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a b s t r a c t 

A new viscoelastic constitutive model for subaqueous clay-rich gravity flows is presented. It is explained that for 

the materials which exhibit a minimum in their strain controlled flow curves the structure parameter must be a 

symmetric function of the strain rate and the stress. Therefore, the destruction of structure within the material 

is modeled using the dissipation energy. An expression for the elastic strain of the flowing structure is derived. 

The final set of equations can reproduce the viscosity bifurcation that clay suspensions may exhibit under a 

given load. This is explained to be important for the prediction of the run-out distance of clay-rich gravity flows. 

The ability of the model to reproduce the general response of pasty materials to step stress and step shear rate 

tests is examined. The model requires four empirical parameters. A methodology is presented for obtaining these 

parameters and power law functions are given for their calculations for a limited rest time of 3000 s. The ability 

of the model to reproduce the rheological behavior that clay-rich suspensions exhibit under both stress and strain 

controlled conditions is examined using rheometry tests. 
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. Introduction 

Clay is present in the majority of deep marine [1] , coastal [2,3] ,

nd fluvial environments [4] . For clay-rich gravity flows, presence of

lay greatly influences the run-out distance and the internal structure of

hese flows [5,6] . 

Using their inclined plane experiments, Coussot et al. [7,8] showed

hat under a given load, clay suspensions experience viscosity bifurca-

ion, i.e., they either stop flowing altogether or experience a discontin-

ous decrease in their viscosity depending on their structural state at

he time of the applied stress. They concluded that, for strain controlled

easurements, stable flows can occur only when the shear rate is above

 critical value. For smaller shear rates the material either fractures or

hows shear banding instabilities [9] . These experiments also showed

hat if a clay-water suspension with a given thickness begins to flow on

 certain slope, it will stop only when the thickness is reduced dramat-

cally or when the slope is decreased considerably. This phenomenon

s a consequence of the existence of two yield stresses. One which gov-

rns the initiation of the flow from rest and is known as the static yield

tress, 𝜏y , and the other which governs the abrupt stoppage/freezing of

he flow and is known as the dynamic or critical yield stress, 𝜏c . The

tatic yield stress is larger than the critical yield stress and the differ-

nce between the two is the factor which governs the run-out distance
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f clay-water suspensions. The model which will be presented here can

apture both the static and the critical yield stresses of clay-water sus-

ensions, and therefore, can be used to accurately simulate the run-out

istance of gravity flows. 

The most complete anatomy of subaqueous clay-rich gravity flows

s composed of three vertically stacked layers [10] . These three regions

re characterized in Fig. 1 (a), which depicts the velocity profile of a

lay-rich sediment gravity flow during small scale flume experiments

10] . 

The density and velocity gradients that exist on the interface between

he sediment flow and the overlying water result in a dilute mixing layer

nown as the free shear layer. Due to low sediment concentration, the

uid within this layer behaves similar to a Newtonian fluid. The free

hear layer is stacked on top of a layer referred to as the plug layer.

he behavior of the mixture within this layer resembles that of a gel-

ike suspension whose yield stress is reached on the interface where the

ree shear layer and the plug layer meet. The existence and size of the

lug layer is dependent on the sediment concentration, and for dilute

ediment gravity flows it disappears, as shown in Fig. 1 (b). Due to the

o slip condition between the sediment flow and the bed, the plug layer

n the vicinity of the bed is liquefied, producing a third layer known as

he boundary layer. The fluid within this layer behaves as a viscoelastic
ruary 2019 
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Fig. 1. Free shear layer, 𝛿FSL , plug layer, 𝛿PL , and boundary layer, 𝛿BL , regions of sediment gravity flows captured using an Ultrasonic Doppler Velocity probe [10] . 
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Modeling approaches for these flow structures are problematic due

o the complex behavior of clay-water suspensions. Clay particles are flat

latelets with electrostatically charged surfaces. Once immersed in high

oncentrations (higher than the ‘gelling’ concentration) in a medium

uch as water, they can form two types of structures, namely, the ‘card-

ouse flocs’ and ‘card-pack aggregates’ [11] . Presence of these struc-

ures are characteristic of many clay-water suspensions which exhibit

iscoelastic, yield, shear thinning, and thoxitropic behavior [12] . 

Thixotropy is generally viewed as the time-dependent decrease in

he apparent viscosity of a fluid under shear due to the break down of

he structure [8] . Recovery of a damaged structure ensues once shear-

ng is removed. The concept of simultaneous break down and build up

f structure was first discussed by Goodeve [13] . Subsequent models of

oore [14] , Hahn et al. [15] , and Peter [16] aimed at capturing these

imultaneous processes by a rate equation for a scalar structure param-

ter that is incorporated in the constitutive model. Generalization of

hese models for the special case of steady, homogeneous, incompress-

ble, irrotational flows, came following the work of Rivlin [12,17–20] .

or more general flows, different variations of these models are usu-

lly considered where various material characteristics such as the yield

tress [21,22] , the elastic modulus, and/or the viscosity are considered

o be functions of the structure parameter [23–28] . These functions are

enerally constructed in such a way as to reproduce the overall behavior

f the material. 

In contrast to this group of models, which are based on the bulk rhe-

logical behavior of the material, a separate branch has evolved over

he years which adopts a microstructural approach. The constitutive re-

ations in these models are emergent from the physical considerations

egarding the interactions between the material’s microstructural con-

tituents [29–32] . While the level of abstraction that these models pos-

ess and their added intuition from the microstructural approach is ap-

ealing, considerable mathematical manipulation is usually required to

xpress them in terms of macroscopic variables. Therefore, they have

ot often been employed to describe experimental data sets. The bulk

heological models on the other hand, such as those of Mujumdar et al.

33] or Dullaert and Mewis [34] , are written explicitly in terms of the

ulk parameters and are therefore easier to employ in engineering ap-

lications. 

Nonetheless, construction of such bulk models can suffer from ambi-

uities regarding how various relations should be constructed. One am-

iguity has to do with the way the structure model is formulated. For

nstance, the destruction of structure in such models has been related

o various invariants of the deviatoric stress and/or the strain rate ten-

ors depending on the material and the flow field characteristics [27] .

ere we will remove this ambiguity by resorting to physical symmetry

rguments. 

t  

103 
In this study a new rheological model is presented which can be used

or modeling clay-rich gravity flows. In order to capture the anatomy of

hese flows, from the outset a constitutive model is favored that can

eproduce the creep behavior of the plug layer, the yielding at the base

f the plug, and the visco-elastic behavior within the boundary layer.

he Kelvin-Voigt model is here considered very applicable for the elastic

olid and the yield regimes, and suitable for the viscous fluid regime.

herefore, similar to the approach taken by Mujumdar et al. [33] , the

otal stress is split into an elastic and a viscous part. However, in contrast

o their approach, an expression for the elastic strain of the flowing

tructure is not assumed. Instead, such an expression is derived based

n the structure model and by assuming spring like interactions between

lay particles at the micro-scale. This reduces the number of empirical

arameters required by the model. The generation and the destruction of

tructure are accounted for using a structure model based on the model

f Yziquel et al. [27] . 

We will discuss how the final equations capture the viscosity bifurca-

ion and the yielding and freezing behavior that clay suspensions display

nder a given load. This is important for accurate prediction of the run-

ut distance of gravity flows. The most general flow curves which are

llowed by the model are discussed. The model response to constant

tress and constant shear rate inputs are analyzed [28,34–36] . 

The final constitutive model requires four empirical parameters. A

ethodology is presented for obtaining these parameters and power law

unctions are given for their calculation, assuming complete structure

ecovery within a limited amount of rest time. We will show that the

odel is capable of reproducing the rheological behavior that clay-rich

uspensions may exhibit in both stress and strain controlled flow condi-

ions which exist within the free shear and boundary layers of clay-laden

nvironmental flows. This is achieved by comparing the output of the

odel with stress and strain controlled measurements obtained from

heometry tests. 

. Rheological model 

.1. Connecting micro scale behavior to a macro scale model 

At very short distances two clay particles exert a repulsive force on

ach other (Born repulsion). At longer distances, this repulsive force is

vercome by the Van der Waals attraction and therefore two clay par-

icles attract each other. In the absence of other forces, the addition of

hese two forces results in an equilibrium distance corresponding to the

alance of the Born repulsion with the Van der Waals attraction [37,38] .

 net repulsive force is generated when the particles are brought in-

ide the equilibrium distance, and a net attractive force when the par-

icles are brought outside the equilibrium distance. Therefore, at short
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Fig. 2. Clay particle network. 

Fig. 3. The simplified clay particle network model. 
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Fig. 4. The simplified clay particle network model with complete structure ( 𝜆 = 
1 ), top, with half the structure ( 𝜆 = 0 . 5 ), middle, and with no structure ( 𝜆 = 0 ), 
bottom. 
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istances the interaction of clay particles can be modeled by springs.

lthough it is known that at long distances two clay particles may exert

 net repulsive force on each other [38] , here we assume that this force

s weak and the interaction can be modeled as if the spring between the

articles is broken. 

Consider a force applied to a homogeneous and isotropic network of

lay particles connected together with springs as in Fig. 2 . Following the

omogeneity and the isotropy assumptions, away from the boundaries,

he direction in which a force is applied to this network is irrelevant.

urthermore, once equilibrium is reached the internal forces cancel out

nd the applied force is counteracted by the sum of all the forces that are

ssociated with strains in the direction of the applied force. However,

he amount of strain that the whole network experiences in the direction

f the applied force is different from the amount of strain that each

ndividual spring experiences. Therefore, to relate the total strain of the

etwork to that of individual springs, we assume that all the springs

xperience the same strain in the direction of the applied force as that of

he total network and instead modify their stiffnesses, G i ’s, such that the

otal reaction force becomes equal to the applied external force. Thus,

he complex system of springs in Fig. 2 can be reduced to the one shown

n Fig. 3 . A general form of equivalence between the model networks is

iscussed by Roscoe [39] , by resorting to electrical network theory. 

The resultant strain, 𝛾r , of the system under an applied force is a

esidual or storage deformation that the material exhibits or recovers in

he future in a stress-free state. The liquid matrix surrounding this par-

icle network provides a viscous contribution to the total stress and is

ncorporated by adding a dashpot in parallel to the collection of springs.

s stress is applied, some connections are destroyed and some are cre-

ted (this point is more thoroughly explained in the next section). We

efine the modulus of elasticity, G 0 , as 

𝑁 ∑
𝑖 =1 

𝐺 𝑖 

𝑁 

= 

𝐺 0 
𝑁 0 

, where N is the

umber of current connections and N 0 is the number of connections

f a completely structured material. The resulting clay particle model,

epicted in Fig. 4 , can be written as, 

𝜏𝑑 + 𝜏𝑠 1 + 𝜏𝑠 2 + ⋯ + 𝜏𝑠 𝑁 = 𝜏 ⇒

𝑑 + 𝛾𝑟 𝐺 1 + 𝛾𝑟 𝐺 2 + ⋯ + 𝛾𝑟 𝐺 𝑁 

= 𝜏 ⇒

𝜏𝑑 + 𝛾𝑟 
𝑁𝐺 0 
𝑁 

= 𝜏𝑑 + 𝐺 0 𝛾𝑟 𝜆 = 𝜏, 

0 

104 
here, the stresses, 𝜏’s, are defined in Fig. 4 , and 𝜆 = 

𝑁 

𝑁 0 
= 

∑𝑁 

𝑖 =1 
𝐺 𝑖 
𝐺 0 

, is

he structure parameter with range [0,1]. Furthermore, 𝜏𝑑 = 𝜇𝛾̇, where

is the viscosity of the material at 𝜆 = 0 , and 𝛾̇ is the strain rate tensor.

herefore, the resulting constitutive model is, 

= 𝜇𝛾̇ + 𝛾𝑟 
𝑁𝐺 0 
𝑁 0 

= 𝜏𝑑 + 𝐺 0 𝛾𝑟 𝜆. (1)

.2. Structure model 

Experiments have shown that stress and strain controlled measure-

ents performed on clay-water suspensions result in different flow

urves. In their work on lubricating greases Mas et al. [40] observed

hat the flow curves obtained from strain controlled tests showed a min-

mum stress. The same flow curves obtained using stress controlled tests

owever, did not show such a minimum. Nonetheless, the failure which

ccurs within the structure of clay-water suspensions when yielding is

he same for the two types of test. This signifies that the structure pa-

ameter cannot be a function of only stress or only strain but rather a

ombination of both that is independent of the type of test that is per-

ormed. In this respect energy is a viable choice. Therefore, following

he work of Moore [14] and Yziquel et al. [27] the time rate of change

f the structure parameter is written as, 

𝑑𝜆

𝑑𝑡 
= 𝛼( 1 − 𝜆) − |𝜏 ∶ 𝛾̇|𝛽𝜆. (2)

The first term on the right hand side of (2) represents generation of

tructure by the Brownian motion. The second term, |𝜏 ∶ 𝛾̇|, captures the

hange in the internal energy of a fluid volume due to the application

f a stress or strain rate [41] . Once a stress or a strain rate is applied to

he suspension, it damages the structure (i.e., breaks some connections).

his damage can also be seen in the increase in the internal energy of the

ystem. Therefore, the increase in the internal energy is used to indicate

estruction of structure. Note that Eq. (2) is symmetric with respect

o 𝛾̇ and 𝜏. In (2) , 𝛼 and 𝛽 are empirical parameters which should be

etermined through experiments. 
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.3. Residual strain model 

Let 
∑𝑁 

𝑖 =1 ̃𝛾𝑖 ( 𝑡 ) ̃𝐺 𝑖 represent the force applied to a clay particle network

ith N number of connections at a given time t . Following the dynam-

cs of the system undergoing a deformation with a strain rate 𝛾̇ , at a

ater time 𝑡 + Δ𝑡, let us assume that M number of connections remain, D

umber of connections are destroyed, and C number of connections are

ewly created. The strain of the remaining, 𝑁 − 𝐷 = 𝑀, connections at

 + Δ𝑡 can be written as, 

( 𝑡 + Δ𝑡 ) ≈ 𝛾̇Δ𝑡 + ̃𝛾( 𝑡 ) , 

hich results in the following expression for the force applied to the

lay particle network at time 𝑡 + Δ𝑡, 
𝑀 

𝑖 =1 

(
𝛾̇Δ𝑡 + ̃𝛾𝑖 ( 𝑡 ) 

)
𝐺̃ 𝑖 + 

𝐶 ∑
𝑖 =1 

𝛾𝑖 𝐺 𝑖 , (3)

here, 𝛾 i and G i are the strains and the stiffnesses of the newly cre-

ted connections, respectively. Furthermore, from the definition of the

esidual strain one has, 

𝑁 

𝑖 =1 
𝛾̃𝑖 ( 𝑡 ) ̃𝐺 𝑖 = 𝛾𝑟 ( 𝑡 ) 

𝑁 ∑
𝑖 =1 

𝐺̃ 𝑖 = 𝛾𝑟 ( 𝑡 ) 
𝑁 

𝑁 0 
𝐺 0 ⇒ 𝛾𝑟 ( 𝑡 ) = 

∑𝑁 

𝑖 =1 ̃𝛾𝑖 ( 𝑡 ) ̃𝐺 𝑖 

𝑁 

𝑁 0 
𝐺 0 

. (4)

Similarly, from (3) , for the residual strain 𝛾𝑟 ( 𝑡 + Δ𝑡 ) one has, 

𝑀 

𝑖 =1 

(
𝛾̇Δ𝑡 + ̃𝛾𝑖 ( 𝑡 ) 

)
𝐺̃ 𝑖 + 

𝐶 ∑
𝑖 =1 

𝛾𝑖 𝐺 𝑖 = 𝛾𝑟 ( 𝑡 + Δ𝑡 ) 
𝑀+ 𝐶 ∑
𝑖 =1 

𝐺 𝑖 = 𝛾𝑟 ( 𝑡 + Δ𝑡 ) 𝑀 + 𝐶 

𝑁 0 
𝐺 0 ⇒

𝛾𝑟 ( 𝑡 + Δ𝑡 ) = 

∑𝑀 

𝑖 =1 
(
𝛾̇Δ𝑡 + ̃𝛾𝑖 ( 𝑡 ) 

)
𝐺̃ 𝑖 + 

∑𝐶 

𝑖 =1 𝛾𝑖 𝐺 𝑖 

𝑀+ 𝐶 
𝑁 0 

𝐺 0 

. (5) 

Subtracting (4) from (5) and dividing by Δt yields, 

𝛾𝑟 ( 𝑡 + Δ𝑡 ) − 𝛾𝑟 ( 𝑡 ) 
Δ𝑡 

= 

∑𝑀 

𝑖 =1 
(
𝛾̇Δ𝑡 + ̃𝛾𝑖 ( 𝑡 ) 

)
𝐺̃ 𝑖 + 

∑𝐶 

𝑖 =1 𝛾𝑖 𝐺 𝑖 

𝑀+ 𝐶 
𝑁 0 

𝐺 0 Δ𝑡 
− 

∑𝑁 

𝑖 =1 ̃𝛾𝑖 ( 𝑡 ) ̃𝐺 𝑖 

𝑁 

𝑁 0 
𝐺 0 Δ𝑡 

⇒ …

⋯ = 

( 

𝑁 0 

𝑀 + 𝐶 

) 𝑀 ∑
𝑖 =1 

𝛾̇𝐺̃ 𝑖 

𝐺 0 
+ 

( 

𝑁 0 

𝑀 + 𝐶 

) 𝐶 ∑
𝑖 =1 

𝛾̇𝐺 𝑖 

𝐺 0 
+ 

(
𝑀 

𝑀 + 𝐶 
− 1 

) 𝛾𝑟 ( 𝑡 ) 
Δ𝑡 

⇒ …

𝛾𝑟 ( 𝑡 + Δ𝑡 ) − 𝛾𝑟 ( 𝑡 ) 
Δ𝑡 

= 𝛾̇ − 

(
𝐶 

𝑀 + 𝐶 

) 𝛾𝑟 ( 𝑡 ) 
Δ𝑡 

. (6) 

Using the structure model (2) in Eq. (6) , 𝐶 = 𝑁 0 Δ𝑡𝛼( 1 − 𝜆( 𝑡 ) ) and

 + 𝐶 = 𝑁 0 𝜆( 𝑡 + Δ𝑡 ) , which for Δt →0, yields, 

𝑑𝛾𝑟 
𝑑𝑡 

= 𝛾̇ − 

𝛼(1 − 𝜆) 
𝜆

𝛾𝑟 . (7)

Combining (1), (2) , and (7) , results in the following rheological

odel, 

= 𝐺 0 𝜆𝛾𝑟 + 𝜇𝛾̇, (8)

̇ = 𝛼(1 − 𝜆) − |𝜏 ∶ 𝛾̇|𝛽𝜆, (9)

̇ 𝑟 = 𝛾̇ − 

𝛼(1 − 𝜆) 
𝜆

𝛾𝑟 . (10)

The generalization of (8) –(10) for the case of the simple shear flow

nd the vortex flow in three dimensions is given in Appendix A and

ppendix B . 

.4. Evolution of the structure parameter, 𝜆, for various values of stress 

In equilibrium, the number of connections created equals the number

f connections destroyed, therefore, 𝜆̇ = 0 ⇒ 𝜆𝑒 = 𝛼∕ ( 𝛼 + 𝛽|𝜏 ∶ 𝛾̇|) and

he rate of change of residual strain is zero, i.e., 𝛾̇𝑟 = 0 . Therefore, 

𝑑𝛾𝑟 
𝑑𝑡 

= 𝛾̇ − 

𝛾𝑟 𝛼(1 − 𝜆𝑒 ) 
𝜆

= 0 ⇒ 𝛾𝑟 = 

𝜆𝑒 ̇𝛾

𝛼(1 − 𝜆 ) 
. (11)
𝑒 𝑒 𝜆  
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Inserting (11) in (8) yields the effective viscosity, 

= 

( 

𝐺 0 𝜆
2 
𝑒 

𝛼(1 − 𝜆𝑒 ) 
+ 𝜇

) 

𝛾̇ ⇒ 𝜇𝑒 ( 𝜆𝑒 ) = 

𝐺 0 𝜆
2 
𝑒 

𝛼(1 − 𝜆𝑒 ) 
+ 𝜇. (12)

Hence, 

̇ = 

𝜏𝛼(1 − 𝜆𝑒 ) 
𝐺 0 𝜆

2 
𝑒 + 𝜇𝛼(1 − 𝜆𝑒 ) 

. (13) 

Inserting (13) in (9) yields, 

𝑑𝜆

𝑑𝑡 
= 𝛼(1 − 𝜆𝑒 ) − 

𝜏2 𝛼(1 − 𝜆𝑒 ) 
𝐺 0 𝜆

2 
𝑒 + 𝜇𝛼(1 − 𝜆𝑒 ) 

𝛽𝜆𝑒 = 0 , (14)

hich results in, 

(1 − 𝜆𝑒 ) 

[ 

1 − 

𝜏2 𝛽𝜆𝑒 

𝐺 0 𝜆
2 
𝑒 + 𝜇𝛼(1 − 𝜆𝑒 ) 

] 

= 0 . (15)

The roots to (15) are, 

𝑒,𝑦 = 1 , and , (16)

𝑒, ± = 

𝜇𝛼 + 𝛽𝜏2 ± 

√
( 𝜇𝛼 + 𝛽𝜏2 ) 2 − 4 𝐺 0 𝜇𝛼

2 𝐺 0 
. (17) 

Only one solution to (17) exists when, |𝜏| = 

√ (√
4 𝐺 0 𝜇𝛼 − 𝜇𝛼

)
∕ 𝛽.

his shear stress is called the critical stress, 𝜏c , and is the stress below

hich a flowing material comes to a stop. 

At yield stress 𝜏 = 𝜏𝑦 , two solutions exist for (17) , however, one of

hem coincides with (16) . Inserting 𝜆𝑒,𝑦 = 1 in (17) yields, |𝜏𝑦 | = 

√
𝐺 0 ∕ 𝛽.

he other root, 𝜆𝑒, − , can be obtained by inserting 𝜏y back into Eq. (17) .

his yields, 𝜆𝑒, − = 𝜇𝛼∕ 𝐺 0 . Once 𝜏 = 𝜏𝑦 , 𝜆𝑒, − is the stable solution where

he structure will end up (since 𝜆𝑒,𝑦 = 1 becomes unstable at this point

nd the material begins to flow). 

Fig. 5 depicts the development of the structure parameter, 𝜆, for var-

ous initial structures, 𝜆0 , under different constant stresses. 

For stresses 𝜏c < 𝜏 < 𝜏y , if the material is flowing, it will end up with

 structure 𝜆𝑒 = 𝜆𝑒, − < 1 . However, if the material has not disintegrated,

.e., 𝜆𝑒 < 𝜆𝑒, + , then it will end up at 𝜆𝑒,𝑦 = 1 . 

.5. Evolution of the structure parameter, 𝜆, for various values of strain 

ate 

Following the same procedure as in Section 2.4 , and writing the

tress in terms of the strain rate, Eq. (15) becomes, 

𝛽𝐺 0 ̇𝛾
2 )𝜆3 𝑒 − 

(
𝜇𝛾̇2 𝛽𝛼 + 𝛼2 

)
𝜆2 𝑒 + 

(
𝜇𝛾̇2 𝛽𝛼 + 2 𝛼2 

)
𝜆𝑒 − 𝛼2 = 0 . (18)

For all the empirical parameters considered in this study (and per-

aps for all appropriate values of 𝛽, G 0 , 𝛾̇ , 𝜇, and 𝛼) this equation only

as one real solution. 

Let 𝑏 = − 

𝜇𝛾̇2 𝛽𝛼+ 𝛼2 
𝛽𝐺 0 ̇𝛾2 

, 𝑐 = 

𝜇𝛾̇2 𝛽𝛼+2 𝛼2 
𝛽𝐺 0 ̇𝛾2 

, 𝑑 = 

− 𝛼2 
𝛽𝐺 0 ̇𝛾2 

, 𝑝 = 𝑐 − 

1 
3 𝑏 

2 , and 𝑞 = 𝑑 −
1 
3 𝑏𝑐 + 

2 
27 𝑏 

3 . Then for p > 0 the real solution to (18) can be written as

42] , 

𝑒 = − 𝑏 ∕3 − 2 
√
𝑝 ∕3 sinh 

( 

1 
3 

arcsinh 

( 

𝑞∕2 
( 𝑝 ∕3) 3∕2 

) ) 

. (19)

For an imposed strain rate, if 𝜆< 𝜆e , then the structure parameter, 𝜆,

rows in time to reach 𝜆e . If on the other hand 𝜆> 𝜆e , then the structure

arameter decreases in time to reach 𝜆e . Fig. 6 depicts the development

f the structure parameter, 𝜆, for various initial structures, 𝜆0 , under a

onstant strain rate. 

.6. Solutions at constant values of 𝛾̇ and |𝜏 ∶ 𝛾̇|
For constant values of |𝜏 ∶ 𝛾̇| in time, Eq. (9) can be solved to obtain,

= 

(
𝜆0 − 𝜆𝑒 

)
𝑒 −( 𝛼+ 𝛽|𝜏∶ ̇𝛾|) 𝑡 + 𝜆𝑒 , (20)
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Fig. 5. Change in the structure parameter, 𝜆, with time, for various initial structures, 𝜆0 , under different stress conditions. 
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here, 𝜆0 = 𝜆( 𝑡 = 0) . 
A more complex relation can be derived for the residual strain for

onstant values of 𝛾̇ and |𝜏 ∶ 𝛾̇|, 
𝑟 = 

1 
𝑢 ∫ 𝛾̇𝑢 𝑑𝑡 + 𝐶 , (21)

here, C is a constant and, 

 = 

( 

𝜆0 − 𝜆𝑒 
𝜆𝑒 

+ 𝑒 ( 𝛼+ 𝛽|𝜏∶ ̇𝛾|) 𝑡 ) 1− 𝜆𝑒 
+ 

( 

𝜆0 − 𝜆𝑒 
𝜆𝑒 

+ 𝑒 −( 𝛼+ 𝛽|𝜏∶ ̇𝛾|) 𝑡 ) 𝜆𝑒 

. (22)

The complications in solving the integral in Eq. (21) can be avoided

y introducing a new variable 𝜁 = 𝜆𝛾𝑟 . The rheological model then reads,

= 𝐺 0 𝜁 + 𝜇𝛾̇, (23)

̇ = 𝛼(1 − 𝜆) − |𝜏 ∶ 𝛾̇|𝛽𝜆, (24)
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̇ = 𝛾̇𝜆 − |𝜏 ∶ 𝛾̇|𝛽𝜁. (25)

For constant values of 𝛾̇ and |𝜏 ∶ 𝛾̇|, Eq. (25) can be solved to obtain, 

= 

𝛾̇( 𝜆𝑒 − 𝜆0 ) 
𝛼

𝑒 −( 𝛼+ 𝛽|𝜏∶ ̇𝛾|) 𝑡 + 𝜆𝑒 
𝛾̇

𝛽|𝜏 ∶ 𝛾̇|
+ 

[ ( 

𝛾𝑟 0 + 

𝛾̇

𝛼

) 

𝜆0 − 

( 

𝛾̇

𝛽|𝜏 ∶ 𝛾̇| + 

𝛾̇

𝛼

) 

𝜆𝑒 

] 
𝑒 − 𝛽|𝜏∶ ̇𝛾|𝑡 , (26) 

here, 𝛾𝑟 0 = 𝛾𝑟 ( 𝑡 = 0) . 

.7. Types of flow curves 

Let f be a map sending 𝜆e to its corresponding stress 𝜏, i.e., f ( 𝜆e ):

→ 𝜏, and let g be a map sending 𝜆 to its corresponding strain rate,
e e 
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Fig. 6. Change in the structure parameter, 𝜆, with time, for various initial struc- 

tures, 𝜆0 , under a constant strain rate. 

Fig. 7. Stress controlled hysteresis plot obtained from Eqs. (23) –(25) . The red 

arrows show the path of increasing stress and the black arrows show the path 

of decreasing stress. The inset plots depict the bifurcation of the structure pa- 

rameter. (For interpretation of the references to colour in this figure legend, the 

reader is referred to the web version of this article.) 
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Fig. 8. Strain controlled hysteresis plot obtained from Eqs. (23) –(25) . The red 

arrows show the path of increasing strain rate and the black arrows show the 

path of decreasing strain rate. The inset plots depict the bifurcation of the struc- 

ture parameter. (For interpretation of the references to colour in this figure leg- 

end, the reader is referred to the web version of this article.) 
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̇ , i.e., 𝑔( 𝜆𝑒 ) ∶ 𝜆𝑒 → 𝛾̇. Then following the discussion in Sections 2.4 and

.5 , f is non-injective, while g is bijective. 

Let us imagine a material with a complete structure, 𝜆 = 1 , and in-

rease the stress until 𝜏 = 𝜏𝑦 . Increasing 𝜏 beyond 𝜏y results in a jump in

he equilibrium structure parameter from 𝜆 = 1 to 𝜆𝑒, − . Since g is bijec-

ive, the strain rate also shows a jump at this point from 𝑔( 𝜆 = 1) = 𝛾̇𝑒,𝑦 
o 𝑔( 𝜆𝑒, − ) = 𝛾̇𝑒, − . This path is shown in Fig. 7 by red arrows. 

Now imagine a material under a high shear stress and with zero

tructure, 𝜆 = 0 , and decrease the stress until 𝜏 = 𝜏𝑐 . Decreasing 𝜏 be-

ond 𝜏c results in a jump in the equilibrium structure parameter from

e,c to 𝜆 = 1 . Again, since g is bijective, the strain rate also shows a jump

t this point from 𝑔( 𝜆𝑒,𝑐 ) = 𝛾̇𝑐 to 𝑔( 𝜆 = 1) = 𝛾̇𝑒,𝑦 . This path is shown in

ig. 7 , by black arrows. 

Note that in Fig. 7 , the slope of the initial rise in the flow curve,

esembling elastic solid behavior, as well as the stress at the point of

ielding, are dependent on the speed at which the stress is increased.

his topic will be explained more thoroughly in Section 2.8 . 

Non-injectivity of f , results in a different picture for strain controlled

ysteresis plots. For 𝜏c < 𝜏 < 𝜏y , there are three equilibrium structure pa-

ameters (non-injectivity of f ) and each structure parameter corresponds

o only one shear rate (bijectivity of g ). Consequently, multiple strain

ate values correspond to one specific stress in this regime. Fig. 8 shows

 strain controlled hysteresis plot. The red and black arrows show the

ath of increasing and decreasing strain rate, respectively. 
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Note that the model has the ability to capture the critical yield stress,

.e., the minimum stress in a strain controlled flow curve. For clay-water

uspensions, the falling region of the flow curve corresponds to the shear

anding instability [9] . The model has an unstable equilibrium solution

n this transitional region and therefore, mimics the physical behavior

f the material well in this regime. 

For 𝜏𝑦 = 0 or 𝛾̇ → ∞, the model presented in (23) simplifies to

he Newtonian fluid model, 𝜏 = 𝜇𝛾̇. Furthermore, for 𝛼→∞, 𝜏c → 𝜏y ,

nd (23) resembles the Bingham elastic model [43] . For all the other

ases, the rheological model presented by Eqs. (23) –(25) describes a

hixotropic yield stress fluid. 

.8. Apparent yield stress 

In order to make a stationary material with a structure parameter,

< 1, flow, one has to overcome the apparent yield stress that corre-

ponds to 𝜆𝑒, + ( Fig. 5 ), i.e., 

𝜏𝑦, + | = 

√ √ √ √ 

𝐺 0 𝜆
2 
𝑒, + + 𝜇𝛼

(
1 − 𝜆𝑒, + 

)
𝛽𝜆𝑒, + 

. (27) 

In general, the structure state of a stationary material at a given time

s 𝜆𝑒, + . Therefore, in order to break this structure, a stress level higher

han |𝜏𝑦, + |, where, 𝜏𝑐 < 𝜏𝑦, + < 𝜏𝑦 , should be imposed on the material.

or 𝜆𝑒, + = 1 , 𝜏𝑦, + = 𝜏𝑦 , and for 𝜆𝑒, + = 𝜆𝑒,𝑐 , 𝜏𝑦, + = 𝜏𝑐 ( Fig. 5 ). Once 𝜏y < 𝜏,

here are no longer any unstable equilibrium structure points, 𝜆𝑒, + , and

onsequently, there are no apparent yield stresses. 

In stress versus strain rate plots, the apparent yield stress is the stress

t which the jump in strain rate occurs. To analyze such a case, let 𝜏 =
( 𝑡 ) , be a logarithmic staircase function with a constant step duration,

t , (inset plot of Fig. 9 (a)). During each step duration, Δt , Eqs. (23) –

25) are then solved for each constant stress. Fig. 9 (a) shows the stress

ersus the strain rate value that is obtained at the end of each time step.

ig. 9 (b) shows the stress versus the structure parameter in blue and the

pparent yield stress, 𝜏𝑦, + , versus 𝜆𝑒, + in red, all computed at the end

f each time step. The point where the blue and the red curves cross

orresponds to the structure state at which 𝜏𝑦, + < 𝜏, and the material

rst begins to flow, i.e., 𝜆 → 𝜆𝑒, − ( Fig. 5 ). 

Since from the apparent/transient stress versus strain rate plots (ex-

erimental or in this case numerical), one can only obtain the apparent

ield stress, 𝜏𝑦, + , reverse engineering must be done to obtain the value

f 𝜏y . 
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Fig. 9. Transient stress versus strain rate plot (a), and structure parameter versus stress curve (b), obtained at the end of each time interval Δt , for a logarithmic 

staircase input function shown in the inset plot of (a). The red and blue curves in (b) show the change in 𝜆𝑒, + with the apparent yield stress 𝜏𝑦, + , and the structure 

parameter, 𝜆, with stress, 𝜏, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 

The structural kinetic models of Mujumdar et al. [33] , Dullaert and Mewis [34] , and this study. 

Authors Const. model Structure model Elastic strain model Emp. parameters 

Mujumdar et al. [33] 𝜏 = 𝜆𝐺𝛾𝑒 + (1 − 𝜆) 𝐾 ̇𝛾𝑛 𝜆̇ = 𝑘 1 ̇𝛾+ 𝜆 + 𝑘 2 (1 − 𝜆) , 𝛾̇+ = 
{ 

0 ∶ 𝛾̇𝛾𝑒 ≤ 0 , |𝛾̇| ∶ 𝛾̇𝛾𝑒 > 0 . 

{ 

𝛾𝑒 = 𝛾̇ ∶ |𝛾𝑒 | < 𝛾𝑐𝑜 𝜆𝑚 , 
𝛾𝑒 = 𝛾𝑐𝑜 𝜆𝑚 ∶ |𝛾𝑒 | > 𝛾𝑐𝑜 𝜆𝑚 . G , n , K , k 1 , k 2 , 𝛾co , m 

Dullaert and Mewis [34] 𝜏 = 𝜆𝐺 0 𝛾𝑒 + 𝜆𝜂𝑠𝑡, 0 ̇𝛾 + 𝜂∞ 𝛾̇ 𝜆̇ = (1∕ 𝑡 𝛽 ) 
(
− 𝑘 1 ̇𝛾𝜆 + 𝑘 2 ̇𝛾0 . 5 (1 − 𝜆) + 𝑘 3 (1 − 𝜆) 

)
𝛾𝑒 = (1∕ 𝑡 ) 𝛽

(
𝜏𝛾𝑐 − 𝜏𝑠𝑠 𝛾𝑒 

)
𝛾c , G 0 , 𝜂st ,0 , 𝜂∞, 𝛽, k 1 , k 2 , k 3 

This Study 𝜏 = 𝜆𝐺 0 𝛾𝑟 + 𝜇𝛾̇ 𝜆̇ = − 𝛽|𝜏 ∶ 𝛾̇|𝜆 + 𝛼(1 − 𝜆) 𝛾𝑟 = 𝛾̇ − 
𝛾𝑟 𝛼(1− 𝜆) 

𝜆
𝜇, G 0 , 𝛼, 𝛽
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.9. Relation to other models 

The rheological model presented in this study is analogous to those

rom the studies of Mujumdar et al. [33] and Dullaert and Mewis [34] .

he fundamental difference between these models is with regards to

heir formulations of the elastic strain and the structure parameter. Al-

hough a complete evaluation of the dis/similarities between these mod-

ls is outside the scope of the current work, in this section some of these

oints are briefly discussed. Table 1 lists the three rheological models. 

.9.1. Comparison to the model of Mujumdar et al. [33] 

In [33] , Mujumdar et al. present a model based on the network asso-

iation theory where the material is viewed as a network of small indivis-

ble particles. Once shear is applied to the material, the network breaks

own into flocs. If breakdown is continued, the flocs eventually decom-

ose into individual particles. In their formulation, the time-dependent

lastic limit of the material is related to the size of the flocs via the struc-

ure parameter and an exponent, m , that characterizes the elastic limit

f the flocs. 

It is difficult to express the phenomenology that is presented in

33] (regarding the breakdown of the network into flocs and ultimately

nto particles) with a picture, such as the one shown in Fig. 4 . Similar

o [33] , the model that is presented in the current study is based on the

etwork theory. However, unlike the model of Mujumdar et al., here it is

ssume that the behavior of the material is uniform and scale invariant.

his precludes the need for an exponent such as m . 

A key feature of the model of Mujumdar et al. is a smooth transition

rom an elastically dominated response to a viscous response, with no

ump discontinuity in the stress-strain curve ( Fig. 10 (b)). Nonetheless,

he formulation of both the structure parameter and the elastic strain

re discontinuous in their work, which makes numerical computation

umbersome ( Table 1 ). 

Analogous to [33] , the model presented here allows for a smooth

ransition from an elastically dominated response to a viscous response,

ith no jump discontinuity in the stress-strain curve ( Fig. 10 (a)). How-
108 
ver, in contrast to [33] , the formulations of both, the structure param-

ter and the elastic strain, are continuous in the model presented here. 

Following the same procedure as in Section 2.4 , the evolution of the

tructure parameter under various stress conditions can be evaluated for

he model in [33] . To allow comparison with the current study, let the

arameter 𝑛 = 1 (no shear thinning) in Table 1 . Then, in equilibrium,

he following expression can be derived for the structure parameter, 

 1 𝐺𝛾𝑐𝑜 𝜆
𝑚 +1 
𝑒 + 𝐾𝑘 2 𝜆

2 
𝑒 − 2 𝐾𝑘 2 𝜆𝑒 + 𝐾𝑘 2 − 𝑘 1 𝜏 = 0 . (28)

It can be seen that depending on the value of the exponent, m ,

q. (28) can have different numbers of roots. For instance for 𝑚 = −0 . 3
a representative case from [33] ), this equation has in total 20 roots,

epeated, as well as distinct (this can be shown by a change of variable

rom 𝜆e to Q , where 𝑄 

10 = 𝜆𝑒 ). This suggests that the model of Mujum-

ar et al. may be difficult to interpret with regards to the phenomenon

f viscosity bifurcation. 

Fig. 11 shows the strain controlled flow curves obtained from the

odel of Mujumdar et al. [33] (blue), and from the current study (red).

t can be seen that qualitatively, the two models result in very similar

ow curves. Nonetheless, there are small discrepancies that make the

ifferences between the two models more conspicuous. A C 

1 disconti-

uity can be observed within the non-linear elastic regime of the blue

urve. This is not the case for the flow curve obtained from the current

tudy. Furthermore, the two models show slightly different behaviors at

he end of the liquefaction and the beginning of the viscous regimes. 

Finally, the model presented by Mujumdar et al. contains six empir-

cal parameters (not including n ). In contrast, the model presented in

his study has four parameters. 

.9.2. Comparison to the model of Dullaert and Mewis [34] 

In [34] , Dullaert and Mewis present a general structural kinetic

odel to describe the flow behavior of thixotropic systems. Analogous to

he current study, in their work the total stress is divided into a structure-

ependent elastic and a viscous contribution. 

To describe the elastic contribution, Dullaert and Mewis propose a

ingle stress-dependent kinetic equation that allows the aggregates to
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Fig. 10. Prediction of the elastic, viscous, and total stress response from the model presented in the current study (a), and from the model presented by Mujumdar 

et al. [33] (b), during the start-up of a steady shear flow, 𝛾̇ = 20 s −1 . The parameters used in the model from this study are: 𝐺 0 = 25000 Pa , 𝛼 = 1 s −1 , 𝜇 = 400 Pa ⋅ s , 𝛽 = 
0 . 00016 Pa −1 . The parameters used in the model of Mujumdar et al. are: 𝐺 = 25000 Pa , 𝐾 = 400 Pa ⋅ s , 𝑘 1 = 2 , 𝑘 2 = 1 s −1 , 𝛾𝑐𝑜 = 0 . 5 , 𝑛 = 1 , 𝑚 = −0 . 33 . 
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elax after a reduction in hydrodynamic stress and stretch when the

tress is increased. This is in contrast to the approach taken in the cur-

ent study where, the kinetic equation for the elastic strain of the flowing

tructure is derived from the first principles using the structure model,

nd based on a set of physical assumptions regarding particle interac-

ions at the micro-scale. 

Dullaert and Mewis state that the model in [34] can predict over-

hoot stresses that are larger than the apparent yield stress during start

p flows. The model presented herein however, does not predict such

vershoot stresses. According to the model in the current study, as soon

s shear is applied to the material, the structure begins to break down.

epending on the strain rate, the structure can break down faster (higher

train rates), or slower (lower strain rates), which in turn can cause the

aterial to reach its yield point quickly, or slowly. The stress at the

oint of yielding is here referred to as the apparent yield stress and is

lways smaller than the true yield stress of the material. During start

p flows, the stress can quickly reach the apparent yield stress (stress

ver-shoot) and subsequently drop to the stress of the flowing material

 Section 4.2 ). However, it can never exceed the apparent yield stress of
he material. 

ig. 11. Strain controlled flow curves obtained from the model of Mujumdar 

t al. [33] (blue), and from the current study (red). The parameters used to ob- 

ain the blue curve are: 𝐺 = 40000 Pa , 𝐾 = 1500 Pa ⋅ s , 𝑘 1 = 10 , 𝑘 2 = 1 s −1 , 𝛾co = 
 . 023 , 𝑛 = 1 , 𝑚 = 0 . 15 . The parameters used to obtain the red curve are: 𝐺 0 = 
0000 Pa , 𝛼 = 1 s −1 , 𝜇 = 1500 Pa ⋅ s , 𝛽 = 0 . 04 Pa −1 . (For interpretation of the ref- 

rences to colour in this figure legend, the reader is referred to the web version 

f this article.) 
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According to Dullaert and Mewis, upon cessation of flow, the model

n [34] can predict non-zero values for the stress. The model presented

n this study also has this attribute ( Section 4.1 ). The structure model in

34] is not symmetric with respect to the stress and the strain rate. The

tructure model employed in this study however, is symmetric. 

Following the same procedure as in Section 2.4 , the evolution of the

tructure parameter under various stress conditions can be evaluated

or the model in [34] . This results in the following expression for the

tructure parameter in equilibrium, 

 𝑘 1 

( 

𝜏 − 𝐺 0 𝜆𝑒 𝛾𝑐 
𝜂𝑠𝑡, 0 𝜆𝑒 + 𝜂

) 

𝜆𝑒 + 𝑘 2 

( 

𝜏 − 𝐺 0 𝜆𝑒 𝛾𝑐 
𝜂𝑠𝑡, 0 𝜆𝑒 + 𝜂

) 1∕2 (
1 − 𝜆𝑒 

)
+ 𝑘 3 

(
1 − 𝜆𝑒 

)
= 0 . 

(29) 

The roots of this expression are difficult to obtain. This suggests that

he model of Dullaert and Mewis may be difficult to interpret with re-

ards to the phenomenon of viscosity bifurcation. 

Fig. 12 shows the strain controlled flow curves obtained from the

odel of Dullaert and Mewis [34] (blue), and from the current study

red). It can be seen that qualitatively, the two models result in quite
ifferent flow curves. The red curve is non-monotonic and has a min- 

ig. 12. Strain controlled flow curves obtained from the model of Dullaert 

nd Mewis [34] (blue), and from the current study (red). The parameters used 

o obtain the blue curve are: 𝛾𝑐 = 0 . 015 , 𝐺 0 = 560 Pa , 𝜂𝑠𝑡, 0 = 8 . 6 Pa ⋅ 𝑠, 𝜂∞ = 
 . 84 Pa ⋅ s , 𝛽 = 0 . 37 , 𝑘 1 ∕ 𝑘 3 = 0 . 99 𝑠, 𝑘 2 ∕ 𝑘 3 = 0 . 42 s 0 . 5 , 𝑘 3 = 0 . 20 s 𝛽−1 . The pa- 

ameters used to obtain the red curve are: 𝐺 0 = 560 Pa , 𝛼 = 0 . 55 s −1 , 𝜇 = 
 . 84 Pa ⋅ s , 𝛽 = 7 . 9 Pa −1 . (For interpretation of the references to colour in this 

gure legend, the reader is referred to the web version of this article.) 
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Fig. 13. Storage and loss moduli versus strain obtained from a stress controlled 

amplitude sweep test for a sample with 12.65% sediment concentration, after a 

resting period of 3000 s. The dashed line represents the approximated value of 

elastic modulus, G 0 . 

i  

T  

l  

f  

u

 

e  

f

3

r

 

s  

t  

a  

e

 

o  

s  

t  

t  

w  

t

(  

a

3

 

a  

d  

t  

c  

c  

t  

f  

t  

fi

 

T  

d  

o  

a  

d  

t  

a

mum. While the blue curve is a monotonically increasing flow curve.

he two curves predict very different material behaviors within the non-

inear elastic and the liquefaction regimes. However, some of these dif-

erences may be attributed to the values of the empirical parameters

sed here. 

Finally, the model presented by Dullaert and Mewis contains eight

mpirical parameters. In contrast, the model presented in this study has

our parameters. 

. Methodology for obtaining the empirical parameters and the 

heometric validation tests 

In this section the methodology behind the stress and the

train controlled measurements which, (1) can be used to obtain
110 
he empirical parameters, 𝜇, G 0 , 𝜏y , and 𝛼 (note that 𝛽 = 𝐺 0 ∕ 𝜏2 𝑦 ),
nd (2) are used to evaluate the performance of the model, are

xplained. 

The stress controlled shearing conditions within the boundary layer

f sediment gravity flows are simulated using stress controlled stress ver-

us strain rate curves. The stress controlled shearing conditions within

he boundary layer eddies are simulated using oscillatory stress con-

rolled amplitude sweep tests. The strain controlled shearing conditions

ithin the free shear and boundary layers are simulated using strain con-

rolled stress versus strain rate curves. For the computations, Eqs. (23) –

25) are solved numerically using a variable order backward differenti-

tion formula [44] . 

.1. Mixture preparation and measurement considerations and apparatus 

Mixture of quartz sand from Sibelco with median diameter of 150 μ𝑚
nd Crown Kaolinite clay from ActiveMinerals International, with me-

ian diameter of 0.18 μ𝑚 were prepared. The sediment volume concen-

ration was varied between 9%, 12.65%, 15%, 17.82%, and 21% and

ontained 2/3 sand and 1/3 clay. For the dilute case of 9% sediment

oncentration, the suspension is close to the gelling concentration and

he low stress measurements may be influenced by artifacts such as sur-

ace tension or the shape of the sample periphery. Therefore, the data for

his case is not included during apparent yield stress or shear modulus

tting ( Fig. 14 ). 

MRC302 Anton Paar rheometer was used for all the measurements.

o reduce the effect of settling on the measurements, a concentric cylin-

er geometry was used. The inner cylinder diameter was 28.92 mm . In

rder to avoid wall slip a sandblasted bob with a diameter of 26.663 mm

nd a surface roughness of 4–7 μ𝑚 was used. The mixtures were intro-

uced inside the cylinder with a syringe. A cover was used during the

ests to reduce water evaporation. The measurements were performed

t a temperature of 20 ∘C. 
Fig. 14. Shear modulus, G 0 , viscosity, 𝜇, apparent yield 

stress 𝜏𝑦, + , and 𝛽 versus sediment volume concentration. 

The dashed lines are obtained from curve fitting. For the 

shear modulus, the viscosity, and the apparent yield stress, 

power law functions resulted in fits with 𝑅 

2 = 0 . 99 . The ap- 

parent yield stress and shear modulus data obtained from 

samples with 9% concentration were not considered dur- 

ing fitting. 
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Fig. 15. Stress versus strain rate curve obtained from stress controlled measure- 

ments after a resting period of 3000 s for a representative sample with 12.65% 

concentration. The solid blue line is computed using Eqs. (23) –(25) . (For inter- 

pretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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.2. Oscillatory stress controlled amplitude sweep tests and shear modulus, 

 0 , measurements 

For low values of strain, 𝜆≈1 ⇒N ≈N 0 , and G ′ ≈G 0 . Therefore, the

alue of G 0 can be approximated by the value of the storage modulus,

 ′ , obtained from amplitude sweep tests at low values of strain. 

Prior to the measurements, the samples were left at rest for a period

f 3000 s in order to regain structure. Subsequently, stress controlled

mplitude sweep tests were performed on the samples. The stress am-

litude was increased from 0.0001 Pa to various final values depending

n the sediment concentration, and the angular frequency was set to 10

ad / s . 

Fig. 13 depicts the storage, G ′ , and loss, G ″ , moduli as a function of

train for a representative sample with 12.65% sediment concentration.

he dashed line represents the value of G 0 approximated by the value

f G ′ from the linear part of stress controlled amplitude sweep plots.

imilar plots were obtained for other sediment concentrations. 

Fig. 14 (a) depicts the shear modulus, G 0 , obtained for various sed-

ment concentration after a rest period of 3000 s. The dashed line in

ig. 14 (a) was obtained by fitting a power law function to the measure-

ent data. The data for the 9% sediment concentration was not consid-

red during fitting ( Section 3.1 ). The resulting R 

2 goodness of fit value

f this power law function is 0.99. 

.3. Yield stress, 𝜏y , and viscosity, 𝜇, measurements 

The yield stress and the viscosity values of the mixtures can be

btained from stress controlled rheometry tests. Prior to the measure-

ents, the mixtures were poured into the cylinder geometry and were

eft to rest for 3000 s in order to regain structure. Stress was then in-

reased from 0 . 0001 Pa to 1.6, 8, 11, 20, and 25 Pa for 9%, 12.65%, 15%,

7.82%, and 21% sediment concentrations, respectively. The duration

or obtaining a data point was set to 2 s. 

Fig. 15 depicts the measurement result of a representative sample

ith 12.65% concentration for 0 . 01 < 𝛾̇. The value of the apparent yield

tress, 𝜏𝑦, + , and viscosity, 𝜇, were obtained from the plots ( Fig. 15 ).

qs. (23) –(25) were then solved for the same input stress parameters

s for the measurements. Assuming 3000 s was enough time to reach

omplete structure ( 𝜆 = 1 ), the initial conditions were set to 𝜆0 = 1 and

𝑟 0 = 0 . The value of 𝜏y for each concentration was then adjusted such

hat the value of 𝜏𝑦, + obtained from the model matched its value from

he measurements. 

Fig. 14 shows the values of the viscosity and the apparent yield stress

or different sediment concentrations. Curve fitting was then performed

n the results. The apparent yield stress data for the 9% sediment con-

entration was not considered during fitting ( Section 3.1 ). For the vis-

osity and the apparent yield stress, power law functions resulted in fits
111 
ith 𝑅 

2 = 0 . 99 . The value of 𝛽 was then calculated from the model ( 𝜏y )

nd the data ( G 0 ) using the relation 𝛽 = 𝐺 0 ∕ 𝜏2 𝑦 . 

.4. Structure build up rate, 𝛼

From Eq. (24) , for low values of, |𝜏 ∶ 𝛾̇|, one has, 

̇ ≈ 𝛼(1 − 𝜆) . (30)

Therefore, in order to obtain the structure build up rate, 𝛼, the value

f |𝜏 ∶ 𝛾̇| should be kept small. Furthermore, the imposed stress ampli-

ude must be set such that it is smaller than the critical stress, 𝜏c . 

Immediately after the introduction of the mixture into the cylinder,

tress controlled oscillatory tests were performed and the change of stor-

ge modulus was monitored in time. The amplitude of the sinusoidal

tress input was set to 0.002 Pa and the angular frequency was set to

.5 rad/s . Fig. 16 shows the change of the storage modulus in time ob-

ained from the measurements for samples with 12.65% and 15% con-

entrations. 

To quantify the structure build up rate, 𝛼, Eqs. (23) –(25) were solved.

or the computations the same input parameters as the rheometry tests

ere used. The results were then fitted to the measurement data. The

lue dashed lines in Fig. 16 depict the results of this procedure. The

alues of 𝛼 obtained from this procedure for the samples with 17.82%

nd 21% concentrations were 0.00025 and 0.00015, respectively. 
Fig. 16. Modeled (blue dashed lines) and 

measured (purple and green lines) storage 

modulus, G ′ , depicting structure build up in 

time for (a) 12.65%, and (b) 15% concentra- 

tions. (For interpretation of the references to 

colour in this figure legend, the reader is re- 

ferred to the web version of this article.) 
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Fig. 17. Creep test plots obtained from Eqs. (23) –(25) for (a) a completely structured material, 𝜆0 = 1 , under various stress levels, and (b) for various initial structure 

states and under a constant stress level, 𝜏 = 0 . 14 Pa . The value of the yield stress, 𝜏y , was set to 0 . 37 Pa . 
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Fig. 18. The deformation response of a material obtained from Eqs. (23) –(25) 

to creep tests with different durations, t w . The horizontal dashed line depicts the 

remaining strain, 𝛾 i , after complete recovery of the material. 
.5. Stress controlled measurements 

A set of measurements were performed on a sample with 15% sed-

ment concentration. In order to enhance the reproducibility of the re-

ults, before the measurements, the sample was pre-sheared. This was

one by increasing the stress from 0 . 004 Pa to 10 Pa , immediately after

he introduction of the sample within the cylinder geometry. The du-

ation of this phase was 510 s. Next the mixture was left to rest for a

eriod of 9000 s to regain structure. Subsequently, the stress was in-

reased ramp logarithmically from 0 . 004 Pa to 10 Pa . Each data point

as obtained by the rheometer once the shear rate reached a steady

tate. The mixture was then left to rest for a period of 9000 s to regain

tructure. Finally, a stress controlled oscillatory test was performed on

he mixture. The angular frequency was set to 0 . 5 rad/s and the stress

mplitude was increased ramp logarithmically from 0 . 004 Pa to 10 Pa . 

For the numerical simulations, the same input conditions as for the

easurements were used. For the oscillatory amplitude sweep compu-

ations, in order to suppress the noise within the numerical results, a

owpass filter was used in regions before the yielding occurred, and sub-

equent to the yielding, average values of the storage and loss moduli

ere considered. 

.6. Strain controlled measurements 

Strain controlled measurements were performed on a sample with

5% sediment concentration. Prior to the measurements, the sample

as left at rest for a period of 3000 s in order to regain structure.

ubsequently, the strain rate was increased ramp logarithmically from

0 −6 s −1 to 500 s −1 . The duration for obtaining a data point was set to

 s. The number of measurement points was set to 7830. Data repro-

ucibility was considered acceptable to not include a pre-shear period.

or the numerical simulations, the same input conditions as for the mea-

urements were used. 

. Results and discussion 

In this section first the solutions of Eqs. (23) –(25) for some selected

ows is presented. Subsequently, the ability of the model to reproduce

he results obtained from the stress and the strain controlled measure-

ents, discussed in Section 3.5 and 3.6 , is evaluated. 

.1. Deformation under constant stress 

We would like to investigate the predictions of the model at the solid-

iquid transition. To do this we look at, (1) creep tests performed with
112 
ifferent stress levels on a completely structured material 𝜆 = 1 , and

2) creep tests performed with a specific stress level on a material with

ifferent initial structure states. 

Fig. 17 (a) depicts material deformation as a function of time for a

ompletely structured material, 𝜆0 = 1 , under different stress levels, 𝜏,

here 𝜏( 𝑡 ) = 𝜏𝐻( 𝑡 ) , and H ( t ) is the Heaviside unit step function. As it

s commonplace for pasty materials [35] , two regimes can be observed.

or stresses smaller than 𝜏𝑦, + , the model predicts an initial rapidly ris-

ng phase in the deformation, followed by a leveling off and reaching a

lateau phase. For stresses higher than 𝜏𝑦, + , the model predicts a straight

ine of slope 1 in the logarithmic scale, i.e., the deformation tends to in-

rease at a constant rate. It can be seen that the transition between the

wo regimes is abrupt in terms of shear rate, i.e., for a small increase

n stress beyond 𝜏𝑦, + , the slope of 𝛾( t ) changes abruptly from zero to

. As it was explained in Section 2.8 , the value of 𝜏𝑦, + is a function of

ow fast the stress ramp is reached and is smaller than 𝜏y (in this case

𝑦, + = 0 . 5 𝜏𝑦 ). 
Fig. 17 (b) shows the material deformation as a function of time after

pplication of a stress ramp to a material with various initial structure

arameters. It can be seen that for an initial structure parameter higher

han approximately 0.4, the material shows an elastic solid behavior. For

ower initial structure parameters however, the behavior of the material

bruptly transforms to that of a viscous liquid. 

Once stress is applied to a material, its structure is damaged and

egins to undergo a recovery process known as aging [35] . For very

hort creep test durations, t w , the deformation undergone by the
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aterial during the test is almost completely recovered for sufficiently

ong relaxation times. For longer creep tests on the other hand, the

odel predicts a drop in 𝛾( t ) to a remaining value, 𝛾 i . Fig. 18 shows

he deformation response of a material, as predicted by the model, to

reep tests with different test durations, t w . It can be seen that for longer

 w , the value of the remaining strain is higher. Once the structure is com-

letely recovered, 𝛾 i converges to a fixed value. 

All these trends have been discussed by Coussot et al. [35] for various

asty materials. 

.2. Deformation under constant strain rate 

Let 𝛾̇( 𝑡 ) = 𝛾̇( 𝐻( 𝑡 − 𝑡 0 ) − 𝐻( 𝑡 − 𝑡 1 ) + 𝐻( 𝑡 − 𝑡 2 )) , where t 0 and t 2 corre-

pond to the times at which a strain rate of magnitude 𝛾̇ is applied to

 completely structured material, and t 1 corresponds to the cessation of

pplication of strain rate. The stress response of a material to such an

nput is depicted in Fig. 19 . For small strain rate inputs ( Fig. 19 (a)), the

lastic stress is dominant, i.e., 𝜏 ≈G 0 𝜁 . In this regime no prominent local

aximum can be observed in the stress response at 𝑡 = 𝑡 0 (at which point

he strain rate 𝛾̇ is initially applied). Instead, the stress increases until it

eaches a steady value. Once the strain rate is set to zero at 𝑡 = 𝑡 1 , the

tress response shows no change. This indicates that for t 0 < t < t 1 , the

aterial undergoes a deformation in this regime that is not recovered

nce the shear rate is set to zero, i.e., as 𝜆→1 for long relaxation times,

approaches a constant value. At 𝑡 = 𝑡 , again a strain rate of mag-
r 2 

ig. 19. The stress response of a material to the strain rate input 𝛾̇( 𝑡 ) = 𝛾̇( 𝐻( 𝑡 − 𝑡 0 ) − 
ates, the duration of the input signal (i.e. 𝑡 2 − 𝑡 0 ) was varied for the sake of improve

here the constant strain rate lines may fall on such a plot. (For interpretation of t

ersion of this article.) 

113 
itude 𝛾̇ is applied to the material. The stress response shows an initial

ncrease at 𝑡 = 𝑡 2 to a maximum, drops to a minimum, and increases and

eaches the same steady value as it had reached just before 𝑡 = 𝑡 1 . This

s because the high shear rate after the jump results in a sudden increase

n the stress, which then breaks the structure. Since the structure is lost,

he stress begins to drop to a minimum (inset plot in Fig. 19 (a)). At this

tage the material begins to recover its structure, and the stress begins

o increase and reach a steady state value. The time it takes the material

o reach the steady state after 𝑡 = 𝑡 2 is shorter than the time it took it ini-

ially to recover after 𝑡 = 𝑡 0 . This is due to the fact that at 𝑡 = 𝑡 2 , 𝛾𝑟 ( 𝑡 2 ) >
𝑟 ( 𝑡 0 ) = 0 . Therefore, it takes a shorter time for 𝛾r to reach the steady

alue, because it is closer to it. The same behavior can be observed in

ig. 19 (b), with the difference that now at 𝑡 = 𝑡 0 , stress responses show

lear local maximums which are larger than the ones at 𝑡 = 𝑡 2 . This signi-

es that in this regime the applied strain rate is high enough to elicit an

lastic response from the material that diffuses for long enough times.

he red line in Fig. 19 (c) marks the initiation of a regime where viscous

tresses first become comparable in magnitude to elastic stresses. Both

he red and the yellow lines in this figure show a jump at 𝑡 = 𝑡 1 . This

s because once the strain rate is set to zero at 𝑡 = 𝑡 1 , the portion of the

tress response corresponding to viscous stress vanishes, i.e., 𝜇𝛾̇ = 0 , and

nly the elastic part remains. As viscous stresses become the dominant

orm of stress at high shear rates the jumps in the stress response at 𝑡 = 𝑡 1 
ecome more severe ( Fig. 19 (d)). Another interesting feature that can

e observed from Fig. 19 is that for lower strain rates, the time required

o reach a steady state increases dramatically [28] . 
𝐻( 𝑡 − 𝑡 1 ) + 𝐻( 𝑡 − 𝑡 2 )) . Since the steady state was achieved faster at higher shear 

d visibility. The inset plot shows a schematic strain controlled flow curve and 

he references to colour in this figure legend, the reader is referred to the web 
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Fig. 20. Measured (red and green circles) and computed (solid blue and black lines) stress versus strain rate curves (a), stress versus strain curves (b), and storage 

and loss moduli versus stress curves (c), obtained from stress controlled measurements for 15% concentration. (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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These trends are corroborated by data for various thixotropic mate-

ials in the literature [34,36] . 

.3. Stress controlled measurements 

Fig. 20 shows the results of the stress controlled measurements that

ere described in Section 3.5 . 

Fig. 20 (a) presents the stress versus strain rate curves that were ob-

ained from the model (blue line) and the measurements (red circles).

he values of the empirical parameters used to solve the Eqs. (23) –(25)

re presented in this figure. The inset plot depicts the stress input, cor-

esponding to 𝛾̇ > 10 −4 s −1 , that was imposed during the measurements

nd used during the simulation. It can be seen that the model shows

 good agreement with the data within the liquefaction and the fluid

egimes. 

Fig. 20 (b) shows the stress as a function of strain. At very low val-

es of strain, i.e., 𝛾 < 10 −4 , the model shows small deviations from the

easurements. These deviations did not have the same shape for all the

ample measurements and sometime were not present. Due to the com-

lexity of the mixture under investigation, more examination is required

o exactly pinpoint the source of this discrepancy. Nonetheless, at low

alues of strain, i.e., within the linear elastic regime, a relatively good

greement between the data and the model can be observed. At the end

f the linear elastic regime and within the non-linear elastic regime, the

odel again shows some deviations from the data. As before, these de-

iations were not observed for all the sample measurements and their

ource may be traced back to the small amounts of slip that may have oc-
114 
urred during the measurement before yielding. The model shows good

greement with the data within the liquefaction and the fluid regimes. 

Fig. 20 (c) shows the measured and the computed values of the stor-

ge, G ′ , and the loss, G ″ , moduli as a function of stress amplitude. A

ood agreement can be observed between the measured and the com-

uted values of the storage and the loss moduli within the linear and the

onlinear elastic regimes. At high stress amplitudes however, the data

hows a complex behavior. The model does not capture this behavior

nd underestimates the average values of the storage and loss moduli

ithin this region. This may be due to the long duration of these tests

hich may have resulted in water evaporation, and in turn, increased

iscosity of the mixture. 

.4. Transient strain controlled stress versus strain rate curve 

Fig. 21 shows the measured (blue stars) and the computed (solid red

ine) strain controlled shear stress versus strain rate curves for a sample

ith 15% concentration. The inset plot depicts a zoomed in view of the

ow instability that is associated with the shear banding phenomenon.

s discussed by Pignon et al. [9] , the shear rate values provided by the

heometer in this region correspond to a very localized or transient flow

nd are smaller than the actual shear rate values. Therefore, although

ith the corrected shear rate values, the qualitative shape of the tran-

ient curve would remain the same, the data in this part of the curve

hould be precluded from comparison with the model. 

It can be seen that the measurements and the model both show an

nitial rise in the shear stress until a maximum yield point followed by a

rop to a minimum. The measurements suggest that at an approximate
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Fig. 21. Transient stress versus strain rate curve obtained from strain controlled 

measurements for a sample with 15% concentration after a resting period of 

3000 s (blue stars). The solid red line is computed using Eqs. (23) –(25) . The 

value of the empirical parameters used during the computation are presented 

inside the plot. The inset plot depicts a zoomed in view of the shear banding 

instability. (For interpretation of the references to colour in this figure legend, 

the reader is referred to the web version of this article.) 
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Fig. A.22. Simple shear flow. 
train rate of 10 −5 s −1 the mixture begins to exhibit strain hardening.

he model fails to capture this phenomenon. At higher strain rates cor-

esponding to 𝜏 > 𝜏c , the measurements and the model begin to again

how good agreement. 

. Conclusions 

A new viscoelastic constitutive relation for modeling of subaqueous

lay-rich gravity flows was presented. In order to capture the creep and

he yield behavior of the plug layer within these flows the Kelvin–Voigt

odel was considered. The total stress is split into an elastic and a

iscous part. The importance of the elastic part is determined by the

mount of structure. It was explained that for the materials which ex-

ibit a minimum in their strain controlled flow curves the structure

arameter must be a symmetric function of the strain rate and the

tress. Therefore, the destruction of structure within the material was

ccounted for using the dissipation energy. An expression for the elastic

train of the flowing structure was then derived. 

It was shown that the final set of equations can reproduce the vis-

osity bifurcation that clay suspensions may exhibit under a given load.

his is important for accurate prediction of the run-out distance of grav-

ty flows. The most general flow curves which are allowed by the model

ere discussed and the response of the model to a constant stress and a

onstant shear rate input was analyzed. It was concluded that the model

an reproduce the well documented responses of pasty materials to such

ests. 

The final set of equations requires four empirical parameters. A

ethodology was presented for obtaining these parameters. Power law

unctions were then obtained for their calculations for a limited rest time

f 3000 s. 

The capability of the model was evaluated by comparing its out-

ut with the data obtained from stress controlled measurements. At low

alues of strain, i.e., within the linear elastic regime, a relatively good

greement between the data and the model was observed. At the end

f the linear elastic regime and within the non-linear elastic regime, a

iscrepancy between the model output and the data was observed. This

ay be due to small amounts of slip that may have occurred before yield-

ng. A good agreement between the model and the measurements was

bserved within the yielding and the viscous regions of the stress versus

train and the stress versus strain rate curves. For stress controlled oscil-

atory tests, a good agreement was observed between the measured and

he computed values of the storage and loss moduli at low stress ampli-

udes. At high stress amplitudes on the other hand, the model appears
115 
o deviate from the measurement. This maybe due to the long duration

f the tests which may result in water evaporation and in turn increased

iscosity of the mixture. For transient strain controlled curves, a good

greement between the measurements and the model was observed at

ow and high strain rates. The measurements suggest that at intermedi-

te strain rates, the mixture exhibits strain hardening. The model does

ot capture this phenomenon. 
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ppendix A. Three-dimensional formulation of constitutive 

quation for simple shear flow 

The expression for the total stress tensor, 𝜎, within a fluid can be

ritten as, 

= 𝑝𝛿 + 𝜏. (A.1)

here, p is the thermodynamic pressure, 𝛿 is the unit tensor, and 𝜏 is

he stress tensor. 

For isotropic fluids in simple shear flow depicted in Fig. A.22 , the

tress tensor can be written as [41,45] , 

= 

⎛ ⎜ ⎜ ⎝ 
𝜏11 𝜏21 0 
𝜏21 𝜏22 0 
0 0 𝜏33 

⎞ ⎟ ⎟ ⎠ . (A.2) 

The components of the strain tensor can be written as 𝛾𝑖𝑗 = 𝛿 − 𝑔 𝑖𝑗 ,

here g ij is the inverse of the metric tensor. This yields, 

= 

⎛ ⎜ ⎜ ⎝ 
− 𝛾21 

2 
𝛾21 0 

𝛾21 0 0 
0 0 0 

⎞ ⎟ ⎟ ⎠ . (A.3) 

The strain rate tensor can be written as, 

̇ = (∇ 𝑣 + ∇ 𝑣 𝑇 ) = 

⎛ ⎜ ⎜ ⎝ 
0 𝛾̇21 0 
𝛾̇21 0 0 
0 0 0 

⎞ ⎟ ⎟ ⎠ . (A.4)

From the definition of the residual strain and assuming linearity be-

ween the stain and the residual strain tensors yields, 

𝑘𝑠 
𝑟 = 

𝐺 

− 𝑘𝑠 
𝑖𝑗 

𝛾𝑖𝑗 

𝜆𝐺 0 
. (A.5) 

here, the elastic modulus, 𝐺 

− 𝑘𝑠 
𝑖𝑗 

, is a fourth-rank tensor. 

Assuming a homogeneous and isotropic material yields [45] , 

𝑟 = 

⎛ ⎜ ⎜ ⎝ 
𝛾11 𝑟 𝛾21 𝑟 0 
𝛾21 𝑟 𝛾22 𝑟 0 
0 0 𝛾22 𝑟 

⎞ ⎟ ⎟ ⎠ . (A.6) 
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Using the fact that the Christoffel symbols, Γ𝑖 
𝑘𝑙 

=
1 
2 𝑔 

𝑖𝑚 
(
𝜕𝑔 𝑚𝑘 
𝜕𝑥 𝑙 

+ 

𝜕𝑔 𝑚𝑙 
𝜕𝑥 𝑘 

− 

𝜕𝑔 𝑘𝑙 
𝜕𝑥 𝑚 

)
= 0 , and taking the time derivative of (A.6) and

ts basis vectors yields [41] , 

̇𝑟 = 

𝜕 

𝜕𝑡 

⎛ ⎜ ⎜ ⎝ 
𝛾11 𝑟 𝛾21 𝑟 0 
𝛾21 𝑟 𝛾22 𝑟 0 
0 0 𝛾22 𝑟 

⎞ ⎟ ⎟ ⎠ − 

⎛ ⎜ ⎜ ⎝ 
2 ̇𝛾21 𝛾21 𝑟 𝛾̇21 𝛾22 𝑟 0 
𝛾̇21 𝛾22 𝑟 0 0 

0 0 0 

⎞ ⎟ ⎟ ⎠ . (A.7)

Finally, the three dimensional formulation of the Eqs. (8) –(10) for

he case of the simple shear flow can be written as, 

 

 

 

 

𝜏11 𝜏21 0 
𝜏21 𝜏22 0 
0 0 𝜏33 

⎞ ⎟ ⎟ ⎠ = 𝐺 0 𝜆
⎛ ⎜ ⎜ ⎝ 
𝛾11 𝑟 𝛾21 𝑟 0 
𝛾21 𝑟 𝛾22 𝑟 0 
0 0 𝛾22 𝑟 

⎞ ⎟ ⎟ ⎠ + 𝜇

⎛ ⎜ ⎜ ⎝ 
0 𝛾̇21 0 
𝛾̇21 0 0 
0 0 0 

⎞ ⎟ ⎟ ⎠ , (A.8) 

̇ = 𝛼(1 − 𝜆) − |𝜏 ∶ 𝛾̇|𝛽𝜆, (A.9)

𝜕 

𝜕𝑡 

⎛ ⎜ ⎜ ⎝ 
𝛾11 𝑟 𝛾21 𝑟 0 
𝛾21 𝑟 𝛾22 𝑟 0 
0 0 𝛾22 𝑟 

⎞ ⎟ ⎟ ⎠ = 

⎛ ⎜ ⎜ ⎝ 
2 ̇𝛾21 𝛾21 𝑟 𝛾̇21 𝛾22 𝑟 0 
𝛾̇21 𝛾22 𝑟 0 0 

0 0 0 

⎞ ⎟ ⎟ ⎠ + 

⎛ ⎜ ⎜ ⎝ 
0 𝛾̇21 0 
𝛾̇21 0 0 
0 0 0 

⎞ ⎟ ⎟ ⎠ 
− 

(1 − 𝜆) 𝛼
𝜆

⎛ ⎜ ⎜ ⎝ 
𝛾11 𝑟 𝛾21 𝑟 0 
𝛾21 𝑟 𝛾22 𝑟 0 
0 0 𝛾22 𝑟 

⎞ ⎟ ⎟ ⎠ . (A.10)

ppendix B. Three dimensional formulation of constitutive 

quation for vortex flow 

Within the free shear layer, let us consider a vortex flow in the polar

oordinates given by, 

⃗ = ( 𝑣 𝑟 , 𝑣 𝜃 , 𝑣 𝑧 ) = 

(
0 , 𝐶 

𝑟 
, 0 
)
, (B.1)

here, C is a constant and r is the distance from the center of the vortex.

Using the rotational symmetry of vortex flow, the stress tensor in the

olar coordinates can be written as, 

= 

⎛ ⎜ ⎜ ⎝ 
𝜏11 0 0 
0 𝜏11 0 
0 0 𝜏33 

⎞ ⎟ ⎟ ⎠ . (B.2)

The strain tensor can be written as, 

= 

⎛ ⎜ ⎜ ⎜ ⎝ 
0 − 

2 𝐶𝑡 

𝑟 2 
0 

− 

2 𝐶𝑡 

𝑟 2 
− 

2 𝐶𝑡 

𝑟 
0 

0 0 0 

⎞ ⎟ ⎟ ⎟ ⎠ . (B.3)

nd the strain rate tensor can be written as, 

̇ = 

⎛ ⎜ ⎜ ⎜ ⎝ 
0 − 

2 𝐶 
𝑟 2 

0 
− 

2 𝐶 
𝑟 2 

0 0 
0 0 0 

⎞ ⎟ ⎟ ⎟ ⎠ . (B.4)

From the definition of the residual strain and assuming linearity be-

ween the stain and the residual strain tensors and a homogeneous,

sotropic, material yields, 

𝑟 = 

⎛ ⎜ ⎜ ⎝ 
𝛾11 𝑟 𝛾21 𝑟 0 
𝛾21 𝑟 𝛾22 𝑟 0 
0 0 𝛾33 𝑟 

⎞ ⎟ ⎟ ⎠ . (B.5)

Time derivative of (B.5) can be written as, 

̇𝑟 = 

𝜕 

𝜕𝑡 

⎛ ⎜ ⎜ ⎝ 
𝛾11 𝑟 𝛾21 𝑟 0 
𝛾21 𝑟 𝛾22 𝑟 0 
0 0 𝛾33 𝑟 

⎞ ⎟ ⎟ ⎠ + 

⎛ ⎜ ⎜ ⎝ 
−2 𝐶 𝛾21 𝑟 − 𝐶 𝛾22 𝑟 0 
− 𝐶 𝛾22 𝑟 0 0 

0 0 0 

⎞ ⎟ ⎟ ⎠ . (B.6)

Finally, the three dimensional formulation of the Eqs. (8) –(10) for

he case of the vortex flow can be written as, 
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𝜏11 0 0 
0 𝜏11 0 
0 0 𝜏33 

⎞ ⎟ ⎟ ⎠ = 𝐺 0 𝜆
⎛ ⎜ ⎜ ⎝ 
𝛾11 𝑟 𝛾21 𝑟 0 
𝛾21 𝑟 𝛾22 𝑟 0 
0 0 𝛾33 𝑟 

⎞ ⎟ ⎟ ⎠ + 𝜇

⎛ ⎜ ⎜ ⎜ ⎝ 
0 − 

2 𝐶 
𝑟 2 

0 
− 

2 𝐶 
𝑟 2 

0 0 
0 0 0 

⎞ ⎟ ⎟ ⎟ ⎠ , (B.7) 

̇ = 𝛼(1 − 𝜆) − |𝜏 ∶ 𝛾̇|𝛽𝜆, (B.8)

𝜕 

𝜕𝑡 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
𝛾11 𝑟 𝛾21 𝑟 0 
𝛾21 𝑟 𝛾22 𝑟 0 
0 0 𝛾33 𝑟 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
= 

⎛ ⎜ ⎜ ⎝ 
2 𝐶 𝛾21 𝑟 𝐶 𝛾22 𝑟 0 
𝐶 𝛾22 𝑟 0 0 
0 0 0 

⎞ ⎟ ⎟ ⎠ + 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
0 − 

2 𝐶 
𝑟 2 

0 
− 

2 𝐶 
𝑟 2 

0 0 
0 0 0 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
− 

(1 − 𝜆) 𝛼
𝜆

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
𝛾11 𝑟 𝛾21 𝑟 0 
𝛾21 𝑟 𝛾22 𝑟 0 
0 0 𝛾33 𝑟 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
. (B.9) 
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