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Abstract

Pushing the envelope of aerospace structures requires the complete exploitation of their
potential in terms of load-carrying capacity per unit weight for both economic and ecological
reasons: the two most important being the reduction of fuel consumption and greenhouse
gas emissions. A key approach involves allowing structures like stiffened panels to function
within the post-buckling range domain while in service. To do so, the finite element approach
allows a broad design space for researching the post-buckling behaviour of such structures.

Accurately representing post-buckling behaviour in finite element models requires account-
ing for geometric and loading imperfections. The present study explores their effects on the
post-buckling behaviour of a composite L-stiffened panel. A finite element model is created
and validated based on an experimental case. This is then further modified to incorporate
imperfections. Geometric imperfections are modelled using linear eigenvalue modes, while
loading imperfections are introduced via a rigid loading plate making contact at an angle.

The research showed that both first and higher eigenmode combinations for geometric imper-
fections influence post-buckling behaviour. Their shape and amplitude impact the transition
into post-buckling and their ultimate loads. Similar behaviour was also observed for loading
imperfections. Additionally, their configuration also showed an offset in axial displacement
results. These insights emphasise the need for precise imperfection modelling to promote
safer and more efficient post-buckling design of aerospace structures.
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”Like my panels, my life is a canvas of imperfections,
each flaw painting a unique and non-linear story.”

- H.K. Almaz
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1
Introduction

The aerospace industry has been experiencing rapid growth, and so have their greenhouse
gas emissions. In 2022, the aerospace sector was responsible for 2% of global carbon
dioxide (CO2) emissions1. Given the swift expansion of the industry, there is a pressing
need for action within aerospace companies to reduce their ecological footprint. The Inter-
national Civil Aviation Organisation (ICAO) agreed on a long-term goal of achieving net-zero
CO2 emission by 2050 [1]. One of the challenges that has to be overcome to achieve this
goal is exploiting structures to their fullest potential. Enabling this will result in lighter, more
economic designs, reduced fuel consumption, and ultimately lower emissions. To pursue
these goals, new design scenarios are being explored. An example is the European CO-
COMAT project, which was initiated to investigate the effects of reducing structural weight
by allowing stiffened panels to undergo post-buckling. Buckling is defined as the sudden
or gradual change in shape of a structure at a critical load. Hence, post-buckling refers to
the non-linear behaviour after this point. Stiffened panels, commonly found in aircraft wing
box designs, effectively enable the structures to handle increased loads without adding ex-
cessive weight. Upon buckling, the stiffness of a stiffened panel’s skin decreases, and the
stiffeners assume a more significant role in bearing the redistributed loads. Therefore, to
fully realise the potential of these designs, it is essential to understand their post-buckling
behaviour. By allowing post-buckling, one extends the failure or stability limit of the struc-
ture. Extending the structure’s limit permits designs with less reinforcement for the same
load case, resulting in lighter and more environmentally friendly designs. For stiffened com-
posite panels, the shift in approach from the current design scenario to a future approach is
illustrated in Figure 1.1.

1https://www.icao.int/environmental-protection/pages/aircraft-engine-emissions.aspx
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Figure 1.1: Current and future design scenarios for typical stiffened composite panel (Figure Courtesy: [2]).

The following sections provide a comprehensive overview of existing research on analysing
the post-buckling behaviour of stiffened panels. The primary focus will be on examining
the influence of imperfections, which mainly arise from manufacturing errors or variations in
material properties. It is crucial to consider these irregularities to comprehend post-buckling
behaviour accurately.

1.1 Literature Review
The review considers analytical and finite element (FE) models, with more priority on the
latter, as they stand out in their ability to model physical principles for more complex ge-
ometries. Given the high costs associated with experimental work, particularly during the
preliminary design stages of a design process [3, 4], they will be only discussed in the con-
text of validating the FE models. Once validated with experimental data, FE models are
more cost-effective and allow for the exploration of a broader design space.

1.1.1 Analytical Models
One of the works on post-buckling has been presented by Romeo et al. [5]. They formulated
a closed-form solution for the out-of-plane displacement of the skin between consecutive
stiffeners of a straight composite panel. Because of the limited availability of experimental
data in the field at the time of publication in 1997, an experiment was conducted to vali-
date the analytical predictions and assess the accuracy of the proposed model. Unstiffened
and blade-stiffened panels2, with simply supported boundary conditions, were subjected to
biaxial compression (Ny = 40% Nx) in the test. Figure 1.2 presents the results obtained
for the analytical and experimental work in the case of an unstiffened panel to compare
the skin behaviour. The analytical results are categorised into outcomes from load control
(L.C.) and displacement control (D.C.) tests for both perfect and geometrically imperfect
models. One of the observations is that the case with D.C., including imperfections, shows

2A blade stiffener is a stiffener attached perpendicular to the panel, featuring horizontal flanges on both sides
that are connected to the panel skin.
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better agreement with the experimental results (see left graph). The right graph illustrates
the out-of-plane displacement across the panel’s mid-length at an applied longitudinal load
of 186 kN, again with better agreement for the D.C.-based results. The analytical models
could not predict the post-buckling behaviour because the ultimate load was reached before
non-linear behaviour was expected. Therefore, it was not realistic to compare the analytical
predictions with the experimental results for the stiffened panel, which had an ultimate load
twice that of its buckling load since the stiffeners continued carrying the load after buckling.
[5]

Figure 1.2: Experimental and analytical results with initial imperfections: Out-of-plane displacement curves
versus applied longitudinal load (left) and out-of-plane displacement across the panel mid-length at an applied
longitudinal load of 186 kN (right) (Figure Courtesy: [5]).

Vescovini et al. [6] and Schilling et al. [3] also formulated analytical expressions applied to
stringer-stiffened single panels. Similarly, Mittelstedt et al. [7], Chandra [8] and Beerhorst et
al. [9] focused on single panels. The differences in those research studies lie in, amongst
other details, the type of boundary conditions and loads applied. Many of these analytical
models show remarkable computational efficiency. However, a major limitation arises in
their applicability, especially concerning more complex structures and the presence of dis-
continuities such as cut-outs. Only a few studies have considered multiple panel assemblies
for their analytical tools, such as the work by Milazzo et al. [10] and Castro et al. [11], both
focussing on dividing the main domain into subdomains.

1.1.2 Finite Element Models
Typically, when the geometry being analysed becomes complex or discontinuous, the ge-
ometries are approximated with a more general approach based on simpler entities. The
finite element method (FEM) is amongst the most popular tools for analysing mechanical
problems. One of the advantages is its capability to handle complex geometries and bound-
ary conditions that are difficult to model analytically. FEM is extensively applied to predict
the post-buckling behaviour of stiffened panels [12–16]. This increased fidelity comes at
the cost of increased computational expense. However, this can be reduced by selecting
more suitable parameters, such as the mesh size, without affecting the relevant results for
a particular case.

In the context of post-buckling, some papers have explicitly discussed the influence of geo-
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metric imperfections and the methods employed to implement them in FE models. Arbelo
et al. [13] analysed the effect of imperfections on the post-buckling behaviour of stiffened
panels. The work analysed composite panels subjected to in-plane shear loading, also
considering imperfections resulting from the geometric and material nonlinearities. Good
agreement was achieved upon comparing the numerical results obtained from the commer-
cial solver ABAQUS with the experimental data (Figure 1.3). Mid-plane imperfections of the
skin seemed to have minimal impact on the post-buckling behaviour. However, an evident
offset was noted in the out-of-plane displacement between the experimental and numerical
results. This was attributed to the clearance within the loading frame of the test device.

Figure 1.3: Comparison of the load with respect to displacement for the numerical and experimental results
(Figure Courtesy: [13]).

Lynch et al. [14] investigated the behaviour of stringer-stiffened panels subjected to com-
pression loads in fuselage structures. The analysis of post-buckling behaviour was carried
out using ABAQUS and the Newton-Raphson method. Although the conventional Newton-
Raphson method demonstrates good convergence rates [17], it may fail to converge when
sudden non-linear behaviour is observed in a structure, such as load drops. To mitigate
this problem, artificial damping was introduced in the non-linear solver, where artificial vis-
cous forces are created to dissipate the energy of local instabilities. The imperfection was
included using the buckling mode shape. This method imposes a mode from an eigenvalue
analysis as an initial state of the model geometry, whose amplitude is scaled using a scaling
factor. The maximum scaling factor for the imperfection amplitude equals 10% of the skin
thickness, a typical value for riveted structures [14]. The ultimate loads obtained (Figure 1.4)
revealed a high sensitivity to overall imperfections. The presence of the imperfections led to
higher out-of-plane displacements with increasing compression loads and, ultimately, lower
failure load: Figure 1.4 shows the clear difference in failure load with the increase of im-
perfection magnitude. Although the imperfections are present in the specimen, they do not
occur in the actual fuselage structure because of the presence of frames in the latter case.
The frames prevent the deflection of the stiffeners, and the only possible deflection occurring
in the skin is in between the stiffeners, proving that incorporating such imperfections is still
essential for more accurate and representative models. To create better agreement with the
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experiments, Lynch et al. recommended the inclusion of residual stresses resulting from
riveting.

Figure 1.4: Different lines representing the load versus axial shortening of two test specimens and the
numerical models with and without imperfections (Figure Courtesy: [14]).

The inclusion of buckling mode shapes from eigenvalue analysis, as demonstrated by Lynch
et al., is a commonly employed method to account for geometric imperfections. This ap-
proach is also underscored in the paper by Castro et al. [18] and the review by Farzanian et
al. [19]. Schafer and Pekoz [20] propose a modelling strategy to address geometric imper-
fections, recommending the combination of at least two modes with distinct shapes. Their
study provides an example where the inclusion of only one mode yields to be less conser-
vative, emphasising the necessity of combining appropriate modes to generate an accurate
geometric pattern compared to measured imperfections. The amplitude of the imperfection
is determined by applying one of the approximate formulas expressed in Equation 1.1 [20]:
The maximum amplitude α is formulated in terms of panel width w or thickness t in mm
(for w/t < 200). These equations are derived using simple rules of thumb and probabilistic
analyses. The reader is referred to the paper [20] for the complete explanation.

α ≈ 0.006w

α ≈ 6te−2t
(1.1)

Following a similar train of thought, Gardner [21] focused only on the first two modes. How-
ever, here the amplitude was determined by measured imperfection values and empirical
equations. Upon comparing with experimental test results, the empirical equation showed
the best agreement, see Equation 1.2 [21]. The constant γ in the expression is usually deter-
mined experimentally, but Dawson and Walker suggest γ = 0.2 as the most suitable factor
for determining the amplitude. The yield stress σy and critical buckling stress σcr are based
on the material properties.

α = γ (σy/σcr) t (1.2)
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Bisagni and Dávila [22] consider linear combinations of the first three buckling modes from
the linear eigenvalue analysis and scaling these to an amplitude of 1% of the skin thick-
ness. This amplitude was selected to align the outcomes of numerical analyses with the
experimental data through curve fitting.

Continuing on the review on stiffened panels, Ambur et al. [23] add measured geometric and
thickness imperfections in their model. The latter results from uneven thickness distribution
over the skin. The inclusion of the imperfections produced load-displacement values similar
to those obtained from the experiments. However, there is no elaboration on how these
imperfections influence the post-buckled shape and the ultimate loads of the structure.

Numerical analysis performed by Orifici et al. [24] included measured geometric imperfec-
tions in the skin of the blade-stiffened panels. The primary distinction was observed during
the shift from local skin buckling to global buckling, where the stiffeners mainly carry the
load in global buckling. The observed modes from the experiments were captured well in
the numerical model using ABAQUS (see Figure 1.5), except for the modes with asymmetric
behaviour. This is due to the shape changes at an edge caused by the manufacturing and
curing process. In addition to this, because of the absence of longitudinal edge supports,
the geometric imperfections are likely to influence the buckling shapes directly [24].

Figure 1.5: A comparison between the load-shortening behaviour of a structure as observed through
experimental testing and as predicted by numerical simulations (Figure Courtesy: [24]).

In the more recent work of Steltner et al. [12], an approach is presented for optimising the
thickness of curved stiffened panels subjected to geometric imperfections. The perfect and
imperfect panel results are shown in Figure 1.6. Comparing Figure 1.6(b) and (c) show skin
sensitivity to imperfections. The perfect panel reaches the global buckling at a displacement
(up) ~1.5 mm (Figure 1.6b - middle plot), and the imperfect panel at ~1.1 mm (Figure 1.6c -
middle plot). The third plot in Figure 1.6b and Figure 1.6c show the post-buckling behaviour.
In the case of the imperfect panel, the second decrease in reaction force happens at ap-
proximately up ~1.3 mm, corresponding to the formation of a post-buckled shape [12]. In
the remaining part of the study, the imperfect panel is regarded as the initial case due to the
substantial influence of imperfections on both buckling behaviour and load-carrying capacity.
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Figure 1.6: Force–displacement curves and visualisations of initial buckling mode up to final post-buckling
mode (Figure Courtesy: [12]).

Prato et al. [15] also consider the combined effect of joints and geometric imperfections in
their study of L-stiffened aluminium panels. In the experiments, the stiffeners were joined
using a thin layer of adhesive and rivets. In FEM, two types of models are created: In the
first one, the components are modelled out of one part, whereby the stiffeners and panel
are integrated (single-component model). For the second, they are modelled separately
(multi-component model) and include the joint. The rivets, in this case, are modelled using
discrete node-based elements, see Figure 1.7, and their masses are included in the form of
point loads. The adhesive was initially modelled using cohesive elements. However, their
effect was negligible in the force-displacement curve compared to the rivets, so they were
not considered at the end.

Figure 1.7: The inclusion of the rivets as discrete joints in the imperfect FE model (Figure Courtesy: [15]).

Figure 1.8 compares the experimental results and the multiple-component FE models by
Prato et al. [15]. The perfect ’benchmark’ model is compared with different models with
imperfections. The in-plane imperfections, due to different stiffeners and panel lengths, are



1.1 Literature Review 8

introduced based on measurements from the experiments. The out-of-plane imperfections,
on the other hand, were introduced by imposing the modes from the linear eigenvalue anal-
ysis. The figure presents the results of the models where in- and out-of-plane imperfections
are included for specific stiffeners, and the ’all-imp.’ model includes all the imperfections.

Figure 1.8: Comparison of the multi-component ’benchmark’ model including joint imperfection with varying
geometric imperfections using experimental testing and finite element modelling (Figure Courtesy: [15]).

Around the buckling load, minor differences are noticeable between the models for different
imperfections. But their difference increases in the post-buckling region. Comparing the
single-component and multi-component models, Prato et al. state that both models demon-
strated sensitivity to geometric imperfections in the post-buckling region. They also noted
that incorporating the joints increased the correspondence between the FE models and the
experimental results. To improve the modelling of the joints, the authors recommend adding
plasticity and a failure criterion. Albeit at the expense of increased computational cost.

Up to this point, geometric imperfections have predominantly been accounted for in numeri-
cal predictions. Nevertheless, there remains a gap in studying the effects of alternative types
of imperfections. Stiffened panel studies have rarely addressed imperfections resulting from
unevenly distributed loading - referred to as loading imperfections from now on - despite the
intended uniformity of the load. So far, in all the aforementioned literature models, the loads
were considered to be evenly distributed. One of the recent papers addressing the possi-
ble influence of loading imperfections is the research presented by van Dooren et al. [25].
They developed a numerical and experimental model for the skin stiffener separation of ther-
moplastic welded panels. According to the authors, the observed differences between the
experimental and numerical results were possibly caused by loading imperfections. These
imperfections stemmed from the lack of perfect flatness and alignment in both the machine’s
loading plate and the panel’s loading surface.

To the author’s knowledge, the only research found to include loading imperfections for
composite stiffened panels is the work of Park et al. [26]. In their paper, they discuss the



1.1 Literature Review 9

design proposed by Nagendra et al. [27], blade-stiffened composite panels loaded in axial
compression. These panels were manufactured and tested by NASA. The major difference
between the design and test data was the out-of-plane displacement. Hence, the objective
of Park et al. is to improve the correlation between these outcomes in their study. One
approach in the numerical study of Park et al. was tilting the loading plate at a certain
angle to introduce loading imperfections. A range between 0.005 and 0.01 degrees was
considered for the tilt angle. See Figure 1.9 for the schematic overview [26].

Figure 1.9: Overview of the side view of the blade stiffened panel with the loading plate and tilt angle (Figure
Courtesy: [26]).

This approach resulted in similar out-of-plane and in-plane patterns as observed in the ex-
periments. In Figure 1.10, the test data is compared with numerical models with different
tilt angles. Among them, Model 9, with a tilt angle of 0.01 degrees, exhibited the most
favourable response. Nevertheless, it demonstrated a comparatively lower overall offset.

Figure 1.10: Load versus shortening curve for test- and numerical data (Figure Courtesy: [26]).

Park et al. [26] tilt-angle approach was adapted from the study of Hilburger [26, 28]. They
investigated compression-loaded cylindrical shells with cutouts. This studymodelled loading
imperfections in two different ways: one already mentioned, the tilted loading plate, which
usually occurs at the start of the experiment and causes a tilted contact at the edges of the
cylindrical shell. The second approach is to measure the imperfections in the loading plate.
Park et al. did not consider this approach since no measurements were performed on the
loading plate.
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1.1.3 Concluding Remarks
The discussed results show that imperfections affect the post-buckling behaviour of stiffened
panels. The effect is mainly observed globally when the stiffeners carry the loads. There-
fore, including imperfections is necessary for accurately analysing stiffened panels and their
post-buckling behaviour. Modelling geometric imperfections has been well presented in the
literature [12, 14], but not loading imperfections. Only the study conducted by Park et al.
[26] has addressed the modelling of loading imperfections for composite stiffened panels.
Further research is necessary to validate the load-displacement and offset trends observed
in their work. Moreover, exploring the applicability of these trends to a different structural
configuration also requires additional research.

1.2 Research Objective
Based on the literature review, it was understood that imperfections influence the post-
buckling behaviour of composite-stiffened panels. Geometric imperfections are usually mod-
elled using either measured imperfections, or, eigenmodes. In the case of the latter, the first
few modes are often imposed from an eigenvalue analysis as an initial state for a non-linear
analysis. This second method is used in the present study.

To the authors’ knowledge, loading imperfections for straight stiffened composite panels are
only included in the study from Park et al. [26]. However, they do not mention the influence
of such imperfections on post-buckling behaviour. This presents a notable research gap,
necessitating further investigations for more conclusive results. They are to be verified with
the trends observed in the research from Park et al.

For the present thesis, the focus will be on a low-torsional panel with L-shaped stiffeners,
due to their common use in aerospace applications. The thesis will also systematically anal-
yse the inclusion of geometric imperfections in an FE paradigm. The previous literature has
demonstrated the importance of including these imperfections in order to obtain more accu-
rate models that allow for a better understanding of the observed post-buckling behaviour.
Additionally, loading imperfections are modelled in this research to study how they affect
post-buckling. Therefore, the main objective of this thesis can be summarised as:

To systematically show the influence of geometric and loading imperfections on
the onset of buckling and post-buckling behaviour of an L-stiffened composite
panel using finite elements.

To study the influence of imperfections on post-buckling behaviour, a baseline FE model
was desired. For this, a stiffened panel design from Lanzi et al. [29–32] was modelled in
ABAQUS, whose buckling behaviour is ought to be validated using their experimental data.
A main research question and supporting questions are defined to meet this objective. The
sub-questions (SQ) are presented with hypotheses (H), which are based on what has been
learned from the literature until now.
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Main research question:

What is the influence of geometric and loading imperfections on the post-buckling
behaviour of L-stiffened composite panels?

Sub-questions and hypotheses:

SQ1 - Which buckling modes can be employed to more accurately represent the geo-
metrical imperfections and observe responses according to experimental data?

H1 - The literature [19, 22] has presented strategies that include the use of eigen-
modes from the linear eigenvalue analysis for geometric imperfections. Based on
these studies, this thesis hypothesised that the first modes of the eigenvalue analysis
will generate more representative results than higher modes close to the ultimate load.

SQ2 - How can loading imperfections be modelled effectively to align the responses
of the FE model with experimental data?

H2 - In this thesis, it was hypothesised that loading imperfections through the tilted
angle approach, as suggested by Park et al. [26] can accurately represent the experi-
mental data.

SQ3 - How do geometrical and loading imperfections influence the onset of buckling
and the post-buckling?

H3 - For geometric imperfections, it could be inferred from the literature [14, 24] that
they have an influence on the ultimate load. Hence, in this thesis it was hypothesised
that the geometric imperfections will only influence the ultimate load for the L-stiffened
panel model. This is also hypothesised for the loading imperfections. In addition to
this, based on the work of Park et al. [26], it is expected that a similar offset trend is
going to be observed from the experimental data.

1.3 Thesis Outline
First, the FEM model that will serve as baseline is explained in detail in Chapter 2. Sub-
sequently, Chapter 3 elucidates the methodology for modelling geometrical and loading im-
perfections in this baseline model. The influence of different imperfections were inferred
from the study and also presented here. In Chapter 4, these observations are used to anal-
yse and discuss post-buckling behaviour. Chapter 5 concludes the findings from this thesis,
which helps answer the research questions and examine the hypotheses. The recommenda-
tions in Chapter 6 include a proposed experimental test methodology for assessing loading
imperfections.



2
Baseline Model

As became evident from the previous chapter, the objective of this thesis is to systematically
analyse the influence of imperfections on post-buckling behaviour for a composite L-stiffened
panel. To do so, a baseline model is created with FEM due to its capability to simulate
complex physical problems. The buckling behaviour of this model is then validated using
data from Lanzi et al. [29–32]. In the following chapter, this validated model serves as a
baseline for conducting additional studies.

First, Section 2.1 presents the reference case and explains the experimental conditions.
This is followed by Section 2.2, detailing the construction of the baseline model, whose
buckling behaviour is then validated in Section 2.3 using experimental data from Lanzi et al.
[29–32].

2.1 Reference Case
The test approach of Lanzi et al., from now on referred to as Lanzi case, is straightforward:
Axial displacement-controlled tests are performed on two pristine panels with a shortening
velocity of 0.05 mm/s. The panels have L-shaped stiffeners and theoretically the same char-
acteristics, but as later will become clear, there is a deviation in the experimental results. The
material used is woven carbon fibre-reinforced plastic (CFRP), see Table 2.1, with [0,90]S
layup for the stiffeners and [45,0]S for the skin. The zero-degree plies in the skin and stiff-
eners are aligned along the loading direction. The stiffeners and skin undergo separate
manufacturing processes before joining through adhesive bonding and riveting. The testing
setup is illustrated in Figure 2.1, and a schematic overview of the panel is shown in Fig-
ure 2.2. The panel is clamped using two longitudinal beams for the top and bottom surfaces.
End tabs are used for the corners to constrain translational and rotational degrees of free-
dom (not visible in Figure 2.1) [29]. Based on the available data, it was unclear whether the
dimensions provided for the panels included the clamping system, as further elaborated in
Section 2.2.1. Regarding the measuring approach, the axial shortening in the setup is mea-
sured using two linear variable differential transformer (LVDT) transducers, placed close to
the free edges. This is done to ensure that the measured shortening is not affected by de-
formations of the clamping system. The load history is measured with a load cell, referred
to as MTS load cell in the figure.

12
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Figure 2.1: Schematic overview of the testing
setup, copied from [29].

Table 2.1: Mechanical properties, adapted from [30].

Property Value Unit

Elastic modulus E11=E22 55700 [N/mm2]
Shear modulus G12=G13=G23 3060 [N/mm2]
Poisson coefficient E11=E22 0.048 [-]
Tensile strength σ11=σ22 431 [N/mm2]
Compression strength σ11=σ22 467 [N/mm2]
Shear in-plane strength τ 99 [N/mm2]
Ply thickness 0.33 [mm]

Figure 2.2: Stiffened panel dimensions in mm: Skin is shown on the left (Figure Courtesy: [29]), and
L-stiffener on the right.

2.2 Finite Element Implementation
The FE models are created in the commercial software ABAQUS 2023. Two modelling
approaches are followed to create a model with the closest characteristics to the Lanzi
case. The first model employs conventional S4R1 elements, and the second SC8R2 contin-
uum shell elements. The former requires less computational effort than the SC8R element-
containing models. Both element types account for transverse shear deformation. However,
their through-the-thickness behaviour differs: the S4R elements capture the properties in
the mid-plane of the element and are formulated assuming plane stress, whereas the SC8R
continuum shell model allows for stacking of the elements and features a constitutive re-
lation for out-of-plane stresses. In the present study, SC8R elements are implemented by
stacking four elements along the thickness direction, one for each ply. A mesh convergence
study is performed to ensure that the final load-displacement curves are mesh-independent.

1Quadrilateral conventional 4-node general purpose shell with reduced integration [33].
2Quadrilateral continuum shell element with 4-nodes facing the bottom-, and 4-nodes facing the top surface

[33].
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The axial compression load as well as the corresponding displacement (axial shortening)
are important outputs for the studies performed on imperfections, as will become clear in
Chapters 3 and 4. The study resulted in a mesh size of 5 mm x 5 mm for both the S4R and
SC8R models, with their respective element types assigned, after refining the mesh until the
loads converged. However, further mesh refinement was required around the stiffener fillet
(Figure 2.3) to adequately cover the high-stress gradients in this region. The fillet region
is depicted in an enlarged view within Figure 2.2. In Figure 2.3, the mesh for the stiffener
is depicted, and as it becomes clear, 10 elements are used along the curvature of the stiff-
ener fillet. Also, the number of elements along the width of the stiffener can be deduced:
5 elements along both sides. No further mesh study was needed through the thickness of
the SC8R model as the four-element mesh already gave converged results. The complete
mesh convergence study is presented in Section A.2.

Figure 2.3: Detail view for the meshed stiffener with 10 elements along the fillet and 5 elements along the
short edges.

2.2.1 Boundary Conditions
The boundary conditions are selected to replicate the experimental setup as accurately as
possible. Referring back to the setup illustrated in Figure 2.1, the panel is clamped on both
the top and bottom sides, except for the loading direction (U2) at the top. In ABAQUS, this
is modelled by tying the top and bottom edges of the skin and stiffeners to their respective
reference points with the corresponding restricted degrees of freedom. This is depicted
on the left in Figure 2.4 for the S4R model. The longitudinal edges are left free. While
conventional shell models have displacement and rotational degrees of freedom, continuum
shell models are restricted solely using the displacement degrees of freedom.
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Figure 2.4: On the left, the applied boundary conditions are shown, and the right depicts the tie constraint of
the skin and stiffeners.

The information about the clamping mechanism and clamped surface area could not be
well-understood from the published work of Lanzi et al. [29–32]. It is crucial to accurately
model the surface area, as this contributes to the creation of a validated model that closely
represents the buckling behaviour of the Lanzi case. Hence, a trade study was conducted.
In literature [25, 34], it is commonly observed that the ends of such stiffened panels are
potted for a better introduction of the loads. The potting has the purpose of clamping the
edges and preventing local buckling or compression failure at the ends [34].

In the FE models, the potting region was modelled in the form of boundary conditions to
simulate the potential clamped region: in Figure 2.5, this region is illustrated in the left fig-
ure. The estimation of the potted surface area was approximately 50 mm from the edges,
determined by counting the pixels in the images provided in the study by Lanzi et al. [29].
Within this region, both the out-of-plane (U3) and the in-plane transverse displacement (U1)
are restricted. For additional details, refer to Section A.1. Nonetheless, this method was
ultimately disregarded due to an observed error rate that was higher than in the Lanzi case,
as detailed in Figure A.3. As an alternative, the complete surface area was included in the
analysis, depicted on the right in Figure 2.5, which resulted in better agreement. For a more
comprehensive explanation of the results obtained from the modelling iterations, including
the potted model, before arriving at the final baseline model, refer to Appendix A.
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Figure 2.5: On the left, the grey regions are the potted area (not to scale), while on the right figure, no potting
is included.

As mentioned earlier, the Lanzi case specifies that the skin and stiffeners undergo separate
curing processes before bonding and riveting. In the FE model, the lack of available data on
the adhesive used prevented modelling this region. As for the rivets, it is assumed that these
joints are sufficiently rigid to act collectively as a single rigid body. This has been represented
using a tie ”surface-to-surface” constraint, allowing the stiffener flange to deform alongside
the skin. In the model illustrated on the right side in Figure 2.4, this feature is depicted by
yellow symbols, indicating the tied regions. Not previously mentioned, but to prevent mesh
distortion caused by the tie constraint, the meshes for the skin-stiffener interface have been
aligned, as shown in Figure 2.6, resulting in coinciding nodes.

Figure 2.6: Visualisation of the aligned meshes.

2.2.2 Analysis Methods
An eigenvalue and a dynamic implicit (DI) analyses were performed for the FE models. The
eigenvalue analysis is based on a linear pre-buckling state, and is used to determine the
linear buckling load. In addition to this, the linear buckling eigenmodes are used to model
geometric imperfections, as detailed in Section 3.1. The DI analysis has the benefit of con-
sidering inertia effects and improved convergence behaviour compared to general static
analysis, especially during dynamic events such as the stiffness reduction at buckling and
the later buckling mode changes.

A challenge imposed by DI analysis is the selection of the correct displacement velocity rate,
as it can affect both the computational time and the convergence of the solution. At high
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velocities coupled with sudden changes in the stiffness of the structure, the solution may
diverge. ABAQUS’s built-in automatic time incrementation algorithm attempts to mitigate
this by reducing the time increment. However, even with a decreased time increment, the
solver may still encounter overshooting issues followed by sudden load drops rather than
normal convergence. Low velocities on the other hand, lead to increased computational
costs. The shortening velocity by Lanzi et al. [29] is for this reason not adapted. Based on
a convergence study that concentrated on the load-axial shortening relation, the analysis
initially commenced with a velocity of 1.3 mm/s and subsequently decreased to a rate of
0.13 mm/s. Ultimately, this study led to the selection of a velocity of 0.13 mm/s for both the
S4R and SC8R models. The findings of this study are presented in Section A.3.

2.3 Validation
The experimental data and the obtained results from the FE models are shown in Table 2.2.
Starting with the outcomes of the two-panel tests conducted by Lanzi et al. [29], referred to
as Panel 1 and Panel 2, their initial stiffness is equal, even though there is a small difference
in the first buckling load. The most notable observation is the difference in their ultimate
loads, which is approximately 12%. According to Lanzi et al. this could have arisen from
the differences in collapse modes: in the case of Panel 1, the failure was observed at half
the height of the stiffener web (Figure 2.7) - assuming that the authors refer to the vertical
section of the stiffeners, perpendicular to the skin. At these locations, the bending stresses
were higher than in the rest of the panel. Panel 2 also fails at the stiffeners, but at the top
and bottom parts. In both cases, Lanzi et al. state that the sudden failure of a stiffener redis-
tributes the stresses, ultimately leading to the final structural collapse occurring at different
loads.

Figure 2.7: Illustration of the three regions in the stiffener web.

It is noteworthy that the authors did not consider additional factors like possible defects
arising during the manufacturing of individual parts or defects introduced during the skin-
stiffener joining process.

The final two columns of Table 2.2 show the FE model results. The models show remarkably
similar outcomes. They also align closely with the characteristics of Panel 1.
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Table 2.2: The experimental data from the Lanzi case [32] and results obtained from the FE models.

Description
Lanzi case FE model

Panel 1 Panel 2 S4R model SC8R model

First buckling load [kN] 32.9 29.8 34.3 34.6
Axial shortening at the first buckling load [mm] 0.39 0.36 0.39 0.40
Initial stiffness [kN/mm] 83.7 83.5 87.9 86.5
Ultimate load [kN] 66.7 75.4 67.5 67.8
Axial shortening at the ultimate load [mm] 1.17 1.37 1.02 1.02

Given that the S4R and SC8R models have demonstrated nearly identical results, for sim-
plicity, only the S4R model is compared with Panel 1. The comparison is only made with
respect to Panel 1 since the buckling mode shapes were only provided for this panel. Fig-
ure 2.8 illustrates the out-of-plane behaviour during linear buckling for both Panel 1 and the
S4R model. The modes and corresponding loads are compared. The top two figures show
the transition before reaching the first buckling load. The DI analysis displays a trend simi-
lar to that observed in Panel 1. The comparison between the first buckling mode from the
DI analysis and the experimental data is presented in the second row. The results again
demonstrate similarities in terms of the number of half-waves and exhibit similar buckling
trends. In both the horizontal and vertical directions, five half-waves are observed in the FE
model and the experimental data.

Figure 2.8: Comparison of linear buckling shape on the unstiffened side: FE S4R model (left) and experiment
results of Panel 1 (right) [29].
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In Figure 2.9, the loads are plotted against the shortening for the two FE models and Panel
1 and 2 from the experiment. To summarise, comparing the baseline FE models and the
experimental data of Panel 1, two differences can be pointed out: stiffness varies after a
shortening of approximately 0.4 mm (see Figure 2.9), and the axial shortening at ultimate
loads varies by 13% (Panel 1- 1.17mm and; S4R model-1.02 mm). Refer back to Table 2.2
for the shortening values.

Figure 2.9: Experimental data [29] compared with FE models.

For the FE analysis, the simulation was terminated after a drastic load drop at around 67
kN for an axial shortening value of approximately 1 mm (Figure 2.9). After the load drop,
the number of half-waves remained at five in the horizontal direction; however, in the ver-
tical direction, it switched from five to seven half-waves. In real-life scenarios, such mode
jumps may lead to a sequence of events, including delamination and cracks followed by
crippling, or vice versa, as noted by Williamson et al. [35]. These phenomena result then in
the degradation of the panel’s properties. This claim can be further supported by the experi-
mental work of Faggiani et al. [36], that showed an audible snap following the mode jump in
their I-stiffened panel, accompanied by the sound of cracking. Moreover, Dávila et al. [37]
also observed delamination followed by crippling in their tested stiffened panel, leading to
ultimate failure.

Nevertheless, the FE model developed in the present study does not account for all possi-
ble failure modes. For example, interlaminar damage like delaminations and intralaminar
damage, such as the formation of transverse cracks, are not modelled. To further solidify
the rationale behind terminating the simulation subsequent to the load drop, it is hypothe-
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sised that the failure occurred due to the crippling - local failure - of a stiffener. An accurate
representation of this failure mode would require a progressive damage and failure model
for fibre-reinforced composites, which is not implemented.

A hypothesis is formulated based on what was mentioned at the beginning of this section:
Lanzi et al. [29] stating that the structural failure of both panels in the experiment is caused
by the local failure of a stiffener. To effectively verify this, two failure modes are checked: the
first involves checking for material failure, which could indicate damage such as delamination
or crack formation prior to crippling. The second mode investigates whether stresses in the
stiffeners exceed the critical, crippling stress, serving as an indicator of crippling failure.

The structure is first checked for material failure by performing a ply-level stress analysis.
The Tsai-Hill criterion was used to check for first-ply failure [38]. The equation below shows
the stresses that are read from the FE models: the tensile, compression and shear stresses.
When the failure index F surpasses ”1”, it marks the occurrence of first ply failure.

F =
σ2
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σ̄2
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− σ11σ22
σ̄2
11

+
σ2
22
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22

+
σ2
12

σ̄2
12

(2.1)

The value did not surpass 1, so the criterion was not met. This could be attributed to the mod-
elling approach used for the skin-stiffener connection, which assumes a perfectly bonded
region. There is also the option of applying other material failure criteria, such as Hashin’s
[39] or Puck’s failure criteria [40]. However, the required material data were not available.

The models were then reviewed for crippling using an empirical formula: the one-edge-free
stiffener formula from Kassapoglou [41] (see Equation 2.2) was used. For the width (b)
26 mm (assuming no fillet but a straight 90-degree corner), thickness (t) 1.32 mm and as
ultimate stress, the lower strength value of 431MPawas selected as a conservative estimate
(see Table 2.1). This resulted in a critical, crippling stress (σcrip ) of 109 MPa.

σcrip
σu
c

=
2.151(
b
t

)0.717 (2.2)

In ABAQUS, the reading of the in-plane stresses is not straightforward. To compare the
stress values, a critical section is selected, and the in-plane stress values for every ply
through the thickness are taken and averaged. In Figure 2.10, the maximum value for a
0-degree ply is shown. Upon taking the average in this section, it resulted in approximately
115 MPa, exceeding the theoretical value of 109 MPa.
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Figure 2.10: The maximum in-plane stresses encountered for a 0-degree ply at the point of load-drop.

The out-of-plane displacement corresponding to the stress distribution is notably high, as
depicted in Figure 2.11.

Figure 2.11: The out-of-plane displacements in the stiffeners at the point of load-drop.

In the FE model, while material failure thresholds were not exceeded, the surpassing of
crippling stress suggests a potential for failure following the load drop. Literature indicates
that such mode jumps may cause delaminations, consequently leading to crippling. Also,
a tie constraint with coinciding nodes in the FE model can potentially result in a more con-
servative load distribution compared to what might be observed in the physical panels, as it
overlooks factors such as joint behaviour, thus potentially underestimating the stress.

Another possibility is the (partial) debonding of the stiffener flange caused by rivets, leading
to bearing failure. This reasoning is based on the bending of the stiffener flange (horizontal
portion of the stiffener) and skin: see Figure 2.12 displaying a detail view on Figure 2.10.
Additionally, critical stress levels are observed at the fillet region, indicated by the red area
in Figure 2.12.
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Figure 2.12: Detail picture of the stress region shown in Figure 2.10.

From Figure 2.13, it is notable that the skin exhibits out-of-plane displacement in the unstiff-
ened direction. It is assumed that the stress behaviour shown in Figure 2.12 is influenced
by this.

Figure 2.13: Out-of-plane displacement of the skin at the stress distribution shown in Figure 2.10.

Finally, the out-of-plane displacements for three different load cases are compared in the
post-buckling regime with the Lanzi case in Figure 2.14. Lanzi case notes a range between
-5 and 5 mm for the out-of-plane displacement [29], and the baseline model has a range be-
tween -2.6 and 4.5 mm. The negative values are displacements outwards, and the positive
values are displacements inwards. While the maximum value (5 mm) shows good agree-
ment, the minimum value (-5 mm) deviates with a clear difference. Furthermore, the FE
models effectively replicate post-buckling behaviour until five half-waves.
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Figure 2.14: Out-of-plane displacements on the unstiffened side: Experimental data for Panel 1 (top) [29] and
FEM S4R model (bottom).

To summarise, the FEmodels show a good agreement with the Lanzi case. The sudden load
drop, leading to a mode jump, signals the necessity to terminate the simulation beyond this
point, given that the failure modes occurring after this point are not modelled. This decision
finds further support in the literature, which highlights that such sudden jumps can induce
damage, including delamination. Although the material failure criteria were not exceeded,
the observed high crippling stresses within the stiffener web, coupled with significant stress
differences in the flange and skin, reinforce the rationale. Given that the FE model does not
consider damage, their results are considered to be validated till the first load drop, beyond
which the analysis is terminated.

The baseline FE models are now considered validated up to the load drop. These validated
models serve as the foundation for the subsequent chapter, where additional studies are
conducted to analyse the influence of geometric and loading imperfections on post-buckling
behaviour.



3
Imperfection Modelling

The previous chapter established the validated baseline model for a stiffened panel case
study. This chapter outlines the methodology followed for modelling imperfections, which is
illustrated in the flowchart in Figure 3.1. In Section 3.1, the discussion covers the modelling
of geometric imperfections and their influence on the baseline model. Likewise, the mod-
elling and observed influence of loading imperfections are explained in Section 3.2. The
final block in Figure 3.1 outlines the defined outputs used to identify the influence of these
imperfections.

Figure 3.1: The steps followed to include imperfections in the models.

3.1 Geometric Imperfection
Various methods for modelling geometric imperfections exist, with some outlined in Chap-
ter 1. One approach involves incorporating measured data directly from experimental ob-
servations. Alternatively, eigenmodes derived from a linear eigenvalue analysis can be
employed. The first approach is not feasible due to the insufficient data available from the
Lanzi case regarding the measurements of geometric imperfections. The second option,
which assumes a shape based on linear buckling modes and modifies the respective nodes
accordingly in FEM, is preferred. In this method, eigenmodes derived from a linear buckling
analysis are used as the initial geometric state for DI analysis. These can be implemented
as either a single mode or as a linear combination of multiple modes. This approach for the
geometric imperfection w0 is mathematically represented by the following equation:

w0(x, y, z) =

p∑
i=1

ciwi(x, y, z) (3.1)

24
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where ci are arbitrary scalar weighting factors applied to each linear buckling mode wi(x, y, z).

3.1.1 Modelling
The modelling strategies proposed by Schafer and Pekoz [20] and Gardner [21] are adapted
as a modelling approach: combining at least two early linear buckling modes with different
shapes. Choosing different mode shapes are crucial to prevent mode cancellation, which
can occur when two modes with inverse deformations are superimposed. The weighting
factor ci, as shown in Equation 3.1, will be referred to as the amplitude from this point onward.
These amplitudes are expressed as percentages of the skin thickness, which is 1.32 mm.
The study by Lynch et al. [14] specifies 10% of skin thickness as a typical value for riveted
structures. The present research involves testing a range of amplitudes from 1% to 10% to
observe their influence on the stiffened panel.

As detailed in the upcoming section, a curve-fitting approach reveals that imperfection am-
plitudes up to 5%, yield results closely aligning with the initial baseline model. While real-life
structures typically exhibit deformations equivalent to higher amplitudes, as also noted by
Lynch et al. [14], it is important to clarify that these geometric imperfections do not manifest
in mode-shaped deformations. This study imposes the buckling modes on the initial geome-
try to represent the geometric imperfections observed in experimental data. The modes are
rather a tool to represent them within the FE paradigm.

In Figure 3.2, the first five eigenmodes for the baseline model are presented. The S4R and
SC8Rmodels showed identical modes, but for convenience, eigenmodes only obtained from
the former model are depicted.

Figure 3.2: The first five eigenmodes of the baseline model.

Here, it is evident that modes 1 and 2 closely resemble each other as the half-waves appear
at the same locations. One mode might be dominantly present in the physical realm, or a
transition between the modes could occur. However, only the first mode was considered
while making combinations, as these modes exhibit deformations in opposite directions. As
previously noted, this opposing nature could lead to the cancellation of the modes when
superimposed. All the considered mode combinations are marked with an ’x’ in the following
table.
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Table 3.1: The combination of modes considered for the geometrical imperfections (marked with an ’x’).

1st mode
2nd mode

1 2 3 4 5

1 - x x x

2 -

3 x - x x

4 x x - x

5 x x x -

For the combination of modes 1 and 3, the former predominantly features half-waves at
the edges, whereas the latter exhibits these more centrally on the panel. In the pairing of
modes 1 and 4, mode 4 displays a concentration of half-waves in the centre, though some
are present at the edges: these are minimal and unlikely to result in mode cancellation.
With modes 1 and 5, potential cancellation effects may arise at the edges, yet the distinct
behaviours of the skin in the midsection and edges for both modes mitigate this risk. Simi-
larly, modes 3 and 4 show similarities, but additional waves are visible in mode 4, resulting
in a unique half-wave distribution. As for combined modes 3 and 5, they exhibit unique
half-wave patterns. Lastly, for modes 4 and 5, while the former is characterised by more
pronounced half-waves in the midsection, the latter has half-waves distributed across the
panel, excluding the centre.

The initial state of the model with the mode combinations were not able to be visualised due
to the limitation of the solver used. However, their impact on the buckling mode shape of
the baseline model is visually presented in Section 4.2.

3.1.2 Observations
The hypothesis presented for the research questions (in Section 1.2) suggested that using
the first modes from the linear eigenvalue analysis to represent geometric imperfections
would provide more accurate results compared to eigenmodes with corresponding loads
close to the ultimate load (referred to as higher modes). Additionally, it was observed that
these imperfections would primarily influence the ultimate load. The figures in this section de-
pict varying amplitude ranges for load-displacement curves, illustrating differences between
the first and higher mode combinations. The data was manually extracted from ABAQUS
and plotted.

This section focuses on the influence of selected mode combinations on the ultimate load
and axial shortening values of the models. The objective is to identify combinations that
yield plausible results. In this context, ”plausible” refers to combinations that do not result in
unrealistically high ultimate loads and sudden stiffness differences. And, similar to Chapter 2,
the simulations are terminated after a load drop, because the outputs beyond this point are
not representative of reality since failure is not accounted as mentioned earlier. The findings
from this section will be discussed in more detail in Section 4.2, where the (post-) buckling
behaviour is addressed.
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The observations are presented and analysed by grouping graphs that exhibit similar be-
haviours. As mentioned earlier, amplitudes only up to 5% of skin thickness are presented
for the S4R models. For completeness, the 10% amplitude plots can be referred from Ap-
pendix B.

Modes 1-4 and Modes 4-5
Starting with Figure 3.3, the model with an amplitude of 5% exhibits stiffness degradation
compared to the other amplitudes. Such behaviour can result from the generation of bending
moments, which increases the out-of-plane deformations. This rationale can be backed up
by the work of Mercier et al. [42]. The load only stabilises after an axial shortening of
approximately 1.3 mm, a behaviour that could be attributed to stress redistribution caused
by the inclusion of imperfections. Similar behaviour is evident in Figure 3.4 at a 2% amplitude
rate.

Figure 3.3: S4R models for Mode 1 & 4. Figure 3.4: S4R models for Mode 4 & 5.

In both graphs, minor mode jumps are noticeable, such as in the line representing 2% ampli-
tude in Figure 3.3. These jumps occur sufficiently early in the analysis, and it is assumed that
they are small enough not to cause any damage, in contrast to the significant drop observed
at the ultimate load. For further clarity, this jump is depicted in the following figure, where a
distinct transition from four to five half-waves can be observed in the vertical direction of the
panel.

Figure 3.5: Mode jump for Mode 1 & 4 - 2% amplitude.
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To provide further insight into the observed jump: Initially, as mentioned while discussing
linear buckling modes in Figure 3.2, modes 1 and 2 exhibited very similar behaviours, sug-
gesting the possibility of one dominating or a transition occurring in the physical realm. The
jump noted in Figure 3.3 corresponds to the same load levels as eigenmodes 1 and 2, indi-
cating that the inclusion of these imperfections with certain amplitudes triggered the potential
mode interactions. Moreover, as suggested by Bushnell et al. [43], such interactions may
indeed lead to jumps in structural response. Another possibility is that the mode jump is
triggered purely by the imperfection shape and amplitude, independent of modes 1 and 2.

Moving on, the jumps can manifest at varying load levels, as seen in Figure 3.3: an imper-
fection with a 1% amplitude exhibits a jump at a higher load level. Observations indicate
that larger imperfection amplitudes lead to lower buckling loads alongside a less intuitive
buckling mechanism, where lower amplitudes might lead to lower ultimate loads because of
a mode jump. This could be the case in Figure 3.4 for an amplitude of 2%. Drawing further
from the study by Bushnell et al. [43], it is assumed that those jumps may not have enough
energy content to damage the panel and impact its structural integrity.

Finally, the buckling behaviour for the remaining imperfection amplitudes shows expected
trends, where higher amplitudes result in lower ultimate loads.

Modes 1-3 and Modes 3-5
When examining Figure 3.6, similar observations to those in Figure 3.4 (with a 2% amplitude)
aremade. It is noted that the ultimate loads for amplitudes of 3-4% are higher than those for a
2% amplitude, demonstrating a trend consistent with the counter-intuitive results observed
in some of the previously discussed mode combinations. In contrast, the 5% amplitude
exhibits the expected trend of a lower ultimate load compared to the other amplitudes.

Figure 3.6: S4R models for Mode 1 & 3. Figure 3.7: S4R models for Mode 3 & 5.

From Figure 3.7, it becomes apparent that this graph remains unaffected by increases in
amplitude for the combination of modes 3 & 5. In fact, the ultimate load increases with the
rising amplitude. Additionally, it does not exhibit any mode jumps, which is in contrast to the
model with modes 1 & 3. This difference in behaviour can be attributed to the specific shapes
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and amplitudes of the imperfections chosen for each model, as previously mentioned.

Modes 1-5 and Modes 3-4
Finally, figures 3.8 and 3.9 demonstrate a decrease in ultimate loads as the amplitudes
increase. Both graphs show mode jumps, which could be attributed to a mode transition.
As mentioned before, it is assumed that the structure can accommodate the load drop as it
is relatively small and considerably distant from the ultimate load.

Figure 3.8: S4R models for Mode 1 & 5. Figure 3.9: S4R models for Mode 3 & 4.

Summarising, the plots demonstrate expected behaviour in the first eigenmode combina-
tions 1 & 5 and 3 & 4, with the former displaying ultimate loads closer to the perfect model
and the latter showing consistent stiffness.
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Higher Modes
The hypothesis for sub-question 1 (Section 1.2) suggested that the first eigenmode combi-
nations would yield better results to represent geometric imperfections. To test this, eigen-
modes are selected from the eigenvalue analysis with corresponding loads closer to the ul-
timate load. The selection is done by combining two modes with different half-wave shapes,
as described earlier for the first modes. The following figure illustrates the selected modes.

Figure 3.10: Eigenmodes near the ultimate load.

The combinations made are 52 & 53, 55 & 58 and 63 & 69. They all have unique half-wave
patterns, and would not result in mode cancellation.

For simplicity, only an amplitude of 1% was implemented. The results revealed increased
and decreased ultimate load, as visible in Figure 3.11.
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Figure 3.11: S4R modes with three different mode combinations.

It becomes evident that mode combinations 55 & 58, as well as 63 & 69, exhibit similar
behaviour with ultimate loads lower than the baseline model. However, mode combinations
52 & 53 indicate a higher ultimate load. Besides this, there are no mode jumps or stiff-
ness degradations visible, which was the case for the discussed results for the first mode
implementation.

These findings indicate that, with careful selection, higher modes can effectively represent
geometric imperfections. It becomes evident that the imperfection shape in the model
does not need to mirror the post-buckled shape to accurately replicate experimental results.
Rather, the selected imperfection combination should approximate the actual geometric
imperfections of the tested panels, which are typically not known in advance. Accurately
simulating these imperfections is crucial for triggering the same buckling mechanism ob-
served in physical experiments. This approach ensures that the final post-buckled shape
closely resembles the Lanzi case, thereby enhancing the model’s reliability and predictive
accuracy.

Moving on, the SC8R models showed similar behaviour to the S4R models. This can be
seen in Figure 3.12, where the results of an amplitude of 1% for the combinations 1 & 5 and
3 & 4 are presented for both types of models. These trends show that both types of models
without imperfection, or with the same imperfection, exhibit the same behaviour.
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Figure 3.12: The relation between the S4R and SC8R models.

Based on Figure 3.12, only the S4Rmodel appears adequate for modelling geometric imper-
fections. In the following chapter, the amplitudes 1 and 5% will be further discussed for the
mode combinations 1 & 5 and 3 & 4 as they were found to model the geometric imperfections
well.

3.2 Loading Imperfection
Adjustments are made to the baseline model to account for the impact of the loading imper-
fection. A loading plate is introduced as a discrete rigid body to transfer the loads to the
stiffened panel. Previously, the loads were uniformly applied through reference points, tied
to the edge of the panel. The addition of the loading plate was omitted due to the inclusion
of a contact formulation, which imposes some stiffness between the stiffened panel and the
loading plate. This adjustment is only made for the SC8R model. In the case of the S4R
model, contact was not possible because of the element type that could not establish contact
on the edge with the loading plate.

The stiffnesses seem equal in the plot shown on the left in Figure 3.13, where the baseline
model is compared with the model including a loading plate. Upon a closer look - see the
figure on the right - a small offset is visible after an axial shortening displacement of around
0.2 mm. The final axial shortening differs very clearly. This could be caused by the contact
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formulation that includes a default value for an artificial contact stiffness, which introduces
additional compliance to the model. This decreases, in this case, the overall stiffness.

Figure 3.13: SC8R models for a perfect plate with and without loading plate (left) and a close-up of the graph
(right).

3.2.1 Modelling
Recalling the work of Park et al. [26], they placed the loading plate at a tilted angle of 0.005
and 0.01 degrees with respect to their stiffened panel. This was done to resemble a less
ideal loading scenario at the start of the experiment. A similar approach is taken in the
present study and the loading imperfections are modelled using SC8R models in order to
compare their (post-)buckling behaviour with the baseline model in Section 4.3.

As an initial step, four different configurations are tested in two setups, illustrated in Fig-
ure 3.14. The first configuration displays the front view, labelled as Left and Right, denoting
the loading plate’s orientation: in this instance, the panel is inclined towards the right side.
The second figure portrays the side view, similarly marked to indicate the orientation.
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Figure 3.14: Overview of the configurations, with front view (Left and Right configurations) and side view
(Back and Front configurations).

3.2.2 Observations
In figures 3.15 and 3.16, the analysis begins with a negative value, indicating that only
a section of the panel is initially in contact with the loading plate. In the FE models, the
displacement is measured at halfway of the loading plate. This negative axial shortening is
represented by ∆c = b tan(θ/2) ≈ b(θ/2) for small angle approximations. For instance, with
a tilt angle of θ = 0.01 degrees, this equation yields ∆c = 0.061 mm, quantifying the initial
deviation before the full application of the load.

A higher tilt angle results in an increased offset and reduced ultimate load, as visible in
figures 3.15 and 3.16. This trend is consistent for rotating the loading plate across both
sides of the panel. The loading plate inclining more to the right edge, does result in a higher
ultimate load compared to the left edge, possibly attributed to the closer proximity of the
stiffener flange to the edge.

Figure 3.15: SC8R models: Loading plate tilted to the
left.

Figure 3.16: SC8R models: Loading plate tilted to the
right.

From Figures 3.17 and 3.18 it can be inferred that inclining the loading plate along the back
and front edges has minimal impact. The load drops around 0.6 mm are similar to what was
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observed for models with geometric imperfections, and likely negligible.

Figure 3.17: SC8R models: Loading plate tilted to the
back.

Figure 3.18: SC8R models: Loading plate tilted to the
front.

3.3 Remarks
The observations in this chapter showed howmodelling parameters of geometric and loading
imperfections influence the behaviour of the panels. Geometric imperfections were found
to be modelled well using Mode 1 & 5 and Mode 3 & 4 combinations with amplitude 1-5 %.
For models including loading imperfections, the Left- and Right edge configurations resulted
in more impact than the Back- and Front edge configurations. These modified models are
used to analyse post-buckling behaviour in Chapter 4 based on the defined parameters at
the start of this chapter.



4
Results and Discussion

The previous chapters established the baseline model and the inclusion of geometric and
loading imperfections. In this chapter, the results obtained from these models will be further
discussed based on the outputs defined in Figure 3.1: the initial stiffness, first buckling- and
ultimate loads, the axial shortening, and the out-of-plane displacement. First, the differences
between the obtained results for the tested panels by Lanzi et al. [29] are presented in
Section 4.1. This is followed by the results for the geometric and loading imperfections,
presented in Sections 4.2 and 4.3, respectively. While the baseline models are validated,
the models with geometric and loading imperfections are still compared with experimental
data by Lanzi et al. to understand the practical differences between the modified models
and experimental data. This approach aims to show the observed correlations beyond what
the validated baseline model revealed. Following these sections, a discussion is presented
where the results are examined and interpreted in the context of the study’s objective.

4.1 Results Lanzi case
Before discussing the results obtained from the models with imperfections, it is important
to highlight differences between the two panels tested by Lanzi et al. [29], and recall the
main sources of uncertainty. In Figure 4.1, a clear difference between the tested panels,
especially in their ultimate loads, is visible. See Table 4.1 for the complete comparison with
their respective deviations in percentages.
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Figure 4.1: Experimental data [29] compared with FE models.

Table 4.1: The experimental data from the Lanzi case [32] and the percentage deviation between the panels.

Description Panel 1 Panel 2 Deviation (%)

First buckling load [kN] 32.9 29.8 9.9
Axial shortening at the first buckling load [mm] 0.39 0.36 8.0
Initial stiffness [kN/mm] 83.7 83.5 0.2
Ultimate load [kN] 66.7 75.4 12.2
Axial shortening at the ultimate load [mm] 1.17 1.37 15.8

In Chapter 2, it was noted that Lanzi et al. attributed the discrepancy in their test results to
the differences in the collapse mechanisms of their panels: Panel 1 failed at the stiffener
web’s half-height, while Panel 2 failed at the stiffener web’s top and bottom sections. They
emphasised that these variations highlight the sensitivity of post-buckling behaviour to differ-
ent failure modes. Although the authors do not explicitly mention it, this study also assumes
that these differences could, for example, be caused by manufacturing defects.

Regarding the comparison between the Finite Element (FE) model and the experimental
cases, it is noteworthy to recall the differences between the tested panels. The FE model
exhibits a lower percentage deviation for the different properties listed in Table 4.2 compared
to the panels, especially with respect to Panel 1. Considering the deviation between Panel
1 and 2, which share the same material and design but still result in a notable difference,
the presented FE model is already within an acceptable prediction range.
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Table 4.2: Comparison of Panel 1 and 2 from experimental data with perfect S4R model and their deviation
(%).

Description Baseline model Deviation (%)
Panel 1 Panel 2

First buckling load [kN] 34.3 4.2 13.1
Axial shortening at the first buckling load [mm] 0.39 0.0 7.7
Initial stiffness [kN/mm] 87.9 4.9 5.0
Ultimate load [kN] 67.0 0.5 12.5
Axial shortening at the ultimate load [mm] 1.02 13.7 34.3

4.2 Results Geometric Imperfections
As it became clear in the previous chapter, Modes 1 & 5 and 3 & 4 showed the following
expected trends: with increasing amplitudes, their respective ultimate load decreases, while
their stiffnesses remain equal to the baseline mode. Figures 4.2 and 4.3 compare the im-
perfect FE models with the perfect S4R baseline model and Panel 1 and 2 from Lanzi et al.
[29].

Figure 4.2: Mode 1 & 5 models compared with Panel 1
from the experiments by Lanzi et al. [29].

Figure 4.3: Mode 3 & 4 models compared with Panel 1
from the experiments by Lanzi et al. [29].

In both plots, all the curves show similar trends up until the first buckling load at an axial
shortening value of around 0.4 mm. This behaviour was already expected upon reviewing
the literature on the influence of imperfections on post-buckling. The transition into post-
buckling is made visible for an amplitude of 1% (see Figure 4.4), with their average loads
displayed at the top row. While the perfect baseline model transitions into five half-waves,
the models with imperfections exhibit four half-waves in the vertical direction.
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Figure 4.4: Transition from the pre-buckled state (far left) to the first-buckled state (far right) with increasing
load. The top row displays their average loads.

Following these four half-waves, the models with imperfections exhibit a mode jump after
a load drop to five half-waves in the vertical direction. These drops are visible in Figures
4.2 and 4.3. The model with imperfections (Mode 1 & 5) exhibits a sudden drop in load at
approximately 0.6 mm for both amplitudes. A similar trend is observed for Modes 3 & 4,
though it is less noticeable: at a 1% amplitude, this drop occurs around 0.6 mm, and for
a 5% amplitude, it happens around 0.4 mm. These minor drops can be attributed to the
eigenmode shapes and the amplitude used as a geometric imperfection, resulting in mode
interaction that causes the load to drop. This transition of the panel from having four to five
half-waves in the vertical direction is shown in the following figure.
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Figure 4.5: Mode transition from four to five half-waves in the vertical direction for an amplitude of 1%.

Apart from the small load drop, the stiffnesses remain consistent with the baseline model
until reaching the ultimate load, where a decrease is observed in the ultimate load with
increasing imperfection amplitude. This trend is supported by the findings of Lynch et al.
[14], as discussed in Chapter 1, who also noted a decrease in ultimate load for increased
imperfections amplitudes.

To discern the differences between the FE models and experimental data, the data is tabu-
lated. Table 4.3 presents the perfect S4R model and the (absolute) deviation in percentages
with respect to Panel 1 from the experiment of Lanzi et al. [29]. Panel 2 is excluded from
this comparison, as Panel 1 demonstrates a better correlation with the FE model, as out-
lined in Section 4.1. The detailed data for Panel 1 and the corresponding FE models can be
referenced in Appendix C for the sake of brevity.

Table 4.3: Comparison of Panel 1 from experimental data with baseline and imperfect S4R models, indicating
their deviations (%).

Description Baseline Mode 1 & 5 Mode 3 & 4
model 1% 5% 1% 5%

First buckling load [kN] 4.3% 1.8% 0.0% 1.2% 4.6%
Axial shortening at the first buckling load [mm] 0.0% 2.6% 2.6% 4.9% 7.7%
Initial stiffness [kN/mm] 5.0% 5.4% 3.4% 4.7% 4.2%
Ultimate load [kN] 1.2% 0.2% 4.0% 2.0% 9.0%
Axial shortening at the ultimate load [mm] 12.8% 14.5% 19.7% 16.8% 25.0%

Overall, Mode 1 & 5 with a 1% amplitude demonstrates the closest results to the experimen-
tal data. The introduction of imperfections leads to lower axial shortening when compared
to Panel 1, as evident from the table. Although not shown in the table, it is worth noting that
the FE model also exhibits lower axial shortening values than Panel 2. The difference in
axial shortening between the FE models and the physical panels was initially observed with
the baseline model and became even more pronounced with the addition of imperfections.
This suggests that the imperfections lead to a stress redistribution in the panel and trigger
mode jumps, which in turn lead to lower ultimate load with less axial shortening. If imperfec-
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tions were to affect the shortening behaviour independently of the ultimate load, a change
in stiffness relative to the baseline model would be expected to be observed.

As mentioned in Chapter 2, the FE models are not able to predict failure modes like crippling,
which is activated when stress surpasses a certain threshold during a load drop. This was
also supported by literature: Perret et al. [44], for example, observed delamination at the
load drop, which was initiated by crippling. Therefore, beyond the load drop, the present
study is limited to predicting failure modes.

Finally, the out-of-plane displacements are displayed in Figure 4.6. Taking the imperfection
amplitude of 1% of the thickness, there is a decrease in the maximum out-of-plane displace-
ment for positive displacements at the ultimate load. Conversely, there is an increase in
the maximum out-of-plane displacement for negative displacements. Note again: Negative
values indicate outward displacement, whereas positive values represent inward displace-
ment with respect to the panel’s surface. The differences observed in the displacements
are the results of the eigenmodes selected as an initial condition. In particular, the imper-
fection using Modes 3 & 4 exhibits a closer alignment with the experiment: a deviation of
7.7% for the max and 1.7% for the minimum value. Amplitudes higher than 1% lead to more
pronounced decreases in the ultimate loads and greater deviations in their out-of-plane dis-
placements from Panel 1. Therefore, higher amplitudes do not necessarily correlate with
increased out-of-plane displacements at the ultimate load.

Figure 4.6: Maximum out-of-plane displacement for the ultimate load.

The variation observed in out-of-plane displacements appears to be a direct result of the
selected imperfection pattern. Given that these patterns are derived from linear buckling
modes, which closely resemble the post-buckled configuration, the amplitude differences
may well be attributed to the constructive or destructive interference of the buckling modes
while being superimposed and giving rise to nonlinear buckling patterns. This interplay indi-
cates that the choice of imperfection pattern influences the structural response, highlighting
the critical role of accurately capturing and representing these imperfections in predictive
modelling.
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4.3 Results Loading Imperfections
Similarly to geometric imperfections, the existence of loading imperfections in the experi-
ments of Lanzi et al. cannot be inferred from the published data. From the literature, it was
understood that Park et al. [26] explored the influence of loading imperfections by placing
the loading plate at a tilted angle in their simulations. The results obtained in this study will
be first compared with data from Lanzi et al. and, subsequently, examine how these trends
align with the work by Park et al.

In Chapter 3, it was observed that applying the loading plate in the SC8R models toward the
back and front edges of the plate (refer to Figure 3.13 for the orientation) did not significantly
alter the results. As demonstrated in the subsequent figure, except for a minor load drop
at approximately 0.6 mm of axial shortening, the patterns observed closely align with those
from the perfect baseline case.

Figure 4.7: Back (B) and Front (F) edge configurations.

On the other hand, the tilted configurations on the Left- and Right edges of the stiffened panel
did affect the results. For this reason, only these configurations are considered here. The
graphs for both configurations, with their respective tilted angles, are presented alongside
Panel 1 and 2 in Figures 4.8 and 4.9 respectively.
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Figure 4.8: SC8R Left edge configuration. Figure 4.9: SC8R Right edge configuration.

Recalling from Chapter 3, the loading plate was positioned with an offset from the stiffened
panel. This is evident in the negative axes since the displacement is measured in the mid-
section of the loading plate. In the tilted configuration, one part of the stiffened panel initiates
contact first with the loading plate. Figures 4.8 and 4.9 back this reasoning, given their simi-
lar load-shortening trend to that of the baseline model. The differences in results due to left
and right tilted planes are expected, stemming from the panel’s design, where the right side
has a stiffener closer to the edge. This asymmetrical placement of the stiffeners naturally
leads to varying responses under the applied loads. A correlation is also visible compared
to the study by Park et al. [26]. In their research, a closer relation to experimental results
was observed in terms of stiffness behaviour for a tilted loading plate (see Figure 1.10).

Both figures demonstrate a good alignment up to 0.4 mm, marking the onset of the initial
buckling. It is interesting to note how the 0.01-degree option exhibits a higher offset in the
left plot and a lower offset in the right plot compared to Panel 1. The left figure also clearly
shows the slightly reduced overall stiffness for the baseline model. This phenomenon was
previously attributed to the contact formulation, which introduces extra compliance through
a default artificial contact stiffness, reducing overall stiffness, as detailed in Section 3.2.

Reduced ultimate loads are observed with increased tilted angle. Similar to models with
geometric imperfections, the loading imperfections can trigger mode jumps, leading to lower
ultimate load, with decreased axial shortening.

In the figures below, the pre-buckling transition is shown for 0.005 deg since 0.01 deg shows
similar patterns. A clear difference is visible between the panels in terms of where the loading
plate first comes into contact with the panel. For completeness, it is important to mention
that the data is read manually, and the modes are not captured exactly. Therefore, they do
not show identical patterns with respect to each other.
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Figure 4.10: Transition mode into post-buckling.

After the transition from pre-buckling into post-buckling, the panels show the same buckling
pattern as visible in Figure 4.11. The panels switch modes right after the first buckling mode,
which is made visible on the right. This is possibly due to the modes being close to each
other and the five half-waves dominating the physical realm.

Figure 4.11: Transition from four half-waves in the vertical direction to five half-waves.

Overall, the main differences were observed at first initial contact, the offset from the base-
line model (resulting from the initial contact) and the change in ultimate loads. One factor not
discussed yet is the out-of-plane displacement. Park et al. [26] note in their work that they
have observed comparable out-of-plane displacements to experiments but with increased
non-linear deformations. In the present study, similar magnitudes of out-of-plane displace-
ments in both the baseline (Figure 2.14) and models with loading imperfections (Figure 4.12)
are observed. This suggests that loading imperfections might not significantly affect their
out-of-plane behaviour. When it comes to the increased nonlinear deformations observed
in the work of Park et al., it is challenging to make a clear statement in the present study.
To do so, as previously mentioned, clarity in the exact experimental conditions is neces-
sary. Only speculations can be made regarding how these trends might compare to data
from Lanzi et al. [29]. Additionally, an axial compression test, as described in Section 2.1,
needs to be conducted again to clearly measure the tilted position of the loading plates. This
measurement can be done using LVDT sensors, as also reflected later in this thesis, in the
recommendations section.
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Figure 4.12: Out-of-plane displacement for the Left- and Right-edge configurations.

4.4 Discussion
Beginning with the experimental data from Lanzi et al., as explained in Chapter 2, the dis-
crepancy in results (12% difference in their ultimate loads) for theoretically similar panels
was attributed to variations in the collapse mode. This is very likely given that the baseline
model matched more closely with Panel 1. The difference in collapse modes is because
of the panel’s behaviour. In Chapter 2, the findings from Lanzi et al. [29] were discussed
regarding this behaviour: they noted that for Panel 1, the skin bent away from the flange,
and failure was observed halfway through the web height of the stiffener, where the higher
bending stresses of the stiffener were located. Ultimately, this results in the crippling of the
web. Conversely, for Panel 2, failure was observed at both the top and bottom parts of
the stiffener web, with the skin bending towards the stiffened side. The fillet of the stiffener
could possibly fail due to material failure. However, it is more likely that the top part of the
stiffener web failed due to crippling in between two sets of rivets as suggested by the high
compressive stresses in this region in Figure 2.10.

Another noteworthy point is the observed sudden displacement difference between the
tested panels in the region of 0.4 and 0.6 mm approximately. Since the first buckling hap-
pens at 0.4 mm, the change in stiffness of the panels is attributed to post-buckling. The
baseline models, on the other hand, show a continuous steady stiffness. Referring back to
the models with imperfections in the previous sections, a small load drop was visible in a
region similar to Panel 1. It was assumed that this was attributed to a small mode transition.
Upon inspecting the behaviour observed between Panel 1 and 2, it becomes evident that
introducing imperfections brings the models closer to the experimental cases. Panel 2 does
not show this load drop, so it’s assumed that in the case of Panel 1, some imperfections were
present in the form of geometric defects. Regarding the presence of loading imperfections,
it is harder to make a statement since the experimental conditions are unknown. As for the
buckling modes of Panel 2, since these are not available, it is still a challenge to make any
further inferences regarding the post-buckling difference compared to Panel 1.

As highlighted throughout this thesis, the FE models do not account for failure, making them
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less realistic after the sudden load drop. In real-world scenarios with physical panels, when
a stiffener fails, the structure redistributes the loads to the remaining stiffeners until the panel
reaches its ultimate collapse point.

The common detail between all models with imperfections is their influence on buckling
shapes upon transitioning from the first buckling mode to post-buckling modes and the de-
crease in their ultimate loads. This again highlights the close correlation with the obser-
vations made in the literature in the case of geometric imperfections. Also, the included
eigenmodes (both first and higher modes) from the eigenvalue analysis for the geometric
imperfections were mainly present in the panel’s skin. This is logical, as the stiffeners are
designed to counteract this out-of-plane behaviour. The eigenmodes depicted in this thesis
emphasise solely the out-of-plane displacement in the skin, as their magnitude substantially
surpasses that observed in the stiffeners.

One type of geometric defect that could have resulted in stiffness reduction is introducing
geometric imperfect stiffeners. The study by Prato et al. [15] included uneven stiffener
length compared to the skin, resulting in stiffness differences in the post-buckled region. It
is believed that adding such imperfections to the present model would decrease the ultimate
load even further and could also result in stiffness loss since the stiffeners are the main load
carriers in the post-buckling region.

Models with loading imperfections exhibit similar behaviour to what was observed for the
ones with geometric imperfections: with increasing tilted angles, their ultimate loads de-
crease. In addition to this, the structure loses possibly a certain amount of stiffness, given
that a part of the structure is loaded earlier and encounters higher stresses. This results
in an offset in the load-shortening results. Also, the design of the structure is highly rele-
vant: here, the right segment of the panel, where stiffeners are closer to the edge, showed
a better resistance for non-uniform loading since the stiffeners carry more loads. One as-
pect not addressed in the previous chapters is the use of carriage guides by Lanzi et al. to
prevent non-uniform loading. An often overlooked consideration is that such a system does
not directly establish uniform contact with the panel. The current thesis substantiates this
by demonstrating that initial load application at an angled position unveils variations when
compared to the baseline model.

The perfect baseline model showed a transition to five half-waves (vertical direction) upon
entering post-buckling. The models with imperfections first showed four half-waves in the
vertical direction, followed by five. However, this buckling pattern cannot be exactly validated
as the experimental data for these loads (between 30-35 kN) are unavailable.

Failing to include actual potting may impact the variance between the shape changes ob-
served in the FE model and the experiment. For instance, models with loading imperfec-
tions demonstrate a smooth transition from four to five half-waves, whereas those based on
geometric imperfections undergo a more abrupt change. This could be due to the gradual
transfer of load in the case of loading imperfections. The sudden shift observed in geometric
models can be attributed to the absence of potting.



5
Conclusion

The main objective of this thesis was to systematically show the influence of geometric
and loading imperfections on the onset of buckling and post-buckling behaviour of an L-
stiffened composite panel using finite elements. In the following concluding section, the
fulfilment of this research objective is discussed by self-reflecting on the research questions
and hypotheses of this thesis, followed by concluding remarks.

5.1 Reflection on Research Questions
A main research question, presented below, was formulated based on the thesis objective,
accompanied by sub-questions and hypotheses (repeated from Chapter 1) to answer the
main question.

Main research question:

What is the influence of geometric and loading imperfections on the post-buckling
behaviour of L-stiffened composite panels?
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Sub-question 1

Which buckling modes can be employed to more accurately represent the geometrical
imperfections and observe responses according to experimental data?

Hypothesis 1 stated the following:
The literature [19, 22] has presented strategies that include the use of eigen-
modes from the linear eigenvalue analysis for geometric imperfections. Based on
these studies, this thesis hypothesised that the first modes of the eigenvalue analysis
will generate more representative results than higher modes close to the ultimate load.

Hypothesis 1 - Disproved
In the present thesis, both first modes as well as higher modes (close to the ulti-
mate load), showed representative results. It is important to consider combinations
of modes with shapes and amplitudes that can more accurately represent the exper-
imental geometric imperfection patterns, and that are capable of triggering the same
post-buckling mechanisms as the real imperfections.

Sub-question 2

How can loading imperfections be modelled effectively to align the responses of the
FE model with experimental data?

Hypothesis 2 stated the following:
In this thesis, it was hypothesised that loading imperfections through the tilted angle
approach, as suggested by Park et al. [26] can accurately represent the experimental
data.

Hypothesis 2 - Proved
The thesis has adopted the tilted angle approach, and this resulted overall in good
agreement with the results from Lanzi et al. and Park et al. in terms of stiffness trends
and the behaviour of the ultimate loads, that decreased with increasing tilt angles.
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Sub-question 3

How do geometrical and loading imperfections influence the onset of buckling and the
post-buckling?

Hypothesis 3 stated the following:
For geometric imperfections, it could be inferred from the literature [14, 24] that they
have an influence on the ultimate load. Hence, in this thesis it was hypothesised that
the geometric imperfections will only influence the ultimate load for the L-stiffened
panel model. This is also hypothesised for the loading imperfections. In addition to
this, based on the work of Park et al. [26], it is expected that a similar offset trend is
going to be observed from the experimental data.

Hypothesis 3 - Proved
Prior to the first buckling load, both types of imperfections did not show any effect. The
post-buckling is affected by both types of imperfections, which are mainly visible in the
ultimate load and when local buckling switches to global buckling / post-buckling.

5.2 Concluding Remarks
The present study on the influence of geometric and loading imperfections on post-buckling
behaviour has yielded several insightful conclusions. Regarding geometric imperfections,
the analysis revealed that different eigenmode shapes and amplitudes significantly impact
behaviour beyond the first buckling load. Some configurations exhibited small mode jumps
due to mode interaction, whilst others did not display such behaviour. A key observation
was the variance in ultimate load: at higher amplitudes some modes intuitively resulted in
lower ultimate loads, while some showed counter-intuitive results with increased loads. This
emphasises the crucial need for the careful selection of the appropriate eigenmode shape
and amplitude to accurately represent geometric imperfections in post-buckling behaviour.

Similarly, loading imperfections demonstrated behaviours akin to those of geometric imper-
fections, notably affecting the ultimate loads. Beyond this, they also introduced an offset
in the load-axial shortening behaviour from the perfect baseline model, dependent on the
specific configuration and tilt angle. Based on these observations, it can be concluded that
their influence should be accounted for.

In summary, this study highlights the importance of a detailed and meticulous approach
in the selection and incorporation of both geometric and loading imperfections in structural
modelling. In the case of geometric imperfections, both first and higher eigenmodes can rep-
resent the geometric imperfections. As for loading imperfections, the configurations where
the loading plate tilted towards the left- and right edge resulted in a significant difference with
respect to the baseline model. Acknowledging and including these imperfections is crucial
for a more realistic representation of post-buckling behaviour and for accurately predicting
ultimate load capacities.



6
Recommendations

This chapter provides a brief overview of the primary recommendations for the future con-
tinuation of this research project.

Material and Crippling Failure
In the FE models, to test the hypothesis regarding the onset of crippling following the load
drop, the Tsai-Hill criterion was examined for material failure. However, the failure index
never reached ”1” even after the load drop, suggesting that no failure had occurred. A more
realistic failure model would incorporate the following aspects:

• Include cohesive zones in the model to account for debonding between the skin and
the stiffener, as well as for delaminations,

• Implement a material model such as the Hashin [39], or LaRC05 [45] criteria, with
progressive damage evolution to account for material degradation in highly stressed
regions.

Joint Approximation
The influence of the rivets joining the stiffeners to the skin was not considered in the FE
models. Literature does suggest that modelling these joints can affect the results. For future
studies, the influence of rivets can bemodelled by introducing their residual stresses, as also
suggested by Lynch et al. [14].

Test Methodology Loading Imperfection
Creating validated FE models is highly relevant as it facilitates further exploration of a given
design space. A typical process prior to an experiment commences with the generation of
an FE model to predict the panel’s response. Subsequent to this, the tests are performed,
followed by the validation of the FE model.

The conditions for such tests are not always ideal. To understand the deviations in post-
testing results, it is essential to include certain imperfections in the FE model. This thesis
has addressed this by introducing both geometric and loading imperfections. By validating
the FE model and comparing it with models that contain these imperfections, the variations
in results can be logically explained.

In the experimental phase, beyond the standard procedure of measuring geometric imper-
fections, it is also necessary to capture loading imperfections. This allows for a comparison
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with the outcomes from models that incorporate these imperfections, thereby validating the
approach of measuring the tilted angle. Naturally, once such data is obtained, it can be
directly integrated into the analysis and used to assess the method’s precision.

For conducting the axial compression test, the equipment available at the Aerospace Faculty
of TU Delft can be utilised, as illustrated in the subsequent figure.

Figure 6.1: The mechanical testing setup to use for axial compression testing.

Two measurements for loading imperfections need to be considered for the experiment:

• Measuring the deformations in the loading plate.
• Measuring the tilted angle of the loading plate during the test.

The former can be accomplished using the FAROGagemeasuring arm, a commercial brand
utilised to measure the existing deformations in the panel before testing. Additionally, two
DIC (Digital Image Correlation) cameras can measure these deformations and capture the
buckling behaviour of the panel. Although the stiffeners have an open section, it is recom-
mended to position the DIC cameras on the unstiffened side of the panel to fully capture the
buckling behaviour.

Since the setup has four corners, it is necessary to employ four LVDT (Linear Variable Differ-
ential Transformer) sensors, one for each corner, to measure the tilted angle of the loading
plate with respect to the panel. These measurements are essential to validate the modelling
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approach adopted in this thesis for loading imperfections. In addition, the LVDTs need to be
placed close to the panel as well to make sure their axial shortening is measured.

During the experiment, one of themain objectives is to record the failure. For this, aminimum
of two high-speed cameras should be installed on the stiffened side, positioned at an angle
to accurately capture the initial failure in the panel. At least two are required to ensure visual
coverage of the test specimen during testing. This is necessary because certain parts of the
specimen may be obscured from the view of one camera due to its positioning.
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A
Baseline Configurations

This chapter presents some of the attempted alternative configurations before the baseline
model is established, explained in Chapter 2. The focus is on the S4R element models
because they exhibited behaviour similar to SC8R element-containing models while being
more computationally efficient. Themesh convergence- and displacement rate convergence
studies are also presented.

A.1 Stiffener Without Fillet- and Potted model
One iteration involved a stiffener without a fillet: from now on referred to as a fillet-less
stiffener. This particular variant was chosen to simplify the model, since by considering a
stiffener without a fillet, the computational complexity was reduced.

Another iteration was regarding the use of potting material. As explained in Chapter 2, it
was unclear if the provided geometry by Lanzi et al. was within the clamping system or not.
One possibility considered in this research is the inclusion of potting material at the top and
bottom edges of the pane. Two options exist for including potting: physically modelling the
potting material, or applying appropriate boundary conditions to the concerned region. The
latter is preferred because of the lack of information on the potting material. The nodes are
constrained in the out-of-plane (U3) and in-plane transverse direction (U1); see Figure A.1
where the grey area represents the potted region. This approach was also found to be used
in the study of Park et al. [26]. To determine the potted area, the pixels in the experimental
setup image of the Lanzi case were counted: an area roughly 50 mm away from both the
top and bottom edges was estimated.

The fillet-less stiffener model and the potted model are then compared with the final base-
line model, which contains stiffeners with fillet and not potted regions. The final baseline
model signifies the validated baseline model representing the Lanzi case and is detailed in
Chapter 2.
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A.1 Stiffener Without Fillet- and Potted model 57

Figure A.1: On the left, the potential potted area is visible (not to scale), while on the right, it is shown without
potting.

In Figure A.2, the first buckling mode from the linear eigenvalue analysis is compared for
each design.

Figure A.2: Comparison of the first mode of the final, fillet-less stiffener and potted models - a scaling factor of
50% is applied.

The fillet-less stiffener model does not show a significant difference, whereas, for the potted
model, the modes have shifted more to the centre. This was expected with the additional
constraints used to simulate potted area.

The differences are also visible in Figure A.3, where the ultimate load is close to 85 kN for the
potted model, significantly higher than for the other two models. As for the fillet-less stiffener,
it shows an increased stiffness compared to the other two designs, which is expected since
the stiffeners have more contact area with the skin. For that reason, this option was also
disregarded as it clearly shows a difference with a stiffener, including a fillet.



A.2 Mesh convergence study 58

Figure A.3: The final selected model is compared with a model containing fillet-less stiffeners and a potted
model.

A.2 Mesh convergence study
As highlighted in Chapter 2, a convergence analysis was conducted before settling on a
mesh size of 5 mm x 5 mm. Mesh sizes of 10x10, 8x8, and 5x5 were tried, revealing
negligible differences beyond the 5x5 configuration. Figure A.4 illustrates the comparison
between the 8x8 and 5x5 mesh sizes, demonstrating nearly identical trends, with only a
slight variance observed in the ultimate load.

Figure A.4: Comparison of the mesh sizes.
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A.3 Displacement rate convergence study
The study conducted on displacement rates is depicted in Figure A.5. It is evident that higher
velocities result in numerical instability and convergence problems. This effect is even more
pronounced when comparing the model with displacements of 0.26 mm/s and 0.13 mm/s
(corresponding to the final baseline model labelled as FEM: S4R model) in Figure A.6. At
first sight, no difference is visible. However, the detailed view on the right (Figure A.6) shows
that the graph with 0.26 displays some fluctuation.

Figure A.5: Comparison of models with different displacement rates (final baseline model labelled as FEM:
S4R model with a rate of 0.13 mm/s).

Figure A.6: Comparison of final baseline model labelled as FEM: S4R model with a rate of 0.13 mm/s and
model with a rate of 0.26 mm/s.



B
Additional Imperfection Data

The following figures display the plots where all the considered imperfection amplitudes are
included.

Figure B.1: S4R models for Mode 1 & 3. Figure B.2: S4R models for Mode 1 & 4.

Figure B.3: S4R models for Mode 1 & 5. Figure B.4: S4R models for Mode 3 & 4.
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Figure B.5: S4R models for Mode 3 & 5. Figure B.6: S4R models for Mode 4 & 5.



C
Additonal Data

Table C.1: Comparison of experimental data with imperfect S4R models for Mode 1 & 5.

Description Lanzi FEM model Diff (%) FEM model Diff (%)
case (Imp: 1%) (Imp: 5%)

First buckling load [kN] 32.9 33.5 1.8% 32.9 0.0%
Axial shortening at the first buckling load [mm] 0.39 0.38 2.6% 0.38 2.6%
Initial stiffness [kN/mm] 83.7 88.2 5.4% 86.6 3.4%
Ultimate load [kN] 66.7 66.6 0.2% 64.0 4.0%
Axial shortening at the ultimate load [mm] 1.17 1.0 14.5% 0.94 19.7%

Table C.2: Comparison of experimental data with imperfect S4R models for Mode 3 & 4.

Description Lanzi FEM model Diff (%) FEM model Diff (%)
case (Imp: 1%) (Imp: 5%)

First buckling load [kN] 32.9 32.5 1.2% 31.4 4.6%
Axial shortening at the first buckling load [mm] 0.39 0.37 4.9% 0.36 7.7%
Initial stiffness [kN/mm] 83.7 87.6 4.7% 87.2 4.2%
Ultimate load [kN] 66.7 65.4 2.0% 60.7 9.0%
Axial shortening at the ultimate load [mm] 1.17 0.97 16.8% 0.88 25.0%
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