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1 | INTRODUCTION

The concept of fibre metal laminates (FMLs) has been
successfully developed to a mature structural material
technology, as demonstrated with the large-scale applica-
tion of GLARE, comprising aluminium layers and glass
fibre epoxy layers, on the Airbus A380 fuselage and
empennage-leading edges. This hybrid concept originates
in the early attempts to improve the damage tolerance
characteristics of metallic materials subjected to fatigue
loading." First, adhesive bonding of thin aluminium
layers was developed based on the observation of
improved fatigue resistance and fracture toughness com-
pared with a monolithic plate with similar thickness.?
The addition of fibre layers to the bondline formed the
second step towards the FML concept development.

With the introduction of fibre metal laminates (FMLs) as a (fatigue) damage
tolerant material concept in aeronautics, an interesting field emerged where
fatigue damage interaction plays a dominant role. The hybrid concept effec-
tively demands evaluating fatigue damage growth based on fracture phenom-
ena typical for both metals and fibre-reinforced composites that continuously
interact with each other. This paper explains current understanding of the
fatigue fracture phenomena in FMLs, and it demonstrates how this interaction
limits the criticality of both the metallic and composite fracture phenomena. In
addition, it explains how the laminated hybrid configuration can be further
exploited scientifically to unravel the physics of the individual fatigue fracture

crack growth, damage interaction, delamination, fatigue, fibre metal laminates, fracture mechanics

Although the initial objective with FMLs was to
improve fatigue damage growth resistance, other charac-
teristics were soon identified underlying the excellent
damage tolerance characteristics of FMLs. Among these
characteristics are the high impact resistance and impact
tolerance, corrosion resistance, and burn-through
resistance.®”

With the FMLs developed for the Airbus A380, ie,
GLARE, an excellent balance had been obtained between
the contribution of aluminium and that of glass fibre-
reinforced polymers. However, soon, people realized that
depending on the application, different optimal solutions
can be developed, specifically tailoring the combination
of properties and performance characteristics of the
hybrid laminate. Such optimization obviously requires
thorough understanding of the phenomena, which has
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led to numerous studies aiming at fully understanding in
particular the fatigue fracture phenomena.® Initially,
these studies were very basic and empirical,”'® but the
current state of art is described by in-depth understand-
ing formulated in analytical theories based on fracture
mechanics principles.’**?

Now, the FML concept has reached its maturity
and technology readiness level through large-scale aero-
nautical applications; it seems time to question the scien-
tific relevance of this hybrid technology. For example,
one could question whether the development of FMLs
has pushed the frontiers of scientific knowledge in the
field of fatigue or whether this hybrid concept can con-
tribute in any way to our scientific understanding of
fatigue in engineering materials.

To address these questions, this paper explains current
understanding of the fatigue fracture phenomena in
FMLs, and it demonstrates how the interaction of phe-
nomena limits the criticality of both the metallic and
composite fracture phenomena despite initial prejudices.
In that respect, it will be explained how the scientific
knowledge on fatigue damage growth in metals and com-
posites has been utilized in describing the process in
FMLs and how that can be applied within an engineering
context. In particular, the principle of superposition,
equivalent to the physical superposition of layers in lam-
inate lay-up, is presented as key enabler for developing
the methodology. The last part of this paper explains
how the laminated hybrid configuration can be further
exploited scientifically to unravel the physics of the indi-
vidual fatigue fracture phenomena.

2 | SUPERIMPOSING LAYERS
REQUIRES SUPERPOSITION
PRINCIPLES

What past research on fatigue damage growth in FMLs
has taught is that the physical superposition of layers,
ie, laminating metallic plies with fibre-reinforced
polymer layers, requires a methodology that effectively
constitutes a similar superposition in its basic principle.
For example, instead of describing the observed crack
growth in FMLs using a stress intensity factor (SIF)
Kappiiea (assuming the laminate to be homogenous as
material),”® the crack tip SIF is described by

Klip = Kfatﬁeld - Kbridging7 (1)

in which Kj,,se1q represents the standard SIF for a crack
in the metal layers and Kjiqging describes the reduction
of that SIF imposed by intact bridging fibres."* Now,
when additional stiffening elements, like stringers or
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frames, are added to create a stiffened panel, the principle
is further extended to

Ktip = Kfarﬁeld - Kbridging =+ ZKstiﬁ‘enerx7 (2)

where the summation indicates treating all stiffeners
individually, while the “+” indicates whether the stringer
is intact or broken. An intact stringer increases the bridg-
ing, hence “-,” while a broken stringer increases the
crack tip SIF, calculated with “+.”¢18

Here, the crack is the typical metal fatigue fracture
phenomenon, while the typical composite fracture phe-
nomenon observed is ply delamination. The metal crack

length a is straightforwardly accounted for through

Kll'p = IBS\/%7 (3)

while the delamination areas are implicitly accounted for
in Equations 1 and 2 when calculating Kpigeing and
Kiiifreners- Note that in the case stiffeners are bonded to
the FML panel, the phenomenon is commonly referred
to as adhesive disbonding or disbond growth rather than
delamination.'®*" In the case stiffeners are riveted to the
FML panel, then the Kggeners term can be evaluated
through a methodology originally proposed by
Vlieger*>** and later adapted by others.>**®

3 | SUPERIMPOSING MATERIALS
SUPERIMPOSES CRITICISM AND
PREJUDICE

What has become evident in the development of FMLs
for aeronautical applications is that the combination of
two distinctively different materials into a single struc-
tural material concept invites two communities to express
concerns and criticism. On the one hand, this is consid-
ered advantageous, because in the development process,
it forces to look outside often limited scope when address-
ing potential issues. However, when both communities
adhere too strict to rules and standardized approaches
in their respective fields that appear to hinder the devel-
opment and application rather than improve it.

Take, for example, the case where under the damage
tolerant design regulations, it is mandatory to repair
fatigue cracks in metallic structures once detected. Resid-
ual tensile stresses present after curing in the aluminium
layers of GLARE, together with the stiffness mismatch
between aluminium and glass/epoxy layers, increase the
mean and amplitude of the actual stress cycle of the metal
layer and thus reduce the fatigue crack initiation life. The
fact that cracks occur earlier in FMLs than in monolithic
aluminium®® has often been brought up in the metals
community as showstopper to reject the hybrid concept.
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FIGURE 1
based on fatigue life evaluation for monolithic aluminium and

fibre metal laminate (FML) (not to scale); UL and LL are ultimate
load and limit load, respectively*” [Colour figure can be viewed at

Illustration of determining the inspection threshold

wileyonlinelibrary.com]

The fact that this initiation life relates in its definition
to a crack length®” of 1 mm, which is too small for detec-
tion in practical conditions, was mostly ignored. Here, it
did not require much experimental substantiation to
demonstrate that despite the reduced lifetime until initia-
tion, the lifetime until detectable crack length in FMLs is
longer,”” see Figure 1. After a fatigue crack has initiated,
fibre bridging retards the growth rate, substantially
increasing the lifetime to longer cracks compared with
monolithic metals.

A similar example can be given that originates in the
composites community. Since Marissen'! described
fatigue damage growth mechanisms in FMLs, it is under-
stood that along with the fatigue cracks in the metal
layers, delaminations occur at the interface with the fibre
layers. In literature on fatigue damage in composites,

Fibre failure

bO + oo MPA

FIGURE 2
[Colour figure can be viewed at wileyonlinelibrary.com|

Image of delamination shapes in aramid fibre-reinforced aluminium laminate (ARALL) containing evidence of fibre failure

delaminations are listed as the most important and detri-
mental damage mechanism. One rather prefers trans-
verse matrix cracking or splitting over delaminations.
Hence, the fact that along with cracks in metallic layers,
delaminations occur in FMLs was generally seen as bad
and detrimental.

What the research on fatigue damage growth in FMLs
has revealed, however, is that these delaminations distrib-
ute the high stresses over a larger area, allowing the
bridging fibres to remain intact and contribute to crack
bridging. Very tough epoxies with high delamination
resistance resulted in premature fibre failure, see
Figure 2, reducing the fatigue life to what was commonly
observed for metals. So despite counterintuitive, these
delaminations in FMLs should be considered
advantageous.

In fact, one may qualitatively compare the function of
delaminations in FML fatigue damages to what, for
example, matrix splitting does at the notch root of a com-
posite structure; it tends to distribute the severity of
stresses over a larger area and thus reducing potential
damage.

4 | SUPERIMPOSING ADVAN-
TAGES IMPLIES REDUCING
DISADVANTAGES

FMLs have been presented as the hybrid concept combin-
ing the best of both worlds.*® For example, the ductility of
metals combined with the fatigue insensitivity of compos-
ites provided the excellent damage tolerance characteris-
tics of FMLs. Hence, historically, FMLs have been
considered as the concept in which composite plies

100 +100 MPa

28,29
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improve the performance of metals, ie, fibre-reinforced
composites as reinforcement of metals. However, with
the development of major primary aeronautical and space
composite structures, one may reverse that perspective
and consider the hybrid concept of FMLs as the reinforce-
ment of composites by the addition of metallic constitu-
ents. Rather than adding, for example, composite plies
in multiple directions (0°, 90°, +45°), one may insert
few isotropic metal plies without the need of increasing
the laminate thickness substantially. This thickness
increase can be limited further by replacing specific com-
posite plies by metallic layers.>"** The isotropy of the
metal layers improves to the through-thickness character-
istics improving the manufacturing tolerances for
mechanically fastening. The combination with the ductil-
ity of metallic layers substantially improves the bearing
strength required for joining panels.*

Another disadvantage of fibre-reinforced composites is
impact damage detectability. Take the impact damage tol-
erance of layered composites.®® The impact introduces
delaminations in a laminate that mostly responds linear
elastic. Hence, the presence of delaminations is not or
barely visible in composites after impact. Beyond certain
impact energies, residual dents may be visible to aid
inspection, but at lower impact energies, these dents
may not be observed, while delaminations can occur
(referred to as nonvisible damage). Non-destructive
inspection techniques are then needed if one aims to
quantify the damage state. Here, FMLs have the benefit
of ductile metal layers at the outside that leave a residual
dent after impact. Experimental studies have demon-
strated that delaminations within the laminate are con-
straint by the dent size.>> Hence, no additional
inspection technique is required to quantify the damage
state, because if no dent is visible, then no damage (or
delamination) is to be considered within the FML. The
ductile layers effectively act as sensor to aid visual inspec-
tions. In addition, the plastic deformation together with
the local residual stresses introduced significantly retards
the propagation of cracks created under impact.

5 | SCIENTIFIC EXPLOITATION OF
THE HYBRID CONCEPT TO
UNRAVEL THE PHYSICS

What has not received a lot of attention until today is that
the hybrid laminate lay-up of FMLs provides an excellent
test bed to scientifically investigate metallic or composite
fatigue fracture phenomena. The combination of both
constituents and the ability to tune the laminate proper-
ties in its lay-up allow to investigate the physical aspects
of fatigue damage growth.

I Fatigue & Fracture of 2417
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5.1 | No-growth concepts

Take, for example, the “no-growth” concepts adopted in
composites engineering.’> Because the assessment and
evaluation methodologies for fatigue and fracture in
fibre-reinforced composites have not reached the required
level of maturity, no-growth concepts are adopted in engi-
neering practice that are validated with (full scale) tests.
Instead of the common practice for metallic structures,
to assume the existence of initial flaws and predict the
growth of these, composites engineering tends to define
allowable stress levels such that any in-service (impact)
damage does not propagate. Scientifically, the question
here remains whether the selected allowable stresses cre-
ate a stress condition below a fatigue limit or below a
damage growth threshold?

For fatigue in metallic structures, it is known that
under certain conditions cracks may nucleate at a notch
root but subsequently retard.>® Such condition remains
below the fatigue limit of an S-N curve, because the S-N
curve and its lower asymptote both relate to failure. Sim-
ilarly, no growth could imply that damage that has been
formed still grows but that the growth is limited such that
it does not reveal apparent and obvious macroscopic
growth within the tested lifetime.

This mechanism can be illustrated with a specific case
for FMLs. Take the interlaminar ply drop-off within an
FML, as illustrated in Figure 3. This case was experimen-
tally evaluated by Hooijmeijer*”* who applied 180 000
cycles at an equivalent fatigue stress spectrum, to report
observing no macroscopic growth. For the engineering
application at the time this “no growth” was sufficient.

Scientifically, one could study this case further though.
With the quasistatic delamination growth evaluated in
Vries et al,* see Figure 4, and the fatigue delamination
resistance for the particular interface characterized in
Alderliesten et al,** one could predict for the given con-
figuration and test load cases in Hooijmeijer’” what the

0° fibres ey 90° fibres

e

N /
aluminium adhesive

0° fibres [ 4 | 90° fibres

2 /
aluminium adhesive

FIGURE 3 Doubler run-out configurations in fibre metal
laminates (FMLs); single run-out (above) and internal splice
(bottom)*”** [Colour figure can be viewed at wileyonlinelibrary.
com|
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FIGURE 4 Energy release rate calculated from the experiments

reported in Vries et al* for delamination onset and final failure®

[Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 5 Comparison between the crack growth rates
predicted for the cases tested in Hooijmeijer’” with the
delamination resistance curve for the interface determined in
Alderliesten et al*® [Colour figure can be viewed at
wileyonlinelibrary.com]

corresponding delamination growth rate and total delam-
ination increment would be. This correlation was pre-
sented in Alderliesten®® and is illustrated here in
Figure 5; the total accumulated crack increment that is
to be expected in the tests by Hooijmeijer is less than a
quarter millimetre. This explains the observation of no
apparent macroscopic crack growth. It also illustrates
how a better characterized damage resistance could allow
the prediction of limited growth, instead of assuming
“no growth.”

5.2 | Fatigue threshold

Another example, possibly connected to the previous one,
relates to the physical interpretation of fatigue threshold.
Following the observation of a threshold when plotting
the crack growth rate da/dN against AK in studies on
fatigue crack growth in metals, attention was given to

1.E-05

1.E-06 AP 'L
°

1.E-07

daldN [mml/cycle]

++4+ Glare3-4/30.4
LT direction, upper crack

1.E-08 R =005-0085
f =10Hz o L-T direction, lower crack
L =580mm
W =140 mm ® 45 degrees, upper crack
o 045 degrees, lower crack

v 3
1.E-08
10 100 1000

AKeff [MPay mm]

FIGURE 6 Crack growth rates recorded in Daandels*' plotted
against the effective stress intensity factor range calculated with
the empirical model** [Colour figure can be viewed at
wileyonlinelibrary.com|

whether composite fatigue delamination resistance
curves exhibit such threshold as well. This appears not
always to be obvious.

Similarly, fatigue threshold was studied initially for
FMLs,* see, for example, Figure 6, until it was under-
stood that the interplay between a threshold in crack
growth and the apparent absence of threshold in delami-
nation growth yield different slow crack growth charac-
teristics compared with monolithic metals.*® Hence,
despite that crack growth in FMLs is described using,
for example, Equation 1, a threshold SIF is not consid-
ered, simply because the continuation of delamination
growth eventually will raise the K;;, above the threshold
resulting in further crack growth.

Physically, the fatigue threshold may constitute a min-
imum amount of strain energy required in the crack tip
vicinity to impose a crack increment, analogue to exceed-
ing static friction in moving a box over a floor. This
threshold energy can be experimentally assessed, when
testing multiple FML lay-ups (each with their distinct
residual curing stresses in the metal layers), while deter-
mining with, for example, acoustic emissions the metal
crack onset level. Such study may reveal that the reason
why threshold levels appear to be stress ratio dependent
is because threshold is expressed as AKy,;esnoiq rather than
Kinresnoias Which implies different values for different
stress ratios (as Kpresnoiw May remain approximately
constant).**

5.3 | Uniaxial loading or biaxial loading?

A third case in which the concept of FMLs could be
exploited to study fatigue crack growth in metals relates


http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com

COSTA ET AL.

to crack growth under the uniaxial versus biaxial loading.
Originally, the Westergaard stress distribution in the
crack tip vicinity was developed for a biaxial load condi-
tion as occurs in a pressure vessel.*> Adopting these stress
field equations for an uniaxially loaded specimen there-
fore required the modification with a transverse
monotonic stress component, often referred to as the
T-stress.*®*” With the orthotropic characteristics of FMLs,
one may impose different levels of biaxiality in the metal
layers of the laminate, simply by altering the lay-up. The
mean stress levels of the effective stress cycles in both
material constituents may be further tuned with changing
the residual curing stresses through altering the curing
temperatures.*® This concept of imposing biaxial loading
through material orthotropy has been subject of a former
investigation,” in which biaxiality in loading was
induced through a special lay-up utilizing a layer with
extremely high stiffness in the transverse direction, see
Figure 7. Constraining transverse contraction, while
loading in the axial direction effectively imposes a trans-
verse load component. One should consider that, though
at a smaller scale, this is also the case in standard FML
lay-ups comprising fibre-reinforced polymer layers in
transverse or off-axis directions. Hence, the stress field
in the crack tip vicinity can be modified and altered to
further study the contribution of biaxiality or off-axis load
conditions on the crack growth behaviour.

5.4 | Physics of finite width corrections

A fourth example relates to the application of geometry
correction factors in the equations for SIFs. In several
studies on fatigue damage growth in FMLs,'*"° it was

specimen 1

=

UD layer (stiff in x-direction)

teflon

specimen 2

edges adhesively
bonded to UD layer

FIGURE 7 Illustration of biaxially loaded specimens; axial
machine load applied in y-direction with stiff unidirectional (UD)
layer adding load to the specimens in x-direction*’ [Colour figure
can be viewed at wileyonlinelibrary.com|
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observed that the application of the finite width correction
factor § in the expression for K, se1q in Equation 1, ie,

Kfarﬁeld = ﬁsmeml na, (4)

resulted in overly conservative predictions, while exclud-
ing the correction made the prediction slightly
unconservative. A physical explanation could not be given
for this observation. More recently, however, when
discussing proper similitude to describe fatigue damage
growth in agreement with the physics of the process,”®>"
re-evaluation of this observation provided a physical
explanation. The difference between finite and infinite
for which f corrects physically requires an energy correc-
tion. For a linear elastic panel without a crack, the applied
work for a constant load P is described by (assuming for
simplicity that the P-§ curve runs through the origin)

1
Wy = 5P50. (3)

When the crack grows, the panel compliance increases
yielding larger displacements under the application of
load P, hence

1
Wo = =P8, (6)
2
and
b=y )

For 2a — W, the compliance increase yields § — oo,
which is in agreement with all finite width correction fac-
tors. However, because of the presence of intact bridging
fibres, the compliance increase of FML panels is substan-
tially limited to the elongation of only the fibre layers
under the load P. This means that § in Equation 7 is not

Feddersen /| Dixon
1.14
Spnax = 240 MPa S = 120 MPa
7 R=0.5 R 0.05
112 Increasing 5,,,,,
S, = 200 MPa
§ 11
g
= -
= e S, = 180 MPa
= R=05
T 106
1.04
1.02 s
PP~
: 0 0.1 0.2 03 04 0.5 06 07 0.8 09
2a/w
FIGURE 8 Illustration of the finite width correction factors F(a/

W) =  for cross-ply Glare3 laminates tested at different fatigue
stress levels® [Colour figure can be viewed at wileyonlinelibrary.
com|
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equal to standard finite width corrections factors®*>*>’
and effectively depends on the laminate lay-up and the size
of the fatigue delaminations,>* see Figure 8.

Hence, the physical meaning of the finite width correc-
tion can be studied in detail through testing FML lay-ups
at various fatigue-loading conditions. The latter can be
varied in the applied fatigue load spectra but can also be
tuned with the magnitude of residual curing stress
through modifying the curing temperature and cure cycle.

In that respect, one may learn that the standard finite
width corrections may all become incorrect, once an
ambient temperature cycle occurs while fatigue testing a
monolithic metallic specimen containing a centre crack.
Depending on the magnitude of the temperature
variation, the corrections may be inaccurate by several
percent.”®

6 | CONCLUSIONS

With all the past research on fatigue damage growth in
FMLs, the fracture mechanisms and their interplay are
rather well understood. The damage tolerance potential,
however, is not yet fully exploited, illustrated by most
efforts to develop only fibre-reinforced composites, which
do not have proven to have more potential. Academically,
the concept of FMLs could be further exploited to develop
scientific test methods and procedures to better under-
stand the physics of fatigue fracture in both metals and
composites. This has been illustrated in this paper
through four examples.
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