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A B S T R A C T   

Following the construction of a dataset of cross-category corrosion inhibitors at different concentrations based on 
1241 data from 184 research papers, a performance prediction model incorporating 2D–3D molecular graph 
representation and corrosion inhibitor concentration information was established. This model was shown to 
effectively predict the inhibition efficiency (IE) of different categories of corrosion inhibitors for carbon steel in 1 
mol/L HCl solution. The model was also able to predict IEs of corrosion inhibitors at different concentrations. The 
results demonstrated that 3D features of corrosion inhibitors, especially those of large molecules, had a signif-
icant impact on the prediction precision of IEs.   

1. Introduction 

Corrosion is one of the main causes of damages to metallic materials 
and structures, causing huge economic losses worldwide [1]. Corrosion 
inhibitors are an effective method to suppress metal corrosion, with 
advantages such as low cost, simplicity, and high efficiency. The inhi-
bition efficiency (IE) is an index to evaluate the effectiveness of corro-
sion inhibitors, which is closely related to molecular structures and 
concentrations, as well as metal substrates and corrosive environments 
[2,3]. Traditional methods for experimental assessment of IE, such as 
weight loss measurements [4], electrochemical tests [5] or spectroscopic 
analyses [6] can only determine IE of corrosion inhibitors at specific 
concentrations one by one. To select high-performance corrosion in-
hibitors and their reasonable concentrations from the entire chemical 
space, a large number of experimental tests are needed. Therefore, 
developing a fast and accurate computational method to evaluate IE 
provides important support for material scientists to screen potential 
highly efficient corrosion inhibitors. 

Computational chemistry and machine learning (ML) have been 
successfully employed in the study of corrosion inhibitors [7,8]. 
Computational chemistry methods include density functional theory 
(DFT) [9,10] and molecular dynamics (MD) simulations [11]. DFT has 
been frequently used to predict the performance of organic corrosion 
inhibitors based on electronic/molecular properties and reactivity 
indices [12]. However, recent literatures have clearly demonstrated that 
the correlations between the DFT derived parameters and the IEs are 
misleading or are too weak to be quantitative for a large data set of 
corrosion inhibitors [13–15]. MD simulation provides useful informa-
tion regarding the adsorption behavior of corrosion inhibitors on the 
metal-electrolyte interfaces to promote the development of effective 
corrosion inhibitors [16]. However, this method can only predict the 
performance of the same class of corrosion inhibitors one by one. In 
contrast, data-driven ML methods can utilize molecular structural pa-
rameters more efficiently and explore the chemical space more quickly. 
Artificial neural networks [17,18], unsupervised clustering [19], and 
other algorithms have been used for predicting IE of corrosion inhibitors 
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for various metals. By extracting quantitative molecular descriptors and 
other structured data, a prediction model can be established, which can 
predict IE in minutes or even shorter time. However, the models ob-
tained by the above algorithms are largely dependent on the selection of 
molecular structure features, and existing research is limited to predict 
IEs of a certain class of corrosion inhibitors at specific concentrations. 

The molecular structure of corrosion inhibitors is the main factor 
affecting their inhibition mechanism and efficiency [20]. Thus, accurate 
and comprehensive representation of their molecular structures is the 
key to establishing IE prediction models. With the rapid development of 
data-driven ML in various fields, it has been successfully applied to 
molecular representation learning (MRL). MRL encodes molecules as 
numerical vectors that retain molecular structure and characteristics as 
feature vectors for downstream tasks such as molecular property pre-
diction. For example, molecules can be treated as 2D molecular graphs, 
with atoms as nodes and chemical bonds between atoms as edges [21]. 
As such, the topological structure and node attribute information of 2D 
molecular graphs can be directly processed through graph convolutional 
neural networks (GCN) [22], message passing neural networks (MPNN) 
[23,24], directed message passing neural networks (D-MPNN) [25], and 
other graph neural network algorithms to achieve molecular represen-
tation learning. In a previous work, we have developed a three-layer 
directed message passing networks (3 L-DMPNN) [26] model 
involving atomic, bond and molecular features to predict the IEs of 
compounds on carbon steel in a specific environment. However, for 
some corrosion inhibitors with large molecule weight, their spatial 
configuration is complex, making it difficult to fully characterize the 
structural features of the molecules with only 2D graphs. Some scholars 
[27–29] have improved the prediction accuracy of the geometric, en-
ergy, electronic, and thermodynamic properties of molecules by mining 
the 3D structural features of molecules. Furthermore, the 2D and 3D 
molecular graphs have been combined, such as in the case of the 

GeomGCL model [30], which showed improved accuracy of down-
stream prediction tasks of molecular properties including hydropho-
bicity, toxicity, octanol/water partition coefficient, and hydration free 
energy. However, GeomGCL only generates rough 3D molecular struc-
tures by using the RDKit [31] software package, limiting the ability to 
extract the fine 3D features of corrosion inhibitors. In addition, all the 
above models can only predict the IEs at specific inhibitor concentra-
tions, and the generalization performance is poor. 

In the present study, a new prediction model for the IEs was con-
structed by incorporating 2D–3D molecular graphs and corrosion in-
hibitor concentration (2D3DMol-CIC). The data used in this study were 
extracted from 184 publications, including 1241 IE values for 414 
corrosion inhibitors at concentrations ranging from 0.001 to 5 mmol/L. 
The accuracy of the proposed model was compared with those of the 
support vector machine (SVM) [32], random forest (RF) [33], and 3 
L-DMPNN[21] models, and the effect of 3D features on the prediction of 
IE and the generalization ability of the model were verified. Based on 
this model, the study also provided a selection of corrosion inhibitor 
concentration for practical application. 

2. Methods 

2.1. Corrosion inhibitor datasets 

Existing literature has reported a large amount of data on corrosion 
inhibitor performance, but typically each paper only reports IE values of 
one or several corrosion inhibitors at different concentrations. In order 
to study the 2D–3D molecular structure features of molecules and the 
effect of corrosion inhibitor concentration on IEs, we used the dataset 
containing 116 papers reported in the work by Dai et al.[26], and 
retrieved additional 68 papers that studied the influences of different 
corrosion inhibitor concentrations on carbon steel in 1 mol/L 

Fig. 1. The statistics of the CoInDataset 1: (a) distribution of IE values, (b) distribution of corrosion inhibitor concentration.  

Fig. 2. The process of extracting the 3D coordinates of a molecule.  
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hydrochloric acid (HCl) solution at room temperature published from 
February 2005 to December 2021. From the above 184 papers, we 
collected 1241 IE values for 414 corrosion inhibitors applied to carbon 
steel surfaces with the inhibitor concentrations ranging from 0.001 to 5 
mmol/L. This dataset, named as CoInDataset 1, includes information 
such as the name of corrosion inhibitor, the SimplifiedMolecular Input 
Line Entry System (SMILES) [34] of the molecule, the atomic co-
ordinates in the molecule, the corrosion inhibitor concentration, and IE 
value. The dataset used in this study can be accessed via the following 
URL: https://www.corrdata.org.cn/inhibitor/. 

Fig. 1a shows the distribution of IEs in CoInDataset 1, the number of 
inhibitors with low IEs is much lower than that of the ones with high IEs. 
The IE values in CoInDataset 1 range from 0.98 % to 99.3 % and the 
uneven data distribution may make learning and prediction of the model 
complex and challenging [35]. Fig. 1b shows the distribution of corro-
sion inhibitor concentrations in CoInDataset 1, covering a concentration 
range of 0.001–5 mmol/L with 23 different concentrations, reflecting a 
good diversity. 

In order to more effectively express the 3D structural features of 
molecules, we adopted the process shown in Fig. 2 to extract the 3D 
coordinates of corrosion inhibitors: (1) an open-source software package 
RDKit is used to convert the SMILES of corrosion inhibitors into 2D 
structures of the molecules; (2) A rough 3D molecular structure was 
generated based on the Experimental-Torsion Distance Geometry 
(ETKDG) [36] algorithm and the Merck Molecular Force Field [37]; (3) 
A stable 3D molecular structure was optimized based on the DFT method 
with the B3LYP functional and the 6–31 G* * basis set; (4) The 3D co-
ordinates of the molecules were extracted using Python for subsequent 
modeling and analysis, providing data such as bond lengths and bond 
angles. The code are available on GitHub at https://github.com/jinbo 
0906/2D3DMol-CIC/blob/main/three-dimensional_dataset_production. 
ipynb. 

To verify the generalization ability of the 2D3DMol-CIC model, an 
independent validation dataset (CoInDataset 2) is constructed including 
12 IE values obtained from laboratory experiments and 115 IE values 
retrieved from 35 papers published from January 2022 to January 2023. 
The IE values in CoInDataset 2 range from 33.0 % to 99.6 %, and the 
concentrations of the corrosion inhibitors range from 0.001 to 5 mmol/ 
L. CoInDataset 2 can be accessed via the following URL: https://www. 
corrdata.org.cn/inhibitor/. 

2.2. Models 

The 2D3DMol-CIC model proposed in this study is implemented 
using the open-source software package Chemprop [38], and its overall 
network structure is shown in Fig. 3. The model can be divided into two 
stages: combination of 2D–3D molecular graphs and corrosion inhibitor 
concentration and feedforward neural network IE prediction. 

2.2.1. Combination of 2D–3D molecular graphs and corrosion inhibitor 
concentration 

This module mainly includes four parts: representation of 2D–3D 
molecular features, directed message passing, global atomic interaction 
learning and corrosion inhibitor concentration encoding. 

a) Representation of 2D–3D molecular features. The model takes 2D 
molecular graphs G2D = (V,E) and 3D molecular graphs G3D = (Z,R) as 
inputs, where v ∈ V is the set of nodes; e ∈ E is the set of edges; z ∈ Z is 
the set of atomic number; r ∈ R represents the set of 3D coordinates of 
atoms; dvw = ||rv − rw||2 is the distance between two atoms and α(kv, vw)

= ∠zkzvzw is the bond angle. Atomic-level features xv correspond to 
atomic properties. Bond-level features evw represent bond properties. 
Molecular-level features hu represent global molecular properties. They 
are calculated using RDKit and encoded as numerical vectors. For spe-
cific feature descriptions, please refer to the Supporting Information. 

b) Directed message passing. Firstly, the hidden state of edges is 
initialized h0

vw = τ(Wicat(xv,evw)), where τ is the ReLU [39] function, Wi 

is a learnable matrix, and Concat is a connection function.Then, in each 
directed message passing step t, the features of adjacent bonds are 
updated by adding them to their bond angle features according to Eq. 
(1): 

ht+1
vw = τ

(

h0
kv +Wm

(
∑

k∈{N(v)/w}

ht
kv +

∑

k∈{N(v)/w}

a(kw,wv)

))

(1)  

Where N(v) represents the neighboring nodes of node v in the graph G2D; 
t ∈ {1,…,T} and T is the total number of message passing steps; and Wm 
is a learnable matrix. Lastly, by aggregating all the atomic representa-
tions that have received the passed-in bond features, the molecular to-
pology representation is obtained through Eq. (2). 

Fig. 3. Neural network architecture of the 2D3DMol-CIC.  
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mG =
∑

v∈G2D

∑

w∈N(v)

ht
vw (2)  

c) Global atomic interaction learning. Firstly, the distance relationship ψ i 

=
∑

j∈{U/i}
RBF

(
1

M2
dij

)

Wd between atoms is encoded based on their 3D co-

ordinates, where Mdij is the distance matrix between atoms; U is the node 
set of graph G3D; Wd is a learnable matrix. Through gated recurrent unit 
(GRU), the interaction between each atom and other atoms in graph G3D 

is simulated me
i =

∑

j∈(U/i)
GRU(ψ i, ψ j), and all atoms are aggregated to 

obtain the global representation vector for atomic interactions me =
∑

i∈U
me

i . 

d) Corrosion inhibitor concentration encoding. Inspired by the position 
encoding mechanism in Transformer [40], each concentration value is 

represented by a series of sine functions CEt =
[

sin
(

1
20 t
)
, sin

(
1
21 t
)
,…,

sin
(

1
2dim− 1 t

)]
, where dim is the dimension of the encoded vector. 

After directed message passing and global atomic interaction 
encoding, the molecular-level features hu and inhibitor concentration 
vector CEt are fused to obtain the representation vector of the entire 
molecule X = Concat(mG,me,hu,CEt). 

2.2.2. Feedforward neural network IE prediction 
With the molecular representation vector X obtained by incorpo-

rating 2D–3D molecular graphs and corrosion inhibitor concentration as 
input and IE as output, IE prediction model is established based on four 
feedforward neural network layers, as shown in Eq. (3). 

IEpred = f (X) (3) 

This model did not take consideration of the deviation of the IE 
values, which was usually very low in the referred literature. 

2.2.3. Evaluation metrics for models 
The model uses root mean square error (RMSE), mean absolute error 

(MAE), and coefficient of determination (R2) as performance metrics 
which are defined in Eqs. (4–6). From a mathematical perspective, the 
best performing model will have the lowest RMSE and MAE values, with 
the highest R2. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
m

∑m

i=1

(
IEi

pred − IEi
exp

)2
√

(4)  

MAE =
1
m
∑m

i=1

⃒
⃒
⃒IEi

pred − IEi
exp

⃒
⃒
⃒ (5)  

R2 = 1 −

∑m
i=1

(
IEi

pred − IEi
exp

)2

∑m
i=1

(
IEi

pred − IE
)2 (6)  

where IEi
pred is the predicted IE value for sample i, IEi

exp is the experi-
mental IE value for sample i,m is the total number of samples, and IE =
1
m
∑m

i=1IEi
pred is the average of the predicted IE values. 

3. Results and discussion 

3.1. Evaluation of the accuracy of the model 

The 2D3DMol-CIC model using ReLU as the activation function is 
trained on CoInDataset 1, and evaluated based on 10-fold cross- 
validation with 1241 molecules being randomly divided into 10 sub-
sets. In this data-driven model, nine subsets were used for training while 
the remaining one was used for testing, and this process was repeated 10 
times until each subset was used as testing data once. The average of the 

test results from 10 runs was taken as the final evaluation metric. 
The hyperparameters for the 2D3DMol-CIC model are set to depth 

= 4, hidden_size = 400, layer_num = 4, and dropout = 0.0. The per-
formance of the model was compared with SVM, RF, and 3 L-DMPNN 
models, as shown in Table 1. Fig. 4 shows IE values predicted by the 
2D3DMol-CIC model and the corresponding experimental values, in 
which, the labeled points between the green lines represent inhibitors 
with a prediction error within 10%, accounting for 99.8 % of all in-
hibitors. These results suggest that the 2D3DMol-CIC model can accu-
rately predict IEs of different molecular compounds, and performs better 
than SVM and RF models established using only structural data (such as 
electronegativity, polarizability, van der Waals volume, etc.), and 3 L- 
DMPNN model using only 2D molecular graph structure. 

Based on the data of corrosion inhibitors collected in this article, the 
molecular weights are generally between 100 and 1000 g/mol. Fig. 5a 
shows the distribution of the molecular weights of the corrosion in-
hibitors in CoInDataset 1. Fig. 5b shows the comparison of the average 
prediction errors of IEs by 3 L-DMPNN and 2D3DMol-CIC models for 
corrosion inhibitors with molecular weights in different ranges. The blue 
line represents the difference between the average prediction error of 
the 2D3DMol-CIC and that of the 3 L-DMPNN in each range of the mo-
lecular weights. Interestingly, it can be seen that as the molecular weight 
increases, the prediction error of the 2D3DMol-CIC model is generally 
lower and the difference between the prediction errors of the two 
models is significantly increased, demonstrating an advantage of 
2D3DMol-CIC model over the 3 L-DMPPN model in predicting high- 
molecular-weight corrosion inhibitors. The higher the molecular 
weight, the more complex the molecular structure. Therefore, it is of 
great importance to provide the 3D spatial structural information of 
corrosion inhibitor molecules during IE prediction. 

Fig. 6a shows the distribution proportions of four models with 

Table 1 
Comparison of prediction results of different models on the CoInDataset 1 (10- 
fold cross-validation).  

Model RMSE MAE R2 

SVM 0.115233 + / 
− 0.006346 

0.091222 + /- 
0.004662 

0.558671 + /- 
0.087741 

RF 0.100045 + /- 
0.011266 

0.069236 + /- 
0.005220 

0.668630 + /- 
0.071529 

3 L- 
DMPNN 

0.085584 + /- 
0.008397 

0.058129 + /- 
0.005442 

0.724137 + /- 
0.043756 

2D3DMol- 
CIC 

0.076810 þ /- 
0.008541 

0.047714 þ /- 
0.003650 

0.803525 þ /- 
0.049372  

Fig. 4. Comparison of the prediction efficiency of the 2D3DMol-CIC model 
with experimental IEs on the CoInDataset 1. 

J. Ma et al.                                                                                                                                                                                                                                       
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prediction errors less than 10%, 5%, and 3%, the results of 2D3DMol- 
CIC model are much better than those of other models. Fig. 6b shows 
the sum of predicted errors of four models. The 2D3DMol-CIC model has 
the lowest prediction error sum. Therefore, this model has the highest 
prediction accuracy and effectiveness, and is the most suitable for pre-
dicting IE values. 

3.2. Generalization testing of the model 

The 2D3DMol-CIC model trained in Section 3.1 is tested using 
CoInDataset 2, and the results are shown in Fig. 7. The annotation points 
between the green lines represent molecules with a prediction error 
within 10 %, accounting for 94.2 % of all inhibitors, indicating that the 
model can accurately predict IE of compounds outside the training data. 
In addition, the corrosion inhibitor concentration values marked by 
black stars are 0.0015 mmol/L, 0.03 mmol/L, 0.09 mmol/L, 
0.12 mmol/L, 0.14 mmol/L, 0.18 mmol/L, 0.27 mmol/L, 0.29 mmol/L, 
0.48 mmol/L, 1.4 mmol/L, and 1.5 mmol/L, which are not included in 
CoInDataset 1, but still demonstrate accurate prediction results. In 
conclusion, the model has good generalization ability and can make a 
reliable prediction for corrosion inhibitors outside the training data 
domain. 

Fig. 5. CoInDataset 1. (a) Distribution of molecular weight, (b) comparison of the average prediction errors of IE by 3 L-DMPNN and 2D3DMol-CIC models for 
corrosion inhibitors with molecular weights in different ranges. 

Fig. 6. SVM, RF, 3 L-DMPNN, and 2D3DMol-CIC models (a) proportions of prediction errors less than 10 %, 5 %, and 3 %, (b) the total prediction errors.  

Fig. 7. Comparison of the prediction efficiency of the 2D3DMol-CIC model 
with experimental efficiency on the CoInDataset 2. 

J. Ma et al.                                                                                                                                                                                                                                       
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3.3. Recommendation of corrosion inhibitor concentration 

IE is generally positively correlated with the concentration of the 
corrosion inhibitor, but IE almost does not change significantly with the 
increase of concentration after reaching a certain value [41]. This phe-
nomenon is generally attributed to the saturation adsorption of corro-
sion inhibitors on metal surfaces [42,43], the solubility limit of 
molecules [44,45] or the micelle formation above critical concentrations 
[46,47]. With consideration of effectiveness and economic aspects, the 
concentration of corrosion inhibitors should be controlled at specific 
values that not only ensures good corrosion inhibition effect but also 
avoids excessive addition. Therefore, providing a choice of corrosion 
inhibitor concentration while rapidly predicting the IE has important 
engineering significance. 

To investigate the ability of 2D3DMol-CIC model to recommend the 
concentration of corrosion inhibitors, this article analyzes the relation-
ship between concentration and IE for two molecules (2-(n- 
Octylamino)− 4,6-bis(3-N,N-dimethylaminopropyl)amino-1,3,5- 
triazine [48] and Potassium 3-(1 H-imidazol-4-yl)− 2-(((E)− 3-phenyl-
allylidene)amino)propanoate) [49] with the maximum experimental 
data on IE under different concentrations in CoInDataset 2. Fig. 8a and 
Fig. 8b show the experimental curves of corrosion inhibition 
efficiency-concentration obtained by logarithmic interpolation fitting of 
the experimental data for the two molecules and the predicted curves of 
corrosion inhibition efficiency-concentration generated by the 
2D3DMol-CIC model, respectively. Both curves show a consistent trend 
and similar results, indicating that the model can provide a relatively 
accurate relationship between the concentrations of corrosion inhibitors 
and corresponding IE values for materials scientists to choose the 
appropriate addition amount of inhibitions. Meanwhile, the solubility 
limit and the critical micelle concentrations of molecules should be 
considered before determining the optimal inhibitor concentration. 

3.4. Significance and limitations of the model 

The present work proposed a data-driven prediction model of the IEs 
for corrosion inhibitors based on 2D and 3D structure of molecules and 
considering the concentration of corrosion inhibitors. Compared with 
existing prediction models, the constructed model can not only more 
accurately predict IEs of cross-category corrosion inhibitors at specific 
concentrations but can also predict IEs of corrosion inhibitors at 
different concentrations. Using this model, the minimal concentration 
that yields to high IE (>90%) could be identified, which has significant 
engineering implications. 

Currently, the model is limited to predicting IEs of compounds on 
carbon steel in 1 mol/L HCl at room temperature, and the training 
dataset for this model is relatively small. In future work, we plan to 
construct a larger dataset of corrosion inhibitors that includes different 

metals, temperatures, corrosive environments, and establish a more 
generic prediction model. Additionally, in this article, a stable 3D mo-
lecular structure is obtained through optimization using Gaussian soft-
ware. However, this method is time-consuming, often taking minutes to 
hours to optimize a molecule. In the next step, we will consider using 
more efficient deep learning methods to generate stable molecular 
conformations, construct a 3D molecular dataset, and establish an end- 
to-end model from dataset construction to efficiency prediction. 

4. Conclusions 

This work reported the development of the 2D3DMol-CIC model for 
predicting IEs based on 2D–3D molecular graph features, under varying 
concentrations of corrosion inhibitors ranging from 0.005 to 5 mmol/L. 
The 10-fold cross-validation approach was utilized to determine the 
proportions of compounds with prediction error of the model less than 3 
%, 5 % and 10% in CoInDataset1, the values of 2D3DMol-CIC were 93.8 
%, 97.3 % and 99.8 %, respectively, which were better than SVM, RF 
and 3 L-DMPNN. In addition, 2D3DMol-CIC fully considers and extracts 
the 3D structural characteristics of molecules, which makes the model 
capable of accurately predicting the IEs especially of larger molecules. 
Additionally, the generalization capability of the developed model is 
verified with 127 independent testing datasets. We also investigated the 
ability of the model to recommend the concentration of corrosion in-
hibitors, and the model could predict the corrosion inhibition efficiency- 
concentration curves very close to that verified experimentally. The 
obtained results indicated that the 2D3DMol-CIC model can accurately 
predict the IEs, providing a low-cost and fast screening method for 
corrosion inhibitors and their concentrations. 
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[42] G. Palumbo, M. Gorny, J. Banaś, Corrosion inhibition of pipeline carbon steel 
(N80) in CO2-saturated chloride (0.5 M of KCl) solution using gum arabic as a 
possible environmentally friendly corrosion inhibitor for shale gas industry, 
J. Mater. Eng. Perform. 28 (2019) 6458–6470. 

[43] M. Desimone, G. Gordillo, S.N. Simison, The effect of temperature and 
concentration on the corrosion inhibition mechanism of an amphiphilic amido- 
amine in CO2 saturated solution, Corros. Sci. 53 (2011) 4033–4043. 

[44] M. Van Soestbergen, S. Erich, H. Huinink, O. Adan, Dissolution properties of 
cerium dibutylphosphate corrosion inhibitors, Corros. Eng., Sci. Technol. 48 
(2013) 234–240. 

[45] L. Ma, J. Wang, Y. Wang, et al., Enhanced active corrosion protection coatings for 
aluminum alloys with two corrosion inhibitors co-incorporated in nanocontainers, 
Corros. Sci. 208 (2022), 110663. 

[46] K. Kousar, M. Walczak, T. Ljungdahl, A. Wetzel, H. Oskarsson, P. Restuccia, 
E. Ahmad, N. Harrison, R. Lindsay, Corrosion inhibition of carbon steel in 
hydrochloric acid: elucidating the performance of an imidazoline-based surfactant, 
Corros. Sci. 180 (2021), 109195. 

[47] J. Wang, J. Jing, L. Feng, H. Zhu, Z. Hu, X. Ma, Study on corrosion inhibition 
behavior and adsorption mechanism of novel synthetic surfactants for carbon steel 
in 1 M HCl solution, Sustain. Chem. Pharm. 23 (2021), 100500. 

[48] X. Jin, J. Wang, S. Zheng, J. Li, X. Ma, L. Feng, H. Zhu, Z. Hu, The study of surface 
activity and anti-corrosion of novel surfactants for carbon steel in 1 M HCl, J. Mol. 
Liq. 353 (2022), 118747. 

[49] S. Satpati, A. Suhasaria, S. Ghosal, A. Saha, S. Dey, D. Sukul, Amino acid and 
cinnamaldehyde conjugated Schiff bases as proficient corrosion inhibitors for mild 
steel in 1 M HCl at higher temperature and prolonged exposure: detailed 
electrochemical, adsorption and theoretical study, J. Mol. Liq. 324 (2021), 115077. 

J. Ma et al.                                                                                                                                                                                                                                       

https://doi.org/10.1016/j.corsci.2023.111420
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref1
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref1
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref1
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref2
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref2
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref2
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref2
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref3
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref3
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref4
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref4
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref5
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref5
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref5
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref5
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref6
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref6
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref6
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref6
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref7
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref7
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref7
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref8
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref8
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref8
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref8
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref9
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref9
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref9
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref10
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref10
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref11
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref11
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref11
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref12
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref12
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref12
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref13
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref13
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref13
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref13
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref14
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref14
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref14
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref15
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref15
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref15
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref15
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref16
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref16
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref16
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref17
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref17
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref17
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref18
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref18
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref18
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref19
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref19
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref20
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref20
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref20
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref21
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref21
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref21
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref22
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref22
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref23
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref23
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref23
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref24
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref24
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref24
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref25
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref25
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref25
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref25
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref26
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref26
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref27
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref27
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref28
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref28
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref28
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref29
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref29
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref29
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref30
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref30
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref31
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref31
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref32
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref32
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref32
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref33
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref33
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref33
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref34
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref34
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref35
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref35
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref36
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref36
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref36
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref37
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref37
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref37
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref37
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref38
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref38
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref38
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref39
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref39
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref39
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref40
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref40
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref40
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref41
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref41
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref41
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref41
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref42
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref42
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref42
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref43
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref43
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref43
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref44
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref44
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref44
http://refhub.elsevier.com/S0010-938X(23)00462-6/sbref44

	Data-driven corrosion inhibition efficiency prediction model incorporating 2D–3D molecular graphs and inhibitor concentration
	1 Introduction
	2 Methods
	2.1 Corrosion inhibitor datasets
	2.2 Models
	2.2.1 Combination of 2D–3D molecular graphs and corrosion inhibitor concentration
	2.2.2 Feedforward neural network IE prediction
	2.2.3 Evaluation metrics for models


	3 Results and discussion
	3.1 Evaluation of the accuracy of the model
	3.2 Generalization testing of the model
	3.3 Recommendation of corrosion inhibitor concentration
	3.4 Significance and limitations of the model

	4 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix A Supporting information
	References


