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Francesco Fioranelli , Senior Member, IEEE,

and Alexander Yarovoy, Fellow, IEEE

Abstract—Fall detection systems can play an important
role in assuring safe independent living for vulnerable
people. These sensors not only have to detect falls but also
have to recognize uncritical, normal activities of daily living
in order to differentiate them from falls. Radar sensors are
very attractive for human activity recognition thanks to their
contactless capabilities and lack of plain videos recorded.
In this article, a novel approach to recognize single activities
in a continuous stream of radar data is proposed, whereby
the stream is divided into windows of fixed length and, then,
multilabel classification is used to recognize all activities
taking place in these time segments. While the initial feasibility of this approach was presented in an earlier contribution
presented at the 2023 IEEE SENSORS conference, in this extended work, additional in-depth studies on critical
parameters are performed. Specifically, multiple combinations of different radar data domains/representations (e.g.,
range-time maps, range-Doppler maps, and spectrograms) and different radar nodes in a network of five cooperating
sensors are considered as inputs to two considered multilabel classification networks. In addition, a parametric study
on the probability thresholds of the networks to assign labels to specific classes is also performed.

Index Terms— Activities of daily living, deep learning, human activity recognition, multilabel classification, radar.

I. INTRODUCTION

FALLING is one of the major risks for older and vulnerable
people. Nevertheless, people want to live in their own

homes for as long as possible. With an aging society,
providing independent living for older and vulnerable people
will be one of the great societal challenges. To allow for
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safe, independent living, automated fall detection systems
are desirable. Such systems can detect falls and react to
them quickly. To recognize dangerous situations reliably, fall
detection systems must be able to distinguish falls from other
types of human motion related to normal activities of daily
living such as walking and sitting down. This kind of motion
understanding is often termed human activity recognition.

Various sensor principles can be applied to fall detection
systems [1]. Wearable sensors are well established, but they
have the disadvantage that they have to be worn permanently,
which may be difficult for people suffering from mental
diseases such as dementia. For this reason, contactless sensors
are desirable. Optical systems, such as cameras, can serve
this task but have some main disadvantages. First, they are
strongly dependent on the light conditions; second, they are
critical with respect to privacy, and third, the individual must
be observable by the line-of-sight view [2]. For these reasons,
radar has emerged as an interesting alternative. Radar is a
contactless sensing principle as well, but it does not have the
disadvantages of cameras. Radar sensing is independent of
light and sight and it raises less concerns about privacy since
radar data are not readily interpretable for humans.
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Fig. 1. Different radar data representations (copied from [6]). From left
to right: range-time, range-Doppler, and spectrogram for two activities
of daily living (walking and bending from standing). (a) Label 1: walking.
(b) Label 6: bending from standing.

Due to its benefits, considerable research efforts have been
directed toward investigating human activity recognition and
fall detection by means of radar [3], [4], [5]. Typically, the data
captured by the radar are subsequently processed by machine
learning, and in this way, single activities can be recognized.
Since radar data typically are stored as a multidimensional
data tensor, various representations of the data can be used for
the classification task. These include range-time data, range-
Doppler maps, and spectrograms (Doppler over time). The
three representations are illustrated in Fig. 1 for two activities
of daily living.

Most of the work published so far has simply measured a
set of separate activities and classified those [7], [8]. However,
in realistic scenarios, activities will not take place separately
but in a continuous stream with unknown start and stop
times. Recognizing single activities in a continuous signal is
what we call continuous human activity recognition. Various
papers have addressed the challenge of continuous activity
recognition [9], [10], [11], [12], [13]. Two main approaches
to tackle the issue of continuity have emerged. The first is to
use recurrent neural networks (RNNs) for classification, such
as the long-short term memory (LSTM) [9], [10]. This works
well, but RNNs need temporal sequences as input. Therefore,
not all information can be used, e.g., range-Doppler maps
are no sequence. Thus, potentially, some information is lost,
which could augment classification performance. It has been
shown that using multiple data inputs is beneficial for the
classification [14].

The second approach to continuous human activity
recognition is to recognize transitions between single activities
in the first step and then classify these single activities
individually [11], [12], [15]. However, this approach depends
critically on the segmentation step and it will fail completely
when multiple activities take place concurrently but start at
different times.

To overcome the aforementioned problems, our previous
work [16], presented at the 2023 IEEE SENSORS conference
in Vienna, introduced a novel approach. Our approach is a
two-step procedure of first segmenting the continuous time

Fig. 2. Measurement setup that was used to collect the dataset we
employed in this article (copied from [13]). Five radars are arranged in
a semicircle as shown in the photograph and illustrated in the sketch on
the upper right.

stream into windows of a fixed length and subsequently
using multilabel classification to recognize which activities are
performed in each window. The initial results presented in that
work introduced the general concept and proved its feasibility.
In this extended paper, additional in-depth studies on critical
parameters are performed. Specifically, multiple combinations
of different radar data domains/representations and different
radar nodes in a network of five cooperating sensors are
considered, highlighting the importance of finding the most
suitable combinations to boost classification performances.

The rest of this article is outlined as follows. In Section II,
the general concept introduced in the conference paper
is briefly recapitulated for clarity. Section III provides an
overview of the parameter study that we conducted, as well as
details on the network implementations and evaluation metrics.
Section IV presents the obtained results from the parameter
study. Finally, a conclusion and an outlook on future work are
provided in Section V.

II. ACTIVITY RECOGNITION WITH MULTILABEL
CLASSIFICATION

In this section, our concept of using multilabel classification
for human activity recognition is briefly recapitulated.

For our work, we used a publicly available dataset [17],
which was captured in previous work by some of the authors
of this article. The dataset consists of radar measurement
data of nine human activities. For capturing the data, five
impulse radars of type PulsON P410 were used. They operate
at 4.3 GHz with a bandwidth of 2.2 GHz. The five radars
were arranged in a semicircle, as shown in Fig. 2. Using a
distributed radar network instead of one radar requires more
efforts such as synchronization of the stations. However, the
advantage of a distributed setup is that more information can
be captured. For example, a single, monostatic radar is not
capable of capturing Doppler information from movement
tangential to the aperture. With the setup in Fig. 2, all human
movement can be captured independently of its direction.

For the dataset, 15 subjects performed nine activities of
daily living. The activities are given as follows:

• walking;
• sitting down;
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Fig. 3. Illustration of multilabel classification in (a) computer vision
and (b) for human activity recognition from a time series. It can detect
multiple labels, e.g., that there is a cat, a plant, and a bench on the
photograph and, analogously, that the time window in orange contains
radar signatures of the activities walking, sitting down, and sitting. (b) is
copied from [16].

• standing up from sitting;
• bending from sitting;
• bending from standing;
• no activity;
• falling from walking;
• falling from standing;
• standing up.

In addition, there is a null class for data corresponding to
none of the previously mentioned activities or corrupted data.
Thirty continuous time streams are available for each subject,
with each stream containing 120 s of data. The data are single
activity sequences as well as mixed activity sequences. For
more details on the dataset, we refer to [18].

Consider a time stream of human activities captured by a
radar system, as a range-over-time signal [as shown in, e.g.,
Fig. 3(b)]. Our approach is to first segment this time stream
into windows of fixed length (e.g., 30 s). This approach avoids
the physical segmentation as proposed in [11], [12], and [15].
In addition, in contrast to using RNNs, the evaluation of
range-Doppler map information is possible with this approach
because the window can be transformed to a range-Doppler
map via a Fourier transform along the slow-time axis.

Therefore, some of the possible limitations of the state
of the art are circumvented. A problem that arises from
segmenting the time stream into fixed-length windows is that
the windows are not unique regarding activities that take place
within that window. For this reason, we introduced multilabel

Fig. 4. Illustration of the proposed segmentation process The data
stream is split into windows of 30 s, starting every 10 s. In this example,
the first frame is marked by the yellow dashed line, lasting from time
t = 0 to t = 30 s. The second frame (white dashed line) lasts from
t = 10 to t = 40 s; the third frame (red line) lasts from t = 20 to t = 50 s
and so on.

classification into human activity recognition. Multilabel
classification is well established in computer vision (see, e.g.,
[19]). It can detect several entities in an image, as illustrated
in Fig. 3(a). Consequently, multilabel classification is able
to detect several activities within a time window. This is
illustrated in Fig. 3(b).

Another problem that can arise with fixed-length windowing
is that an activity can take place at the very beginning or
end of a window, which could cause problems in recognizing
it. To avoid this, we chose to have the windows overlapped,
as illustrated in Fig. 4.

With this strategy, even if one activity is not recognized in
one window, it may be well recognized in the following, time-
shifted window. For our implementation, we chose a window
length of 30 s and an overlap starting every 10 s. We chose a
30 s window length as it appeared a good compromise between
capturing enough information, being able to react fast and at
the same time not having to compute a classification too often.
In a practical setting, all these issues will be relevant. With
a classification twice in a minute, we thought that a good
compromise might be reached.

From the 30-s windows of range-time data, we computed
the range-Doppler maps by means of a Fourier transform
along time and the spectrograms by means of a short-
time Fourier transform after summing up along the range
dimension. The three representations (range-time, range-
Doppler, and spectrogram) of the radar data all contribute
to the overall information for the classification. In the
implementation presented in the conference paper [16],
individual classification networks were trained for all three
representations and the results were fused in a postprocessing
step, at the decision level. However, fusing at an earlier stage
is possible as well. Investigating such early fusion strategies
is a part of this extended paper.

The output of the multilabel classification network is a
vector containing a probability for each activity class. Each
probability lies in the interval between 0 and 1. To determine
the actual presence or absence of an activity, a threshold has
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to be set. Then, each activity having a probability above this
threshold is said to be present within the segment and each
activity having a probability below this threshold is said to
be absent. This binary output can be compared to the ground
truth. The ground truth for each segment is a binary vector as
well, where the presence/absence of an activity is indicated by
1/0. It is therefore very important to investigate the effect of
different values of this threshold on the overall classification
performance. This is another objective of this extended paper.

In the conference implementation, we chose the threshold
value to be 0.5. This seemed an intuitive value because it
implies that if the network computes a probability above 50%,
then we say that the activity is rather there than not there
and set the binary decision to “present.” In contrast, using
a higher threshold implies that the network has to be more
strongly “convinced” that an activity is actually present and
might avoid misclassifications (reducing the number of false
positives). Instead, using a lower threshold value implies a
higher acceptance of any activity above a certain noise level,
which reduces the number of false negatives.

In the conference work, a ResNet50 (residual network with
50 layers) was used for each classification. It performed
well, but ResNet50 is a very deep network and therefore
is computationally costly. Other networks that are shallower
perform faster and therefore are investigated in this extended
paper.

Another degree of freedom in the network design is the
question of how to treat the data from the five radar nodes.
So far, all data were used separately, and however, other fusion
strategies are possible as well. In [20], such investigations
were performed and it was reported that fusion at the signal
level, i.e., summation of the five radars’ data performed best.
Therefore, we will compare this approach to the no-fusion
approach in this article.

III. PARAMETER STUDIES

A. Parameter Study Overview
As indicated in the previous section, there are various pos-

sibilities to treat the multiple inputs when using a multisensor
network and multiple radar data representations. Equally, the
output decision based on the multilabel classification result
can be computed in different ways. The selection of the
classification network is a further design choice.

Based on the aforementioned degrees of freedom, we per-
formed parameter studies with respect to the following in this
article:

1) no fusion versus signal-level fusion of the data from the
five radars;

2) signal-level fusion and decision-level fusion for the three
input data representations range-time, range-Doppler,
and spectrogram;

3) comparison of two neural network architectures, namely,
a simple three-stage convolutional neural network
(CNN) and a ResNet18, in order to use more efficient
networks compared to the ResNet50 as used in [16];

4) a range of 0.01–1 for the output decision threshold of
the multilabel classification.

Fig. 5. (a) Decision-level fusion as implemented in the conference
paper and (b) signal-level fusion.

Fig. 6. Architecture of the employed three-stage CNN.

Signal-level fusion and decision-level fusion are illustrated
in Fig. 5. In decision-level fusion, as was explained in detail in
Section II, the three representations (range-time, spectrogram,
and range-Doppler) are each fed to an individual neural
network. Each network outputs a probability vector for the ten
activity classes. These vectors are averaged and then compared
to a threshold, e.g., 0.5. If the average probability is larger than
the threshold, then the final output is 1 (activity present), and
otherwise, it is 0 (absent). In contrast, for signal-level fusion,
the data from the three representations are concatenated and
the concatenated matrix is input to a classification network,
which computes a probability for each of the ten classes,
as shown in Fig. 5(b). It is evident that this has the advantage
that only one network is required. However, the input to this
network is thrice the size compared to decision-level fusion.

The employed three-stage CNN consists of the following:

1) an image input layer;
2) three stages consisting of convolution layer, batch

normalization layer, ReLu layer, and maximum pooling
layer;

3) a fully connected layer;
4) a sigmoid layer;
5) a binary cross-entropy loss output layer.
The network structure is illustrated in Fig. 6. It is smaller

than ResNet18. Details on ResNet18’s architecture can be
found in, e.g., [21] and [22].

Investigating different window lengths and their influence
on classification performance might be interesting as well.
However, it is to be assumed that if the network can recognize
a certain activity in a time of 30 s as used in this work, it will
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also be able to recognize the activity in a longer or slightly
shorter window of, e.g., 1 min or 20 s, respectively. Because
of this and to keep this article reasonably concise, we chose to
focus on the fusion strategies and network architectures here
as it holds more scientific potential.

Another possible aspect in the parameter study might be to
vary the number of radar nodes. In the previous work [20],
a number of different configurations were tested, including
usage of a single radar or two orthogonal radars from the
semicircle (cf. Fig. 2). The results in [20] showed that using
all five radar nodes gave the best classification performance.
Based on these findings, we chose all five radars in this study
as well.

B. Network Training, Testing, and Validation
To allow for automated classification, the neural network has

to be trained with a set of training data. After training, it has to
be tested to evaluate its performance. For our previous work as
well as for the results presented in this article, we used leave-
person-out testing. This means that the classifier is trained with
measurement data from a number of test persons and tested
with measurements from persons whose data have not been
included in the training. In this way, the classifier is expected
to be more robust and able to generalize to unseen data.
We divided the dataset into nine persons’ data for training,
two persons’ data for validation, and four persons’ data for
testing.

The validation, which is an intermediate testing during
training, is used to monitor the training process and avoid
overfitting. When training and validation loss diverge, this
can be an indication for overfitting to the training data [23].
Therefore, in our implementation, we set the training options
so that training is abandoned if the validation loss no longer
decreases for more than ten consecutive validation iterations.
Then, the network with the lowest validation loss is stored for
the following classification.

The stochastic gradient descent with momentum was used
as a solver and the learning rate was set to 0.0005. We used
MATLAB R2022a for the implementation.

C. Evaluation Metrics
To evaluate the performance of a classification strategy,

various metrics can be used. In this article, we use the
accuracy, which is defined as the number of correct predictions
divided by the total number of predictions [24]. Note that for
the multilabel classification, the number of correct predictions
includes all correctly identified present activities as well as all
correctly identified nonpresent activities.

Particular attention is paid to the detection performance of
falls since this is a critical activity. To investigate the fall
detection performance, we examined the results for the classes
“falling from walking” and “falling from standing” together.
It is of particular interest to investigate the percentage of
recognized falls, which, in turn, determines the percentage of
missed falls. Another relevant issue is the false alarm rate, i.e.,
a fall that is recognized when, in reality, there is no fall.

IV. RESULTS

In this section, the results are presented. The following
subsections are divided according to the input fusion
variations. For each of them, results with the two investigated
network architectures for various thresholds are shown.

A. No Fusion of the Radars’ Data—Decision-Level
Fusion of the Data Representations

This approach was demonstrated in the conference paper,
which is why we show it first. For decision-level fusion, three
neural networks were trained separately for the range-time
data, the range-Doppler maps, and the spectrograms. All radar
data were input individually, without any fusion.

1) CNN: Fig. 7(a) shows the overall classification accura-
cies for all activity classes and the two combined fall classes,
respectively, as well as the fall detection performance and false
alarm rate, all as a function of varying the network threshold
to declare an activity as detected. The thresholds were varied
in steps of 0.01, ranging from 0.01 to 1.

In this configuration, a maximum classification accuracy of
89.37% was achieved for the overall activity classification (all
activities). The maximum was reached for a threshold of 0.45.
However, the fall detection rate at this threshold value was
no more than 36.18%. Fall detection reached its maximum
value (99.76%) for the lowest threshold value (0.01). This
would indicate that it is beneficial to use a low threshold for
fall detection; however, at this point, the false alarm rate was
93.97%.

2) ResNet18: ResNet18 is a deeper network than the
aforementioned CNN, and therefore, better results could be
obtained for the classification, as can be seen in Fig. 7(b).
When using the ResNet18, a maximum activity classification
accuracy of 95.25% was possible when selecting a threshold
of 0.43. This result is comparable to the ResNet50 used in the
previous work [16].

At the threshold of maximum accuracy, the fall detection
rate amounted to 69.43%. When selecting low threshold
values, again, fall detection could be improved. A maximum
percentage for the fall detection of 99.70% was observable,
again for a threshold value of 0.01. However, at this point, the
false alarm rate was still 49.38%.

B. No Fusion of the Radars’ Data—Signal-Level Fusion
of the Data Representations

For signal-level fusion, the three 2-D matrices containing
range-time, range-Doppler, and Doppler-time data are concate-
nated along the rows dimension and fed to one classification
network. While the range-time and range-Doppler data have
the same size, the Doppler-time representation does not
necessarily. This is because it is obtained via a short-time
Fourier transform (STFT) and therefore depends on the
STFT’s window length. To match dimensions, we zero-padded
the Doppler-time data and subsequently concatenated the three
data representations. In the STFT implementation presented
here, we chose Hann windowing with a window length of
150 samples and a window overlap of ten samples. With
a sample duration of 8.2 ms within the radar data, this
corresponds to 1.23-s window size and 82-ms overlap. The
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Fig. 7. Accuracies for activity recognition and falls (left column) and fall detection rate and false alarms (right column), all as a function of the
threshold value. This figure sums up the results when no fusion of the radars’ data was performed. The configurations of the subfigures are
(see respective subtitle) (a) decision-level representation fusion + CNN3, (b) decision-level representation fusion + ResNet18, (c) signal-level
representation fusion + CNN3, and (d) signal-level representation fusion + ResNet18.

two values were found to give good results in [20], which is
why we chose them.

The concatenated data are three times as long as single-
representation data, which results in larger images to classify,
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Fig. 8. Accuracies for activity recognition and falls (left column) and fall detection rate and false alarms (right column), all as a function of the
threshold value. This figure sums up the results for summation fusion of the radars’ data. The configurations of the subfigures are (see respective
subtitle) (a) decision-level representation fusion + CNN3, (b) decision-level representation fusion + ResNet18, and (c) signal-level representation
fusion + ResNet18. The configuration using signal-level representation fusion + CNN3 gave no meaningful results, which is why no results are
shown for this configuration.

but the benefit is that, in contrast to decision-level fusion, only
one neural network is required instead of three.

1) CNN: Results for this configuration can be seen in
Fig. 7(c). A maximum classification accuracy of 87.76% was
found for a threshold of 0.60. However, at this value, the fall
detection rate was no more than 35.64%. Its maximum, found
again at a threshold of 0.01, was 95.82%. Because of these
rather low values, we deduce that this configuration is less
suited for a reliable classification.

2) ResNet18: Using a ResNet18 for the same fusion
concept provided better results again. The results can be seen
in Fig. 7(d). Here, the classification accuracy amounted to a
95.16% maximum for a threshold of 0.42. The fall detection
rate at this point is 68.66%. The maximum fall detection for

low thresholds is 95.28%, which is a lower value than when
using decision fusion as in Section IV-A-II.

C. Fusion of the Radars’ Data—Decision-Level Fusion of
the Data Representations

The five radars that form the radar network all provide
data that can be fused in different fashions or used
independently. In the conference publication, no fusion was
performed. Fusing the radar data can take place at the
signal level, feature level, and decision level. In [20], these
possibilities were investigated and it turned out that a
summation of the raw range-time data provided the best
results. Therefore, we used this approach as well. The five
range-time plots coming from the five radars were summed
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Fig. 9. Receiver operating characteristic curves and area under curve values for fall detection in the examined configurations. The configurations
of the subfigures can be seen from the respective subtitles. The configuration using radar fusion, signal-level representation fusion, and CNN3 gave
no meaningful results, which is why no results are shown for this configuration.

up and the resulting data were Fourier-transformed and short-
time Fourier-transformed to obtain range-Doppler map and

spectrogram, respectively. Results for the radar data fusion
can be found in Fig. 8.
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1) CNN: Fig. 8(a) shows the obtained results for this
configuration. A maximum classification accuracy of 89.09%
was obtained for a threshold of 0.47. This is again a rather low
value compared to the other configurations. At this threshold,
the fall detection rate amounted to 41.49%, which is also quite
low.

2) ResNet18: Fig. 8(b) shows the results when using a
ResNet18. Here, a maximum classification accuracy of 94.30%
for a threshold of 0.49 was possible. The fall detection rate
was 61.19% at the threshold of 0.49. For the threshold value of
0.01, a maximum percentage for the fall detection of 99.40%
was obtainable, which is quite high. However, it comes with
a rather high false alarm rate of 51.07%.

D. Fusion of the Radars’ Data—Signal-Level Fusion of
the Data Representations

In this configuration, the data of the five radars were
summed up and processed as in Section IV-C. Then, the
resulting range-time, range-Doppler, and spectrogram data
were concatenated and fed to the classifier.

1) CNN: This configuration did not provide satisfying
results. Training and validation converged at a high loss
value and the trained network was not able to classify any
falls correctly. Convergence at a high loss value indicates
underfitting [25], which is probably because the CNN is too
shallow for the problem.

2) ResNet18: Results for this configuration are shown in
Fig. 8(c). A maximum classification accuracy of 95.65%
could be obtained. This is the highest for all investigated
configurations. It was achieved for a threshold of 0.37.
At this threshold, the fall detection rate was 75.52%. The
maximum percentage for fall detection is 98.21%, which is
again obtained for the lowest threshold value of 0.01. At the
same time, this point exhibits a false alarm rate of 23.40%.

E. Summary and Discussion of the Results
From the results in Sections IV-A–IV-D, we can see some

trends that shall be discussed in the following.
Using ResNet18 for classification outperformed the three-

stage CNN in all scenarios. However, since the CNN3
architecture is shallower than the ResNet18, it requires less
computational power, which might be beneficial for practical
application.

The ResNet18 gave a similar performance to the ResNet50
used in [16] but is a much more efficient network in terms of
computational complexity.

Fusing the five radars’ data by summation and concatenating
the data representations did not bring any meaningful results
when using the three-stage CNN as a classifier. All other
investigated fusions and networks gave > 80% classification
accuracies for a large span of thresholds.

We observe that the range of about 0.3–0.6 gives the best
results when fusing the data representations at the decision
level. When using signal-level fusion, the accuracy is similar
for a larger range of thresholds. This could indicate that the
classification is more evident in this case.

When looking at the fall classes, relatively high accuracies
could be obtained in all cases as well. The fall accuracy

Fig. 10. Confusion matrices for various thresholds and the configuration
of using radar fusion of the five radars, signal-level fusion of the three
data representations, and ResNet18 for classification. From top to
bottom: thresholds 0.2, 0.5, and 0.7.

curve did not differ much from the activity recognition curve
in all investigated scenarios. However, simply looking at the
accuracy could be misleading here because the high number
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TABLE I
PARAMETER STUDY RESULTS OVERVIEW

of true negatives (no fall classification when there is no fall)
contributes strongly to this metric. For this reason, it is useful
to look at the amount of recognized falls. We can see from
the results that high fall detection rates are achieved for low
thresholds. However, this comes at the price of high false alarm
rates. For higher threshold values, a relatively high number of
falls was missed. A good compromise for fall detection might
be a threshold of about 0.2. In this case, the recognized falls
amounted to ca. 80 % for most of the investigated scenarios
and the false alarm rate was 20% or lower.

To elucidate this more, Fig. 9 shows the receiver operating
characteristic (ROC) curves [26] for fall detection in the
investigated scenarios. The ROC curve plots the true positive
rate versus the false positive rate for various classification
thresholds. The true positive rate is defined as the number
of true positives divided by the sum of true positives and false
negatives. The false positive rate is defined as the number
of false positives divided by the sum of false positives and
true negatives [26]. A steeper ROC curve generally indicates
a better performance. Another performance measure that can
be deduced from the ROC curve is the area under the curve
(AUC). The AUC is the integral of the ROC curve. A higher
AUC value corresponds to a better performance. An ideal
classification would correspond to an AUC value of 1.

From Fig. 9, we see that for the fall detection problem, the
ROC curves are steeper when using ResNet18 in all cases.
The AUC values all lie above 0.9, whereas when using the
CNN, they are between 0.8 and 0.9. The highest AUC value
is obtained when using signal-level fusion of the five radars
and signal-level fusion of the data representations together
with ResNet18 as a classifier. Remarkably, this configuration
also gave the highest overall classification accuracy for all
activities. This might indicate that it is the most suitable fusion
strategy for the problem.

To have a more detailed look at the performance of this
configuration, Fig. 10 shows the confusion matrices for the
single activities in this setup. Since the prediction depends on
the threshold, confusion matrices for three selected thresholds
are shown, namely, 0.2, 0.5, and 0.7. A high number of
correct predictions can be observed for all thresholds, which
confirms the results from Fig. 8(c). In addition, a detailed look
at single activity classes is possible from Fig. 10. For the
individual classes, the percentages of correct classifications
vary with threshold. A general tendency is that the number of
true and false positives decreases with threshold, whereas the

number of true and false negatives increases. This is expectable
because, with a higher threshold, all decisions with a not-so-
high confidence will be classified as 0 (absent/negative).

In general, a rather good classification performance can
be seen across all classes: The accuracy for all classes and
thresholds is above 90%. Thus, the misclassification rate is
below 10% for all activity classes in the selected configuration.

Table I sums up the results of the parameter study.

V. CONCLUSION

This article discussed various classification approaches
for radar-based continuous human activity recognition with
multiple inputs and multilabel output.

Regarding the investigated networks, ResNet18 clearly
outperformed a simple CNN. All fusion methods performed
similarly well when using the ResNet18. From the results in
this work, it might be most beneficial to fuse the radars’ data
as well as the data representations at the signal level. This
configuration gave the highest overall classification accuracy
as well as the best performance for fall detection when using
the AUC metric.

For the output thresholds, it turned out that a value of
0.2 might be a good compromise between high fall detection
rate and low false alarm rate—this assuming that fall detection
is the most important task in the analysis of the activities.

With the aforementioned configuration (summation fusion
of the radars’ data, signal-level fusion of the three data
representations, ResNet18 as classifier, and threshold 0.2), the
overall accuracy for activity recognition amounts to 94.98%.
A fall detection rate of 82.39% could be reached and a false
alarm rate of 4.4 %. For real-world applications, however, this
is still a rather low value. Therefore, future research will have
to find ways to improve fall detection performance still more.

Another question in a practical setting is how and where
to compute the classification. Edge computing would be a
desired solution, but depending on the data and network size,
it might not always be applicable. As can be seen from the
results, deeper networks perform better; however, they require
more computational power and memory hardware for their
higher number of key parameters. Therefore, finding efficient
solutions to this problem is another key challenge on the way
to applicability of the technique.
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