policy π is seen as
the actor and the value function as the baseline bt is seen
as the critic [35]. After each action made by the actor, the
critic evaluates the new state and concludes if the new state
is better or worse. If the critic concludes a positive change,
the loss will enforce that this action is taken more com-
monly. In contrast, if the critic concludes a negative change
the loss will enforce the action to be taken less often. An
advantage of actor-critic methods is that they require less
computation to calculate action values. An example of this
are continuous-valued actions. Any other method learning
just the action values must learn an infinite set of values, one
for each action. Using actor-critic methods, where the policy
is explicitly stored, these computations are not needed [35].

2.4.3 Trust region policy optimization

Trust region policy optimization (TRPO) by Schulman et al.
[31] introduces an algorithm for smoother policy learning.
It does so by applying a Kullback–Leibler (KL) Divergence
[15] on parameter updates in the policy.

Instead of directly applying the policy gradient, TRPO
uses a surrogate loss function to update its parameters. The

123



Journal of Cryptographic Engineering

Fig. 2 An overview of the Actor-Critic Architecture [35]

surrogate loss has its roots in Importance Sampling [33],
which is used to estimate the expected value of a function
f (x), where x follows a distribution p(x). Then, instead of
sampling x from p, it is sampled from another distribution q
that is used to approximate p:

Ep[ f (x)] = Eq

[
f (x)p(x)

q(x)

]

. (9)

If q(x) is sufficiently close to p(x), then the estimation is
sufficiently accurate.

The idea behind this is to make sure that the policy does
not drift to far from its previous parameters. Constraining
the KLDivergence helps the policy stay within a certain trust
region. This helps the algorithm to emulate a smoother learn-
ing curve, reducing the chance of learning collapse. TRPO
uses the loss function found in Eq. (10)

max
π

L(π) = Eπold

[
π(a|s)

πold(a|s) Aπold (s, a)

]

(10)

subject to

E[K L(π, πold) ≤ ε]. (11)

Here, ε is a hyperparameter to be set, also note that
Aπold (s, a) is the advantage function as depicted in Eq. (8).

2.4.4 Proximal policy optimization

Schulman et al. [32] introduced proximal policy optimiza-
tion (PPO), which builds upon their earlier work in TRPO
and results in an algorithm that is simpler to implement, more
general, and with better computational complexity. Instead
of using a constraint on the KL Divergence between the new
and old policy, a clipping of the ratio was proposed:

LCLIP(θ) = Êt [min(rt (θ) Ât ,

clip(rt (θ), 1 − ε, 1 + ε) Ât )], (12)

where ε denotes a hyperparameter to be set. The loss function
is used to clip the probability ratio when it improves the
objectivewhile unrestricting it when it worsens the objective.
In other words, Proximal PolicyOptimization restricts policy
updates that are too large, leading to smoother learning and
a more negligible probability of policy collapse.

3 Related work

After the introduction of side-channel analysis (SCA) by
Kocher et al. [14], the seminal work by Chari et al. [4] intro-
duced template attacks (TAs),whichwould drive the research
in the SCA community for many years. Although being the
most potent attack from an information-theory standpoint,
its assumptions can be somewhat daunting and sometimes
impossible (unlimited traces). Years later, more advanced
methods were devised, such as the Stochastic Models pre-
sented in the work of Schindler et al. [30], which aims to
reduce the amount of traces needed for profiling significantly.
Further work was done by Choudhary and Kuhn [6], where
the authors introduced pooling the covariance matrices used
in the profiling phase and attaining a significant speed-up of
the attack. These methods remain one of the most popular
methods in both academic and industry, mainly due to the
strength of performance and the fact that no hyperparameter
tuning is needed.

The performance of profiled SCA (more specifically, TA)
heavily relies on the points of interest (POI) selection. In
2015,Lerman et al. [16] even concluded that,with proper POI
selection, TA outperforms Machine Learning attacks. Over
the years, several techniques have been researched to reduce
the complexity of TA. One of the first works was in 2006,
where Archambeau et al. [1] introduced Principal Compo-
nent Analysis to create a principal subspace. The principal
subspace reduced the dimension of the traces by 99.99% and
resulted in being able to classify 93.3%of the traces correctly.

Picek et al. [22] explored many different POI selection
methods used frequently in Side-Channel Analysis. The
authors concluded that feature selection is a very important
step in attacks where the data are noisy and contains various
countermeasures.Next, in Perin et al.’swork [21], the authors
explored different setups of POIs for the preprocessing of DL
attacks. The authors concluded that a proper POI selection
method could boost the attack performance dramatically.

More recently, Wu et al. [38] used a Machine Learn-
ing technique called Similarity Learning to show that with
proper feature engineering, Template Attacks remain feasi-
ble and are even able to outperform current state-of-the-art
Deep Learning techniques. The main drawback of the triplet
network is that for each dataset, the hyperparameters have
to be tuned. Rioja et al. [28] introduced an automated DL
tuner based on the Estimation of Distribution Algorithms
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(EDAs), which could automatically choose good-performing
POIs and therefore reduce the need for human intervention.

The first instance of reinforcement learning applied in
Side-Channel Analysis concerning POI selection, to the best
of our knowledge, is Side-channel Analysis with Reinforce-
ment Learning (SCARL). In this paper, Ramezanpour et al.
[26] introduce an algorithm that preprocesses the data with
an autoencoder and, with the help of a self-supervised Actor-
Critic model, can cluster features based on the inter-cluster
difference on the mean. However, their method is only tested
on one specific cipher, theAscon [7] cipher, and needs 24,000
traces to find the correct partial key.

4 AutoPOI framework

The AutoPOI Framework is a framework that automatically
finds, selects and scales down Points Of Interests. It does
so by selecting regions from input traces, which fed into a
Neural Network to extract the most promising embeddings.
The embeddings represent the selected Points Of Interest and
are used to perform Template Attacks. A graphical overview
of the framework is shown in Fig. 3. The framework operates
in three phases,

(1) the region selection phase,
(2) the network architecture selection phase, and
(3) the embeddings extraction phase.

In phase 1, a Proximal Policy Optimization network selects
promising regions from the input traces. Phase 2 consists of
another Proximal Policy Optimization network that selects
an optimized Neural Network architecture. This optimized
network is used in phase 3 to extract embeddings from the
selected regions. An algorithmic overview is shown in Algo-
rithm 1.

Algorithm 1 AutoPOI framework.
region_ppo ← build_PPO_net()

dim_red_ppo ← build_PPO_net()

for ep ∈ episodes do
selected_regions ← select_regions(region_ppo)

dim_red_net ← create_network(dim_red_ppo)

P O I s ← extract_POIs(traces, selected_regions)
f eatures ← extract_features(dim_red_net, P O I s)
ranks ← perform_attack( f eatures)
reward ← calculate_reward(ranks)
train_PPO_nets(region_ppo, dim_red_ppo)

end for

Knowing that the leakages could span multiple raw fea-
tures (e.g., masked data), the framework aggregates the
features to ensure that leakages spanning various points are
selected in one go, thereby spanning a greater range of

Fig. 3 Graphical overview of AutoPOI framework

possible leakage points. Specifically, the features are aggre-
gated in regions of length n. This value n is determined
by the trace length and the number of regions available as
n = length/regions. The number of regions available is
a hyperparameter that needs to be set beforehand. At each
episode, the environment reduces the maximum number of
regions rcur with Exponential Decay to explicitly induce an
exploration-vs-exploitation dichotomy. The algorithm is set
up first such that it has enough room to explore various
options. Eventually selecting a smaller number of the best-
performing regions. Furthermore, since the search space of
features can be rather large, reducing the number of the to-
be-selected regions provides a speed up of the framework.

Tokick-start the learningprocess of distinguishingbetween
well-performing (sensitive data-related) and bad-performing
(others) regions, the maximum and the minimum number of
to-be-selected regions rmax and rmin are defined based on
a percentage of the total number of regions. Equation (13)
gives the Exponential Decay function,

rcur = max(	r0e−λep
, rmin), (13)

where λ denotes the decay factor and ep denotes the current
episode of the framework. An example of the decay function
with λ = 0.002, rmax = 1000 and rmin = 100 is shown in
Fig. 4.

4.1 Phase 1: feature selection

This phase of the framework is responsible for the selection
ofmultiple regions from the traces. It is based on theProximal
Policy Optimization algorithm, explained in Sect. 2.4.4. The
architecture of the PPO network is a neural network with five
layers. The architecture of the network is found in Table 1.
The average pooling layer is added to reduce the number of
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Fig. 4 An example of the exponential decay function in Eq. (13). λ =
0.002, rmax = 1000 and rmin = 100

Table 1 Network architecture for the region selection PPO network

Region PPO network

Avg Pool layer Kernel=3, Stride=2

FC layer Neurons=256

Activation layer ReLU

FC layer Neurons=256

Activation layer ReLU

FC layer Neurons=128

Activation layer ReLU

FC layer Neurons=64

Activation layer ReLU

FC layer Neurons=action space size

inputs the network has to take into account, thereby speeding
up the process. This architecture was chosen based on its
relative simplicity. Nevertheless, using other forms of Neural
Networks, such as Convolutional Neural Networks, could
provide interesting results as well. It may however take more
fine-tuning.

The algorithm’s layout is shown in Algorithm 2. At each
iteration, the environment provides the network with a subset
of the profiling traces. The subset size is dictated by the batch
size provided in the environment.

In each iteration, one region of all possible regions is
selected until it has reached the number of regions to select.

Each trace in the network is run through the network and
outputs raw network outputs, often called logits. Since the
network is set up to take only one action for multiple inputs,
the logits are summed. Then, the summed logits are used
to create a categorical distribution from where one action is
sampled. This action represents the selected region for that
iteration.

The PPO algorithm has the Actor-Critic architecture, as
explained in Sect. 2.4.2. This means that a critic value is cal-
culated with a similar network, but outputs only one value.

Algorithm 2 Region Selection Algorithm
Require: env, region_model

phase ← region
obs ← reset(env, phase)
while not done do

logi ts, val ← region_model(obs)
logi ts ← ∑

logi ts
val ← mean(val)
m ← 0̄ � Length of m is determined by logits
regions ← get_selected_regions(env)

for each r ∈ regions do
m[r ] ← 1

end for
logi ts ← apply_mask(logi ts, m)

dist ← create_categorical_ditribution(logi ts)
a ← sample(dist)
log_prob ← get_log_prob(dist, a)

next_obs, done ← step(env, a)

train_data ← setup_train_data(obs, a, val, log_prob, m)

obs ← next_obs
if done then

break_while
end if

end while

This value can be interpreted as a score for the performance
of the network. Since the network takes in a batch of traces,
there is also a batch of critic values. In this phase, the critic
value is averaged, representing the average state of the net-
work. To ensure that regions are not duplicated, invalid action
masking (IAM) [13] is applied. IAM is the method of replac-
ing certain logits with a large negative number, such that it
defaults to a probability of practically 0 when creating a cat-
egorical distribution.

4.2 Phase 2: dimensionality reduction

In the second phase of the framework, the algorithm itera-
tively builds up a Triplet Tetwork [38]. The Triplet Network
is named after the inputs it is provided with, triplets. A triplet
consists of an anchor a, a positive p, and a negative n. The
anchor and the positive share the same label, while the neg-
ative has another label. All three are run through the same
network, and the loss is calculated as shown in Eq. (14).

loss = max(dist(a, p) − dist(a, n) + margin, 0), (14)

where dist denotes the Euclidean distance.
As with the previous phase, this phase uses a proximal

policy optimization algorithm to find the best triplet network
for selected regions. The architecture of the PPO network
can be found in Table 2.

The architecture of the PPO network is chosen to reflect
the significant difference in state size from the Region Net-
work shown in Table 1. The states built by the environment
constitute the current number of layers present in the net-
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Table 2 Network architecture for the dimensionality reduction PPO
network

Dimensionality reduction PPO network

FC layer Neurons=32

Activation layer ReLU

FC layer Neurons=32

Activation layer ReLU

FC layer Neurons=32

Activation layer ReLU

FC layer Neurons=action space size

work, the type of layer selected in the previous step, the
output shape of the layer selected in the previous step, and if
the algorithm has achieved a terminal state. A general layout
of the algorithm is shown in Algorithm 3. At each iteration
of the algorithm, a state is processed by the network, return-
ing logits and a value. The action space of Algorithm 3 has
also been masked with IAM. In addition, several restrictions
have been implemented to guide the algorithm in building
valid networks. An overview of these restrictions is found in
Table 3; a graphical overview of the state transitions is shown
in Fig. 5. Several hyperparameters are made available to be
chosen by the algorithm. An overview of each layer and the
respective hyperparameters are shown in Table 4.

It is important to note that not only are state transitions
restricted, but the hyperparameters that belong to those states
as well. Since the network’s purpose is to reduce the dimen-
sions, the outputs of the following state cannot exceed the
inputs to that state. For instance, if the output of the current
state is of dimension 64, every action that leads to a new
layer with an output dimension larger than 64 is determined
invalid and is masked as such.

Algorithm 3 Dimensionality Reduction Algorithm
Require: env, network_model

phase ← network
obs ← reset(env, phase)
while not done do

logi ts, val ← network_model(obs)
m ← determine_mask(obs)
logi ts ← apply_mask(logi ts, m)

dist ← create_categorical_ditribution(logi ts)
act ← sample(dist)
log_prob ← get_log_probability(dist, action)

next_obs, done ← step(env, action)

train_data ← setup_train_data(obs, act, val, log_prob, m)

obs ← next_obs
if done then

break_while
end if

end while

After the selection of the optimizer, the network is built
with the selected layers and hyperparameters. Training is

done for 1 epoch with a batch size of 512 and a margin of
0.4 following [38].

4.3 Reward function

For the framework to learn, a reward function is needed. This
reward function is an adaptation of the function found in
[27]. Two adaptions were made. The first was to remove the
notion of the accuracymetric. In [27], the goal was to classify
key guesses with a CNN correctly. However, no classifica-
tion metric is available since no labels are associated with
Points Of Interest. Second, since this work focuses solely on
generating high-quality POIs, the reward for the size of the
networks is removed. The reward function used in this work
is shown in Eq. (15).

r = t ′ + G E ′
10 + 0.5G E ′

50

2.5
(15)

t ′ = tmax − min(tmax, G Ek∗)

tmax
(16)

G E ′
10 = 128 − min(G E10, 128)

128
(17)

G E ′
50 = 128 − min(G E50, 128)

128
. (18)

Here, r denotes the final reward calculated with three sep-
arate reward functions. The first reward function, depicted in
Eq. (16), calculates t ′, which uses the first time the GE of the
correct key k∗ reaches < 1 and calculates a score between
0 and 1. tmax denotes the number of attack traces used for
the attack. Equation (17) calculates a score between 0 and 1
using G E10, which resembles the GE when 10% of the max-
imum number of traces are used. Finally, Eq. (18) calculates
a score between 0 and 1 using G E50, which resembles the
GE when 50% of the traces are used.

The last two metrics are added to ensure that, although a
complete GE convergence was not achieved given a certain
number of attack traces, the actions taken are not disregarded
as entirely wrong. These metrics were chosen to incentivize
the learning to focus on reducing the number of traces needed
to converge to the correct key guess, ultimately leading to
better features.

5 Datasets

5.1 ASCAD

The ASCAD dataset [2] is created by acquiring EM traces
from anATMega8515 controller running an AES-128 imple-
mentation. The chip card itself has no hardware secu-
rity implementation. The authors implemented masking to
counter first-order side-channel attacks [24].
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Table 3 On overview of each
state and the transition
restrictions

State Restrictions

Null state Can only transition to pooling, convolutional or terminal layers

Pooling layer Cannot transition to other pooling layers

Convolutional layer No restrictions

Activation layer Cannot transition to other activation layers

Fully connected layer No restrictions

Terminal layer Can only transition to optimizers

Fig. 5 Graphical overview of the state transitions. Note that for ease of
viewing, activation layers are removed

ASCAD_F: This dataset version has a fixed key and con-
sists of 50,000 profiling traces for profiling and 10,000 attack
traces. Note that traces with 700 features (requires knowl-
edge of r mask share) are commonly used in related works.
To make our work closer to realistic settings, we select a
time window with 5000 features, corresponding to the Sbox
output when using key byte 3, the first masked key byte. A
total of 45,000 traces are used as the profiling set, this set is
used to train the proposed framework. For the calculation of
the rewards, a separate set of attack traces is used consisting
of 5000 traces. For testing purposes, another 5000 traces are
used.

ASCAD_R: This dataset version has random keys, with
200,000 traces for profiling and 100,000 for the attack. The
keys are randomized for 33% of the attack traces. Similarly,
we extend the pre-selected window to 5000 features corre-
sponding to the processing of the thirdmasked key byte based
on SNR of the Sbox output. As with the fixed key dataset,
a total of 45,000 traces are used as the profiling set. Again,
this set is used to train the proposed framework. For the cal-
culation of the rewards, a separate set of attack traces is used
consisting of 5000 traces. For testing purposes another 5000

Table 5 Hyperparameters for
the training of the PPO networks

Hyperparameter Value

Policy learning rate 0.0003

Value learning rate 0.0001

Training epochs 20

traces are used. Note that for reward and testing purposes,
the keys are fixed and not randomized.

For bothASCAD_F andASCAD_R, the hammingweight
(HW) and Identity (ID) leakage models are used to bench-
mark the proposed framework.

5.2 AES_HD dataset

The AES_HD dataset [3] is a dataset created by measuring
EM emission from an unprotected Xilinx Virtex-5 FPGA.
This dataset has a fixed key. This work uses the input and
output of the last round SBox (Sbox−1(c7 ⊕ k7) ⊕ c11) as
explained by Picek et al. [23]. As with previous datasets
and to create a more equal experimental environment, again
45,000 traces are selected for the training of the proposed
framework. Both the reward and final testing sets contain
5000 traces. The traces selected contain a total of 1250 fea-
tures. For the AES_HD dataset, the HD leakage model is
used to benchmark the proposed framework.

5.3 CHES_CTF dataset

The CHES_CTF dataset is a fixed key data set created
for the annual Capture-The-Flag event organized by the
Conference on Cryptographic Hardware and Embedded Sys-
tems (CHES). The traces are taken from a 32-bit STM
Controller running amaskedAES-128 encryption algorithm.

Table 4 Hyperparameter overview of the possible combinations of layers

Layer Hyperparameters

Fully Connected layer Neurons: [256, 128, 64, 32, 16, 8]

Convolutional layer Kernel: [256, 128, 64, 32, 16, 8] Stride: [16, 8, 4, 2, 1]

Pooling Layer Kernel: [256, 128, 64, 32, 16, 8] Stride: [16, 8, 4, 2, 1]

Activation layer Type: ReLU, Tanh, SeLU

Embeddings layer Neurons: [64, 32, 16, 8]

Optimizer Type: Adam, AdaGrad, RMSProp, SGD LR: [1e−4, 3e−4, 1e−3, 3e−3, 1e−2, 3e−2]
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This dataset originates from the year 2018 and is publicly
available [5]. Similarly as with previous datasets, a total of
45,000 traces are used to compose the training set. For the
reward and test set, 5000 traces are used. The traces have
a dimension of 2200 features. For the CHES_CTF dataset,
the HW leakage model is used to benchmark the proposed
framework.

6 Experimental environment

The proposed framework is trained for a total of 1000
episodes. During training, the framework chooses a set of
regions based on a batch size of 512 traces. Subsequently,
the framework chooses a network architecture. As described
in Algorithm 3, the selected network is trained for 1 epoch
with a batch size of 512 and a margin of 0.4. Training of
the PPO algorithms of the proposed framework is done with
the hyperparameters given in Table 5. The hyperparameters
are chosen based on previous implementations [25] and the
algorithm’s authors recommendations [32].

7 Results and discussion

The proposed framework was run on each dataset for a total
of 1000 episodes, in which, during training, the network
found, selected, and scaled-down various numbers of Points
Of Interest. The best-performing set of POIs and the best-
performing NN were then used for the guessing entropy
calculation (averaged over 100 attacks). Training on the
AES_HD dataset took 8h, and training on CHES_CTF took
9h. For both ASCAD datasets, training took 12h.

To gain insight into the learning of the proposed frame-
work, Fig. 6 shows the max reward through time (episode).
One can observe that the reward constantly increases with
more episodes, meaning that the framework is learning
from the environment and gradually producing better attack
results. Specifically, the results show that the proposed frame-
work found a well-performing set of POIs and a network
architecture within 244 episodes for the ASCAD_F dataset
with HW and 178 episodes for the Identity model. For the
ASCAD_R datasets, the proposed framework reaches the
highest reward within 681 episodes for the HammingWeight
leakage model and 228 episodes for the Identity leakage
model. For the AES_HD datasets, the highest reward is
reachedwithin 862 episodes, and for theCHES_CTFdataset,
the good POIs and network architecture were found within
577 episodes.

Fig. 6 Rewards during training on different datasets and leakage models
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Table 6 A summary of the
results of each method on each
of the four datasets (HW/HD)

Dataset SOST SNR PCA LDA Triplet AutoPOI

AES_HD > 5000 1094 2513 1104 1664 990

CHES_CTF 4510 > 5000 > 5000 > 5000 > 5000 1830

ASCAD_F 4522 1184 203 > 5000 194 193

ASCAD_R > 5000 > 5000 452 > 5000 164 1499

Bold indicates best performance
Table 7 A summary of the
results of each method on each
of the two datasets (ID)

Dataset SOST SNR PCA LDA Triplet AutoPOI

ASCAD_F > 5000 > 5000 436 > 5000 158 180

ASCAD_R > 5000 > 5000 > 5000 > 5000 > 5000 > 5000

Bold indicates best performance

Among all tested settings, except ASCAD_R with the ID
leakage model, all tested settings reach a reward above 0.8,
indicating the framework manages to find both promising
input regions and triplet network architectures via interac-
tions. The results show the proposed framework’s effective-
ness in finding good POIs and network architectures.

Next, we benchmark our framework with different POI
selecting methods and Template Attack. Specifically, both
conventional methods and Deep Learning methods are taken
into consideration. As can be seen fromTables 6 and 7, which
provideGE to reach< 1 for eachdataset, the proposed frame-
work is the only method able to provide consistent results.
Especially when using the Hamming Weight leakage model,
the proposed framework is the only method that can break
all four datasets, as observed in Table 8. Not only is the pro-
posed framework consistent with finding POIs, but it can
also find optimized POIs such that it attains state-of-the-art
performance for three out of four datasets for the Hamming
Weight. Although our framework fails to break ASCAD_R
with the ID leakage model in the current setting, increasing
the number of episodes could be a possible solution. On the
other hand, the conventional feature selection methods and
triplet networks are only functional with specific settings.
Therefore, it can be considered that our approach is more
general in terms of point of interest selection.

8 Conclusions and future work

This paper introduces a novel reinforcement learning-driven
framework, AutoPOI, based on Proximal Policy Optimiza-
tion, which can find, select, and scale down POIs. The
framework analyzes leakage traces and designates regions
of features. The proposed framework selects several of these
regions as POIs. After that, the framework constructs a neu-
ral network to provide a scaled-down version of the selected
regions. Template attacks are mounted with these scaled-
down features, and rewards are given based on the attack
performance obtained using a specific reward trace set. The
framework automatically adapts to the rewards given, thereby

Table 8 An overview of the percentage of finding the correct partial
key within the maximum amount of traces

SOST SNR PCA LDA Triplet AutoPOI

0.33 0.33 0.66 0.16 0.66 0.83

finding the best-performing regions and networks tailored to
each dataset.

The attack performance, represented by guessing entropy,
is extensively tested for each dataset. The results show that
the framework can break almost all datasetswhere the current
state-of-the-art methods cannot. Furthermore, the proposed
framework is efficient in finding promising POIs and net-
work architectures, achieving state-of-the-art performance
for most attack settings. Not only is the running time of the
algorithm short compared to other currently used methods,
but the results also show that early on during training, the
proposed framework can find well-performing POIs and net-
work architectures. For future work, it would be interesting
to test the framework on more datasets and several com-
mon countermeasures, such as desynchronization and noisy
(Gaussian noise) data. Furthermore, implementing an early-
stopping mechanism would be helpful in reducing the time
consumption of the framework.
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