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Harnessing Dynamic Metabolomics 
for Bioprocess Prediction and Beyond
Guan Wang, Cees Haringa, Ju Chu, Yingping Zhuang, 
Wouter van Winden and Henk Noorman

44.1 � FUNCTIONAL METABOLOMICS 
FOR DESCRIBING THE 
BIOSYNTHETIC REGULOME

Systems biology aims to gain quantitative insight into the 
mechanism in biological systems, which in turn provides 
informative cues to guide synthetic design.1,2 As illustrated 
in Figure 44.1, metabolism-centric trans-omics assays 
have been applied to measure spatiotemporal dynamics 
of the global biochemical networks that govern cellular 
functions.3 Alongside genomics, transcriptomics, and pro-
teomics, metabolomics is the youngest systems biology tool 
that aims to identify and quantify the metabolome – the 
dynamic set of all small molecules (generally molecular 
weight <1, 500 Da) present in an organism or a biologi-
cal sample in response to environmental, nutritional, or 
immunological stimuli. The term “metabolome” was first 
introduced in 1998,4 and nowadays, metabolomics finds 
increasing applications in diverse fields, from metabolic dis-
orders to cancer, from nutrition and wellness to the design 
and optimization of cell factories.5 In addition to metabolite 
concentrations measured by metabolomics, a complemen-
tary approach, i.e., steady state flux balancing approach, 
can be used to quantify metabolite flow (i.e., metabolic flux) 
through biochemical networks. Moreover, for dynamic 
fluxomics (e.g., response to substrate pulses), metabolome 
dynamics in combination with dynamic metabolite mass 
balances, which often involve stable isotopes, are needed to 
determine the fluxes.6 Furthermore, metabolic flux analy-
sis is often needed in combination with metabolite levels 
to describe cellular physiology,7,8 assess metabolic pathway 
operation9–11 as well as formulate metabolic model12,13 for 
systems biology and metabolic engineering.5,14 Previously, 
however, the “omics” studies other than metabolomics dom-
inated large-scale functional analysis strategies to unravel 
the link between genotypes and phenotypes. Yet the down-
stream metabolomics has now been broadly acknowledged 
to show greater effects of genetic or environmental changes 
and thus is the most predictive of phenotype.15

In biological systems, biochemical reactions are mostly 
catalyzed by enzymes, and the majority of enzymes bind 
specific metabolites. Such interactions are highly relevant 
to metabolic and gene regulation.16,17 Protein-metabolite 
interactions, e.g., allosteric regulation via posttranslational 
protein modifications and metabolite binding, allow to rap-
idly coordinate metabolic flux redistribution at timescales 
of seconds to minutes in highly dynamic environments and/

or perturbations. Recently, it has been experimentally dem-
onstrated that the net rates of cellular metabolic reactions 
are strongly driven by substrate concentrations and metab-
olite concentrations, which collectively have more than 
twice as much physiological impact as enzymes alone.18 
The timescales of intracellular processes such as biochemi-
cal reactions are scale-independent (i.e., do not depend on 
reactor scale), whereas transport processes are not. As a 
consequence, the mixing time is positively correlated to the 
scale.19 In industrial bioprocesses, this has the most profound 
impact on the distribution of the limiting substrate. Highly 
concentrated substrate is often fed at one point in the biore-
actor to minimize broth dilution. Due to mass transfer and 
mixing limitations, the concentration of substrate may vary 
over orders of magnitude in the reactor;20,21 in the worst-
case, the substrate is in excess near the feed and depleted in 
the bulk,22 while the objective is to achieve a homogeneous, 
limiting concentration overall. A secondary consideration 
is that different nutrients may become limiting at different 
locations in the reactor. Most notably, oxygen may be limit-
ing close to the substrate feed point, while substrate may be 
limiting close to the gas sparger in industrial-scale aerobic 
processes. Whether and how the cells react to this depends 
on the intracellular capacity of cells to deal with rapidly 
varying environments. Typically, the cells in the large-
scale bioreactor are forced by the fluid flow to periodically 
experience high/low substrate conditions, i.e., feast/famine 
regime, on account of nonideal mixing and mass transfer 
issues.19 Often, this will result in a loss of production per-
formance upon scaling-up, including reduced titer, yield, 
or productivity.23 However, a few reports are showing that 
some microbial cells are seemingly insensitive to environ-
mental perturbations at large-scale conditions,24 and even in 
some cases, there may even be a positive effect on cellular 
viability,25 fungal morphology26 and process productivity.27 
Therefore, we need to assess how microbes/cells respond 
to rapid variations in their environment on the different 
‘omics’ levels. Metabolomics plays a central role in this, as 
the metabolite may be directly affected by rapid variations 
in the extracellular environment. Subsequently, one may 
ask how these metabolite changes propagate into changes 
in the transcriptome and proteome (via, e.g., gene regula-
tion leading to long-term phenotypic alteration or post-
transcriptional regulation inducing short-term responses). 
In addition, due to the close relationship between metabo-
lism and cellular phenotype, knowledge of the metabolome 
may serve as a basis for dynamic models of the biological 
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system, capable of quantifying how the full-scale process 
environment impacts process performance.28

To describe the whole cell physiology there are several 
types of cellular reaction dynamics (CRD) models describ-
ing the whole cell physiology or some aspects thereof. 
Genome-scale metabolic models can, in principle, provide 
a huge number of intracellular details via constraint-based 
modeling of biological networks. Although prevalently used 
in many applications, these models suffer from the limited 
mechanistic in vivo kinetic knowledge (e.g., lack of repre-
sentation of metabolite concentrations and enzyme regu-
lation) of each reaction.13,29 In contrast, the conventional 
black box model is capable of responding to the local envi-
ronmental cues, e.g., residual glucose concentration, with 
minimal model complexity by neglecting all intracellular 
metabolic details. For instance, the saturation-type glucose 
uptake kinetics has been used with computational fluid 
dynamics (CFD) modeling to capture the glucose concen-
tration gradient in a 30 m3 fermentation of Saccharomyces 
cerevisiae, and the coupled model predictions were favor-
ably validated with the experimental data.20 However, lack-
ing intracellular details, this model cannot predict how this 
glucose concentration gradient affects the formation of 
(un)desired products. Nowadays, a detailed kinetic model 
of specific processes,30 partial metabolic pathways,31 and 
large-scale kinetic models32–34 have become available for 
metabolic characterization and process prediction includ-
ing intracellular dynamics. However, these more detailed 
metabolically kinetic models are inevitably associated with 
parameter estimation issues where extensive metabolic 
datasets are required to conduct some meaningful param-
eter estimation,35 and also find difficulty in being integrated 
with the CFD model for a global assessment of industri-
ally relevant bioprocesses. As an alternative, kinetic models 

should be formulated with reduced structure yet preserved 
with enough dynamic features.36 To achieve this, efforts 
have been made to replace the classical hyperbolic enzyme 
kinetics with more reduced and reliable models, among 
which six approximative kinetic formats have been recom-
mended from the perspective of modeling efficiency.37 In 
brief, a trade-off between modeling purpose, model com-
plexity, simulation timeframe, and data availability for 
parameter identification should be taken into account when 
selecting the preferred CRD models for CFD coupling. In 
any case, it should be noted that to construct models with 
meaningful intracellular dynamics, metabolite quantifica-
tion is required to fully exploit key intracellular mechanisms 
associated with cell growth and product formation.38,39 It 
is not questionable that absolute metabolite concentrations 
impact both metabolic reaction rates and free energies.40,41

In this chapter, we demonstrate that unbiased and abso-
lute metabolomics data can be obtained using rapid sam-
pling, quenching, and extraction protocols in combination 
with the isotope dilution mass spectrometry (ID-MS) 
method. Based on this, metabolomics data can be applied 
to accelerate the learning step within the design, build, test, 
and learn (DBTL) cycle, guide the metabolic engineering of 
synthetic bioproduction pathways, and facilitate the estab-
lishment of metabolically structured models. Furthermore, 
a computational framework integrating the CRD model 
with the CFD model can be developed to evaluate the effect 
of environmental perturbations on the cellular metabolic 
behavior in industrial-scale bioreactors in high resolution.

44.2 � QUANTITATIVE METABOLOMICS 
USING ISOTOPE DILUTION MASS 
SPECTROMETRY (ID-MS)

Measuring intracellular metabolites is experimentally 
time-consuming and tedious and is mostly constrained by 
technical difficulties caused by the rapid metabolite turn-
over rates, the need to quench metabolism, and separate 
them from the extracellular space with minimal metabo-
lite leakage.42 In addition, quantitative metabolite profiling 
is further hampered by biased mass spectrometry-based 
analysis caused by matrix effects.43 To address these issues, 
a complete procedure including fast sampling, immediate 
quenching of enzymatic activity, separation of exometabo-
lome and endometabolome, complete metabolite extrac-
tion from the cells, and reliable high-throughput analysis 
method is in desperate need of obtaining quantitative snap-
shots of the cellular metabolome.44

44.2.1 � Rapid Sampling, Immediate Quenching 
and Complete Extraction

The intracellular metabolite concentrations can cover a 
broad concentration range, roughly from 10−7 to 10−1 M.40 
The turnover times of intracellular metabolite pools can be 
estimated based on their in vivo pool sizes and conversion 

FIGURE 44.1  The “omics” cascade shows the link between 
genotype and phenotype. As the powerful systems biology tools, 
genomics, transcriptomics, proteomics, and metabolomics help 
determine the responses of biological systems to disease, genetic, 
and environmental perturbations. Being the closest to the phe-
notype, metabolomics provides a functional readout (metabolite 
level, flux change, kinetics, and thermodynamics) of cell factories.
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rates. As shown in Table 44.1, the datasets gathered from 
glucose-limited chemostat cultivations of  S. cerevisiae,45 
Penicillium chrysogenum,46,47 and Escherichia coli48 show 
that the turnover of metabolites is fast, in the order of sec-
onds to tens of seconds, especially in the central metabolism 

and energy metabolism. Rapid sampling from the bioreactor 
and immediate quenching of enzymatic activities is a pre-
requisite to obtain true snapshots of the cellular metabolism.

Over the years, several robust and reliable rapid sampling 
devices for metabolomics studies have been developed.44,49,50 

TABLE 44.1
Intracellular Metabolite Concentrations and Turnover Times in Glucose-Limited 
Aerobic Cultures of Saccharomyces cerevisiae45, Penicillium chrysogenum46,47, and 
Escherichia coli48

Metabolites

Intracellular level (μmol/gDW) Turnover time (s)

P. chrysogenum S. cerevisiae E. coli P. chrysogenum S. cerevisiae E. coli

Central metabolites

G6P 4.64 5.2 1.42 23.3 17 3.6

F6P 0.71 1.4 0.38 5.7 7.3 1.2

T6P 0.55 0.13 47.8 NA

M6P 1.95 0.48 NA

6PG 0.25 0.48 0.10 3.7 4.5 1.1

Mannitol-1P 0.99 NA

G3P 0.13 0.17 57 13.1

FBP 0.9 0.64 0.82 7.2 3.2 2.5

F2, 6bP 0.01 0.35 NA

2PG+3PG 0.59 2.8 1.65 2.3 6.6 2.5

PEP 0.24 2.3 1.61 0.9 5.7 2.7

Pyruvate 0.22 1.1 0.75 0.9 1.7 1.5

α-ketoglutarate 2.05 0.31 22.1 0.6

Succinate 0.23 4.0 2.65 3.3 20 8.9

Fumarate 0.65 0.85 0.22 13.0 4.1 0.7

Malate 3.33 7.3 0.94 19.0 30 2.8

Amino acids

Alanine 21.7 32 1.34 269 3268 76.7

Asparagine 1.5 4.7 0.58 459 1142 81.7

Aspartate 16.3 21 2.57 717 577 35.0

Glutamate 53.0 170 74.69 658 1112 229.0

Glutamine 28.7 64 6.14 1243 2401 80.0

Glycine 2.1 2.9 1.51 244 247 31.0

Histidine 0.72 6.0 0.15 432 3141 53.8

Isoleucine 0.33 1.6 0.11 111 140 12.9

Leucine 0.73 1.0 0.36 131 125 27.1

Methionine 0.14 0.20 0.05 58.8 66 10.5

Phenylalanine 0.19 1.6 0.13 61.2 430 23.8

Proline 0.95 3.9 0.66 206 925 101.4

Serine 5.7 0.53 453 8.0

Threonine 5.9 4.0 0.47 758 220 29.3

Tryptophan 0.11 0.51 0.02 130 788 11.9

Tyrosine 0.26 1.6 0.18 145 832 44.3

Valine 2.1 10 0.51 243 490 40.9

Ornithine 4.1 0.49 502 49.1

Adenine nucleotides

ATP 7.39 7.0 5.95 NA 1.4 2.0

ADP 1.03 1.3 2.31 NA 1.4 2.0

AMP 0.27 0.6 0.91 NA 3.1 9.4

Source: Reproduced from Wang et al.102 with permission of John Wiley & Sons.
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These devices can be roughly divided into three categories: 
single-point, fast sampling device, ‘stopped-flow’ fast sampling 
device, and multi-point fast sampling device (Figure 44.2).

The types of rapid sampling devices above realize the 
rapid sampling of bioprocesses to some extent. Nonetheless, 
they have obvious shortcomings. The first type of rapid 
sampling device (Figure 44.2A) creates a negative pressure 
space by adding a vacuum pump to achieve a rapid sam-
pling process within 1 second. However, poor applicabil-
ity (the need to specify a test tube to match the test tube 
adapter) and poor system reliability (the negative pressure 
space is often prone to failure due to air leakage, result-
ing in sampling failure) may compromise its performance. 
The second type of rapid sampling device (Figure 44.2B) 
trades space for time and can accurately estimate the sam-
pling time point by calculating the flow rate and distance. 
However, due to its fixed sampling location, the sampling 
process cannot be designed arbitrarily according to experi-
mental requirements. The third type of rapid sampling 
device (Figure 44.2C) has a complex structure and strong 
system specificity, making its application to various bio-
reactors difficult. At the same time, because it involves a 

variety of automated controls, the coordination within the 
system needs to be adjusted. In addition, the time point of 
continuous sampling is also more difficult to accurately 
control and to modify once determined. Moreover, the 
last two types of rapid sampling devices are limited by the 
sampling pipe diameter (dead sampling volume) and often 
cannot achieve rapid sampling and quenching within 1 sec-
ond, and thus cannot run smoothly in case of high viscos-
ity fermentations, e.g., filamentous fungal fermentation and 
polysaccharide fermentation. The off-site weighing process 
not only increases the time of the duration of the sampling 
process but also introduces an error in the sampling amount 
due to condensation of the cryogenic quencher. To address 
these issues, we have recently designed a customized rapid 
sampling device allowing for simple, reliable operation and 
broad applicability. As shown in Figure 44.2D, it achieves 
rapid sampling within 1 second with the aid of both bioreac-
tor overpressure and programmed high-speed pump for dis-
charge and rinse and introduces multiple sets of sampling 
pipelines with different pipe diameters, which improves the 
compatibility with different fermentation processes (low/
high viscosity). This sampling device has been used to 

FIGURE 44.2  Representative rapid sampling devices for metabolic engineering applications. (A) Single-point fast sampling device; 
(B) ‘stopped-flow’ fast sampling device; (C) multi-point fast sampling devices; (D) in-house rapid sampling device (left) and its work-
ing procedure (right).
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obtain metabolic snapshots in diverse fermentations, with 
minimal error resulting from the sampling process.43,51–57

To enable immediate quenching of all enzymatic activi-
ties and freeze all metabolites with minimal loss, con-
ventional centrifugation-based quenching, and washing 
methods have been developed and used for decades in fer-
mentations with bacteria, yeasts, and filamentous fungi. The 
most common quenching protocol employs cold methanol 
at a low temperature, e.g., less than -40°C; samples were 
obtained with the rapid sampling device by rapidly with-
drawing a certain amount of broth from the bioreactor into 
a tube containing the quenching solution. Afterwards, cold 
centrifugation allows the separation of cells and the super-
natant. Nonetheless, it has been reported that this caused 
serious leakage and/or cold shock for some microorganisms 
during the sampling process.58–63 In addition to metabolite 
leakage during the quenching and separation, incomplete 
removal of supernatant from cell pellet/cake and metabo-
lite coprecipitation will aggravate the misestimation of the 
intracellular metabolite amount.64 Different strategies have 
been proposed to account for this bias,65 such as (i) pre-
serve cell integrity by adding cryoprotective, osmoprotec-
tive, or pH-stabilizing agents, (ii) quantify and correct the 
leakage by additional analysis of the quenching supernatant 
sample after cell separation, and (iii) completely circum-
vent the leakage by simultaneous quenching and extraction 
of the entire metabolome of the sample. To further reduce 
metabolite leakage and enhance washing efficiency, a cold 
filtration-based washing method has been developed to 
reduce the exposure time to the quenching liquid, and for 
efficient removal of extracellular substrates and products.66 
For example, Douma, de Jonge66 used this method for the 
first time allowing to measure the intracellular levels of the 
precursor phenylacetic acid and the product penicillin G, 
compounds of which the extracellular concentrations were 
3-4 orders of magnitude higher than their intracellular 
counterparts within the penicillin biosynthesis pathway.

To achieve complete extraction of intracellular metabo-
lites, a multitude of extraction methods such as multiple 
freezing-thawing in methanol, hot water, hot methanol, 
boiling ethanol, acidic acetonitrile-methanol, chloro-
form-methanol (un)buffered ethanol, perchloric acid, and 
alkaline methods have been developed and evaluated for 
metabolite extraction from different host cells.67–70 For 
example, for filamentous fungi and yeasts, the use of boil-
ing ethanol for extraction is preferred over conventional 
procedures that involve strong acid or alkali reagents, 
which often lead to incomplete extraction and metabolite 
instability; better results are achieved in terms of recovery 
and stability of metabolites.71,72 For Escherichia coli, mul-
tiple freeze-thaw cycles using 100% methanol at -48°C 
are recommended for the extraction of metabolites.70 
For mammalian cells, the best performance is observed 
for a wide range of metabolites when two 100% metha-
nol extractions followed by a water extraction are used.73 
However, due to different metabolite properties (polarity, 
molecular weight) and different cellular envelop struc-
tures, complementary extractions would be necessary to 

maximize the range of metabolites and attain a global 
metabolite profile from a single sample.

44.2.2 T he Stable Isotope Dilution Theory

After performing a well-established fast sampling, quench-
ing, and extraction protocol, the cellular metabolism can be 
frozen and metabolites extracted to facilitate further analy-
sis. A range of analytical techniques can be used to measure 
intracellular metabolite concentrations in the obtained cell 
extracts. Due to the simultaneous identification and quanti-
fication of a large number of metabolites with high selectiv-
ity, adequate sensitivity, and minimal sample use (e.g., 5-10 
µL vs. 100 µL or more for enzyme assays), high-throughput 
mass spectrometric techniques are often preferred to tradi-
tional enzymatic and chromatographic methods.74 However, 
prior to metabolite determination, several factors affect-
ing absolute quantitation should be addressed. Quantitative 
metabolite profiling is often hampered by biased mass spec-
trometry-based analyses caused by matrix effects, the degra-
dation of metabolites and metabolite leakage during sample 
preparation, operator-to-operator variations and unexpected 
variation in instrument responses.43 Consequently, mass 
spectrometry-based analysis of the metabolites cannot be 
directly used without validation, and metabolite recoveries 
in the extraction procedure require checking via laborious 
standard addition experiments for each metabolite of interest.

To address the problems mentioned above in sample 
preparation and MS-based analysis, the isotope dilution 
technique has been proposed to correct most aspects of ana-
lytical biases.75 The stable isotope dilution theory states that 
the relative signal intensity in an MS of two analytes that are 
chemically identical but of different stable isotope composi-
tions, such as 13C and 15N skeleton elements, distinguishable 
in a mass analyzer, are a true representation of the relative 
abundance of the two analytes in a sample.43 Therefore, 
degradation during sample preparation, variations in instru-
mental response, and ion suppression effects in mass spec-
trometry can be compensated.74 This technique has been 
widely used to generate accurate and quantitative metabo-
lomics data.43,51–54,74,76–82 Nevertheless, the availability of 
labeled intracellular metabolites is scarce, and chemical 
synthesis of the isotope of interest is highly expensive and 
time-consuming. An appropriate way is to use microorgan-
isms to synthesize these uniformly-13C-labeled equivalents. 
In general, primary metabolites in the central metabolic 
pathways are relatively easy to obtain, while secondary 
metabolites in the production pathway need to be artificially 
enriched. For example, Wu, Mashego74 obtained uniformly-
13C-labeled cell extracts for each intracellular metabolite 
of interest by cultivating S. cerevisiae in a fed-batch mode 
on fully uniformly-13C-labeled substrates. However, for the 
enrichment of intermediates in the penicillin pathway, as 
shown in Figure 44.3, Wang, Chu43 prepared uniformly-
13C-labeled cell extracts by cultivating  P. chrysogenum in 
an exponential fed-batch fermentation with fully uniformly-
13C-labeled substrates at the optimal growth rate of 0.03 
h−1, for which it was previously shown that the penicillin 
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productivity was maximized under glucose-limited condi-
tions. Based on a well-established fast sampling, quenching, 
and extraction protocol, the cultivated U-13Clabeled biomass 
yielded essentially the whole P. chrysogenum metabolome 
and, in principle, provided U-13C-labeled internal standards 
for each intracellular metabolite of interest.83

44.3 � METABOLOMICS-ASSISTED SYSTEMS 
METABOLIC ENGINEERING

Cell factories with high productivity and yield at large 
scale require appropriate distribution of cellular resources 
toward biomass growth, product formation, and cellular 
maintenance, which then provides a new paradigm in meta-
bolic engineering to manipulate and optimize metabolic 
pathways. Systems metabolic engineering was born by 
incorporating concepts and techniques of systems biology, 
synthetic biology and evolutionary engineering. This, to a 
great extent, accelerates pathway modification or the cre-
ation of new metabolic enzymes for the optimal production 
of target products.84

Metabolomics, as the newest omics tool among the sys-
tems biology tools, has been advocated to identify and inter-
pret genotype-phenotype associations in model organisms.15 

Especially, the recent marriage of metabolomics and syn-
thetic biology expedites the application of systems meta-
bolic engineering tools toward strain improvement and 
process intensification.85 For example, a recent and highly 
topical study of metabolic pathways based on metabolo-
mics focused on the increased tolerance of  S. cerevisiae to 
inhibitors in lignocellulosic hydrolysates during bioethanol 
production.86 In this study, metabolite profiling was used to 
examine the effect of acetic acid on xylose fermentation and 
to identify genes for improving organic acid tolerance. The 
results revealed acetic acid attenuates the non-oxidative pen-
tose phosphate pathway (PPP). Therefore, overexpression 
of the PPP-related enzyme (transaldolase or transketolase) 
conferred ethanol productivity in the presence of both acetic 
and formic acid.86 In addition, tracking metabolite labeling 
from stable isotope tracers can reveal pathway activities.11 
For instance, de Jonge, Buijs87 imposed intermittent feed-
ing on chemostat cultures of a penicillin G-producing  
P.chrysogenum strain to simulate substrate gradients present 
in a large-scale fermentation and estimated the intracellular 
flux changes based on dynamic 13C mass isotope measure-
ments using a novel hybrid modeling approach. The results 
revealed that the turnover rate of storage carbohydrates 
(e.g., trehalose, mannitol, glycogen) in this high-yielding 

FIGURE 44.3  Preparation of uniformly 13C-labeled cell extracts as internal standards and the flowchart of a well-established fast 
sampling, quenching, and metabolite extraction procedure for quantitative metabolomics of P. chrysogenum. (Reproduced from Wang, 
Chu43 with permission from Elsevier.)
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P. chrysogenum strain is increased under dynamic cultiva-
tion conditions and may partly contribute to the observed 
decrease in penicillin productivity.87 Trehalose cycling has 
been regarded as a double-edged sword in the P. chrysoge-
num strain, which is instrumental in maintaining a meta-
bolically balanced state. Yet, it consumes extra amounts of 
ATP for the periodic formation and breakdown of treha-
lose in response to extracellular glucose perturbations.87,88 
To address this, in a follow-up study, Wang, Zhao53 for the 
first time constructed P. chrysogenum mutant strains with 
altered trehalose metabolism; the results revealed that treha-
lose is indispensable to maintaining the balanced metabolic 
state and thus high penicillin production capacity under both 
steady state and feast/famine conditions.89 Cells lacking 
intact trehalose would become more sensitive to repeated 
extracellular glucose perturbations, which can aggravate the 
loss of the penicillin production capacity, manifesting in an 
almost 40% more reduction in trehalose-mutant strains.89 
Dynamic metabolomics has been accelerating learning step 
within the DBTL cycle for bioproduction capability, and 
examples for central metabolites, organic acids, aromatic 
compounds, and terpenoids have been recently reviewed by 
Vavricka, Hasunuma.90

In industrial settings, adaptation of cells to environmen-
tal changes requires dynamic interactions between meta-
bolic and regulatory networks,91 and thus it is of uttermost 
importance to know why the optimum production per-
formance is not reached in practice and where regulatory 

limitations really are.92 Mathematical models serving as a 
tool for understanding cellular metabolism and physiology 
have been used to define optimal fermentation conditions, 
as well as direct the genetic changes toward achieving a 
desired producer strain or cell line.93 As discussed previ-
ously, large-scale stochiometric models, e.g., genome-
scale metabolic models, although they provide informative 
clues on the phenotypes of different deletion mutants in 
silico using linear optimization, are usually not capable of 
describing cellular dynamics and regulatory architecture 
upon environmental changes, which is, however, the reality 
at the large-scale condition. In contrast, kinetic models can 
provide a dynamic picture of specific cellular processes by 
combining kinetics with the known stoichiometry of meta-
bolic pathways. Nevertheless, developing a detailed kinetic 
model is often constrained by the availability of data 
sources under industrial-relevant scenarios. To bridge this 
gap, a reduced kinetic model that focuses on the key meta-
bolic pathways leading to central metabolites (or precur-
sors), products, energy, storage pools, and maintenance can 
be formulated while preserving enough dynamic features.94

A recent leading example has been the establishment 
of a 9-pool metabolic structured kinetic model that allows 
the description of dynamics of cellular growth and product 
formation by P. chrysogenum at timescales of seconds to 
days.13 In this study, based on time hierarchy and metabo-
lite properties, as shown in Figure 44.4, the 9-pool model 
was developed with five lumped intracellular metabolite 

FIGURE 44.4  Overview of the Nine-Pool Model for Penicillium chrysogenum. (A) Lumped metabolic pools, such as glycolytic 
intermediates, storage carbohydrates, and amino acids, are defined by metabolite properties and turnover timescales. The final model 
contains five lumped intracellular metabolite pools (glycolytic intermediates, amino acids, ATP, PAA, and storage carbohydrates), 
four enzyme (capacity) pools (glucose uptake, PAA export, penicillin conversion, and storage conversion), and ten extracellular com-
ponents, connected via ten intracellular reactions. Comparison of model predictions and experimental data: (B) as a function of the 
specific growth rate under chemostat conditions; (C) as a function of time during steady state (–50 to 0 h) and ramp phases (0 to 100 h); 
(D) under a complete feast–famine cycle of 360 s using block-wise feeding (36 s on, 324 s off). Extracellular ci (mol/kg), intracellular 
Xi (μmol/gDW), and specific rates qi (mol/CmolX/h). Experimental data (red symbols) and simulated result (blue lines) predicted by 
the nine-pool model. Abbreviation: PAA, phenylacetic acid. (Reproduced from Wang et al.36 with permission from Elsevier.)
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pools (glycolytic intermediates, amino acids, ATP, PAA, 
and storage carbohydrates), four enzyme (capacity) pools 
(glucose uptake, PAA export, penicillin conversion, and 
storage conversion), and ten extracellular components, 
connected via ten intracellular reactions. This established 
kinetic model can fulfill accurate predictions of both extra-
cellular specific rates and lumped intracellular metabolite 
pools under industrially relevant conditions (Figure 44.4), 
and more importantly, it can reproduce the productivity loss 
under highly dynamic conditions.95 Moreover, this 9-pool 
model was established with the mindset of future integra-
tion in a CFD framework at the very beginning. Hence, 
detailed explanations will be presented in the next section 
to show the power of the combination of CRD and CFD for 
bioprocess description and evaluation.

44.4 � THROUGH THE ORGANISM’s 
EYES: GETTING CLOSER TO 
THE WHOLE PICTURE

Table 44.2 gives the mixing times of different types of 
large-scale bioreactors, ranging from tens to hundreds of 
seconds, which is usually longer than the timescales of bio-
chemical reactions in the cell (Table 44.1). Consequently, 
nonideal mixing and mass transfer limitations are prone to 
result in spatiotemporal environmental gradients of, e.g., 
substrate, dissolved oxygen, and protons in large-scale 
bioreactors.

Although experimental scale-down studies have shown 
that the heterogenous environment at large scale potentially 
impacts the metabolic response and thus process perfor-
mance of the cell,23 there are few studies aiming to quantify 
this impact, for example, by combining dynamic metabolic 
models with CFD simulations. In particular, CFD simula-
tions can be used to assess the environment from the per-
spective of the organism, defining their trajectories in the 
industrial bioreactor and determining the temporal varia-
tions in the environment they observe along this trajectory, 
often referred to as a lifeline. Such simulations offer great 
potential for integrating transport dynamics and metabolic 
dynamics in fermentation systems.96 Simulation methods in 
which the trajectories of individual cells, or groups of cells, 
are determined are referred to as Euler-Lagrange simula-
tions. This approach treats the fluid phase as a continuum 
and the dispersed biophase, e.g., microbial cells, as virtual 
particles, for which the trajectory is resolved by solving 
the equations of motion for each individual.97 For example, 
the pioneering work by Lapin, Muller98 describes popula-
tion behavior as the outcome of the interaction between the 
intracellular state of individual cells, with the local extra-
cellular availability of substrates, transported by the turbu-
lent flow in the reactor. The computational results showed 
a dramatic loss of synchronization of temporal oscillations 
in glycolytic metabolites at the single-cell level in the pres-
ence of a spatially heterogeneous glucose concentration 
field. Further, in order to verify this integration method, 
Lapin and Schmid99 modeled the dynamics of Escherichia 

coli populations in the three-dimensional turbulent flow 
field of a stirred-tank reactor. In this study, a phosphotrans-
ferase system for the sugar uptake was incorporated into 
the cellular kinetic model, and the results revealed that the 
activity of the sugar uptake system is dependent on both 
the local glucose concentration and the ratio of intracellular 
phosphoenolpyruvate and pyruvate, which is as a function 
of the lifeline of the individual cell in the large-scale bio-
reactor. In the literature, there are emerging applications of 
CFD-CRD models to assess spatially resolved bioreactor 
performance from the cellular perspective and/or includ-
ing structured kinetic models, which has been recently 
reviewed in Wang, Haringa.36

To allow a more detailed kinetic description of the cell, 
incorporating more biochemical mechanisms is desired, 

TABLE 44.2
Reported 95% Mixing Times in Industrial-Scale 
Bioreactors 

Type of Reactors Cell Lines Mixing Time(s)

Cell culture
5-L STR
8.5-L STR
11-L STR Helical ribbon
20-L STR
8 m3 STR
10 m3 STRa

12 m3 STR
10-L STR with spin filter 
Hydrofoil impeller, 20 rpm

250-L STR with spin filter
Hydrofoil impeller, 80 rpm 
250-L STR with spin filter

Pitched blade impeller, 80 rpm
1 m3 STR with spin filter
Hydrofoil impeller/mixing 
through spin filter

15-L bubble column
10 m3 Airlifta

Microbial cultures
12 m3 STR, equipped with 3 
Rushton-type impellers

12 m3 STR, equipped with 3 
Scaba-type impellers

30 m3 STR, equipped with 3 
Rushton-type impellers

30 m3 STR, equipped with 3 
Scaba-type impellers

2 m3 Bubble column
2 m3 Airlift
4 m3 Airlift tower loop
40 m3 Bubble column
40 m3 Airlift
150 m3 Bubble column

CHO
Plant cells
Plant cells
CHO
Namalwa cells
Plant cells
Mammalian cells
CHO

CHO

CHO

CHO

Plant roots
Plant cells

Microorganisms

Microorganisms

Microorganisms

Microorganisms

Microorganisms
Microorganisms
Baker’s yeast
Microorganisms
Microorganisms
Baker’s yeast

2-5
3.6

18-25
20-80
40-200
20-200
120-360

120

120

1620

3120

2400
200-1000

10-50

10-30

125-250

70-110

18
80

100-175
80
101

10-1000

a	 Estimated.
Source:	 Adapted from Wang et al.102 with permission of John Wiley & 

Sons.
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while computational tractability and computation time 
should be taken into account considering the applica-
tion toward hydrodynamic coupling. Recently, a leading  
example has been the CFD simulation of an industrial 
P. chrysogenum fermentation with a coupled 9-pool metabolic 
model.100 In this study, the effect of substrate heterogeneity 
on the metabolic response of P. chrysogenum in industrial 
bioreactors was assessed, and the simulation results showed 
a 33% loss in production rate and yield under chemostat 
conditions while also showing good agreement with indus-
trial production rate dynamics under fed-batch conditions. 
Meanwhile, the spontaneous emergence of population het-
erogeneity in the glucose uptake capacity was observed in 
the model, and both extracellular and intracellular metabolic 

fluctuations at seconds to days timescales were recorded 
(Figure 44.5). Furthermore, this computational framework 
can provide suggestions for improving a cell factory because 
it serves to comprehend, predict, and evaluate the effects of 
adding, removing, or modifying molecular components and/
or pathways.36 Moreover, direct suggestions on the design 
of the bioreactor and fermentation process can be achieved. 
For example, the original feed point location is at the top 
of the fermentor in industrial-scale penicillin fermentation, 
which induces substrate gradients along with three repre-
sentative metabolic regimes, e.g., glucose excess, limita-
tion, and starvation.22 The in silico optimization of moving 
the feedpoint from the top to the middle increases the vol-
ume operating under favorable production conditions, and 

FIGURE 44.5  Results of a coupled CFD–CRD simulation for a penicillin production process. (A) Illustration of process response at 
different timescales. Extracellular fluctuations in substrate concentration cause fluctuations in substrate uptake rate (i) on the second 
timescale, leading to metabolic variations on the minute timescale (ii); enzyme levels are constant at this timescale (ii, inset). On an 
hour timescale, metabolic fluctuations cause enzyme-level adaptation (iii). These, in turn, can affect metabolic fluctuations (inset; roll-
ing average in black, fluctuations in gray). Finally, enzyme adaptation changes the penicillin production rate over the full process time 
(iv). (B) Performance of CFD-CRD in an industrial fed-batch process compared with a black box, ideal-mixed model (BB-IDMIX). 
(C) Due to differences observed early during the process, individual metabolic responses lead to divergence in the population as a func-
tion of time; after 20 h, all organisms have nearly the same production rate, while after 60 h, a wider distribution is observed (sampled 
from 2500 tracked organisms). (Reproduced from Wang et al.36 with permission from Elsevier.)
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reduces glucose excess/starvation zones, which eventually 
contributes to improving production performance.19 In addi-
tion, the acquired fluctuation statistics can be used to design 
representative scale-down simulators.96

44.5  CONCLUDING REMARKS

Despite the central issue of scale-up effects during biopro-
cess development, there appears to be no unequivocal bio-
process scale-up principle in the past two decades, just as 
Arthur Humphrey commented that scale-up is still an art, 
not a science.101 Indeed, no longer are Rushton impellers the 
answer, and no longer are we concerned only with maintain-
ing the same volumetric mass transfer coefficient (KLa).101 
An industrial-scale bioprocess is a complex multi-scale sys-
tem where a small perturbation on one scale (e.g., genetic 
scale) could give rise to considerable changes on another 
scale (e.g., cellular scale and bioreactor scale). Hence, how 
to deal with the complex interplay between the cellular 
machinery and the extracellular environment challenges 
both academic researchers and industrial practitioners.

With the great strides in computer science and systems 
metabolic engineering tools, an ever-increasing under-
standing of the relationships between cellular behaviors 
and the surrounding environments during bioprocess devel-
opment has been achieved. This eventually opens avenues 
for developing more robust cell lines and reproducible 
bioprocesses. Among the omics diagnostic technologies, 
metabolomics provides functional readouts of cellular func-
tion and interaction with their surroundings, thus acceler-
ating the learning step in the DBTL cycle for enhanced 
bioproduction capability. More importantly, quantitative 
metabolomics can be used to establish a highly predictive 
metabolic model, which serves to understand, predict, and 
optimize the properties and behaviors of the cell factory in 
a dynamic environment. Furthermore, as long as the meta-
bolically structured model is constructed with the mindset 
of coupling it with the CFD model, the interaction between 
hydrodynamics and metabolic dynamics in industrial-scale 
fermentation processes can be evaluated through the organ-
ism’s eyes. This coupled full-scale predictive model can 
guide decision-making for intelligent biomanufacturing 
and fulfills the ambitions of ‘Industry 4.0’ toward digitali-
zation and automation.

SUMMARY

As the youngest of the quartet of systems biology tools 
alongside genomics, transcriptomics, and proteomics, 
metabolomics provides an immediate and dynamic record-
ing of cells in response to genetic and/or environmental 
perturbations. Metabolomics study accelerates learning 
steps within the iterative DBTL cycle for enhancing bio-
production capability. The associations between biological 
networks and environmental factors facilitate predictive 
modeling of cellular response, which is the basis for indus-
trial application. This chapter presents an update on the 

metabolomics-driven biosystems engineering and biopro-
cess design principle from the metabolic perspective of 
organisms. Along with the introduction of the isotope dilu-
tion mass spectrometry (ID-MS) method to the fast sam-
pling, quenching, and extraction protocol for quantitative 
metabolomics, metabolomics-assisted engineering biology 
and the establishment of metabolically structured models 
are highlighted. Furthermore, a computational framework 
based on a coupled metabolic-hydrodynamic approach is 
advocated to assess the interlocking architectures between 
environmental and biological networks in large-scale bio-
processes and provide suggestions toward bioreactor evalu-
ation, scale-down, and optimization.
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