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Abstract

Keywords: Retrofit, alternative power and energy, wind-assisted ship propulsion, bunker delivery notes, gray-
box modeling

This thesis presents a data-driven design approach for emission reduction using bunker delivery notes (BDNs)
to help support the revised IMO strategy to achieve net-zero greenhouse gas emissions by international ship-
ping close to 2050. This research supports the Horizon Europe’s Digital Twin for Green Shipping (DT4GS)
project which focuses on the development of digital twins (DTs). Part of this project involves the develop-
ment of a DT-supported method for the design and retrofit of ships. DTs are a promising approach for sup-
porting maritime decarbonization efforts due to their simulation and big data handling capability. Despite
the abundance of shipping data and growing digitalization, the potential of using ship operational data for
decarbonization efforts remains not fully exploited. A data-driven method such as a DT could fill this gap.
However, as DTs, by definition, require real-time connection between a physical entity and the digital rep-
resentation, developing a true DT for new-build alternatively fueled ship designs remains a challenge. This
research thus starts by looking into retrofitting using data from existing ships.

A design framework is proposed to construct digital models to support a DT for retrofitting purpose. The
proposed framework is tested on a case-study using a 300-meter bulk carrier. Since January 2019, opera-
tional ship data is collected through BDNs, a mandatory data collection method for ships of 5000 GT and
above, adopted by the IMO. Constructing a DT based on BDNs is considered to be convenient as it provides
a solid source of operational data in the future.

First, the available data from the BDNs is preprocessed using an adopted framework based on data sci-
ence literature. The resulting 5,678 data points are used for the construction of a model representing the bulk
carrier and a model representing the green ship technologies part. A fuel consumption model is constructed
to represent the bulk carrier. It utilizes a gray-box modeling approach, consisting of a white-box resistance
model and a black-box artificial neural network. Both models incorporate environmental-dependent inputs.
The investigated green ship technologies for the potential retrofit are represented by various wind-assisted
ship propulsion (WASP) systems, namely a towing kite, a DynaRig sail, and a Flettner rotor. These systems are
modeled using a white-box modeling approach, together with available wind data. Using an adopted inte-
gration framework, based on the propeller-engine matching procedure, both representations are combined
into one green ship digital model.

An environmental assessment is performed using the IMO’s EEXI and CII assessment tools, respectively
evaluating the design and operational aspects of the potential retrofit. Additionally, a financial assessment
is conducted using the payback period. Results showed the design implications and emissions reduction
potential of implementing such systems which will guide the retrofit decision by the ship’s owner.
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1
Introduction

1.1. IMO GHG strategy
During the United Nations Climate Change Conference near Paris in 2015, the Paris Agreement was adopted
by the 196 parties present which stated that global warming must be limited to below 2◦C (EC, 2015a). Un-
fortunately, international shipping together with international aviation were not taken into account in this
agreement. As a reaction the International Maritime Organization (IMO), the specialized maritime organiza-
tion of the UN, adopted in 2018 an initial strategy in order to reduce the greenhouse gas (GHG) emissions by
international shipping (IMO, 2018). The goal of this initial strategy is set on a reduction of GHG emissions by
50% in 2050 compared to emission levels of 2008. During their annual meeting in July 2023, the strategy was
revised to net-zero GHG goal close to 2050, addressing the IMO’s environmental ambitions (IMO, 2023a). In
order to reach the goal of the revised IMO GHG Strategy, the following checkpoints were adopted, all relative
to 2008 levels:

• a minimum of 20% reduction of the total GHG emissions for total international shipping by 2030

• minimum 5% of energy used by international shipping is produced with zero or near-zero GHG emis-
sion technologies by 2030

• a minimum of 70% reduction of the total GHG emissions for total international shipping by 2040

The shipbroker firm Simpson Spence & Young estimated that global shipping emitted approximately 833
million tonnes of CO2 in the year 2021 (Bockmann, 2022). This relates to 3.0% of CO2 emissions on a global
scale (Bockmann, 2022), which would make global shipping the world’s 6th largest CO2 emitter if it were a
country (Tiseo, 2023). Figure 1.1 visualizes the distinction of the CO2 emissions per ship type in the year
2021 operating in the European Economic Area (EEA), showing the ship types that pollute the most. It also
shows that general transport vessels, mainly covered by tankers, bulk carriers, and container ships, have a
large contribution to total international shipping (Sinay, 2022). This all emphasizes that the reduction of CO2

within the maritime transport industry, is a key factor in achieving the goal of the set GHG strategy.

1.2. The potential within shipping data
Shipping generates an extensive volume of data every minute, which includes information about the ves-
sel’s operations, like sailing speed and fuel consumption, as well as data concerning the route taken, such
as weather updates and traffic reports (Figure 1.2). Additionally, data is generated beyond the ship’s bound-
aries, including details about port fees and cargo handling times (Container XChange, 2020). Despite the
abundance of data and growing digitalization, most of it is still collected in various formats, processed man-
ually, and used on a short-term history basis, e.g., incident assessment or current routing (Marine Digital,
2020; Swider et al., 2018). Moreover, operational data that is collected during voyages is often used for only
one purpose, for example, bunker delivery notes or voyage data records that are utilized to measure the
ship’s environmental impact. Therefore, the potential of the available shipping data is not being fully uti-
lized (Mouzakitis et al., 2023). This is due to the involvement of various stakeholders, such as ship owners,
ship operators, and ports, and the complexity of modern vessel design and operation linked to the growth

1
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Figure 1.1: Total CO2 emissions in the EEA per ship type in 2021 (EC, 2023)

of global trade, increasing advanced technologies, and growing importance of environmental sustainability
(Container XChange, 2020; Mouzakitis et al., 2023; Swider et al., 2018).

To overcome this data challenge, Swider et al. (2018) suggest focusing on research and innovation linked
to the digitalization of the shipping industry and usage of shipping data. Exploring new algorithms, tools,
and platforms in the fields of artificial intelligence (AI), augmented reality (AR), virtual reality (VR), high-
performance computing, and big data analytics (BDA) can unlock possibilities for various maritime appli-
cations (Sánchez-Sotano et al., 2020; Swider et al., 2018). These include vessel traffic monitoring and man-
agement, ship and ship energy system design & operation, autonomous shipping, fleet intelligence, route
optimization, and more (Mouzakitis et al., 2023; Swider et al., 2018). While the transition towards more digi-
talization of manufacturing and engineering processes is ongoing, also known as Industry 4.0, the maritime
industry is still lagging behind in this transformation (L. Huang et al., 2022). Maritime engineering processes,
e.g., new ship & retrofit design or integrating energy-efficient technologies, are complex processes affected
by international rules, regulations, and stakeholders. Therefore, available data is not as extensively used in
maritime engineering (L. Huang et al., 2022) as it has in other engineering fields, such as aerospace (Shafto
et al., 2010) or chemistry (Montáns et al., 2019). Nevertheless, utilizing shipping data could provide beneficial
developments in the field of marine engineering, transitioning forward towards more digitalized processes
(Mouzakitis et al., 2023; Swider et al., 2018).

1.3. DT4GS project
After the Paris Agreement, the EC introduced the European Green Deal in 2021. This initiative includes a se-
ries of project proposals aimed at achieving the EU’s goal of reducing GHG emissions by at least 55% by 2030
compared to 1990 levels, with the ultimate target of achieving net-zero GHG emissions by 2050. By achiev-
ing this goal, the EC wants to become the first climate-neutral continent in the world, hence zero emission
for international shipping (EC, 2021a, 2021b). One of these projects is The Digital Twin for Green Shipping
(DT4GS1) project, funded by the European Union’s Horizon research program. The vision of this project, as
stated in the proposal, is: “To develop and demonstrate low-emission solutions for all main ship classes and
associated shipping services by 2030, in turn enabling shipping companies to implement strategies for achiev-
ing zero-emission waterborne transport by 2050".

The vision of the DT4GS project focuses on the digitalization of the maritime transport sector, especially
the development and application of Digital Twins (DT) together with the abundance of produced shipping
data. A DT is the virtual representation of a physical model where real-time data is flowing in both ways
(Mauro & Kana, 2023). This real-time data interaction between the physical and virtual model should be ca-

1https://dt4gs.eu/

https://dt4gs.eu/
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Figure 1.2: Overview of produced shipping data, based on Swider et al. (2018)

pable of evaluating and re-coordinating behavior for future decisions regarding the linked physical system.
DTs, firstly developed and used by NASA, have already proven to have a significant and positive impact on
the aerospace and automotive industry (Shafto et al., 2010; Van Os, 2018). During space missions, DTs have
been used to evaluate and predict vehicle and system conditions to estimate mission success (Shafto et al.,
2010). During the development of the Joint Strike Fighter jets, DTs are applied for the ongoing validating and
verification of hardware and software, resulting in reduced time and costs (Land, 2022). A recent DT appli-
cation in the automotive industry is the continuous and virtual digital testing of digital systems of modern
hybrid-electric vehicles (Land, 2022; Saber, 2022).

Recently, Mauro and Kana (2023) performed a critical systematic literature review on DT maritime appli-
cations, especially regarding the ship’s life cycle. This showed that DTs are scarce in the shipping industry,
indicating the potential benefits of DT application in the maritime industry in the near future. Mauro and
Kana found that a major challenge lies in determining a design methodology for new ships by applying DT-
models. Within the DT4GS project, this challenge is tackled by the collaborating companies and institutions
that investigate the feasibility and application of DTs in the optimization of green ship operations and de-
sign. Green shipping refers to the transportation of people or goods by ships while minimizing the use of
resources and energy, with the aim of safeguarding the environment against the pollutants emitted by the
ships while maintaining safe operational conditions (Container XChange, 2019). In a report published by
the International Council on Clean Transportation (ICCT), several examples of emission reduction strategies
are provided, such as shifting towards alternative fuels, ship speed reduction (slow steaming), and real-time
weather routing. Some of those strategies could also potentially be included in the design of new-build ships
or retrofit design (Wang & Hon, 2011). However, these emerging green ship technologies introduce various
new risks into ship design and operation, risks that are often overlooked. For instance, alternative fuels bring
zero-carbon, low flash point properties, posing significant safety hazards if not handled with care. Addition-
ally, the adoption of emission reduction technologies may lead to an increase in onboard chemicals. Research
by Reinhold et al. (2019) underscores these concerns. Employing DTs can aid in identifying and simulating
these safety hazards, thereby helping to mitigate risks due to their digital nature, as highlighted by Van Os
(2018).

The goal of DT4GS is to eventually accomplish zero emissions by 2050 for the ship types of the collab-
orating companies within the DT4GS project; represented by an oil tanker, a container ship, a bulk carrier,
and a ROPAX vessel. These are also the most polluting ship types as depicted in Figure 1.1. The collaborating
vessels function as so-called ‘Living Labs’ (LLs), where operational data is collected and stored for future use
throughout the project. In order to accomplish this goal, the project is divided into three phases. During the
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first phase, a method is proposed for the application of DT in the design of green ships. With the application
of a DT a CO2 emission reduction of 20% is been set as a goal during this phase. The second phase involves
the use of operational data originating from the collaborating ships, which is the input for the proposed DT,
that will drive the ship design for new-builds and retrofits of the green transport vessels. The goal of the sec-
ond phase is a minimum CO2 emission reduction of 50% by 2030. Phase three captures the final goal of the
project to have no harmful emissions by 2050. These project phases are depicted in Figure 1.3.
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Figure 1.3: DT4GS project phases (DT4GS, 2022)

1.4. Research objective and questions
This master thesis will focus on the second phase of the DT4GS project, where available operational data is
used to investigate design possibilities with regard to DT.

From the previously addressed environmental and data challenges, the following main research question
is adopted:

“To what extent can available operational ship data be used to improve future green ship design by reduc-
ing CO2 emissions?”

In order to answer the main research question, the following research questions (RQs) are specified:

Chapter 2 RQ1 What is the state-of-the-art in data-driven ship design for green ships?

Chapter 3 RQ2 Which steps are involved in constructing a DT for retrofit design?

Chapter 4 RQ3 What is the most suitable green ship digital model using bunker delivery notes for CO2 reduction?

Chapter 5 RQ4 To what extent can data from bunker delivery notes be incorporated into the selected digital models?

Chapter 6 RQ5 To what extent can the output of the digital models be integrated into one green ship DM?

Chapter 7 RQ6 To what extent does the output of the green ship DM directly impact the retrofit design?

Chapters 2 and 3 will elaborate on the steps involved with constructing a DT for retrofit purposes, together
with the current development status of such a DT. Chapter 4 presents the adopted methodology for the con-
struction of a green ship digital model. Next, Chapters 5 and 6 elaborate on the constructed models and the
adopted integration framework used to derive the resulting green ship digital model. Chapter 7 presents the
results from the performed case-study. Finally Chapters 8 and 9 provide the conclusions and discussion on
the research questions and adopted methodology including recommendations for future work.



2
Data-driven green ship design

This chapter elaborates on and aims to answer RQ1: ‘What is the state-of-the-art in data-driven ship design
for green ships?’

In order to sufficiently investigate RQ1, firstly, the process of ship design in general is discussed, includ-
ing the different stages within the design process and distinctive design methods. The design methods are
examined with regard to green shipping and their ability to data use. Also, retrofit design is discussed com-
pared with the general design process. Secondly, common green ship technologies identified in ship design
literature are addressed. These technologies are explored in relation to their incorporation into both new-
build designs and retrofit projects, with a particular emphasis on their compatibility with data-driven ship
design approaches. Finally, the study investigates the current status and applications of Digital Twins (DTs),
a data-driven method, in the design process for both new-build vessels and retrofits. This exploration aims
to identify any existing literature gaps that this thesis seeks to address.

2.1. General ship design
The design process of a ship is an iterative process that typically consists of several stages aimed at ensur-
ing the vessel meets the required specifications, performance criteria, and safety standards provided by the
shipowner. While the exact distinction may vary depending on ship type and shipyard, in general, the design
stages are divided as follows (Ni & Zeng, 2019):

• Concept & preliminary design (basic design)

• Contract design

• Detail design

These stages (Figure 2.1) generally hold for the design of a new-build vessel. The process of retrofit design
slightly differs, especially within the concept & preliminary design (Carl Fredrik, 2018). First, the general
stages of new-build designs are discussed, followed by the retrofit design.

Concept design
Preliminary 

design
Contract 
design

Detail design

Basic design

Figure 2.1: Ship design process in general (Ni & Zeng, 2019)
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Concept & preliminary design
The design process begins with defining the purpose and requirements of the ship. This includes determining
its intended use, cargo & passenger capacity, ship speed, range, and any other specific operational consid-
erations. The defined requirements are then translated to design characteristics which will drive the first
concept designs. A concept exploration is conducted for these concept designs through a feasibility study,
and is characterized by innovation as it necessitates the pursuit of the most cost-effective solution while also
considering whether the client’s requirements can be fulfilled or not (Ni & Zeng, 2019; Papanikolaou, 2002).

There is no hard line between the concept design and the preliminary design as both stages are inter-
twined with each other, often simultaneously referred to as the basic design (Ni & Zeng, 2019). The prelimi-
nary design is the more refined version of one or two feasible concept designs including the first versions of
the major technical documentation, e.g., lines plan, general arrangement plan, and list of main equipment.
During this stage, the preliminary design is presented to the client for review and feedback. This feedback
is essential in refining the design and incorporating any necessary modifications or adjustments based on
the client’s preferences, operational requirements, or budget constraints. The final preliminary design meets
regulatory standards and will form the basis of the contract design.

When considering the application of green ship (GS) systems, those decisions are made during this stage
(basic design), as power and emission characteristics of the ship become evident and the right GS-equipment
can be chosen (Shi et al., 2018). Nowacki (2010) discusses the influence of digitalization and computer-aided
design (CAD) on ship design and states that the use of computers influences mostly the concept design stage.
By using digital applications and processes, multiple design variations are considered and evaluated faster
and more efficiently.

As this thesis investigates the implementation of GS systems in ship design, it will focus on the concept &
preliminary design stage (red-dashed box in Figure 2.1), where the decisions with regard to those systems are
made.

Contract design
The contract design stage of shipbuilding involves the development and finalization of the contractual agree-
ment between the shipowner and the shipyard. This stage focuses on capturing all the technical, commercial,
and legal aspects of the shipbuilding project, ensuring that both parties are in agreement and have a clear un-
derstanding of their rights, obligations, and expectations (Ni & Zeng, 2019). The precise description of the hull
form is determined, together with the final general arrangement, weight & center of gravity estimation, and
calculations regarding the hydrodynamic performance.

Detail design
The detail design is the final stage within the ship design process where the final contract design is further
refined and translated into detailed engineering drawings, specifications, and instructions that serve as the
blueprint for the shipyard. The detail design and start of ship production in the shipyard are often simulta-
neously developed as a concurrent engineering process, where the production engineering plays an essential
role in impacting the production schedule and integrating the most recent technologies (Elvekrok, 1997; D.
Huang, 2013).

2.2. Retrofitting
Retrofitting involves enhancing a vessel and its onboard systems to extend its operational life while meet-
ing current and upcoming energy and emission standards, thereby transforming it into a greener vessel (EC,
2015b). Retrofitting is often performed as a cost-effective procedure linked to the development of new tech-
nology and the degradation of onboard equipment in need of replacement, ultimately lowering the opera-
tional costs of a vessel (Chirica et al., 2019). Because a retrofit design involves the improvement of an already
existing vessel, consequently the design stages and decisions slightly differ from those of a new-build vessel
(Carl Fredrik, 2018). The feasibility study of the possible retrofit throughout the concept & preliminary de-
signs becomes more important due to existing structures and available space (Chirica et al., 2019). Technical
drawings will only include the newly implemented equipment and the systems that will be affected by the
retrofit. However, these affected systems can be of a major scale in the case of the retrofit design impacting a
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large part of the ship. The contract and detail design stages mostly follow the procedure as that of a new-build
vessel, with their focus on only the retrofit and affected systems instead of the whole ship (Carl Fredrik, 2018;
Chirica et al., 2019).

Given the fact that the concept & preliminary design stage is most important within a retrofit design, this
design stage (red-dashed box in Figure 2.1) will also be referred to when addressing retrofitting or retrofit
design further on in this thesis.

2.3. Ship design methods
When designing a ship, various methods can be applied which all embrace their own philosophy. Tradition-
ally the design process can be described as the design spiral introduced by Evans (1959), involving continuous
iterations of the ship design. But throughout the years more methods were adopted, each with their own pros
and cons. Several design methods with potential to green shipping are briefly discussed including their main
philosophy and data-driven capability.

Ship design spiral
The ship design spiral, developed by Evans (1959), describes the iterative process of ship design over multiple
stages. As depicted in Figure 2.2, it involves a cyclic approach of continuous evaluation starting with the
concept design phase. By going further toward the spiral center, computations become more detailed, driving
the level of design refinement. The focus lies on refining the adopted design from the initial phase, resulting
in a single solution by the final detailed design phase. This approach underlines a point-based, solution-
driven methodology, encouraging multiple teams to specialize in distinct design aspects and utilize various
design tools. These teams continuously iterate over time by evaluating the current design at that stage. Due to
the fact that ship design has become more complex over time, the data produced and used during the design
also increased in complexity (Mosedale, 2020). Because of the continuous evaluation within the design spiral,
the time of the evaluation increases with more data. Therefore, the ship design spiral is not considered an
efficient method when dealing with (big) data (Radosavljevic, 2022).
Philosophy: iterative, point-based, solution-driven, continuous evaluation

Figure 2.2: Ship design spiral (Evans, 1959)

Set-based design
Set-based ship design is an approach that emphasizes exploring and evaluating a broad range of design al-
ternatives concurrently in separate design spaces or sets, rather than prematurely converging on a single
solution (Singer et al., 2009). In the final stage of the design, designers systematically analyze and compare
the different design alternatives by identifying similarities. Ultimately converging to one final design through
trade-offs between the competing alternatives. The different design sets, mainly large data sets generated
during the conceptual design stage, are convenient to be analyzed with data-driven methods, such as AI
(Fitzgerald & Ross, 2019).
Philosophy: iterative, multiple design spaces, parallel exploration, trade-off analysis
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Holistic design
Holistic ship design is an approach that considers the ship as a whole, taking into account various intercon-
nected factors and their interdependencies. It uses an optimization algorithm where the main particulars
and load cases of the ship are known, and through exploration diverges towards design solutions (Papaniko-
laou, 2010). The holistic design approach can effectively be enhanced through data-driven techniques by
improving the optimization algorithms and predictive modeling (Kondratenko et al., 2023; Nikolopoulos &
Boulougouris, 2020).
Philosophy: ship as one product, optimization through algorithm, fixed main particulars

Design building block
The ship design building block (DBB) method is an approach that breaks down the ship design process into
individual building blocks or modules supported by CAD, allowing for a systematic and flexible approach to
ship design. It involves developing and integrating pre-defined modules that represent various ship com-
ponents, systems, and functionalities (Andrews, 2006). Due to the CAD-basis within DBB, Andrews (2006)
indicates the potential big data handling capabilities of the DBB approach when acceptable ict facilities are
available and the (pre)processing is performed carefully.
Philosophy: modular, CAD, ship is a combination of subsystems, iterative over system blocks

Model-based systems engineering
Model-based systems engineering (MBSE) is an approach within systems engineering (SE) that employs mod-
els as a central tool for conducting SE processes, e.g., representing, analyzing, and designing complex systems
(Shevchenko, 2020). It is an alternative to traditional document-based systems engineering (DBSE), where di-
agrams and textual documents are used to describe system requirements, design, and architecture (Tepper,
2011). Both MBSE and DBSE follow the philosophy SE where the total (complex) system is decomposed into
smaller sub-systems and processes (Van Bruinessen et al., 2014). Papanikolaou (2014) showed by decompos-
ing a ship into interdependent subsystems and processes, optimal performance and efficiency requirements
can be achieved. With the model-centric approach, multiple design teams with different disciplines can work
within the same model which is capable of handling the different data and integrating data-driven techniques
(Estefan et al., 2007; Kooij, 2022; Tepper, 2011). MBSE does not represent a design method itself but has an
assisting role within the design process by performing design exploration supporting data-driven techniques
(Maimun et al., 2019).

Digital twin supported design
A representative MBSE approach is the use of a digital twin (DT), which fulfills a supporting role throughout
the design process. W. Li (2023) concluded that a DT-based design method is the most suitable approach re-
garding green ship design, due to its capability of life-cycle evaluation and larger capability of tackling design
challenges introduced by GS design, compared to the various examined design methods. When a DT is used
during the ship design process, it allows ship designers to analyze and optimize the ship’s design based on
operational simulations performed with the DT (Arrichiello & Gualeni, 2020; Lo et al., 2021).

A DT is not solely used for supporting the ship design, but can also exist throughout the ship’s lifetime as
a data-driven support system, performing complex simulations, and providing future operational decisions
based on those simulations (Erikstad, 2017; Lo et al., 2021; Tao et al., 2018; Zhang et al., 2022). As briefly
mentioned earlier in Chapter 1, a DT is a virtual product representing a physical product including a real-
time data flow between both products. A simple schematic representation of a DT is depicted in Figure 2.3.
Chapter 2 will elaborate furthermore on the description and construction of a DT itself.

A DT-based design is not a design method itself, but an enhancement of other ship design methods by
applying a MBSE approach. Nikolopoulos and Boulougouris (2020) and Mouzakitis et al. (2023) have sug-
gested the integration of a DT with a holistic design approach. As Nikolopoulos & Boulougouris presented a
conceptual DT-framework, they were only able to illustrate the potential of this framework by demonstrat-
ing a reduction of the ship’s operational costs (OPEX) and emissions rate (EEOI) during their first results.
Bucci et al. (2021) presented that their newly adopted design methodology, where a DT is combined with a
system-based approach in the early-stage of ship design (basic design), will accelerate the assessment and
evaluations during that stage, and hence, speed up the design process itself.
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Figure 2.3: Schematic representation of a digital twin based on definition by Grieves (2014)

Nevertheless, a paradox emerges when incorporating the design of a new-build ship with the true def-
inition of a DT, stated by Kritzinger et al. (2018). The authors emphasize that a true DT has a real-time,
automated data flow between the physical product and the virtual product. In the case of a new-build ship,
a physical ship does not yet exist, hence no real-time data is available. Therefore, the virtual product can not
be labeled as a true DT. In the case of retrofit design, a true DT can exist as there is a physical ship present,
and possibly collecting data using installed sensors. The question that arises here is to what extent the virtual
model supports the new-build design and up to what level of detail the virtual product represents the new
design. Unfortunately, no literature currently elaborates on this. During a discussion on this problem with
a consortium within the DT4GS project, they shared their vision that a DT should grow and develop paral-
lel with the design of a new vessel. The level of detail of the virtual representation is equal to the design of
the vessel at that moment. This enables the possibility of performing simulations and evaluating the design
concept in the early-stage of ship design at the same level of accuracy as those concept designs. When the
new-build design further increases in the level of detail (e.g., transitions to the next design stage), the virtual
representation also increases in the level of detail together with its simulation capabilities and associated ac-
curacy.

In conclusion, a DT-supported design is selected for this research. Due to the integration of operational
data, a DT has the ability to perform simulations to be used to evaluate green ship design technologies. This
is also in line with the research conducted by (W. Li, 2023), where DT-supported design is identified as the
most suitable approach with regard to green ship design together with its capability of handling big data.

2.4. Green ship design
This section discusses relevant innovations linked to the design of green ships found in recent literature.
Green shipping (GS), refers to the safe marine transportation of people and goods while aiming to protect
the environment against pollutants from ships by means of minimizing energy usage and reducing harm-
ful emissions (Container XChange, 2019). With environmental regulations in place, innovations that reduce
harmful emissions become more essential for the design of future green ships. The green ship technologies
discussed in this context are classified based on the general categorization outlined by de Kat and Mouawad
(2019):

• Hull form optimization

• Power & propulsion system

• Alternative fuels

• Renewable energy

• Air lubrication

This thesis focuses on the design of green ships, other aspects, such as GS operations (Sherbaz & Duan,
2012a), ship recycling (Sunaryo & Pahalatua, 2015), and adaptation of GS practices by shipping firms (Lai
et al., 2011) are left out of consideration. First, an overview of the environmental regulations adopted by
the IMO linked to the assessment of GS is provided. Following this, the aforementioned green ship design
technologies will be examined in terms of their potential for implementation in both new-build projects and
retrofits, as well as their capabilities in leveraging data-driven approaches.
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2.4.1. IMO’s environmental measurement tools
During the annual meetings of IMO’s Marine Environment Protection Committee (MEPC), environmental
regulations are proposed and adopted in order to improve the energy efficiency of global marine traffic and
reduce their GHG emissions. Within these regulations, environmental measurement tools are proposed to
quantify these GHG emissions and evaluate the ship’s energy efficiency, for both new-builds and existing
ships. These tools compare the environmental impact on society with the benefits to society, respectively in
terms of CO2 emissions and transport work. The following measurement tools will be discussed in the next
sections: EEDI, EEXI, CII, and EEOI.

EEDI (IMO, 2022b)
The Energy Efficiency Design Index (EEDI) is a mandatory regulatory measure that applies to new-build ships
engaged in international voyages. The primary objective of EEDI is to promote the use of energy-efficient
technologies and designs for the construction of new vessels. The EEDI sets specific energy efficiency tar-
gets that vary based on the type and size of the ship, considering factors such as deadweight tonnage (DW T )
and ship type. The index is calculated based on the amount of CO2 emitted per unit of transport work, typ-
ically measured in grams of CO2 per metric tonne per nautical mile (mt-nm). The EEDI of new-build ships
must meet or exceed the required EEDI to be considered compliant with the regulations (Equation 2.1). The
required EEDI is represented by reference lines, depending on the ship type, DW T , and a reduction factor
based on the aforementioned characteristics and the year of build. The EEDI measurement is a one-time
certificate addressing the technical state of the vessel and does not apply to icebreakers and ships with non-
conventional propulsion. A simplified version of the attained EEDI formula is provided below (Equation 2.2).

EED Iat t ai ned ≤ EED Ir equi r ed (2.1)

EED Iat t ai ned = Design CO2 emissions

Design transport work
= Peng i ne · s f c ·C f

DW T ·Vs
(2.2)

Herein the product of the total engine power (Peng i ne ), the total specific fuel consumption (s f c), and the
conversion factor from fuel to CO2 emissions (C f ) is divided by the product of the DW T and ship’s design
speed (Vs ).

EEXI (IMO, 2022b)
The Energy Efficiency Existing Ship Index (EEXI) is a regulation focusing on existing vessels above 400 gross
tonnage (GT), unlike the EEDI which applies to new ships. The purpose of EEXI is to assess and improve
the energy efficiency of existing ships by setting certain carbon intensity limits. The same formula is used to
determine the EEXI of a ship as for the EEDI (Equation Ref. 2.2), together with the same complaint require-
ment (Equation 2.2). To obtain the required EEXI a reduction factor (X ) based on the ship type and carrying
capacity (DW T ) is used together with the EEDI-reference line (Equation 2.4). Existing ships are required to
undergo an assessment of their energy efficiency and demonstrate compliance with the adopted EEXI lim-
its. Ships that fall short of meeting the required standards will need to implement energy-saving measures
or technologies to achieve compliance, e.g., retrofitting. As with the EEDI, the EEXI is a one-time technical
certificate of the vessel. Existing ships that are excluded from the EEXI measurement are icebreakers, FPSOs,
and drillships.

EE X Iat t ai ned = EED Iat t ai ned = Design CO2 emissions

Design transport work
= Peng i ne · s f c ·C f

DW T ·Vs
(Ref. 2.2)

EE X Iat t ai ned ≤ EE X Ir equi r ed (2.3)

EE X Ir equi r ed = (1− X

100
) ·EED Ir e f ,l i ne (2.4)

CII (IMO, 2022a)
The Carbon Intensity Indicator (CII) is the newest regulation introduced by the IMO in November 2020. It
is part of the IMO’s efforts to further reduce greenhouse gas emissions from international shipping. The CII
is designed to be a complementary measure to the existing EEDI and EEXI regulations. The CII measures
the ship’s annual operational carbon intensity, which is represented by the amount of CO2 emitted per unit
of transport work. It takes into account the actual operational efficiency of the ship, including factors such
as the ship’s design, engine power, speed, and cargo carried. The CII is calculated as a value in grams of
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CO2 emitted per mt-nm. Unlike EEDI and EEXI, the CII applies to both new and existing ships. Shipowners
and operators are encouraged to reduce their vessels’ carbon intensity by adopting more energy-efficient
practices, improving operational procedures, and implementing technological upgrades. The attained CII
of a ship is calculated annually with the fuel consumption and distance traveled over that year (Equation
2.5). The required CII (Equation 2.6) comprises ship type-dependent parameters (C I Ir e f , a, c), vessel carry
capacity (DW T ) and an annual reduction factor (Z ).

C I Iat t ai ned = Operational annual CO2 emissions

Operational annual transport work
=

FC1year ·C fCO2

DW T ·D1year
(2.5)

C I Ir equi r ed =C I Ir e f · (
100−Z

100
) = a ·DW T −c (2.6)

C I I = C I Iat t ai ned

C I Ir equi r ed
(2.7)

The CII is calculated by dividing the attained CII of a vessel by the required CII (Equation 2.7). The CII is
then assigned a ranking label from among the five grades (A, B, C, D, or E) depending on the ship’s carrying
capacity and the current year (Figure 2.4). Grade C represents the value of the required CII. In case the vessel
has a D rating for three consecutive years or an E rating for one year, the ship owner is obliged to take measures
to improve the energy efficiency of the ship for the coming year.

Figure 2.4: CII rating grades (IMO, 2022a)

EEOI (IMO, 2009)
The Energy Efficiency Operational Indicator (EEOI) is a measurement tool equal to the attained CII (Equation
2.5). Instead of assessing the yearly environmental impact, the fuel consumption and distance traveled over
a specific distance are measured, often one voyage. The EEOI serves as a ship’s performance indicator for the
ship owner per voyage, to be used voluntarily. The calculation for the EEOI is provided in Equation 2.8.

EEOI = Operational CO2 emissions

Operational transport work
=

FC ·C fCO2

mcar g o ·D
(2.8)

The choice of which measurement tool(s) will be used, will be made later on as first the research gap needs
to be identified. This will indicate which tools will be applicable to this research. The aforementioned green
ship technologies will be discussed in the next sections.

2.4.2. Hull form optimization
When a ship is sailing through water, it experiences resistance. The hull of the ship experiences the most
resistance as being submerged most of the time, compared to the other parts (e.g. superstructure). This hull
resistance can be divided into three main components: viscous, wave-making, and air resistance (Bateman,
2019). This resistance division is depicted in Figure 2.5. The viscous resistance is composed of frictional
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losses due to the interaction between the water and the ship’s hull and is therefore a function of the total wet-
ted surface area, surface roughness, and viscosity (Bateman, 2019). When sailing at low speeds, the viscous
resistance is the dominant component, accounting for between 50% up to 80% of the total hull resistance
(Toossi, 2013). This is the case for transport vessels in general which sail at relatively low speeds (Agarwal,
2019). De Kat and Mouawad (2019) state that by optimizing the hull form of the vessel energy efficiency can
be achieved which decreases the energy consumption and lowers the ship’s emissions. Although energy sav-
ings devices (ESDs) and hull coating also influence the interaction between the water and the ship’s hull, only
optimizing the hull form is examined here. Hull coating is not considered in this thesis, however, ESDs will
be discussed separately. Within hull optimization, de Kat and Mouawad (2019) provide a distinction between
three major options for the vessel’s owner to decide:

1. Accept a standard, readily available hull form and propulsion system offered by the shipyard.

2. Modify an existing and preferably well-optimized hull form to address the expected operating profile.

3. Develop a new hull form design based on the expected operational profile.

Figure 2.5: Components of hull resistance as a function of ship speed (Bateman, 2019)

The first option offers cost savings in vessel construction by adopting a shipyard’s parametric design. Im-
proving the ship’s fuel consumption efficiency is already been done for more than a century (Endresen et al.,
2007), resulting in standard hull designs that are well-optimized for common design conditions. Off-design
conditions are often not covered in these hull shapes due to significant changes in the hydrodynamic capabil-
ities of a vessels with varying ship speed, trim, and drafts (Perera & Mo, 2016). Demo et al. (2021) presented in
their research a data-driven framework using machine-learning algorithms for the hull shape optimization
of a standardized post-panamax container ship. By successfully applying Gaussian process regression as a
model order reduction technique, a 1.2% total resistance coefficient reduction was obtained with respect to
the original hull form.

Option 2 allows for design optimization based on specific service conditions, including expected operat-
ing draft, different trim conditions and various speeds. This option mostly involves alterations in the forebody
of the ship and propeller area (Brenner et al., 2013; de Kat & Mouawad, 2019). M. Kim and Park (2015) have
applied option 2 on an ultra large container ship (new-build) with constant dimensional parameters and var-
ious speeds with promising results. By investigating various bulbous bow configurations a reduction in hull
resistance up to 2% was found. Kim and Park used throughout the iterative optimization process, CFD cal-
culations for verification and validation, which is common practice with hull form optimization (Gao et al.,
2016; H. Kim & Yang, 2010; Peri et al., 2001). In the work of Wei et al. (2023) a machine-learning based model
is used for the optimization of a Wigley hull, a well-known hull form with good seakeeping qualities and fuel
efficiency widely used for experimental studies (Matsui, 2022).

The third option enables the optimization of main ship dimensions in combination with the propeller and
power plant choices linked to the operational profile of the respective ship. Hochkirch et al. (2013) applied
this third option on a large container ship (new-build) by optimizing for the operational profile together with
parametric hull design. Out of CFD validation of various configurations they found a potential reduction in
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fuel consumption of 3.7%. W. Sun et al. (2022) proposed a framework including the use of AI to generate the
hull shape for a bulk carrier with a defined operational profile. With research still ongoing, the first results
show that this framework could successfully generate a prototype hull and is able to optimize the hull form
further on with given constraints.

Even though it is not commonly performed, the main dimensions of a ship’s hull can also be altered for
efficiency and environmental gains when applying hull optimization (Hochberg, 2020). As this involves the
modification of an already existing ship’s particular (e.g., length, breadth, depth), it is labeled as a retrofit
operation (Hochberg, 2020; Moore, 2018; Nissen, 1989; Schuler, 2015). The cruise ship ’Song of Norway’
was cut in half in order to lengthen the ship for mainly economical benefits (Hochberg, 2020). Two cruise
ferries built by the Italian yard Grimaldi underwent retrofitting for both financial and environmental reasons
(Moore, 2018). The ferries were lengthened to accommodate more vehicles & passengers and to be able
to install multi mega Watt battery systems for green ship operations during port visits. Both a Canadian
icebreaker vessel (Nissen, 1989) and a container ship (Schuler, 2015) were lengthened and widened to create
space for new equipment and increase the ship’s lifetime. However, since these retrofit operations require
model basin tests and new sea trials, no publications are found directly linked to examples of data-driven
methods used for retrofit hull form optimization.

2.4.3. Power & propulsion system
The power and propulsion system of a vessel represent the second main aspect of green shipping (Tadros
et al., 2023). Figure 2.6 presents the typical power losses in the propulsion system of a ship. It shows that
on average the engine has a 40% power output (net energy engine), and after accounting for the propeller
losses, only 24% of the initial power is generated into net thrust considering marine fuel oil (Bateman, 2019).
This indicates a potential for green power and propulsion designs to improve power efficiency by addressing
areas such as optimizing engine performance to reduce losses and enhancing propeller design together with
the combined hydrodamic coupling with the rudder, to maximize net thrust generation (Tadros et al., 2023;
Voermans & Cales, 2020).

Figure 2.6: Typical energy losses in shipboard propulsion system (Bateman, 2019)

Research into green ship technologies with regard to the ship’s power system have increased over the last
decade (Tadros et al., 2023). By improved 1D (e.g., considering one system’s characteristic over time) and 3D
modeling software, new engines have successfully been developed by optimizing individual parts of an en-
gine and achieving a reduction of exhaust emissions (Tadros et al., 2023). Also various engine techniques have
enjoyed improvements in their performance and applicability, such as turbocharging reducing the power-to-
size ratio of an engine (Tadros et al., 2015; Woodyard, 2009), fuel injection timing reducing harmful emissions
(Cong et al., 2022; X. Sun et al., 2022), exhaust gas recirculation improving fuel consumption efficiency and
achieving economical benefits (Zhao et al., 2021), and dual-fuel engines capable of supporting alternative
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fuels achieving lower exhaust emissions (Benvenuto et al., 2017; S. Park et al., 2017; Wu et al., 2023). Such im-
provements regarding the power system can successful be applied to new-build vessels, whereas in the new
ship design the improved power system can be taken into account relatively easy (Tadros et al., 2023). In the
case of existing vessels, spatial constraints become more critical since modifications to the power system can
be more complex (Tadros et al., 2023). Nevertheless, if it deems to be feasible, existing vessels can also enjoy
such improvements (Tadros et al., 2023).

One method applicable for new-build and retrofit design is installing a waste heat recovery system (WHRS).
A WHRS is a technology designed to capture and utilize the excess heat generated during the ship’s oper-
ation, which would otherwise be wasted, and convert it into useful energy (Baldi & Gabrielii, 2015; de Kat
& Mouawad, 2019). Ships, especially large ones like cargo vessels and naval vessels, produce a significant
amount of heat as a byproduct of their engines and other onboard systems. WHRS helps improve the overall
energy efficiency of the ship and reduce fuel consumption, leading to cost savings and environmental bene-
fits (Baldi & Gabrielii, 2015; Tadros et al., 2023). In the work of Baldi and Gabrielii (2015) a method is proposed
to estimate the potential of installing a WHRS to be used within the early stages of (retrofit) ship design. By
making use of data collected from onboard measurements with their performed case-study of a chemical
tanker, Baldi and Gabrielii (2015) found achievable fuel savings from 4% to 16% together with a payback time
of 5 years.

Within the propulsion system, the propeller is a crucial component as it propels the vessel by converting
the engine power into thrust. Propeller choice, and therefor propeller design, is making the delicate trade-off
between propulsion efficiency and cavitation behaviour (Vesting et al., 2016). A propeller of a general trans-
port vessel has an efficiency between 50% and 60% (MAN, 2018), and suffer from power losses around 15%
of the total engine power input (Figure 2.6). The total propeller loss can be categorised into an axial loss,
a frictional loss and a rotational loss which all represent energy losses (Breslin & Andersen, 1994). In order
to reduce power consumption and energy losses in the propulsion train, four main strategies are adopted in
general: optimizing hull form, optimizing propeller, optimizing rudder for given propeller and applying ESDs
(Voermans & Cales, 2020).

Optimizing the hull form, which improves the water flow towards the propeller, is already discussed in
the previous section. By optimizing the propeller design, a reduction of axial and rotational losses can be
achieved (Voermans & Cales, 2020). Examples of this are applying contracted loaded propeller tip design
(Leaper et al., 2014) or designing for multiple operational conditions (Tadros et al., 2021). Those optimiza-
tions are performed in general with numerical methods based on CFD (Gaggero et al., 2022) or empirical
models based on the Wageningen B-series (Leifsson et al., 2008). However, with the increment of applying
machine learning for SE (Patzer, 2021), methods such as artificial neural networks (ANNs) (Rudzki & Tarelko,
2016) and Gaussian optimization processes (Gaggero et al., 2022) begin to demonstrate their time reduc-
tion advantages within design optimization. Besides the propeller itself, also the rudder design for a given
propeller can be improved. By recovering the energy in the wake of the propeller by a rudder optimized in
rudder profile and type, a reduction in fuel consumption between 2% and 8% can be achieved (Hochkirch &
Bertram, 2010; J. Liu & Hekkenberg, 2017). Both the propeller and rudder are relatively easy accessible when
a ship is taken out of service and placed in a dry-dock, in the case of retrofitting (Aronietis et al., 2014; de Kat
& Mouawad, 2019).

As where the three propulsion optimizing strategies are mostly applied for new-build ship designs, ESDs
are largely applied as retrofitted structures (Voermans & Cales, 2020). An ESD is a piece of equipment that
can be attached to the hull, propulsion system, rudder or stern, which reduces the fuel consumption of the
vessel at a given sailing speed and draught by improving the water-hull (e.g. fluid-structure) interaction and
recovering energy losses (Sherbaz & Duan, 2012b; Voermans & Cales, 2020). Mewis and Deichmann (2013)
found a 3.8% power reduction by retrofitting large container vessel with a Mewis duct (Figure 2.7). In the
research of Spinelli et al. (2022), various ESD retrofit applications on the stern of bulk carriers, tankers and
general cargo ships are investigated. Spinelli et al. found a potential energy saving rate ranging between 2%
and 14% (depending on ESD type) during both model tests and sea trials. Prins et al. (2016) focused their
research on the early performance assessment of ESDs, taking into account the installation processes in a
shipyard. The authors found the beneficial feasibility of installing ESDs with regard to retrofitting, due to
relatively high ROI and installation convenience when the ship is in dry-dock.
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and experience of the earlier Becker Mewis Duct
® 

(MD) which was introduced in 2008. The MD is only suited 

for slower-speed full-form vessels such as tankers and bulk carriers. Since its introduction the MD has experi-

enced extraordinary success. At the time of publication (September 2013), over 600 MDs have been ordered, of 

which over 300 have been delivered and are in service. 

 

The Becker Twisted Fin
®
 is a device for the reduction of the rotational losses in the slipstream of the propeller 

and for improving the propeller inflow for faster ships, such as Container Vessels and all vessels faster than 18 

kts. The BTF is positioned forward of the propeller and consists of two components: 

 

- A duct for improving the propeller inflow and reducing the vibrations of the fins 

- A set (4 to 6) of inner and outer fins, twisted and asymmetrically positioned for producing pre-swirl 

 

Fig. 1 shows a drawing of a typical BTF for a large Container Vessel. The BTF is connected (welded) to the 

ship’s hull through 6 inner fins. The BTF has no movable parts. 

 

Each Becker Twisted Fin
®
 is individually designed according to hull geometry, propeller design and engine data. 

The optimisation is done by using the newest Computational Fluid Dynamics (CFD) methods, which is further 

improved with the now extensive experience collected from the design and optimisation of over 100 Mewis 

Ducts
®
. Model tests are subsequently used to prove the required power reduction and the cavitation behaviour. 

 

  
 

Figure 1.   Becker Twisted Fin
®
 designed for a large container vessel 

 
The first installation of a Becker Twisted Fin

®
 at full scale was performed for a 7090 TEU Container Vessel 

owned by the Hamburg Süd in December 2012. At present BTFs have been retrofitted to 7 of these vessels and 

eventually all 10 ships will be equipped with the device. 

 

The model tests at HSVA showed a 3.8% power reduction at 19kts with no observed cavitation problems. The 

installation for the seven ships to date was done at Damen Shipyard Rotterdam with a minimum installation time 

of 3 days. Figure 2 shows the completed Becker Twisted Fin
® 

installation on the vessel “Santa Theresa”. 

 

 
 

Figure 2.   Becker Twisted Fin
®
, first installation on a 7090 TEU Container Vessel, Hamburg Süd 

 
The vessels already equipped with the BTF have now been in service for nine months.  The first measurements 

and observations show a high correlation to the model test results; the power reduction is on average 3.5% and 

Figure 2.7: Mewis duct installation on 7090 TEU container vessel (Mewis & Deichmann, 2013)

2.4.4. Alternative fuels
Switching from conventional fuels (e.g., MDO or HFO) to alternative fuels (e.g., ammonia or methanol) is a
highly effective strategy for reducing GHG emissions (Atilhan et al., 2021). Alternative fuels contain lower car-
bon concentrations than HFO, and therefor produce less pollutant emissions than HFO (Gilbert et al., 2018).
However, alternative fuels have a lower power density (figure 2.8) and substantial chemical differ compared to
current marine fossil fuels (Foretich et al., 2021). This poses engineering challenges regarding onboard ship
infrastructure, including the transition to alternative engine types (Feng et al., 2022), and introduces risks
associated with storage facilities (Boulland, 2021).

Biofuels have a relatively high energy density and would be good candidates as an alternative fuel because
they are compatible with several existing marine diesel engines (H. Kim et al., 2020; Noor et al., 2018), making
it a feasible candidate regarding retrofitting (Kesieme et al., 2019). However, the manufacturing of biofuels
comes with a higher cost compared to traditional fossil fuels, accelerates soil degradation more rapidly, even-
tually competing with the production of food (H. Kim et al., 2020).

LNG and LPG have as advantage of having generally low fuel costs and can potentially achieve a CO2 re-
duction of up to 26% due to the low carbon quantities (H. Kim et al., 2020). The lower fuel costs indicate
economic benefits, but the required LNG and LPG infrastructure (e.g., storage facilities) result in a trade-off
in terms of payback time regarding retrofitting investments (Wang, 2014). Ritari et al. (2023) found in their re-
cent research that the economic benefit for the ship owner can be increased up to 40% when the ship’s power
and energy system is modified together with the switch to alternative fuels during retrofitting.

When considering hydrogen as an alternative fuel, current research indicates its potential to be with new-
builds due to existing engine infrastructures (Atilhan et al., 2021). Even though when hydrogen is combined
with fuel cell technology, the ship can reach a fuel reduction up to 60% (H. Kim et al., 2020), the higher price
and complex facilities compared to HFO make it less feasible for retrofitting (Atilhan et al., 2021; H. Kim et al.,
2020).

2.4.5. Renewable energy
One obvious strategy regarding green shipping is the use of renewable energy. In the shipping industry, the
use of renewable energy is concentrated towards wind power, due to its history with shipping and availability
at sea (de Kat & Mouawad, 2019). Nevertheless, the potential of using wave and solar power for shipping are
also extensively being investigated (de Kat & Mouawad, 2019; B. Li et al., 2023; Pan et al., 2021; Rutkowski,
2016). Wind, wave, and solar power are all dependent on environmental conditions and do not produce the
amount of power for to be used as main propulsion power, therefore to be labeled as auxiliary power sources
for a ship (de Kat & Mouawad, 2019).

Wind-assisted ship propulsion (WASP1) systems have proven to achieve significant power reductions un-
der favorable wind conditions: Thies and Ringsberg (2023) achieved a reduction between 10% en 14% by
applying a Flettner rotor during the retrofitting of a ROPAX vessel, providing new-build design parameters

1Various designations are used throughout literature for wind propulsion systems, in this research ‘WASP’ will be adopted
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Figure 2.8: Energy density of maritime fuels in 2020, by fuel type (Statista, 2021)

for future ships with this WASP system. Lindstad et al. (2022) investigated the influence using a WASP con-
figuration on the hull form and achieved through a case study with a bulk carrier design a 40% emission
reduction by applying 5 Flettner rotors together with a slender hull form. Besides Flettner rotors, other WASP
systems such as towing kites, hard sails, and (rigid-)wing sails also show promising results by means of power
reduction (Bentin et al., 2018; Chou et al., 2021; Reche-Vilanova et al., 2021). Examples of these systems are
depicted in Figure 2.9.

(a) Flettner rotor (Reche-Vilanova et al., 2021) (b) Towing kite (Bentin et al., 2018)

(c) Rigid-wing sail (Reche-Vilanova et al., 2021) (d) DynaRig sail (Reche-Vilanova et al., 2021)

Figure 2.9: Four distinctive types of WASP systems

For the feasibility study of retrofitting a towing kite to an oil tanker, Antai and Williams (2021) used wind
data collected from wind reports along the sailing route of their performed case-study. Antain and Williams
found a theoretical fuel saving of up to 40% in favorable wind conditions, and validated this by actually in-
stalling the towing kite through retrofitting. This is in line with the research of Naaijen et al. (2006), who
estimated a theoretical fuel saving up to 50% for slow sailing transport ships (i.e. tanker vessels and bulk
carriers). The same modeling with wind data can also be performed in order to evaluate other WASP tech-
nologies (Lu & Ringsberg, 2020; Pan et al., 2021). In the work of Lu and Ringsberg (2020) a wing sail, a DynaRig
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(hard sail), and a Flettner rotor are evaluated for an tanker by using available wind data related to the area of
interest. Besides the feasibility case study, Lu and Ringsberg also showed the ability of performing a paramet-
ric study for these WASP systems in order to find the most optimal dimensions of these systems. The resulting
fuel savings ranged from 5.6% to 8.9%.

Due to the fact that solar power has a relatively high capital costs and requires significant surface area to
be of use for larger transport vessels (de Kat & Mouawad, 2019; Pan et al., 2021), it is left out of examination
here. Wave energy conversion is also not on a suitable level to be implemented into industry, with research
still going on (B. Li et al., 2023; Pan et al., 2021).

2.4.6. Air lubrication
Another method to achieve a reduction of friction resistance of the hull is by air lubrication. An air lubrica-
tion system (ALS) installed onboard of a ship lowers the contact area of the hull with the water, reducing the
generated friction between hull and water (An et al., 2022). A schematic overview of an ALS is depicted in
Figure 2.10.

Figure 2.10: Schematic overview of an air lubrication system (gCaptain, 2012)

Fitzpatrick et al. (2017) investigated the applicability of an ALS considering the retrofits of an LNG carrier
and heavy cargo carrier. Through first experimental model tests and later also sea trials and operational voy-
ages of full-scale vessels, Fitzpatrick et al. (2017) achieved a 4.0% and 8.8% net power reduction for the LNG
carrier and cargo carrier respectively. Due to high costs and low ROI regarding installing a complex system
such as an ALS in an already existing ship, the ALS is considered to be more feasible for new-build ships (Fitz-
patrick et al., 2017; Pavlov et al., 2020).

The data-driven applications within ALS are at this moment only found in the development of numerical
assessment of an ALS (Giernalczyk & Kaminski, 2021; Kawakita et al., 2015). Giernalczyk and Kaminski (2021)
used collected operational data of a chemical tanker with an installed ALS to address the benefits of such a
system in terms of improved EEDI value. Nevertheless, Giernalczyk and Kaminski also found an increase in
operational costs and high investment costs. Kawakita et al. (2015) proposed a CFD-based prediction tech-
nology for an ALS that utilizes operational data of ships with such a system installed to increase the simulation
accuracy. Kawatika et al. address the challenges of simulation air bubbles together with the hydrodynamic ef-
fects on the respective vessel and emphasize the verification possibilities by using more extensive operational
data.

2.4.7. Retrofit applicability green ship techniques
This section summarizes the applicability of the previously addressed green ship technologies with regard to
ship design. When designing a new-build ship the design constraints are in general guided by economical
perspective and customer requirements, and not by spatial constraints (Ni & Zeng, 2019). Spatial constraints
become more important for retrofit design, as the existing ship forms the foundation for the new design.
Therefore, this section exclusively focuses on assessing the feasibility of green ship techniques with regard to
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retrofitting. By assessing these techniques at a high level, a first evaluation is provided regarding the identifi-
cation of possible green ship techniques for retrofit design purposes.

Optimizing the hull form involves alterations of a ship’s main dimensions, aiming to reduce the viscous
resistance of a vessel. As large alterations are linked to structural changes it is mostly applied for new-build
ships were it is often impossible to apply on existing vessels. Even though examples can be found regarding
retrofitting, it is not considered in this research. Retrofitting power systems might involve upgrading en-
gines, adding hybrid or electric propulsion systems, or integrating waste heat recovery systems. Feasibility
depends on the ship’s layout and compatibility with new technologies. Propeller retrofitting is feasible and
can be effective in improving propulsion efficiency. When a ship is in dry-dock, the propeller is relatively
easily accessible to be replaced. As the propeller selection is linked with the ship’s hull form and power sys-
tem, all interconnecting dependent parts need to be compliant with possible changes linked to the propeller.
Installing ESDs can often be applied when the ship’s structure tolerates modifications involved with ESD in-
stallation. As is the case with propeller retrofitting, the ESD installation is relatively easily performed when
dry-docked.

Switching to alternative fuels, such as transitioning from conventional fossil fuels to LNG or biofuels,
might require modifications to the fuel system. Feasibility depends on infrastructure and cost considera-
tions. Retrofitting WASP systems like sails or rotors is feasible, though it might involve adding new structures
to the ship’s superstructure as the installation is spatially dependent. Also, because the generated propulsion
power of WASP systems is weather-dependent, the transport route of the sailing ship needs to be examined
in terms of available wind. The installation of an ALS involves complex operations, such as adding air release
mechanisms and air guidance structures. Since installing an ALS is also involved with relatively high costs, it
is not considered in this research. Table 2.1 gives a brief overview of the aforementioned reasoning of energy
efficient techniques regarding retrofit feasibility.

Table 2.1: Applicability green ship design techniques regarding a retrofit design

Green ship design techniques Retrofit Remarks

Hull form optimization Too complex and often impossible
Power system Feasible if within spatial constraints
Propeller optimization Feasible if compliant with hull form and installed engine
ESDs High ROI, easy to apply if within tolerable dimensions
Alternative fuels Dependent on onboard infrastructure
WASP Spatially and route-dependent
Air lubrication High costs, low ROI, complex installation

At first sight, applying propeller optimization and ESD installation is deemed to be the most favorable op-
tions regarding retrofitting. This high-level applicability analysis is mainly focused on spatial feasibility and
level of complexity. Nevertheless, when considering the potential energy efficiency, applying such techniques
will not result in the desired CO2 reduction. Thus adopting combinations of multiple green ship technologies
will be inevitable.

2.5. Current maritime DTs for design
In this section, the current status of DTs in the maritime sector is examined. A recently performed systematic
literature review (SLR) is used as a guideline for investigation (Mauro & Kana, 2023). Mauro & Kana observed
that research into maritime DT technology is now in a growth stage where at this point scientific publications
are increasing exponentially including examples of DT application. This trend is also visible in the literature
review performed by Tao et al. (2019) on DT technology in the overall engineering sector.

Mauro and Kana (2023) made a content classification in their SLR regarding the different phases through-
out the total life-cycle of a ship, providing a clear visualization of publications of DT application over the last
years as depicted in Figure 2.11. They found out of the 58 selected articles, most DT research focuses on the
operational phase of a vessel, where the design and retirement phase experience a delay in the development
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of DT application and is considered to currently be in the formation and incubation stages of DT research
(Tao et al., 2019).
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Figure 2.11: Division filtered papers from SLR per ship’s life-cycle phase, by Mauro and Kana (2023)

The authors suggested that investigating design methodologies of new-build ships using DT technology is
a logical direction for future research into this topic. This is also in line with the addressed potential benefits
of applying DTs in the design and production process of new ships (Mouzakitis et al., 2023; Van Os, 2018).
Van Os (2018) also discusses the implementation of a DT in the product life-cycle management of a ship,
achieving a higher correct maintenance prediction rate and supporting future upgrades and conversions of
the respective ship, hence retrofitting. As investigated by Hirdaris and Cheng (2012), the development of
novel design methodologies, especially with the current digitalization of the marine industry, plays a key role
in the development of green vessels. Hirdaris and Cheng state that the focus should be kept on the research
and development of assessment tools for these new design methodologies, together with the complex on-
board systems of ships. A DT can fulfill the role of such a newly applied technique in the design of green ships
and simultaneously support the research of DT application in ship design.

Nevertheless, Mauro and Kana (2023) investigated publications up to August 2022, thus an additional lit-
erature investigation is conducted to retrieve and investigate recent publications to be of interest. For this
additional investigation, the search engines Google Scholar and Web of Science are used. With alterations
needed depending on the engine, the following search query was used:

“(marine OR maritime OR ship OR vessel) AND digital AND twin AND (design OR constructing OR con-
struction OR model OR modeling OR modelling)”

This resulted, after filtering for ship design-related references, in three additional papers up to September
2023: one covering a proposed DT-design framework for a new-build vessel (Zhang et al., 2022), and two
frameworks with regard to existing ships and ship virtual infrastructure (Mouzakitis et al., 2023; Xiao et al.,
2022). The findings from both the SLR and additional literature search will be discussed in the next sections.

2.5.1. New-builds
As this thesis focuses on the ship’s design phase, and especially the concept & preliminary design, it is im-
portant to have clear nomenclature between the literature regarding the ship’s life-cycle phases and design
phases. Table 2.2 shows which distinctive designs addressed in Section 2.1 correspond to the design and
production phase adopted by Mauro and Kana (2023).

Table 2.2: Division of ship design and life-cycle phases

Ship design phases SLR ship life-cycle phases
(Ni & Zeng, 2019) (Mauro & Kana, 2023)

concept design
preliminary design design phase

contract design
detailed design production phase
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The SLR only found 1 publication of a detailed maritime DT application, including a framework for its
integration (Sapkota et al., 2021). Unfortunately, this article is not linked to the design of a whole ship but to
a subsystem, namely the ship’s structural integrity.

The remaining articles concern mostly subsystems of a vessel and relate to conceptional applications
or only provide a general description of such an application (Arrichiello & Gualeni, 2020; Nikolopoulos &
Boulougouris, 2020; Pérez Fernández, 2021; Stachowski & Kjeilen, 2017). Erikstad (2017) has also identified
this trend of subsystem DT application but indicated the potential of getting closer to achieving a DT of a
complete ship when such subsystem DTs are merged together. Nevertheless, with the search for recent pub-
lications, one article was identified that proposes a vertical-horizontal design idea incorporating the use of
a DT for the total life-cycle of a ship, including the design phase (Xiao et al., 2022). Herein a comprehen-
sive description of this design idea is provided including the construction and integration of the proposed
DT. The life-cycle phases from design to operation are examined throughout a performed case study. Even
though it provides promising conclusions, it is still a theoretical framework with in-depth research still being
conducted as mentioned by the authors.

In conclusion, the literature search for recent publications and previously performed SLR shows 7 exam-
ples regarding DT application in the design of new-build vessels. However, they are still in the conceptual
stage or cover only a subsystem of the total vessel considered. Since the research into DTs for maritime appli-
cation is in the growth stage, as identified by Tao et al. (2019), it is expected the number of publications will
increase in the near future. Nevertheless, with no concrete available publications on new-build vessels by
DTs, a potential research gap is identified. By making use of already conducted research on DT subsystems
and merge them together, a possible method of a DT design method for new-build vessels can be adopted.

2.5.2. Retrofits
Even though it is not performed for every ship and therefore not considered as a general life-cyle phase,
retrofitting is common to perform when aiming to reduce emissions or to improve the onboard systems, es-
pecially with the increasing digitalization linked to Industry 4.0 (RINA, 2020; Wilkins, 2016). When analysing
a ship’s life-cycle, Mauro and Kana (2023) suggest to incorporate retrofitting into the retire phase of a ship.
The authors identified only one DT article related to the this phase (Kamath et al., 2019). This can be ex-
plained by the fact that the retire phase is the last stage of a ship’s life-cycle and subsequently will also be the
last stage to be fully investigated with regard to DTs. By incorporating retrofitting, which has as its goal to
increase the total life-time of a ship with due regard to the ROI, an increment of research for this phase could
be accomplished throughout the coming years (Mauro & Kana, 2023). Nevertheless, when searching publi-
cations regarding ship retrofitting and DT application, no articles are available at this point. This indicates a
potential research gap.

After the retrofit of a vessel is successfully completed, the ship returns to service. Therefore, it is suggested
to review the available DT research regarding the implementation of a DT during the operational phase of a
ship which focuses on the total vessel or multiple subsystems simultaneously, not a single subsystem. With
knowledge from the actual ship operating, improvements could be identified which in turn can result in de-
sign decisions for a possible retrofit.

Zhang et al. (2022) propose the construction of a DT for an already existing research vessel, ‘Gunnerus’.
Although the project is still ongoing, the article provides a comprehensive DT architecture including the data-
driven DBB method using the Open Simulation Platform2, an open-source simulation platform which is pub-
licly available. Even though here a unique vessel is being considered, the authors’ aim is to provide a stan-
dardized DT concept for the maritime industry.

Another recently published article regarding a DT framework is linked to the EU-funded project ‘VesselAI’
(Mouzakitis et al., 2023). Mouzakitis et al. address the importance of using high performance computing
together with big data analytics in order to develop and therefore contribute to high-level digital products for
the maritime industry, i.e. DTs. The article presents a novel holistic DT framework that makes use of digi-
tal technologies linked to Industry 4.0, such as Deep learning algorithms (DLAs), AI, and big data together

2https://opensimulationplatform.com/

https://opensimulationplatform.com/
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with their potentials (Papanikolaou, 2019). The DT architecture includes a proposed data integration into the
existing unified system within the ‘VesselAI’ project. The project is now in the phase where the initial tasks
and requirements are completed and further technical requirements are finalized together with validation
through four case studies.

As a conclusion, the literature search showed no available publications linked directly to DT application
for ship retrofitting. It is suggested to incorporate retrofitting into the retire phase of a ship, in order to boost
the research regarding this life-time phase. Nevertheless, this indicates a research gap. In order to fill this gap
it is proposed to examine research done on DTs in the operational phase which will provide sufficient infor-
mation on design decisions linked to retrofitting. Ultimately, a retrofit is performed with a goal of extending
the life-time of the vessel. With ship data acquired during the operational phase of the respective vessel and
processed by a DT, design decisions for this retrofit can be derived throughout the DT. Two articles are iden-
tified which both present a conceptual framework to integrate DTs with an existing ship (Zhang et al., 2022)
or virtual system (Mouzakitis et al., 2023).

2.5.3. Summary & research gap
In the previous sections, the current status of DTs for new-build and retrofit ships is discussed. In litera-
ture reviews previously conducted, it has been noticed that research into (maritime) DT application finds
itself in the growth stage whereas the number of publications is now rapidly growing. This resulted in, at
this point, mostly articles containing conceptual DT applications that focus on parts of a ship instead of the
total ship itself. Only two available publications are found that address a DT theoretical framework consid-
ering new-build methods, and of which only one is associated with the design of the whole ship (Xiao et al.,
2022). This article discusses a DT framework proposing the use of a vertical-horizontal design method of a
new-build regarding the total ship throughout all its life-cycle phases (Xiao et al., 2022). This framework, part
of an EU-funded project, is still under development, with promising expectations. Nevertheless, no articles
are available regarding concrete applications of DTs linked to new-build design methods, only for theoretical
and conceptual cases.

Concerning DT application for retrofit methods, no publications are available directly linked to DTs and
retrofitting, indicating a potential literature gap. With the fact maritime DT application is still heavily being
researched, it is logical to assume publications regarding retrofitting will become available in the future. It
is suggested to examine research of DTs in the operational phase to support information regarding a possi-
ble retrofit, given the fact retrofitting is being performed to extend the life-time (e.g., operational phase) of a
ship. Two recent articles are found, providing a conceptual DT framework to integrate with existing systems
(Mouzakitis et al., 2023; Zhang et al., 2022).

Concluding, for both new-build designs and retrofit designs a literature gap is identified regarding the
application of DTs. It is chosen to investigate the DT retrofit design for this thesis. As operational data is avail-
able from the LLs of the DT4GS project, green ship design decisions based on this data can be investigated
to be applied to the vessel respectively. Moreover, this thesis argues for a DT design framework that requires
starting with a DT retrofit design, resulting in a DT-enabled design for new-build ships. This overall design
framework will be discussed in Section 9.5. The choice for DT retrofit investigation automatically results in
the use of the EEXI as an environmental measurement tool assessing the ship design. Besides the EEXI, the
CII will also be taken into account since it is mandatory for vessels and involves the continuous assessment of
the vessel’s operations. Nevertheless, the EEXI will function as the main assessment tool throughout further
research as it addresses the technical state of the vessel.

2.6. Conclusion on current data-driven green ship design
This chapter has elaborated on the design process of new-build ships and retrofits and their current data-
driven status, aiming to answer RQ1: ‘What is the state-of-the-art in data-driven ship design for green ships?’

As this thesis is investigating green ship design, the focus within the design process lies on the concept
& preliminary design stage, often also referred to as the basic design. During this stage, the design choices
regarding green ship technologies are made. Traditionally the philosophy of the design spiral (Evans, 1959)
is applied when designing a ship, but with digitalization and the abundance of shipping data, the use of
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document-centric designs (DBSE) shifts towards the use of more computer-based models to support the de-
sign (MBSE). Green ship design refers to the goal of designing environmentally friendly ships while main-
taining safe operational conditions. The design of green ships introduces new risks in terms of safety and
logistics, compared to traditional ship design. Therefore, newly developed design techniques are required to
mitigate these potential risks. A DT-supported design is identified as a favorable approach regarding green
ship design, due to its capabilities of handling big data and performing complex simulations. These capabili-
ties have the potential to mitigate the newly introduced risks within green ship design. DT-supported design
is selected as the design method to be used and investigated further in this research.

With regard to green ship design, the environmental assessment tools adopted by the IMO are presented.
Within these tools a distinction can be made between design and operational assessment, respectively EEDI
& EEXI and CII & EEOI. Where the EEDI is mandatory for new-build vessels and the EEXI for most existing
vessels. Several technologies regarding green ship design are discussed in terms of their data-driven capa-
bilities. As the design of a new-build ship is in general guided by economical constraints, and less spatially
dependent, a high-level analysis of these technologies is presented with regard to their retrofitting feasibility.
This resulted in propeller optimization and installing ESDs being the most favorable options to be applied
when retrofitting due to their relatively low installation complexity and high ROI.

When examining the current state-of-the-art of DTs for maritime design, the literature showed that sci-
entific research into maritime DT applications is still in the early stages of development but rapidly growing.
Regarding the design of new-build ships, publications only cover conceptual DTs or consider a subsystem of
the ship, not the total ship. Furthermore, no available publications are found regarding DTs for retrofit de-
sign. Even though this is logical due to the fact maritime DT research is in the early stages of development.
A research gap is identified for the DT application of both new-build design considering the total ship and
retrofitting in general. This thesis investigates the development of a DT supporting green ship design for
retrofitting purposes, because of the availability of operational data through the DT4GS project. As this data
is collected on existing ships, the possible retrofit design decisions can be investigated for the respective ship.

With the state-of-the-art of maritime DTs discussed together with the design method and techniques of
green ships, the theory and steps behind constructing a DT for ship design will be discussed in the next chap-
ter.
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Digital twin modeling

This chapter focuses on the construction of a DT model by addressing the different aspects involved in this
process. By providing these different facets, RQ2 can be answered: ‘Which steps are involved in constructing
a DT for retrofit design?’

Before going in-depth into the construction of a retrofit-related DT, a more thorough definition of a DT is
provided.

3.1. Definition digital twin
In 2002, Grieves first publicly introduced the concept of a DT during the Society of Manufacturing Engineers
conference as a physical product with a virtual counterpart which contains information on the physical part
regarding its life-cycle management (Grieves, 2019). Later in a follow-up paper, he expands on this definition
in the following way; a total DT model is composed of three main parts (Grieves, 2014):

1. A physical product in the real environment composed of information of itself

2. A virtual product in a virtual environment representing the physical product

3. And a data connection between these two products actively flowing in both ways as so-called mirroring
or twinning

The function of this bi-directional data connection is to process the information from the physical prod-
uct, update the virtual product, assess the current state, predict the future state, and provide further instruc-
tions for the physical product, all in an automated way.

Because of the fact DT modeling is still an extensively researched topic, and rather new in the engineering
world as discovered by recent literature reviews on the topic (Jones et al., 2020; M. Liu et al., 2021; Mauro
& Kana, 2023), the term ‘Digital Twin’ is not used correctly throughout literature. Often virtual/computer
models are falsely labeled as a DT. In order to correct for this error in nomenclature, Kritzinger et al. (2018)
distinct three different types of models:

• A Digital Model (DM) which is the virtual representation of the physical product, but without any form
of exchange of automated data between both. Data exchange could occur but only be performed man-
ually. The DM is mostly used for simulation and planning-based operations which does not require
automatic data integration.

• A Digital Shadow (DS) which is an extended version of a DM including only an automated data flow
from the physical product towards the virtual product by which it is actively updated.

• And lastly a Digital Twin (DT) is, as previously mentioned, composed of a physical and virtual product
including an automated data flow between both entities.

23
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Throughout the rest of this thesis, the previously addressed definitions by Kritzinger et al. (2018) will be
used, and where a ship will fulfill the role of the product. A schematic representation of the three definitions
is presented in Figure 3.1.
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Figure 3.1: Schematic representation of a digital model (a), digital shadow (b) and digital twin (c), by Kritzinger et al. (2018)

3.2. Objective & feasibility of the DT
The objective of a DT determines the composition and modeling process of the DT (Giering & Dyck, 2021).
As addressed in the conclusion of Chapter 2, the function of the DT will be to support the design process of
green ships for retrofitting purposes. The objective of the DT is to generate output that will drive design de-
cisions integrating energy-efficient technologies to lower CO2 emissions. Consequently, the output of the DT
will be linked to the emission determination and prediction of the physical vessel in order to provide infor-
mation for these design decisions. As the fuel consumption of a ship is directly linked to its emissions, a fuel
consumption model is an exemplary representation of a ship’s emission prediction (Fan et al., 2022). Thus,
the DT objective will indicate which virtual models are required for the DT (green circle Figure 3.2).

The DT output is based on performing simulations, using available operational data. The composition of
the virtual part of the DT depends on this data, as this will determine the feasibility of modeling certain parts
within the DT, and thus drives the modeling process (Giering & Dyck, 2021). By investigating the available
data, the virtual models that are feasible to construct are identified (red circle in Figure 3.2).

Finally, the overlap between the required models (derived from the DT objective) and the feasible models
(derived from the available data) will provide the models to be selected for the final DT (Figure 3.2).
After establishing the DT’s objective and the model selection process, the modeling phase commences. The

Figure 3.2: Selection process of digital models for DT

next sections will outline and discuss the general steps involved in this modeling process, as follows:

1. Set-up the data acquisition

2. Establish a preprocessing framework

3. Choose modeling approaches for the virtual models
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4. Perform model training in case of statistical-based models

5. Verify and validate (V&V) the virtual models

6. Integrate the virtual part with the physical part

3.3. Data collection & acquisition
In order to acquire the data for the DT, a data acquisition system needs to be established. The data acquisition
system will collect the information required to model the DT, and therefore function as the collector for the
bi-directional data connection. This data collection can be done through various methods.

In the case of a ship, the data acquisition can be done by using onboard sensors together with the Internet
of Things (IoT) (Chen et al., 2018). The IoT enables this data retrieval through the sensors as seen as a totally
connected network of numerous different sensors. This (wireless) network is then linked with the integrated
automation and monitoring system of the ship where the data is stored. The operational data is later on de-
livered to monitoring centers ashore where it can be analyzed and used for further operations. Traditionally
operational data is provided with a noon report. Often manually prepared by the chief engineer on a ship,
a noon report contains the average ship performance features on a daily basis, consisting of one data point
representing the respective day (Anish, 2021).

With the increase of data handling capability and collection through the IoT, the use of high-frequency
(HF) data reports become more common which contain values of ship performance on a minute-scale (Abbas
et al., 2022). During the MEPC in 2016, the IMO adopted the Data Collection System (DCS) for the ship’s fuel
oil consumption. Since 1 January 2019, the DCS has been mandatory for ships of 5000 GT and above, which
are required to collect consumption data for each type of fuel oil they use. Besides fuel consumption data,
also voyage and environmental data are collected as specified by the IMO. The IMO’s DCS typically includes
(IMO, 2023b):

• Bunker delivery notes (BDNs)

• Voyage data records

• Electronic record books

• Fuel flow meters

• Emission control systems

• Hourly fuel oil consumption data

• Traveled distance

The IMO utilizes this information to establish further environmental measures in order to reduce GHG
emissions from ships (IMO, 2023b). Constructing the DT-models based on data collected with IMO’s DCS
guidelines would be convenient for the future as the DCS is mandatory for most ships. With this solid and
standardized data source, the reliability of the DT is increased throughout the ship’s life-time with this con-
tinuous data abundance. Following the definition in Section 3.1, for a DT this data flow needs to exist in an
automated way.

3.4. Data preprocessing
With the operational data accessible, it needs to be preprocessed in order to be of use as input for the virtual
model(s). Depending on the input format of the constructed DT, the data undergoes certain preprocessing
steps, such as data cleaning and normalization. García et al. (2016) discuss key data preprocessing techniques
in the field of computer science, consequently related to DT modeling. An overview of these techniques is
depicted in Figure 3.3.

There is no one-truth preprocessing order for these techniques. A preprocessing framework depends on
the chosen modeling approach, and consequently on the type of data. By establishing an effective frame-
work, redundancies are reduced regarding all connected features within the DT (Autiosalo et al., 2019).

With regard to ship operations, Zwart (2020) has adopted a framework based on the techniques by García
et al. (2016) for ship’s trim optimization. This proposed framework is used with a gray-box modeling approach
(GBM) to estimate fuel consumption during sailing. In this framework (Figure 3.4), the sequential order pre-
processing steps are established based on the quality and format of the available data (noon-reports), and
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Figure 3.3: Data preprocessing techniques by García et al. (2016)

the intermediate outputs within this framework.

Figure 3.4: Data preprocessing framework for GBM by Zwart (2020), based on García et al. (2016)

In the work of W. Li (2023), a preprocessing framework is proposed for DT supported design process of
green transport vessels. As with the framework of Zwart (2020), this framework is also based on García et
al. (2016). Although it is part of a proposed design framework regarding DT for green transport vessels, and
therefore is not been validated yet, it provides a basis for DT-supported ship design. This proposed framework
is depicted in Figure 3.5.

3.5. Modeling approaches
When the virtual models are selected, the modeling approach can be determined. This section will elabo-
rate on three different modeling approaches adopted in standard data-science literature, namely: black-box
modeling, white-box modeling, and gray-box modeling (Ehmer & Khan, 2012).

Black-box models
A black-box model (BBM) is a digital model purely based on statistical techniques in order to find relation-
ships between a set of empirical input data and a set of desired output data (Ehmer & Khan, 2012). No prior
knowledge is required of how the system works or any physical relevance regarding the considered system.
The emphasis is entirely on the relationship between the input and output. Examples of applied techniques
are various regressions methods and ANNs (Mjalli et al., 2007). Hu et al. (2019) investigated the feasibility of
modeling a ship’s fuel consumption with environmental data using a BBM. BBMs have proven to achieve a
high level of accuracy due to their ability to identify complex patterns between the provided data sets (Yasar &
Wigmore, 2023). Hu et al. (2019) demonstrated that both a backpropagation neural network (BPNN) method
and a Gaussian process regression (GPR) are capable of predicting fuel consumption within acceptable accu-
racy. On the other hand, BBMs have shown that they require a significant amount of high-quality data and
lack poor extrapolation properties, hence predicting inaccurate off-design conditions (Pedersen & Larsen,
2009). When data scarcity is a fact, a pure BBM will not be the preferred choice (Parkes et al., 2018).
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Figure 3.5: Data preprocessing framework of DT for new-build ship design by W. Li (2023), based on García et al. (2016)

White-box models
A white-box model (WBM) is the exact opposite of a BBM. Instead of using statistics, it is constructed based
on physical principals, a theoretically derived set of equations, and experimentally derived data (Ehmer &
Khan, 2012). By means of this derivation, the WBM achieves comprehensive levels of fidelity within the de-
fined space but increases the level of complexity of the total model (Zwart, 2020). The main idea of the white
box modeling for ship performance evaluation can be summarized as follows; the ship’s total resistance is
divided into components like still-water resistance and added resistance due to wind, waves, shallow water,
and maneuvering (Haranen et al., 2016). An established ship performance model can consequently be used
for evaluating the respective ship and investigating potential gains through retrofitting. Fan et al. (2020) es-
tablished a WBM based on the ship resistance regression method by Holtrop and Mennen (1982) to predict
the fuel consumption of a bulk carrier with an average accuracy of 93.54%. Even though a WBM approach
provides insight into the correlation between the various parameters (Mauro & Kana, 2023), it also increases
the complexity of the model as these internal parameters are closely connected and easily affected, resulting
in errors (Fan et al., 2022; Haranen et al., 2016). A simple representation of a BBM and a WBM is depicted in
Figure 3.6.
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Figure 3.6: Schematic representation of a BBM and a WBM (Ehmer & Khan, 2012)

Gray-box models
A combination of a BBM and WBM is the gray-box model (GBM), aiming to achieve the advantages of both
model types. A GBM consists of the analytically and experimental driven methods of a WBM to achieve phys-
ical accuracy, together with the statistical techniques of a BBM to identify patterns and eventually lower the
computational time (Ehmer & Khan, 2012; Fan et al., 2022). As mentioned in Section 3.4, Zwart (2020) de-
veloped a GBM for trim optimization of a sailing ship to predict fuel consumption, using operational data
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from noon reports. By using a GBM approach, Zwart was able to take into account dynamic factors related
to environmental conditions. Even though GBMs offer promising benefits, for example, they require fewer
data than BBMs and have a lower level of complexity than a WBM, it also has some disadvantages. GBMs
have limited transparency due to the fact a part of the model is still related to a BBM and have a lower overall
accuracy than WBMs (Zwart, 2020). But if these limitations are acceptable for its application, then the GBM
is a good candidate.

A GBM can be constructed in two ways: by combining the BBM and the WBM either in parallel or in
series. Leifsson et al. (2008) used a GBM to predict the fuel consumption of an ocean-going cargo vessel.
Also, the difference between using a parallel or serial-coupled BBM-WBM was investigated. As Leifsson et al.
(2008) found a higher accuracy by the GBM than using a BBM and better extrapolation capabilities than a
WBM, there was no major difference between the parallel and serial gray-box modeling approach. Figure 3.7
illustrates the possible composition of a GBM coupled parallel and in series.
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Figure 3.7: Parallel and serial coupled gray-box model (Leifsson et al., 2008)

Summarizing, the modeling approach will depend on the objective of the DT, available data, and accept-
able accuracy range. With each modeling type having its own advantages and disadvantages, a trade-off has
to be made to determine the modeling approach.

3.6. Model training
After the data is preprocessed it is applicable to the virtual model. Through training, the model is calibrated in
order to achieve acceptable accuracy. For model training, which is required for a BBM and the black-box part
within the GBM, several options are possible. By using machine learning algorithms, and especially DLAs,
the model is able to learn from the provided data and predict future states. DLAs are a preferred choice for
data-driven models together with an abundance of data (Brunton & Kutz, 2022; Dairi et al., 2019). Several
DLAs, used for computer modeling with known maritime applications are discussed further on.

Within deep learning, ANNs are commonly been used, and especially with gray-box modeling for mar-
itime applications (Duan et al., 2023; Parkes et al., 2018; Pedersen & Larsen, 2009; Skulstad et al., 2023; Yoo
& Kim, 2023; Zwart, 2020). ANNs are inspired by the structure and functioning of the human brain. They are
computational models composed of multiple layers of interconnected nodes, called artificial neurons, that
work together to process and learn from input data. ANNs have the ability to recognize complex patterns in
order to make predictions (Tibco, 2023). A neuron receives at least one input value, applies weights to the
input, and passes the weighted sum through an activation function to produce an output. The first layer in
an ANN is the input layer, receiving the initial data. The last layer is the output layer, which produces the final
output. In between are so-called hidden layers, which perform intermediate computations. In Figure 3.8 a
basic layout of an ANN is presented.

The training process consists of providing the network with a selected training dataset with known input
and output values. The network adjusts the weights of its neurons through an iterative process called back-
propagation. This training process aims to minimize the difference between the predicted outputs and the
true outputs, enabling the network to generalize and make accurate predictions on newly provided data (Y.-S.
Park & Lek, 2016). ANNs have been successfully applied by Pedersen and Larsen (2009) in order to predict the
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Figure 3.8: Basic layout of an ANN (Tibco, 2023)

ship speed and propulsion power of container vessels. Parkes et al. (2018) have proposed and successfully
demonstrated a prediction method for the shaft power of large transport vessels, achieving a high accuracy
by using ANNs.

Another training method is by applying a combination of Gaussian processes (GPs) together with ANNs.
A GP is defined by a prior normal distribution over mathematical functions, allowing to derive the most likely
functions that fit the observed data (Natsume, 2021). These functions follow the predicted output variables
from the input data of the model. The combination of ANN with GP aims to address the limitations of tradi-
tional deep learning models by providing uncertainty estimates and handling small data sets more effectively
(Natsume, 2021). Petersen et al. (2012) presented a comparison between applying ANNs and GPs for model
training in order to predict the ship propulsion efficiency, discussing the draw-backs of GPs regarding their
poor scaling abilities and the advantage of recognizing and quantifying the uncertainty within the applicable
model.

Research done by Coraddu et al. (2019) made use of Extreme Learning Machines (ELMs) for investigating
and predicting the ship’s speed loss due to fouling effects. ELMs are similar to ANNs but apply feedforward
neural networks. The feedforward training process consists of randomly assigning the weights between the
input and typically one hidden layer, instead of applying the iterative, backward propagated process of an
ANN (Tissera & McDonnell, 2016). By this arbitrary assignment and direct computation of output, the com-
putational and training speed of the model is faster for an ELM than for an ANN. However, due to the lower
complexity of ELMs with a single hidden layer, the generalization performance is lower than that of an ANN.
Complex datasets with high dimensionality, and thus complex patterns, prefer ANNs over ELMs.

In summary, deep learning algorithms like ANNs have proven effective, as seen in applications like ship
speed and propulsion power prediction by researchers such as Parkes et al. (2018) and Pedersen and Larsen
(2009). Additionally, combining GPs with ANNs offers valuable uncertainty estimates and better handling of
smaller datasets, as highlighted in the work of Petersen et al. (2012). On the other hand, ELMs present a faster
computation alternative, but their simplicity may limit their performance on complex, high-dimensional
datasets. Selecting the most suitable modeling method should be guided by the specific requirements and
characteristics of the maritime application at hand, ensuring optimal performance and decision-making sup-
port.

3.7. Model verification & validation
When the chosen models are constructed, and trained in the case of a BBM or GBM, they need to be verified
and validated. The verification and validation processes are critical to ensure the accuracy and reliability of
the chosen modeling approaches.

Verification involves assessing whether the outputs of the constructed models align with the available
data (Tao et al., 2018). It serves as a quality check to confirm that the models faithfully represent the under-
lying systems they aim to emulate. Additionally, the training phase, for especially BBMs and GBMs, plays a
vital role in their initial validation, where the models are evaluated using dedicated testing datasets that were
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not used during the training phase to ensure their effectiveness (Ehmer & Khan, 2012; Haranen et al., 2016).

In contrast, the validation process goes beyond mere consistency with data and focuses on evaluating
whether the models produce the desired output, as determined by the initial objective (Ehmer & Khan, 2012;
Tadros et al., 2023). For BBMs and GBMs, this assessment occurs after training and may involve comparing
the model outputs with real-world data (Haranen et al., 2016). Meanwhile, WBM validation involves evaluat-
ing the internal components of the model against onboard ship data (Haranen et al., 2016).

Furthermore, a case-study approach can be employed during both validation and verification, wherein
the model’s outputs are compared to predefined objectives to ensure they meet the intended goals (Sapkota
et al., 2021). This comprehensive verification and validation process is essential for the successful integration
of models into the DT for retrofit design, ensuring the DT provides accurate insights and supports informed
decision-making.

3.8. Virtual - physical integration
After the models have been verified and validated, they can be integrated into the DT infrastructure. Follow-
ing the aforementioned DT definition by Grieves (2014), the output of the virtual models needs to be sent in
an automated way to the physical ship.

When a DT is constructed for ship operational purposes, the output will be related to monitoring and
predicting of performance and maintenance (Mauro & Kana, 2023). Also, virtual tests can be performed by
the DT to safely investigate off-design conditions for possible future situations (Mauro & Kana, 2023). As it is
related to the physical vessel, this output can directly be received and used by the respective vessel.

In the case of a DT for retrofit design purposes, the output will relate to recommendations regarding de-
sign decisions. This has no value to be sent directly to the vessel as it will not result in instant retrofitting. It
is considered that the output of the models will drive the retrofit design, and after the retrofit is successfully
been performed, the virtual models will represent the modified vessel. Thus, after the retrofitting the virtual-
physical integration can take place. With the integration completed, the DT is established and can be used
for operational purposes, such as performance monitoring.

Figure 3.9 shows a schematic representation of the transition towards a DT for retrofitting. The previously
mentioned integration step is performed at the end and can occur simultaneously with the completion of the
retrofit (step V). The final retrofit DT originates from a digital model which represents the ship (step I), and
which is further investigated for possible retrofit options (step II). The chosen retrofit design (step III) will
then be used for the actual retrofitting of the respective vessel (step IV).

3.9. Summary of DT construction for retrofit design
This chapter elaborated on the modeling process of a DT for marine design purposes, aiming to answer RQ2:
‘Which steps are involved in constructing a DT for retrofit design?’

Computer models are often falsely labeled as DT. In order to correct for this error a clear definition of a
DT is established, namely the combination of a physical and virtual product connected through a two-way
automated data flow. The steps involved in constructing a DT are identified as:

1. Determining the DT objective

2. Set-up the data acquisition

3. Establish a preprocessing framework

4. Choose modeling approaches for the virtual models

5. Perform model training in case of statistical-based models

6. Verify and validate (V&V) the virtual models

7. Integrate the virtual part with the physical part
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Figure 3.9: The development of the digital twin for retrofitting, based on the adopted DT definition

The previously mentioned steps are all linked with each other through dependency of the available data and,
consequently choices made during the modeling process are based on the data.

By formulating the DT objective, the virtual models can be identified which are required to assess the DT.
These required models have to comply with the models that are feasible to construct. The feasible models are
dependent on the available data, as the data indicates the modeling possibilities.

The data acquisition system determines the availability and quality of the data being used for the DT.
From January 2019, the IMO established their DCS which is mandatory for most ships. Constructing a DT
based on IMO’s DCS is considered to be convenient as it provides a solid source of operational data in the
future, especially taking into account the life-cycle evaluation capabilities of a DT.

It is essential to establish an effective data preprocessing framework when operational data is available.
After preprocessing, the data is suitable as input for the chosen models. Prepossessing steps involve tech-
niques, such as data cleaning, normalization, and noise identification. Depending on the collected data, the
respective framework is established.

When the virtual models are selected, the modeling approach can be determined. From standard data-
science three main modeling approaches are provided: BBM, WBM, and GBM. BBMs rely solely on statistical
relationships between inputs and outputs, requiring no prior knowledge of the system. They excel in ac-
curacy under design conditions but may struggle with extrapolation and demand ample data. In contrast,
WBMs employ physical principles and mathematical equations, increasing model complexity. However, they
can introduce significant errors due to random events, such as environmental conditions. A GBM combines
both approaches, offering reasonably high accuracy while benefiting from reduced computational time com-
pared to BBMs. A trade-off should guide the choice between BBM, WBM, or GBM.

In the case of statistical-based models (BBM or GBM), model training is required in order to calibrate and
achieve acceptable accuracy. Model training is preferably been performed with DLAs, such as artificial neural
networks, Gaussian processes, extreme learning machines, or combinations of multiple algorithms.
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Before integrating the virtual models with the physical part, the models need to be verified and validated.
The V&V is critical to ensure the accuracy and reliability of the total system can be attained. Model training
can be considered as part of the V&V as it calibrates the systems and increases accuracy. Although the actual
validation will use different datasets as the sets used to train the model. A case-study or performing model
tests can also be done as a V&V-procedure.

As a final step, the virtual-physical integration can take place. With a design orientated DT, the vir-
tual model output will relate design decisions that have no direct value for the respective vessel. After the
retrofitting of the vessel is completed, based on the derived output, the integration can take place as the vir-
tual part will represent the modified physical vessel.

With the construction and modeling process of a DT for retrofit design purpose being discussed, a DT
objective needs to be chosen in order to present the addressed DT method. The next chapter will elaborate
on this regarding a defined DT objective and available operational data, which will form the basis of the
adopted methodology of this research.
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Green digital model methodology

This chapter elaborates on how a digital model for a green ship is constructed by answering RQ3: ‘What is the
most suitable green ship digital model using bunker delivery notes’.

First, by following the aforementioned definition of a DT, the argumentation for constructing a digital
model is provided. Secondly, the available data is discussed and the case-study is introduced. Then, the
environmental assessment of the case-study is presented which together with the data will result in the iden-
tification of the models that will be constructed. This will represent the methodology of this research. A
conclusion is provided summarising the process of constructing a green DM and answering RQ3.

4.1. Green ship digital model
As discussed in Section 3.8, a DT for retrofit purpose starts as a digital model which becomes a DT after the
retrofitting is completed. This thesis will focus on the modeling of virtual part within the DT environment
which will lay the basis for a green ship DT using this operational ship’s data. Thus, using the definition by
Kritzinger et al. (2018), this research will work on a green ship digital model (DM), supporting the process of
constructing the digital twin (Figure 4.1). This will be addressed as the green ship DM.

Digital Twin

Digital Model

Automated data flow

Figure 4.1: Focus of this research: representation of the green ship digital model (gray) within final digital twin

4.2. Available data & case-study
The DM will be strongly dependent on the available data with which it will be built. Within the DT4GS project,
HF operational data is collected through four Living Labs (LLs) which cover four distinctive operating ship
types (oil tanker, container vessel, bulk carrier, and ROPAX vessel) of the collaborating shipping companies.
Currently, this collected HF data is manually sent from the ships to a digitally accessible platform. The HF
data of the 300-meter bulk carrier is chosen to be used for this thesis, as this has the most extensive data
available at this moment. This data is collected following IMO’s approved guidelines regarding their adopted
operational data collection, namely IMO’s DCS method A: BDNs1. The BDNs contain ship and voyage data,
such as engine rpm, ship speed, fuel consumption, water depth and wind speed. An overview of all the
different data types is provided in Appendix A. The available BDNs of the bulk carrier contain over 129,000
data points, with a time interval of 5 minutes during the following periods:
1https://www.imo.org/en/MediaCentre/PressBriefings/Pages/01-MARPOLamendments01012019.aspx
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• Q2 2022: 02/06/’22 - 30/06/’22

• Q3 2022: 01/07/’22 - 30/09/’22

• Q4 2022: 01/10/’22 - 31/12/’22

• Q1 2023: 01/01/’23 - 24/02/’23

• Q2 2023: 01/04/’23 - 30/06/’23

• Q3 2023: 01/07/’23 - 30/09/’23

From here on, these periods will be referred to with their corresponding year and quarter.

4.3. Environmental assessment
The next step is to link the available data to the environmental goal of the main objective. As discussed
in Section 2.5.3, the EEXI will be used as the main measurement tool to assess the desired CO2 reduction,
together with the CII. Both the attained CII and attained EEXI are measures that compare the environmental
impact on society with the benefits to society, respectively in terms of CO2 emissions and transport work.
Here the CII follows an operational approach and the EEXI a technical (design) approach (Equations 2.5 &
2.2).

C I Iat t ai ned = Operational annual CO2 emissions

Operational annual transport work
=

FC1year ·C fCO2

DW T ·D1year
(Ref. 2.5)

EE X Iat t ai ned = Design CO2 emissions

Design transport work
=

Peng i ne · s f c ·C fCO2

DW T ·Vs
(Ref. 2.2)

The environmental aspect of the thesis’ main objective is to investigate and achieve CO2 reduction. By
investigating the formulas of the CII and EEXI, the factors within both measures can be identified that drive
the emission reduction goal. Because this thesis focuses on ship design, the yearly sailing distance (D1year ) is
kept the same. Also, the dead-weight tonnage (DW T ) of the ship is kept the same in order to restrict potential
retrofit design decisions not to being too extensive and resulting in significant changes in cargo capacity.

Equations 4.1 and 4.2 are respectively the improved CII and improved EEXI. The term ’improved’ refers to
the identification of ship parameters linked to the CO2 reduction goal, highlighted in red. In the improved CII
the emission reduction is solely linked to the fuel consumption of the ship. This means in order to achieve
CO2 reduction, the fuel consumption (of the same fuel type) of the ship needs to be reduced over the same
distance and DW T .

C I Iat t ai ned−i mpr oved = Operational annual CO2 emissions

Operational annual transport work
=

FC1year ·C fCO2

DW T ·D1year
(4.1)

EE X Iat t ai ned−i mpr oved = Design CO2 emissions

Design transport work
=

Peng i ne · s f c ·C fCO2

DW T ·Vs
(4.2)

In the EEXI the CO2 reduction is linked to the specific fuel consumption (s f c) and total engine power
(Peng i ne ), as these are the factors directly contributing to the produced CO2 emissions. Here the DW T and
C fCO2

are also kept the same in order to restrict the impact of retrofit modifications on the cargo capacity and
fuel type. This is also in line with the guidelines of the IMO (2021) elaborating on how to treat innovative
energy efficiency technologies (green ship design) for the EEXI calculation of a ship, indicating the environ-
mental influence of these factors in the formula. Besides the s f c and Peng i ne , these guidelines also identify
a possible shift in the power curve of a vessel due to the implementation of certain green technologies. This
shift then results in a change in the combination of engine power and design speed. For that reason, the de-
sign speed is also identified to be possibly affected when applying green ship technologies.

Concluding, the main parameters which are identified to contribute to the assessment of the CO2 emis-
sion reduction goal, or to be affected by green ship technologies are:

• annual fuel consumption (FC1year )

• specific fuel consumption (s f c)

• total engine power (Peng i ne )

• design speed (Vs )
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4.4. Models
In this section, the different models are presented which will be used for the green ship DM. The parameters
identified in the assessment tools in the previous section will guide the identification of the models required
for the environmental assessment. The available operational data determine which models are feasible to
construct. The overlap between both outcomes provides the models that will be selected for the green ship
DM of the bulk carrier case-study (Figure 4.2).

Figure 4.2: Process of model selection for green ship DM

The goal is to make a virtual representation of the ship itself, in this case, the bulk carrier, and to imple-
ment green ship technologies through modeling in order to be able to assess potential benefits for retrofit to
achieve the CO2 reduction goal. This entails constructing a model representing the ship and another model
representing the green ship technologies, as illustrated in Figure 4.3.

Physical ship Digital models

Ship representation

Green ship technologies

Figure 4.3: Adopted modeling approach: part representing the ship and part representing green ship technologies

4.4.1. Ship representation
Addressed in Section 4.3, in both the equations of the CII and the EEXI, the (specific) fuel consumption is
identified as an important parameter. This suggests that a fuel consumption model (FCM) can be of use for
the DM. These models have already extensively been utilized to represent an operational ship and achieve
accuracy above the 90% (Fafoutellis et al., 2020; Fan et al., 2022; Hu et al., 2019; X. Sun, 2015). It is therefore
chosen to use an FCM as a virtual representation of the bulk carrier. The review paper of Fan et al. (2022)
showed that an FCM of a ship can successfully be modeled by using a WBM, BBM, or GBM. These three mod-
eling approaches for an FCM will be discussed next.

In the aforementioned FCM of Fan et al. (2020) (Section 3.5) random environmental parameters were
used to establish a WBM. With the combination of this data, the Holtrop & Mennen method, and applying
the ship-engine-propeller principle, the fuel consumption could successfully be predicted with an acceptable
accuracy of 93.5% regarding available real-time data of the respective vessel.
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Besides a WBM, BBMs are also proven to successfully predict a ship’s fuel consumption (Hu et al., 2019;
X. Sun, 2015; Uyanık et al., 2020). In the work of Uyanık et al. (2020) multiple prediction methods (e.g., Ridge
Regression, Tree-Based Algorithms, Multiple Linear Regression) are applied on a fuel consumption BBM for
a container ship. The BBM was established from main engine characteristic inputs, such as the number of
cylinders, scavenging air, cooling water temperature, and engine rpm. By only taking into account parameters
from the engine room, Uyanık et al. (2020) found the highest accuracy by applying Bayesian ridge regression,
Kernel ridge regression, Multiple linear regression, or Ridge regression on the BBM, all with a root-mean-
square error of 0.0001. Both the work of X. Sun (2015) and Hu et al. (2019) successfully show that the BPNN
method is able to predict ship fuel consumption within acceptable accuracy. In both researches, a BBM was
developed based on environmental input, including wind speed, wind direction, water depth, water speed,
and engine power. Hu et al. (2019) also compared the BPNN method with GPR, finding a slightly higher ac-
curacy applying GPR but at the cost of more computational time. Hu et al. advise it is up to the final user to
make the trade-off between computational time and accuracy.

Even though GBMs are not traditionally used to model ship’s fuel consumption due to similar accuracy
with most BBMs, they become more appealing to apply with current increasing accuracy improvement meth-
ods proposed by researchers (Fan et al., 2022). The benefit of a GBM is it can achieve accurate predictions
with less data than a BBM and even with insufficient data coverage, consequently lowering the computational
time (Fan et al., 2022). Yang et al. (2019) showed this benefit by using a GBM approach for the modeling of the
fuel consumption of an oil tanker. Although basic principles regarding ship propulsion were applied and no
hull-propeller effects were taken into account, the GBM mitigated the incomplete data coverage through in-
tegrated successive parameter estimation programs. In the work of Yuan and Nian (2018) a Gaussian process
model was used to investigate the influence of environmental and operational factors on fuel consumption.
With this type of GBM, the relationship between energy saving capabilities and fuel consumption reduction
could be verified, resulting in a refining emission reduction strategy.

In order to determine which type of modeling will be used for the fuel consumption model, the available
data needs to be investigated. In the BDNs of the bulk carrier case-study, environmental data that corre-
sponds to the WBM of Fan et al. (2020) and BBMs of X. Sun (2015) and Hu et al. (2019) are present. This
indicates the feasibility of developing both a WBM and BBM using environmental data extracted from the
bulk carrier’s BDNs. This approach is consistent with the GBM developed by Yuan and Nian (2018). By merg-
ing these models, a GBM can be constructed for fuel consumption. By adopting a GBM, the aforementioned
benefit of less computational time can be enjoyed (Fan et al., 2022). Moreover, a GBM has a wider range
maintaining acceptable accuracy with different engine speeds compared to a BBM (Coraddu et al., 2015). It
is therefore chosen to develop a fuel consumption GBM using the available environmental data together with
engine power based on the work by Fan et al. (2020) and Hu et al. (2019). This fuel consumption model will
be the virtual representation of the bulk carrier case-study (Figure 4.4).

Physical ship GBMDigital models

WBM

Environmental

BBM

Environmental 

Figure 4.4: Schematic representation fuel consumption model (red oil barrel) modeled with a gray-box approach using environmental
data
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4.4.2. Green ship technologies representation
Next, the model selection of the green ship technologies is discussed. In the BDNs of the bulk carrier, the
wind speed and wind direction are recorded. This indicates the potential for investigating the application of
WASP technology. In Section 2.4.7, WASP technology is identified as applicable technology for retrofit. With
wind data available its potential can be investigated and therefore chosen to apply as green ship technology
for the model.

In the work of Bentin et al. (2018), the modeling of three different types of WASP systems (towing kite, Flet-
tner rotor, and DynaRig sail) are discussed, and their energy saving potential in terms of ship’s brake power.
Bentin et al. (2018) use a WBM approach for their calculations, in which the wind speed and to be determined
WASP system’s effective wind surface are sufficient to provide a reliable estimation of the WASP power and its
energy saving potential. Their WASP modeling is validated through a case-study with a multi-purpose carrier,
bulk carrier, and tanker. These ship types were chosen because they identified them to be suitable for WASP
installation without changing the ship’s capacity and the cargo loading and unloading function of the ship
(Bentin et al., 2018). This is also addressed by Reche-Vilanova et al. (2021), where tankers and bulk carriers
are identified to be especially suitable for WASP system installation due to their available deck space. Reche-
Vilanova et al. (2021) present a performance prediction program for three WASP types (Flettner rotor, rigid
wing sails, and DynaRig sail) with only the ship’s main particulars and general WASP dimensions as input
data. Using a WBM approach together with a WASP aerodynamic database, a generic approach is established
to assess WASP applicability as a design tool during early stage feasibility studies.

Both the work of Bentin et al. (2018) and Reche-Vilanova et al. (2021) successfully present a WBM ap-
proach for WASP technology. For that reason, a WBM approach is chosen to model a WASP system to repre-
sent the green ship part for the bulk carrier case-study (Figure 4.5). In this thesis, the following WASP systems
will be investigated based on the research conducted by Bentin et al. (2018) and Reche-Vilanova et al. (2021):
towing kite, Flettner rotor, and DynaRig sail.

Physical ship Digital models

WBM
Physics + Wind

• Kite
• Sail
• Rotor

Figure 4.5: Schematic representation WASP model (green sail), representing a kite, sail, and rotor, modeled with a white-box approach
using wind data

The available wind data will be used to indicate if it was beneficial to have a WASP installed on this ship
in terms of potential fuel savings and CO2 reduction during the period of data collection. A schematic repre-
sentation of the total composition of the DM to identify retrofit design is depicted in Figure 4.6.

4.5. Model assessment
In order to validate the models and achieve the set CO2 reduction goal, the models need to undertake an
assessment. This will include an environmental assessment regarding the selected IMO’s measurement tools
EEXI and CII, and a financial assessment. A feasibility check, in terms of spatial availability, is conducted
during the respective WASP configuration selection for the case-study.
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Figure 4.6: Overview of chosen modeling method toward constructing green ship DM for retrofit (green bulk carrier)

4.5.1. Environmental assessment
EEXI
The installation of WASP on a ship influences the total engine power of the respective ship (Chou et al., 2021).
For that reason, WASP technology is taken into account in IMO (2021) innovative energy efficiency technology
guidelines. Depending on the characteristics and effects of the EEXI formula, these technologies are allocated
to category A, B-1, B-2, C-1, or C-2. WASP technology is allocated in category B-2. Whereas the B-category
refers to technologies that reduce the propulsion power of the ship at the design speed without generating
electricity. A distinction is made regarding the possibility of using the technology at its full output at any time
(feff = 1) or only under limited conditions (feff < 1), respectively category B-1 and B-2. A small overview of the
other categories is provided in Figure 4.7.

Figure 4.7: IMO’s innovative energy efficiency technologies categories, including WASP systems (red-dashed box) (IMO, 2021)

In order to determine the available effective power of the WASP, the IMO has set up Equation 4.3 (IMO,
2021). Herein the available effective power ( fe f f ·Pe f f ) is represented as a matrix operation, containing the
availability factor ( fe f f ) and the effective power (Pe f f ). By formulating the available effective power in this
way, each wind condition is addressed with a probability and a specific wind propulsion system force. It
should be noted that secondary effects due to applying WASP which might increase ship resistance are not
taken into account in these guidelines. Without a significant loss of accuracy, the additional drag due to heel
and rudder angle, leeway, or reduced propeller efficiency are ignored in light running conditions. Moreover,
the forces generated during those conditions are considered to occur during unsafe operational conditions,
thus automatically being avoided during sailing.
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( fe f f ·Pe f f ) =
(

1∑q
k=1 Wk

)
︸ ︷︷ ︸

Wind probability

·


(

0.5144 ·Vr e f

ηD

q∑
k=1

F (Vr e f )k ·Wk

)
︸ ︷︷ ︸

WASP power generation

−
(

q∑
k=1

P (Vr e f )k ·Wk

)
︸ ︷︷ ︸

WASP power demand

 (4.3)

The parameters highlighted in red (Equation 4.3) are the three different wind-dependent parameters that
need to be determined for the WASP power calculation by the IMO, representing the following:

• the global wind probability matrix; Wk (3x)

• the force matrix of the respective WASP for a given ship speed; F (Vr e f )k

• the WASP’s power demand for a given ship speed; P (Vr e f )k , with the same size as Wk and F (Vr e f )k

For each of these parameters, the IMO has provided calculation guidance. Certain WASP systems require
electric power input in order to generate propulsive force, an example of such a system is a Flettner rotor
which needs to be rotating at a certain speed to generate this force. This power demand is usually provided
by the manufacturer and is implemented as P (Vr e f )k in Equation 4.3.

In the force matrix F (Vr e f )k , each element represents the propulsion force exerted by the WASP for the
respective wind speed and angle. Various methods can be used to determine F (Vr e f )k , of which the following
three are briefly discussed in the guidelines: wind tunnel model test, numerical calculation, and full-scale
test. Due to the data-driven nature of this thesis, numerical calculations through WBMs will be used to de-
termine the force matrix of the respective WASP system (Section 4.4.2).

The global wind probability matrix Wk , which covers the average wind conditions of all main global ship-
ping routes, is provided in the guidelines (IMO, 2021). Each matrix element represents the probability of the
specific wind speed and angle relative to the ship. Along the routes from the main global shipping network
(Figure 4.8), 106 wind conditions charts were used to determine Wk .

Figure 4.8: The main global shipping network used for the wind probability matrix (IMO, 2021)

When the F (Vr e f )k is properly modeled (WBM), together with the determination of Wk and P (Vr e f )k , the
available effective power of the WASP can be calculated using Equation 4.3. This result is then used as a power
reduction in Equation Ref. 2.2 in order to calculate the new EEXI value of the ship. Hence, the design speed
Vs is kept the same as only a power reduction at design speed is being considered (IMO, 2021).

Finally, the current ship’s EEXI and the difference between the new EEXI value including a WASP configu-
ration value determines the CO2 reduction at the design level.
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CII
For the environmental assessment with the CII, only the fuel consumption plays a role. The official attained
CII value is calculated with Equation 2.5 using operational data of 1 full calendar year. Unfortunately, no full
calendar year is available for the case-study. Moreover, a first investigation of the location-related data per
period showed sensor failure of several days in Q3 2023. For this reason, this period is been disregarded for
the CII calculation. Also, both Q2 2022 and Q3 2022 do not contain data for 3 months, indicating that a CII
calculation of 1 year is not possible. However, one CII calculation will still be performed for the period Q3
2022 - Q2 2023 in order to show the applicability of this assessment tool, indicating the ship’s environmental
impact at an operational level. The major remark of the performed CII calculation is that it covers in this
case-study the CII value of 11 months.

4.5.2. Financial assessment
Besides an environmental assessment of the possible retrofit, also a financial assessment is performed. It is
unlikely that ship owners take their ships out of service to retrofit if it does not result in a profit. The financial
assessment is performed by calculating the predicted reduction of the fuel costs and providing the payback
period. As fuel costs are directly correlated with both fuel consumption and the bunker price of the specific
fuel type, the payback period is affected by various factors, such as (Ammar & Seddiek, 2022; Bentin et al.,
2018):

• Costs of time that ship is out of service for retrofitting instead of transporting

• Costs of installment retrofit systems

• Maintenance costs installed retrofit systems

• Desired lifetime extension of the ship

• Lifetime of installed retrofit systems

• Expected reduction of fuel costs

This research investigates WASP systems for the potential retrofit. The lifetime of a WASP system and the
desired ship’s lifetime extension depend on the shipowner. The other four financial parameters are used for
WASP’s payback period calculation (P ). This calculation is performed with Equation 4.4, which is based on
the financial assessments by Kiran (2022) and van der Kolk et al. (2019).

P = B +C

A−D
(4.4)

Where the financial parameters represent:

A: $-savings per sailing hour using WASP

B: Purchase & installation system

C: Out of service costs & dry docking

D: Hourly operational & maintenance costs WASP

Although the main objective is centered around environmental assessment, conducting a financial as-
sessment provides valuable insights into the feasibility of the retrofit decision, taking into account factors
such as time and cost considerations.

4.5.3. Feasibility assessment
During the WASP configuration selection, a feasibility assessment is performed in terms of the spatial and
safety constraints related to the chosen bulk carrier. With the available drawings of the respective vessel,
installations of the investigated WASP systems are evaluated regarding available deck space.
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4.6. Conclusion on green ship digital model
This chapter has elaborated on how a green DM can be constructed, answering RQ3: ’What is the most suit-
able green ship digital model using bunker delivery notes?’ Because of the adopted DT definition, a green ship
DM will constructed which will support the final DT. This DM depends on the available data which deter-
mines the models that are feasible to construct, and on the chosen environmental assessment tools which
determine the required models (Figure 4.2).

For the introduced bulk carrier case-study, the selected digital models are an FCM and a WASP model, re-
spectively representing the bulk carrier and green ship technology. Publications regarding modeling an FCM
show that both a BBM approach and WBM approach are feasible, and their combined approach (GBM) also
shows successful results. Within the case-study a GBM approach will be used for the FCM, as this is possible
with the available data. The choice for a WASP model is the result of the available wind data found in the
BDNs of the bulk carrier. In this study, three WASP systems will be explored based on existing literature: a
towing kite, a DynaRig sail, and a Flettner rotor. The combined models will be verified with the data and val-
idated throughout a performed case-study. Besides evaluating the emissions reduction potential, a financial
and feasibility assessment will be performed to investigate if the proposed retrofit of the respective vessel can
be achieved.

In conclusion, a green ship DM is composed of the combination of a model representing the ship itself
and one or multiple models representing the green ship technologies which are used to investigate a poten-
tial retrofit. An overview of the adopted modeling approach is provided in Figure 4.9.
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5
Model construction

This chapter elaborates on the construction of the selected models. The adopted preprocessing framework
is presented, together with an overview of the operational data. Next, the FCM and WASP models are dis-
cussed separately. By presenting the model construction, RQ4 can be answered: ‘To what extent can data
from bunker delivery notes be incorporated into the selected digital models?’

5.1. Available data for the case-study
Data used for the construction of the models consists of the ship’s main particulars, info regarding the propul-
sion, environmental characteristics, and the BDNs. An overview of these data is provided in the next sections.

5.1.1. Main particulars and environmental characteristics
Within the DT4GS project, the main particulars of the bulk carrier are provided as PDF-files. The parameters
and other environmental characteristics used throughout the case-study are listed in Table 5.1. The bulk
carrier does not have a gearbox, resulting in a gearbox efficiency ηGB of 1.

Table 5.1: Ship and environmental characteristics bulk carrier case-study

Ship/environmental characteristic Symbol Value

Length overall [m] Loa 300
Breadth (molded) [m] B 50
Depth (molded) [m] D 25
Deadweight tonnage (summer) [mt] DW Ts 209,472
Diameter propeller [m] Dp 9.5
Thrust deduction factor [-] t 0.176
Wake fraction [-] w 0.338
Blade area ratio propeller [-] Ae/Ao 0.4077
Shafting efficiency [-] ηS 0.99
Gearbox efficiency [-] ηGB 1
Density sea water [kg/m3] ρsw 1025
Density air [kg/m3] ρa 1.225
Gravitational acceleration [m/s2] g 9.81

5.1.2. Bunker delivery notes
As mentioned in Section 4.2, the operational data is provided as BDNs, consisting of 129,174 data points of 6
periods between 02/06/’22 - 30/09/’23. Every 5 minutes, 107 different data types are recorded. One thing to
notice here: in the BDNs the shaft power is present, but because the bulk carrier does not have a gearbox the
shaft power is equal to the ship’s brake power PB , using Equation 5.1 (Klein Woud & Stapersma, 2002). From
here on the recorded shaft power in the BDNs will be referred to as the ship’s brake power.

43
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ηGB = PS

PB
(5.1)

5.2. Data preprocessing
The abundance of operational data from the BDNs does not necessarily imply that all these data are of good
quality and in the right format to be utilized. In order to be of use for the case-study, the data is first prepro-
cessed. Figure 5.1 shows the performed steps of the adopted data preprocessing framework of this research,
which is based on the techniques described by García et al. (2016). Each step will be briefly discussed in the
next sections. The preprocessing and model construction are conducted in the Python (v3.11.5) IDE: Spyder
v5.4.3. The presented preprocessing framework covers the steps performed towards the data implementation
of the final digital model for the retrofit design. The next sections elaborate on these steps.

Data selec�on

Interim calcula�ons

1) 2) 3)
4)

5) 6) 7)

8) 9) 10)

Figure 5.1: Adopted preprocessing data framework, based on García et al. (2016)

Step 1) Data integration
The BDNs are provided in a Microsoft Excel sheet, containing the different data labels as listed in Appendix
A. The ship’s main particulars, machinery information, and sea trial results, are found in several ship reports
(written reports and digital PDF-files). All these data are integrated into one Python script to be used further
on for the model construction.

Step 2) Data selection
With the data imported in the Python script, the first filtering can be performed: the data selection. For the
case-study a ship in sailing conditions is considered. This means that only data points are used when the
ship has a certain minimal speed. By investigating the bulk carrier during sailing conditions, the minimal
ship speed (through water) of 6 knots is selected to filter out data points related to non-sailing conditions.

Step 3) Noise identification
The next step is to identify outliers within the data set. Outliers can corrupt the models when not identified
and treated correctly. If possible, these values can be replaced by interpolating around the respective data
points, or the whole data point is disregarded. In this research, the identified outliers are disregarded. The
identification is based on the following criteria:

• Brake power is negative or zero

• The instant specific fuel consumption of the main engine is negative or zero (a result of a calculation)

• Sampling time is not 5 minutes

• Speed through water difference between 2 data points (= 5 min) is more than 3 knots, the second point
is then disregarded
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Step 4) Feature selection
In the BDN data set, 107 different data types are found. Not all of these data types are required for the models,
hence the next filtering step is feature selection. Each model requires different data types. The selection
for the BBM (ANN) is performed through a Spearman correlation analysis, and the WBM feature selection
depends on which functions the models are based. The sampling time is selected because it will be used for
noise identification (step 7). The speed over ground is selected to be used in the interim calculation for the
speed difference (step 9). The main engine rpm will be used for the integration of the FCM with the WASP
models (Section 6.4). The other 7 features are the result of feature selection per model. A more thorough
discussion on this selection is provided in the model construction Sections 5.3 and 5.4. The selected features
from the BDNs are:

• Sampling time

• Brake power

• Main engine rpm

• Rudder angle indicator

• Wind direction

• Wind speed

• Speed over ground

• Speed through water

• Sea water temperature

• Fuel consumption main engine

Step 5) WBMs WASP input (data integration)
The WBMs of the WASP systems only need relative wind speed and direction as input values. At this point,
the data of those inputs is ready to be used with the WBMs and feasible to be integrated into the data set. The
ship’s brake power in the case of an operating WASP system is calculated per configuration per data point and
added to the data set. The established integration framework is presented in Chapter 6. The main engine rpm
is only required for this integration and will not be used further on in the preprocessing.

Step 6) Data transformation
The data, currently sampled every 5 minutes per data point, will be transformed to a more conventional
sampling time of 1 hour. For each selected feature, the data covering an entire hour will be aggregated into
a single value corresponding to that hour. In this step, three different methods are used depending on the
feature type: a summation, the mean value, and the weighted average of the 1 hour. The aggregation method
used per feature is listed below. Note that the main engine rpm is disregarded as it was necessary during the
data integration (step 5) to calculate the brake power with a WASP system.

• Sampling time: sum

• Brake power: sum

• Rudder angle indicator: mean

• Wind direction: weighted average

• Wind speed: mean

• Speed of ground: mean

• Speed through water: mean

• Sea water temperature: mean

• Fuel consumption main engine: sum

• Brake power with WASP: sum

Step 7) Noise identification
A new noise identification step is performed after the hour conversion. For this step, the sampling time is
selected as the main criterion. If the sampling time of an hour (resulting data point) is not 60 minutes, it is an
indication that the data of the respective hour is incomplete and the data point is disregarded.

Step 8) WBM resistance model input (data integration)
The white-box part of the FCM is a ship resistance model calculating the sum of the calm water resistance
and the wind resistance. The inputs of this model are ship speed, sea water temperature, wind speed, and
wind direction. Section 5.3.1 provides a more thorough description of this model. At this point, the required
inputs have the right quality and are in the correct format. The resistance sum, which represents the average
value of the respective hour (data point), is calculated and integrated with the data set.
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Step 9) Interim calculations
Before the data can be normalized, the speed difference needs to be calculated. The speed difference is an en-
vironmental parameter that represents the water current’s speed. This difference is calculated by subtracting
the speed over the ground from the speed through the water.

Step 10) Data normalization
The final step is the normalization of the data set. Except for the main engine fuel consumption, the selected
data is normalized with the MinMaxScalar function which linearly scales the data down into a fixed range.
In this case between 0 and 1. The largest occurring data point corresponds to the maximum value and the
smallest one corresponds to the minimum value. This operation is represented by Equation 5.2. Normalizing
the data improves the training process of an ANN. Because the input data is now on the same scale, the
network can converge faster for a given learning rate (da Silva et al., 2017).

xnor m = x −xmi n

xmax −xmi n
(5.2)

The amount of data points reduced per preprocessing step is provided in Table 5.2. After performing the
adopted data preprocessing steps, 5,687 data points are left. However, when inspecting the resulting data
points per period it is noticed that Q2 2022 has a lot of anomalies and only provides 9 useful sailing hours.
These 9 hours are just a tiny fraction of the resulting 5,687 hours (0.2%) and are therefore disregarded. This
results in 5,678 data points, representing ’pure’ sailing conditions, to be used for model construction.

Table 5.2: Data preprocessing results of BDN data

Data integration Data selection Noise identification Data transformation

Period Raw Vs ≥ 6 kts s f cME ≤ 0 PB ≤ 0 Ts ̸= 5 min ∆Vs ≥ 3 kts Hour conversion

Q2 2022 8,267 3,165 (-5,102) 2,769 (-396) 148 (-2,621) 148 (0) 147 (-1) 9 (-39)
Q3 2022 26,488 15,582 (-10,906) 15,579 (-3) 15,572 (-7) 15,572 (0) 15,570 (-2) 1,284 (-162)
Q4 2022 26,493 18,281 (-8,212) 18,280 (-1) 18,280 (0) 18,279 (-1) 18,276 (-3) 1,514 (-108)
Q1 2023 15,697 9,756 (-5,941) 9,756 (0) 9,756 (0) 9,756 (0) 9,755 (-1) 802 (-131)
Q2 2023 26,207 12,586 (-13,621) 12,586 (0) 12,586 (0) 12,586 (0) 12,586 (0) 1,047 (-22)
Q3 2023 26,022 13,404 (-12,618) 13,353 (-51) 12,647 (-706) 12,645 (-2) 12,641 (-4) 1,031 (-269)
Σ 129,174 72,774 (-43.7%) 68,975 (-5.2%) 5,687 (-1.1%)

5.3. Fuel consumption model - GBM
In the next sections, the construction of the different models will be discussed, starting with the FCM. As
presented in Section 4.4.1, the FCM will be modeled as a GBM. First, the resistance model representing the
white-box part within this GBM is discussed, followed by the ANN representing the black-box part.

5.3.1. Resistance model - WBM
The WBM within the GBM (Figure 4.4) will calculate the calm water ship resistance and wind resistance of the
ship. The approximation for the calm water resistance (Rcw ) is performed in accordance with the Holtrop &
Mennen method (Holtrop & Mennen, 1982). The wind resistance (RA A) is calculated according to the method
of Andersen (2013). Because no wave data is recorded in the BDNs, no additional wave resistance is calcu-
lated. This resistance output (Σ(Rcw +RA A)) will be used as one of the inputs for the BBM and represents
the ship’s sailing requirement for a given situation, depending on the desired ship speed and environmental
conditions. As described by Holtrop & Mennen, the total calm water resistance of a ship is calculated with
Equation 5.3:

Rcw = RF (1+k1)+RAPP +RW +RB +RT R +RA (5.3)

The calm water resistance Rcw is composed of: the frictional resistance RF including the hull’s form factor
(1+k1); appendages resistance RAPP ; wave-making and wave-breaking resistance RW ; additional pressure re-
sistance due to the presence of a bulbous bow near the water surface RB ; additional pressure resistance of the
ship’s immersed transom stern RT R ; and, a model-ship correlation resistance RA . The general procedure to
calculate these resistance components is provided in Appendix B. Two things to address here are: RB is set to
zero due to the absence of a bulbous bow, and an interpolation for the kinematic viscosity (ν) of the seawater
is performed depending on the seawater temperature. The ν is required for the calculation of the Reynolds
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Ref. Figure 4.4: The white-box resistance model (red-dashed box) within the gray-box fuel consumption model

number (Rn). The seawater properties tables provided by the ITTC (2011) are used for this interpolation.
Andersen (2013) derived Equation 5.4 to approximate the additional resistance due to wind.

RA A = 0.5CXρaV 2
a AT (5.4)

The parameters in this equation are the wind force coefficient CX ; air density ρa ; relative wind speed Va

and transverse projected area above the waterline AT . CX is determined from the interpolation of available
sea trial results, depending on the relative wind direction. AT is determined from the ship’s drawings, depend-
ing on the draft. Table 5.1 in Section 5.1.1 provides the ship’s main particulars and important environmental
parameters in the above-mentioned WBM.

Verification
As previously mentioned, the outcome of the Holtrop & Mennen model is the sum of the calm water resis-
tance and added resistance due to wind: Σ(Rcw +RA A). For the verification of presented WBM 6 data points
are available originating from the ship’s sea trial runs. Three of these data points are when the ship had a
course direction of 60◦ and the other three are with a course direction of 240◦. The conditions of each run are
listed in Tables 5.3 and 5.4.

Table 5.3: Sea trial parameters, course directionΨ= 60◦

Parameter Run 1 Run 2 Run 3

Main engine output [%] 100 85 70
Speed through water [kts] 16.15 15.70 14.90
Relative wind speed [m/s] 19.90 16.00 14.20
Relative wind direction [◦] 8.4 3.8 7.0

Table 5.4: Sea trial parameters, course directionΨ= 240◦

Parameter Run 4 Run 5 Run 6

Main engine output [%] 100 85 70
Speed through water [kts] 16.75 16.17 15.36
Relative wind speed [m/s] 7.10 5.20 4.20
Relative wind direction [◦] 264.7 17.3 329.6

The Rcw and RA A for each of these runs is calculated and compared with the measured value during the
run. The mean errors from this comparison are depicted in Figures 5.2a & 5.2b, with the values listed in Ta-
bles 5.5 & 5.6. For clarification reasons, each run is labeled with a distinctive color. The different resistances
Σ(Rcw +RA A), Rcw , and RA A are labeled respectively with a circle, square, and triangle.

As can be noticed, the resistance prediction with a course direction of 240◦ is more accurate than the 60◦.
Moreover, the prediction of the additional wind resistance has a maximum error of 1.8%. The prediction of
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Figure 5.2: Verification resistance model (WBM)

Table 5.5: Mean percentage error resistance, course directionΨ= 60◦

Resistance Run 1 Run 2 Run 3

Σ(Rcw +RA A) +10.0% +12.1% +20.5%
Rcw +12.9% +14.4% +24.2%
RA A -0.4% -0.0% -0.4%

Table 5.6: Mean percentage error resistance, course directionΨ= 240◦

Resistance Run 4 Run 5 Run 6

Σ(Rcw +RA A) -7.2% -0.0% +7.5%
Rcw -7.1% -0.0% +7.6%
RA A -1.8% -0.4% +0.7%

the calm water resistance fluctuates the most but within a 15% error when indicating run 3 as an outlier. No
explanation was found for the difference in resistance between the two course directions and the relatively
high error of run 3. The overall mean absolute percentage error is 9.6% which is deemed acceptable. With the
presented arguments, the WBM is verified.

5.3.2. Artificial neural network - BBM
Next, the BBM within the GBM will be presented (Figure 4.4). This BBM is represented by an ANN, converting
selected inputs into a desired output. First, the Spearman correlation analysis is discussed which is used
for the network’s input selection. Secondly, the training procedure together with the determination of the
ANN architecture is presented. When the ANN architecture is chosen, a cross-validation is performed to
demonstrate the prediction capabilities of the model.

The ANN is constructed using Keras. Keras is an open-source high-level neural networks API written in
Python that runs on top of the TensorFlow library (Keras, 2023).

Prior to the determination of the ANN architecture, the model inputs are selected from the available data
in the BDNs. The BDNs contain over 100 different data types. Because the prediction of fuel consumption
needs to be both accurate and representative of future (unknown) situations, a first selection is made of po-
tential model input parameters. This selection is based on the following assumptions:

• The goal is to predict fuel consumption with an operating WASP system, which will influence engine
characteristics in a way that is currently unknown. Thus, parameters strongly related to the operating
engine are left out of consideration

• Environmental parameters can be predicted for future situations by means of weather models, and are
therefore taken into account
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Ref. Figure 4.4: The black-box artificial neural network (red-dashed box) within the gray-box fuel consumption model

• Voyage characteristics such as ship speed and rudder position are considered in this study as they are
route-dependent and can be chosen for future voyages

Applying the above-mentioned filtering, resulted in 12 potential model input parameters. For the final
input selection, a Spearman correlation analysis is performed for these 12 parameters with regard to their
correlation with the fuel consumption of the main engine. The derived correlation coefficient assesses the
strength and direction of the relationship between two variables (Sedgwick, 2014). Parkes et al. (2018) have
proven that the Spearman correlation analysis is an effective method for feature selection regarding a fuel
consumption model. The results are listed in Table 5.7. In terms of engine output, the engine torque is
discarded and the brake power is selected. The reason for this is that both parameters have nearly the same
correlation factor, and considering WASP implementation, power is a more suitable parameter than torque.

Table 5.7: Spearman correlation coefficients for determination of ANN inputs

Data types
Correlation with fuel

consumption main engine
Selection

Brake power output 0.787
Engine torque output 0.789

Ship’s heading -0.082
Rudder angle -0.241

Rudder rate of turn 0.002
Relative wind direction 0.131

Relative wind speed 0.226
Speed over ground -0.068

Speed through water 0.142
Speed difference -0.170

Total power diesel generators 0.041
Sea water temperature -0.174

Fuel consumption main engine 1.000 —

From the Spearman correlation analysis, 7 parameters from the BDNs are selected. The output of the
resistance model, Σ(Rcw +RA A), is added as model input, which results in a total 8 model inputs for the ANN.
This inclusion of the resistance as ANN input gives the model its gray box characteristic, and in this case
serially coupled. The 8 model inputs are:

• Brake power output

• Rudder angle

• Relative wind direction

• Relative wind speed

• Speed through water (ship speed)

• Speed difference

• Sea water temperature

• Sum of calm water and air resistance (result
WBM)
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The next step is to determine the architecture of the ANN, i.e., the activation function, training algorithm,
and the number of hidden layers and neurons. For the activation function per neuron, the Rectified Linear
Unit (ReLU) is chosen. ReLU is a widely used activation function in artificial neural networks, particularly
in deep learning models (Agarap, 2018). The fundamental idea behind ReLU is that for any input value, it
outputs the same value if it’s positive, and zero otherwise. Equation 5.5 shows the mathematical formulation
of the ReLU function. ReLU introduces non-linearity to the network, allowing it to learn complex patterns
and representations. One of the key advantages of ReLU is its computational efficiency, as the activation is
simply thresholding at zero (Agarap, 2018).

f (x) = max(0, x) (5.5)

For the training algorithm, the Adam optimizer is chosen. Adam, which stands for Adaptive Moment
Estimation, is a widely used optimization algorithm to train deep neural networks and is suitable for prob-
lems that are large in terms of data amount (Brownlee, 2021). Adam combines the advantages of two other
optimization methods, namely the Adaptive Gradient Algorithm (AdaGrad) and the Root Mean Square Prop-
agation (RMSProp). It maintains two moving averages for each parameter: the first moment (mean) and the
second moment (uncentered variance) (Kingma & Ba, 2017). These moving averages are utilized to adaptively
adjust the learning rates for each parameter during training. Adam is relatively easy to configure with default
configuration settings already capable of solving initial problems, which also results in less computational
power compared to other training algorithms (Brownlee, 2021; Kingma & Ba, 2017). The mean squared error
(MSE) is used as the loss function during the validation monitoring. The batch size per epoch is set to 16 data
points, which lowers the required memory space and accelerates the network’s training process.

The default learning rate of the Adam optimizer is used during model training, which is 0.001. The maxi-
mum number of epochs during training is set to 500, with an early stopping condition of 35. This denotes that
the training phase is stopped when there is no improvement observed after 35 epochs during the validation
within the training phase. Moreover, the dropout value is set to 0.2, indicating that during every epoch 20% of
the neurons are randomly deselected which helps to avoid potential over-fitting of the model. The dropout
process also generalizes the network, making it more capable of handling data that is not in the training set.
A visualization of the dropout process, in general, is depicted in Figure 5.3.
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Figure 5.3: Dropout procedure in general, applied during the training phase of an ANN

The 5,678 data points left after the preprocessing are used for the construction of the ANN. First, 500 data
points are randomly extracted from the data set to be used later-on for the cross-validation. The remaining
5178 data points are used for the training and intermediate validation process to find the most suitable ANN
architecture in terms of hidden layers and neurons. These remaining data points are divided into a training
set and a validation set, in a ratio of 90% - 10%. This division of the training and validation data set is done by
specifying a certain random state (rs), where rs represents the division parameter. The data splitting is shown
in Figure 5.4. During the training phase, the training data set is used to adjust the weights of the neurons. The
validation set is used to monitor the loss of the constructed ANN during the training phase and adjust the
training settings if necessary.

Within the ANN architecture, the most critical parts are the number of hidden layers and neurons per
hidden layer. In the work of Parkes et al. (2018) the hidden layers and neurons are indicated as the main
drivers for the total network accuracy. Often a trade-off is made between complexity and accuracy. As there
is no one truth for the number of neurons in a hidden layer, several guidelines are provided to determine the
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Figure 5.4: Data splitting into training set, validation set (during training), and test set (for cross-validation)

number of neurons per hidden layer depending on the prediction goal (da Silva et al., 2017; Rachmatullah
et al., 2021). Zwart (2020) uses the Fletcher-Gloss method described in da Silva et al. (2017) to determine
the number of neurons. Equation 5.6 shows this method. Herein is n the number of model inputs, n1 is the
number of neurons in the hidden layer, and n2 the number of outputs.

2
p

n +n2 ≤ n1 ≤ 2n +1 (5.6)

Most of the literature found with regard to ANN for fuel consumption predictions have 1 hidden layer (Bal
Beşikçi et al., 2016; Du et al., 2019; Hu et al., 2019; Pedersen & Larsen, 2009, 2009). This is generally done to
lower the complexity of the total network while maintaining sufficient accuracy. Nevertheless, some refer-
ences also mention the use of multiple hidden layers with beneficial outcomes regarding prediction accuracy
(Fam et al., 2022; Parkes et al., 2018; Radonjic & Vukadinovic, 2014). Parkes et al. (2018) state that the accu-
racy of the network is mainly determined by the number of hidden layers & neurons, and with an increasing
number of units, more complex relations can be modeled by the ANN. Nevertheless, a network with too few
layers and neurons can be unable to model all the (complex) relationships if necessary. For these reasons, it
is chosen to investigate a one and two hidden layer configuration, resulting in 209 possible configurations.
The investigated ANN configurations, including the resultant configuration, are depicted in Figure 5.5.

8 7 1

8 17 1

8 7 7 1

8 7 15 1

8 17 6 1

8 17 35 1

1 hidden layer 2 hidden layers

8 16 1

Figure 5.5: Investigated ANN configurations with 1 input layer (yellow), 1 or 2 hidden layers (green), and 1 output layer (red)

The resultant ANN configuration with the highest accuracy is a network with 1 hidden layer containing
16 neurons. The structure of this network is depicted in Figure 5.6. The characteristics of the ANN, together
with the training parameters are listed in Table 5.8.

The ANN is trained with the training-validation division of rs=49 and has a resulting mean absolute per-
centage error (MAPE) of 1.7%. Table 5.9 shows the other results of the ANN. To give an idea, the range of
data output is between 900 and 1700 liters of fuel per hour. Figure 5.7 shows the decrease of the MSE and
MAPE during the training phase of the network. One thing to notice here is that the network makes better
predictions on the validation set (10%) than on the training set (90%). In general, the validation error is higher
than the training error, but in some cases, the current situation occurs. Only during the training phase reg-
ularization of the data is applied which introduces a relatively small regularization loss (Rosebrock, 2022).
Moreover, the error of the training phase is measured during each epoch, whereas the error of the validation
is measured after each epoch (Rosebrock, 2022). Because data regularization is not applied during valida-
tion, and training-validation errors are measured at different moments, a minor shift in error plots can be
observed. Nevertheless, performing an additional cross-validation can potentially justify the accuracy of the
adopted network.

Cross-validation
Three additional networks of the same composition (1 hidden layer of 16 neurons) are constructed and cross-
validated with the test set containing the 500 data points that were set aside. The distinction between these
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Table 5.8: ANN characteristics and used training parameters

Characteristic - parameter Value

Training algorithm Adam
Activation function ReLU
Number of inputs 8

Number of outputs 1
Number of hidden layers 1
Neurons in hidden layer 16

Dropout 0.2
Test set 500 data points

Training - validation set 90% - 10%
Batch size 16 data points

Max number of epochs 500
Learning rate 0.001

Patience 35 epochs
Monitor loss function MSE
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Figure 5.6: Structure ANN model with an input layer with 8 neurons (yellow), 1 hidden layer with 16 neurons (green), and an output layer
with 1 neuron (red)

Table 5.9: ANN (rs=49) resulting errors

Error Value

Mean squared error [(l/h)2] 947.89
Root mean squared error [l/h] 30.79

Mean absolute error [l/h] 23.53
Mean absolute percentage error [%] 1.7

four networks is made by randomly selecting a different rs value which alters the training process and thus
results in a network with different weights per neuron. These networks have not seen these data points yet,
and by using this constant test data set, cross-validation can be performed. Cross-validation is a common
practice in constructing a reliable ANN by proving that the achieved network accuracy is independent of a
coincidentally convenient data split with which it was trained (Parkes et al., 2018; Pedersen & Larsen, 2009,
2009; Radonjic & Vukadinovic, 2014). The MAPE per network is listed in Table 5.10, including the overall
MAPE with corresponding standard deviation.



5.4. WASP models - WBM 53

0 20 40 60 80 100
Epochs

103

104

105

106

M
SE

 [(
l/h

)²]
Mean squared error (MSE)

Training MSE
Validation MSE

(a) Mean squared error (MSE) plotted on logarithmic scale

0 20 40 60 80 100
Epochs

0

20

40

60

80

100

M
AP

E 
[%

]

Mean absolute percentage error (MAPE)
Training MAPE
Validation MAPE

(b) Mean absolute percentage error (MAPE)

Figure 5.7: Network errors during training phase (rs=49)

Table 5.10: Cross-validation using test data set between four models with equal configuration

Random state MAPE

49 1.8%
59 2.1%
61 1.9%
80 1.9%

Overall 1.9%
Standard deviation +/- 0.1%

The confidence interval is a common practice in statistics to indicate if the adopted method is within a
desired accuracy (Carney et al., 1999). The minimum desired confidence interval for machine learning, and
especially ANNs, is generally 90% (Carney et al., 1999). The constructed ANN is well within this interval, with
an overall MAPE of 1.9% indicating the high accuracy of the network.

To summarize, the ANN model inputs are selected through first filtering together with a Spearman corre-
lation analysis. This resulted in 7 data types from the BDNs. The output of the Holtrop & Mennen model, the
sum of calm water resistance and wind resistance, is also added as model input, bringing the number of ANN
inputs to 8 and giving the FCM its gray box characteristic. The model has 1 output, the fuel consumption of
the main engine. For the training algorithm of the ANN is the Adam optimizer selected. For the activation
function per neuron, the ReLU is selected. An investigation is needed in order to determine the number of
hidden layers and neurons per hidden layer. As literature in the same field of research has shown already ac-
ceptable accuracy for 1 hidden layer, with occasional improvements with multiple hidden layers, the options
of 1 and 2 layers are investigated. The number of neurons is based on the Fletcher-Gloss method (Equation
5.6), which provides a range of neurons based on the number of inputs and outputs.

This resulted in an ANN model with 1 hidden layer, with 16 neurons. This network is then cross-validated
with 3 other networks composed of the same structure, but which are trained with a different training-
validation data division. The cross-validation is performed with the test-data set which was set aside be-
fore the training phase, thus the models have not seen this data during their own training and validation.
The MAPE of the 4 different network cross-validation is 1.9% with a standard deviation of +/- 0.1%. This lies
within the minimum desired confidence interval of 90% generally used in machine learning.

5.4. WASP models - WBM
Now the model representing the ship is completed and cross-validated, the models representing the WASP
systems can be constructed (see Figure 4.5). The available wind data in the BDNs is measured at a different
height than it would potentially be used by the respective WASP system, resulting in a correction of the wind
speed for this height difference. This will first be discussed. Further on, the construction of the models for
three different WASP systems are presented based on the literature mentioned in Section 4.4.2.
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Physical ship Digital models

WBM
Physics + Wind

• Kite
• Sail
• Rotor

Ref. Figure 4.5: The WBMs of a kite, sail, and rotor (red-dashed box) representing the green ship technologies

5.4.1. Wind speed conversion
The wind sensor, situated on the mast on the bridge deck of BDNs, measures wind speed and direction. Since
wind speed fluctuates with altitude (Figure 5.8), the measured wind speed isn’t directly applicable to wind
propulsion calculations. To obtain the accurate wind speed necessary for calculating the propulsion force of
the respective WASP system, the measured wind speed must be converted to the wind speed encountered at
the effective height of the WASP system, using Equation 5.7 based on the power-law of the wind profile (Hsu
et al., 1994).
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Figure 5.8: Varying wind speed profile over height

VzW ASP =Vzmeasur ed ·
(

zW ASP

zmeasur ed

)P

(5.7)

The wind speed is measured at a height of 54.75 meters above the keel. In order to get the measured height
above the waterline (zmeasur ed ), the current draft is subtracted from the 54.75 meters. The effective area of
where the wind will work on the WASP system (zW ASP ) depends on the respective system and will be provided
in the next sections. The power-law exponent (P ) is a spatial parameter depending on the surroundings of
the specific situation (e.g., at sea, open or undulating terrain). Hsu et al. (1994) conducted research into this
exponent for the wind profile over the ocean under near-neutral stability conditions. They concluded from
their experiments that an exponent of P = 0.11 is an accurate approximation for the wind profile over the sea.
This is also in line with the recommended procedures and guidelines provided by the ITTC (2021) with regard
to this wind speed conversion.

5.4.2. Towing kite
The first WASP model that will be discussed is the towing kite. Towing kites for ship propulsion represents
an environmentally friendly approach to harnessing wind energy for maritime transport. The towing kite
is deployed at the bow area and generates additional propulsion force by towing the vessels forward. The
benefits of using a towing kite are mostly linked to the little required deck space and the option for a fully
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autonomous system (Fritz, 2013). The constructed model is based on the research of Bentin et al. (2018). The
resultant propulsion force by the towing kite is approximated with equation 5.8.

Fki te = 0.5ϵρaV 2
a Swi Fnor m,ki te (5.8)

The relative wind speed (Va) acts on the effective wind surface of the kite (Swi ). Here Fnor m,ki te is the
normalized propulsion force of the towing kite as a function of only the relative wind direction and elevation
angle (δ), and can be calculated with Equation 5.9. This normalized propulsion force is plotted for all wind
directions in Figure 5.9 to show the effective wind angles for a towing kite.

Fnor m,ki te =
(
cos

(
180◦−ϕa,r el

2

))2

· (cos(δ))2 (5.9)
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Figure 5.9: Normalized propulsion force directions towing kite for two elevation angles (δ); 0◦ = headwind, 180◦ = tailwind

The efficiency of wind energy transfer from the wind field onto the towing kite is represented by ϵ. Lit-
erature regarding the dynamics of towing kites shows that there is no ’simple’ parameter just representing
an energy transfer efficiency. In the book chapter by Fritz (2013) on towing kite applications regarding ship
propulsion, a similar equation as Equation 5.8 is provided, but instead of an efficiency parameter a resultant
force coefficient is given (CR ). This force coefficient strongly depends on the lift and drag characteristics of
the installed kite, and is usually provided by the manufacturer. Unfortunately, this information is not publicly
available and thus brings it back to an estimation of the energy transfer efficiency ϵ. For this case-study the
energy efficiency is set to 0.5. The minimum required wind speed to deploy the towing kite is set to 10 knots.
This is based on the required wind speeds for kite surfers.

Configurations
There are four kite configurations investigated during the case-study, referred to as: Kite300, Kite800, Kite1280
and Kite2500. These configurations vary in kite sail area, which are respectively: 300 m2, 800 m2, 1,280 m2

and 2,500 m2. The characteristics per kite configuration are listed in Table 5.11.

Table 5.11: Selected towing kite configurations

Kite characteristic Kite300 Kite800 Kite1280 Kite2500

Kite sail area [m2] 300 800 1,280 2,500
Height [m] 77.6 150 250 400

Elevation angle [◦] 15 30 30 30

The Kite300 is chosen because in the work of Dadd (2013) a 300 m2 kite with a 300 meter long line was
investigated for ship propulsion purposes. Dadd (2013) found through varying the elevation angle, an opti-
mum in kite propulsion power with an elevation angle of 15◦. In the work of Bentin et al. (2018) on which
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the kite model is based, an 800 m2 at a height of 150 meters above the sea is investigated. On the website of
GloMEEP (2019) a short overview of possible towing kites for ship propulsion purposes is provided including
estimations of power generation and installation costs. GloMEEP is an international collaborating project
established within the IMO aiming to support and provide insights into implementing energy-efficient mea-
sures for global shipping. GloMEEP (2019) indicate that a 1280 m2 and 2500 m2 kite are feasible, and for that
reason, both of these kites are also taken into account in this investigation. Figure 5.10 shows a schematic
view of the elevation angle and height.

Height

 δ  

Figure 5.10: Kite configuration parameters: elevation angle (δ) and sailing height

It is assumed that the kite system is a fully autonomous system, including kite deployment and retrieving.
An electric motor, included in the kite system, controls the flight and logistics. Such a fully autonomous sys-
tem is also considered in the book chapter by Fritz (2013). The power usage of the electric motor is estimated
at 2 kW with an electric efficiency of 0.95.

5.4.3. DynaRig sail
The next WASP system is the DynaRig. The DynaRig sail is characterized by a square rig configuration, fea-
turing freestanding masts and yards that are rigidly connected to the mast structure. The sails are positioned
between the curved yards, ensuring a seamless deployment with no gaps between them. This arrangement
enables the sails on each spar to function collectively as a single, integrated sail plan (Perkins et al., 2004).

As with the kite model, the DynaRig sail model is also based on the modeling methods described by Bentin
et al. (2018), together with the research conducted by Reche-Vilanova et al. (2021). The resultant propulsion
force by the sail is calculated with Equation 5.10. Here, the sail surface is represented by AS . The normalized
propulsion force Fnor m,sai l is derived from the relative wind angleϕa,r el and the lift and drag coefficients (CL

and CD ). These coefficients characterize a specific sail. Fnor m,sai l is calculated with Equation 5.11.

Fsai l = 0.5ASρaV 2
a Fnor m,sai l (5.10)

Fnor m,sai l =CL sin(ϕa,r el )−CD cos(ϕa,r el ) (5.11)

Aerodynamics
The lift and drag coefficients of a sail can be determined through various methods, such as wind tunnel tests,
numerical calculations, and full-scale tests (IMO, 2021). These three options are also accepted by the IMO
as reliable methods to be used for classification validations. As addressed by Reche-Vilanova et al. (2021),
several wind tunnel tests regarding DynaRig sails have been performed over the last years (Bordogna, 2020;
Perkins et al., 2004; Smith et al., 2013).

Perkins et al. (2004) investigated through wind tunnel and scale model tests, the force coefficients of Dy-
naRig sails for a mega sailing yacht. The characteristics of these DynaRig sails are optimized with regard to a
sailing yacht hull shape, making the results inapplicable for transport vessels due to deviating hydrodynamic
requirements. Smith et al. (2013) investigated the applicability of DynaRig sails for a 10,000 DWT chemical
tanker. Although this research is focused on a transport vessel, their methodology which includes interaction
effects, is only valid for sail-ship arrangements which are comparable to their specific case-study. Bordogna
(2020) conducted wind tunnel tests for three different DynaRig sail configurations and only investigated the
lift and drag coefficients of the respective sail without interaction effects. For this reason, the derived force
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coefficients by Bordogna (2020) are used for this DynaRig model. The sails were virtually trimmed during
Bordogna’s experiments to optimize for the maximum thrust per apparent wind angle. Figure 5.12 shows
the polar plot of the normalized propulsion force of the DynaRig sail using the lift and drag coefficients by
Bordogna (2020).

Figure 5.11: Lift and drag coefficients (resp. CX and CY ) as a function of the apparent wind angle (AWA), used for the DynaRig model
(Bordogna, 2020)
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Figure 5.12: Normalized propulsion force directions DynaRig sail with aerodynamic coefficients by Bordogna (2020); 0◦ = headwind,
180◦ = tailwind

Windage mast
When DynaRig sails are installed but no wind is present, the sails are reefed to reduce additional air resistance.
It is assumed that for the DynaRig sails non-retractable masts are installed which generate additional air
resistance. This additional resistance can be calculated per mast with Equation 5.12. The mast is assumed
to have a circular cross-section with diameter Dmast and height Hmast . The mast’s drag coefficient Cd ,mast is
assumed to be 0.5, based on the drag coefficient of a sphere (Hall, 2023).

Rwi nd ag e = 0.5ρaV 2
a Hsai l Dmast Cd ,mast (5.12)

Configurations
Bordogna (2020) investigated three different sail configurations: 1 sail, 2 sails with a gap distance ratio (GDR)
of 2.5, and 2 sails with a GDR of 4. The GDR is defined as the ratio of the distance between two sails and the
chord length of a sail (GDR = GD/chor d). These configurations will referred to as DynaRig single, DynaRig
double 2.5, and DynaRig double 4. The investigated sails have an aspect ratio of 1.85 (AR = Hsai l /chor d) and
a camber of 10% with regard to the sail’s chord length. Figure 5.13 illustrates the gap distance, chord, camber,
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and sail height.

Gap distance

Sail chord

Height

(a) Sail chord, gap distance and height (Bordogna, 2020)

Camber

Sail chord

(b) Sail camber; top view of a DynaRig sail

Figure 5.13: Dimensional visualization of a DynaRig sail

The hatch covers of the bulk carrier are spaced 25 meters apart (center-to-center). The potential masts
need to be positioned in the gaps between the hatch covers. The chosen gap distance for the case study is 50
meters, which means there are 2 hatch covers between 2 sails. The resulting sail characteristics with this gap
distance are provided in Table 5.12.

Table 5.12: Selected DynaRig sail configurations

Sail characteristic Single Double 2.5 Double 4

Gap distance ratio [-] - 2.5 4
Chord length [m] 20 20 12.5

Height sail [m] 37.1 37.1 23.2
Camber [%] 10 10 10

5.4.4. Flettner rotor
The last WASP system which will be modeled is a Flettner rotor. The cylinder of a Flettner rotor is being
rotated with the aid of an electric motor. The surrounding air attaches to the cylinder surface and is led into a
curve, creating a low and high air pressure side around the cylinder. Consequently, this air pressure difference
creates lift. This phenomenon is also known as the Magnus effect and is visualized in Figure 5.14 (Witzgall,
2023).

Figure 5.14: Magnus effect induced by the rotating of a Flettner rotor (AnemoiMarine, 2023)

Unlike with the kite and DynaRig model, an already constructed model of a Flettner rotor adopted by
Witzgall (2023) will be used. In collaboration with the DT4GS project, Witzgall (2023) used a non-linear re-
gression method to develop a surrogate rotor model based on seven distinctive studies conducted in the field
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of Flettner rotor lift and drag coefficients. A Matlab script is available where user-defined inputs generate
a data file containing the rotor’s aerodynamic characteristics (lift and drag coefficients) including the corre-
sponding power demand of the electric motor. This power demand is calculated with Equation 5.13, where
the friction coefficient is assumed to be constant (C f = 0.007). The surrogate model is based on experimen-
tally obtained data, resulting in a validation range in which the model is valid. This validation range is listed
in Table 5.13.

Pr otor,s = 0.5ρa ·V 3
a,r el Sr otor C f (5.13)

Table 5.13: Validity range of used surrogate rotor model

Parameter Validity range

Spin ratio 0 ≤ SR ≤ 5
Reynolds number 1.0e5 ≤ Re ≤ 2.3e6

Aspect ratio 2 ≤ AR ≤ 8
Diameter end plate - rotor ratio 1 ≤ De /D ≤ 8

Windage rotor
As with the DynaRig sail, the rotor also generates additional air resistance when it is not generating propulsion
force. The same calculation is performed to derive this additional resistance but then with rotor parameters:

Rwi nd ag e = 0.5ρaV 2
a Hr otor Dr otor Cd ,r otor (5.14)

Also, the rotor’s drag coefficient (when it is not operating) is set to 0.5. This value is also used by Reche-
Vilanova et al. (2021) for the rotor’s additional air resistance.

Configurations
For the case-study 2 rotor configurations are investigated: the installation of 1 rotor and 4 rotors. The con-
figuration of 4 rotors consists of four times the same rotor as used for the configuration of 1 rotor. Currently,
standard rotors for transport vessels vary in diameter from 3 up to 5 meters (AnemoiMarine, 2023; Norse-
power, 2023). With a bigger rotor, the potential generated thrust increases due to a greater effective wind
area. Nevertheless, the purchase and installation costs also increase with a bigger installation. For this re-
search, it is chosen to investigate the biggest feasible rotor because the goal is to reduce the CO2 emissions
(i.e., fuel consumption).

The maximum diameter for the investigated rotor depends on the available deck space (spatial assess-
ment). The gap between 2 hatch covers is 9 meters. Thus, a rotor with a diameter of 5 meters is spatially feasi-
ble. Four locations on the deck are selected for potential rotor installation regarding the second configuration.
Feasible heights corresponding with a rotor diameter of 5 meters are 24, 30, and 35 meters (AnemoiMarine,
2023; Norsepower, 2023). Because reducing CO2 is the goal of this research the 35 meter high rotor is selected
for the case-study. The polar plot with the normalized propulsion force of the selected rotor dimensions is
depicted in Figure 5.15.

However, a potential height limitation arises by selecting this rotor. The 35 meters of the rotor height is
more than the 25 meters of the ship’s superstructure measured from deck level, which potentially is a prob-
lem with bridges during sailing. To solve this issue, it is assumed that the installed rotors are equipped with a
folding-deployment system (see Figure 5.16a). For this research, it is assumed that this folding system is only
utilized to overcome the height limitation and not in case the rotor is not operating.

It is common practice to equip a rotor with an end plate larger than the rotor itself. Research on different
rotor-end plate ratios found a beneficial ratio of 2 for high aspect ratio rotors, aligning with industry stan-
dards (Mancini et al., 2016; NSRSAIL, 2015). Thus, a 10-meter end plate diameter is selected. With the rotor
dimensions set, data is retrieved. Matlab inputs for one rotor are listed in Table 5.14, with visualization in
Figure 5.16b. Configurations are denoted as 1x Rotor H35D5 and 4x Rotor H35D5.
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Figure 5.15: Normalized propulsion force directions rotor; 0◦ = headwind, 180◦ = tailwind

(a) Rotor folding-deployment system (b) Dimensions of one rotor

Figure 5.16: Overview of chosen rotor (AnemoiMarine, 2023)

Table 5.14: Input values to generate the data file containing rotor aerodynamic coefficients and power demand

Input Value range

Relative wind angle [◦] ϕa,r el = 0 : 10 : 180
Relative wind speed [m/s] Va,r el = 0 : 3 : 30

Spin ratio [-] SR = 0 : 0.5 : 4
Rotor height [m] 35

Diameter rotor [m] 5
Diameter end plate [m] 10

The resulting rotor data file contains the generated thrust per relative wind angle and speed and the cor-
responding electric motor power demand. This data file is then integrated into the Python script to be used
as WBM. The rotor WBM, as with the models of the kite and DynaRig sail, only takes as inputs wind speed and
direction. However, two additional operational conditions are added to the model within the Python script:

1. A SR optimization step is added which investigates which SR generates the highest thrust for a given
wind speed

2. If the rotor’s power demand is higher than the reduction of the ship’s brake power, the rotor is turned
off
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The rotor model itself does not have an optimization regarding thrust and SR. This optimization is added
to the model, resulting in the following investigation: when the model receives the wind input it first iter-
ates over all the possible spin ratios in order to find the maximum possible thrust for a given SR. The maxi-
mum rotor rotation is set to 180 rpm, which corresponds to industry standards of such a rotor (Norsepower,
2023). Within this optimization, it is assumed that the electric motor is capable of handling the potential high
changes in rotor rotational speed.

The other added condition is a check between the reduction of brake power due to rotor thrust generation
and the corresponding power demand. If the power demand is higher than brake power gain (e.g., weak wind
conditions), the rotor will not be used to prevent unnecessary fuel consumption.

5.5. Conclusion on model construction
This chapter has elaborated on the construction of the digital models, along with the adopted preprocess-
ing framework that aligns with the respective model requirements. By presenting both the preprocessing
framework and model construction, RQ4 is addressed: ‘To what extent can data from bunker delivery notes be
incorporated into the selected digital models?’

Two types of data are used for the model construction: the operational data which is provided as BDNs
and ship characteristics which are provided in various PDF files. These separate data types are integrated into
a Python script and preprocessed. As a first step, the data selection takes place. Because an operating vessel
is being considered, the minimum ship speed is set to 6 knots. With this selection 43.7% of the data points
are disregarded. After the preprocessing 5,678 data points are left to be used for the model construction and
case-study. These data points represent 5,678 hours of the vessel during operational conditions in the period
of Q3 2022 to Q3 2023.

The FCM representing the ship is modeled as a GBM consisting of a resistance prediction model (white
box part) and an artificial neural network (black box part). The outcome of the resistance model is the sum
of the ship’s calm water resistance, calculated with the Holtrop and Mennen (1982) method, and the added
wind resistance, calculated according to the adopted method of Andersen (2013). Due to the lack of wave
data, the total ship resistance can’t be derived. The resistance model is verified with 6 known data points
from the vessel’s available sea trial report.

Next, this resistance sum is used as one of the 8 inputs of the ANN which gives the FCM its gray box char-
acteristic. The other seven inputs are selected through a Spearman correlation analysis and consist of the
ship’s brake power, environmental-related parameters, and route-dependent parameters found in the BDNs.
From the investigation of 209 possible configurations, with the restricting of a maximum of two hidden layers,
the most suitable network architecture resulted in a configuration of one hidden layer consisting of 16 neu-
rons. Moreover, a cross-validation is performed with three additional networks with the same architecture
but training with a different data split. Cross-validation is a common practice in machine learning to justify
that the resultant configuration is independent of a coincidentally convenient data split regarding its training
and validation data. The overall MAPE of the network is 1.9% with a standard deviation of 0.1%. This lies in
the confidence interval of 90% adopted in machine learning.

Three different WASP systems (towing kite, DynaRig sail, Flettner rotor) are modeled as WBMs. These
models only require wind data as input to predict their potential propulsion force. The available wind speed
is measured with a wind sensor at a certain height. However because the wind profile differs over height, a
wind speed conversion needs to be performed before it is used as model input.

The kite model is based on the work of Bentin et al. (2018) in which a wind energy transfer coefficient rep-
resents the aerodynamics of the kite model. Four kite configurations are selected based on found literature
and industry standards to be investigated in this research.

The DynaRig model is based on the research conducted by Bentin et al. (2018) and Reche-Vilanova et al.
(2021). Herein, the lift and drag coefficients originating from experiments conducted by Bordogna (2020) are
used because of their applicability to other ships instead of solely to the used experimental set-up. Account-
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ing for the available deck space (feasibility assessment) the resulting sail configurations are 1 sail (DynaRig
single), 2 sails with a GDR of 2.5 (DynaRig double 2.5), and 2 sails with a GDR of 4 (DynaRig double 4).

For the Flettner rotor, a surrogate model developed by Witzgall (2023) within the DT4GS project is used.
Two rotor configurations are investigated: installing 1 rotor with a height of 35 meters and a diameter of 5
meters (1x Rotor H35D5) and installing 4 of the previously mentioned rotors (4x Rotor H35D5). As with the
DynaRig sails, the feasibility assessment showed that a rotor with a diameter of 5 meters is spatially possible.

Now the models representing the ship itself and the green ship technologies are constructed. The inte-
gration of both models needs to be performed to achieve one green ship DM. The framework adopted for this
integration is presented in the next chapter.
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In order to achieve one green ship DM, the constructed models presented in Chapter 5 need to be com-
bined (red-dashed box, Figure 4.6). This chapter presents the adopted framework for this integration and
answers RQ5: ‘To what extent can the output of the digital models be integrated into one green ship DM?’ This
framework is based on the chosen data source, BDNs. The required adjustments to this framework are also
discussed in case another data source will be used.

GBMPhysical ship Digital models

WBM

Environmental

BBM

Environmental 

WBM
Physics + Wind

• Kite
• Sail
• Rotor

Retrofit design

Ref. Figure 4.6: Integration of models representing ship and WAPS systems (red-dashed box) into one green ship DM

6.1. Model integration framework
The goal of the green ship DM is to calculate the fuel consumption in case of an operating WASP. Comparing
this with the fuel consumption without a WASP results in potential fuel reduction which provides an insight
into the WASP’s environmental and financial benefits. The output of the WASP’s WBMs is propulsion force
and possible power demand. One of the inputs of the ANN in the FCM is the ship’s brake power. Thus, the
ship’s brake power including WASP force needs to be determined.

Bentin et al. (2018) also investigated the potential fuel reduction due to operating WASP systems by reduc-
ing the ship’s brake power with the WASP’s propulsion power. The authors calculate the WASP’s propulsion
power by multiplying the WASP’s propulsion force with the ship speed (Equation 6.1).

PW ASP = FW ASP ·Vs (6.1)

However, this calculation is only valid in the case that the ship is only propelled by the respective WASP
system, hence, the achieved ship speed is the result of only the WASP system. In this research the implemen-
tation of wind-assisted ship propulsion is investigated, thus the procedure of Bentin et al. (2018) can not be
used here and another method needs to be adopted.
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Instead of reducing the ship’s brake power with the WASP’s potential propulsion power, the WASP’s propul-
sion force is implemented with the propeller thrust demand in the ship’s force balance to overcome the expe-
rienced resistance. This force balance (Equation 6.2) is visualized in Figure 6.2. Using this force balance a new
working point of the propeller is derived, which is also known as the propeller-matching procedure. Vigna
and Figari (2023) have performed this matching procedure including an operating Flettner rotor in order to
derive the ship’s brake power. Even though Vigna and Figari did not consider an existing ship, their method
is applicable to this situation. The adopted integration framework will be based on this procedure.

RT = (1− t ) ·T︸ ︷︷ ︸
Without operating WASP

⇒ RT = (1− t ) ·T +FW ASP︸ ︷︷ ︸
Including operating WASP

(6.2)

Vs

FW ASP

Main engine

PB
PS

PE

TE
T

RT

Figure 6.1: Ship’s force balance including WASP represented by a green sail

The established model integration framework for this research is depicted in Figure 6.2. The output of
the WASP WBMs is firstly transformed into brake power, and next integrated into the FCM to predict the
corresponding fuel consumption. The required steps for this integration are depicted in orange and will be
discussed in the following sections. This presented framework is based on evaluating the known data from
the BDNs. Necessary adjustments to this framework for future data sets are presented in Section 6.5.

6.2. Matching
To derive the new working point of the propeller, Equation 6.2 of the force balance is rewritten to the forward
equilibrium equation including the terms of the propeller characteristics and hull demand resulting from the
required ship speed (Vigna & Figari, 2023). This results in Equation 6.3.

KT

J 2 − RT

ρsw · (1− t )(1−w)2 ·V 2
s ·D2

p
= 0︸ ︷︷ ︸

Without operating WASP

⇒ KT

J 2 − RT −FW ASP

ρsw · (1− t )(1−w)2 ·V 2
s ·D2

p
= 0︸ ︷︷ ︸

Including operating WASP

(6.3)

The first term in Equation 6.3 represents the characteristics of the installed propeller. The second term
represents the hull demand to achieve the desired ship speed Vs . To solve this equation, the total ship resis-
tance needs to be determined. Unfortunately the constructed Holtrop & Mennen model does not calculate
the total resistance RT . However, the BDNs provide sufficient data to calculate RT . By determining the ad-
vance ratio J with Equation 6.4, the propeller thrust coefficient KT can be found by interpolating the propeller
curves (Appendix D).

Next, the total resistance is calculated with Equation 6.5 using Equation 6.6 of the propeller thrust. Be-
cause the bulk carrier does not have a gearbox, the main engine rotation (ne ) from the BDNs is assumed to
be equal to the propeller rotation (np ). To verify this assumption, the total resistance is derived with this cal-
culation for the six sea trial data points, and compared with the known value of RT provided in the sea trial
report. This verification is provided in Table 6.1. As the maximum found error with this calculation is 5.0%
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Figure 6.2: Schematic overview of digital models including, the adopted model integration framework (orange), the preprocessed oper-
ational data in 5 minute scale (blue), and the data hour conversion step (purple)

(run 6), the propeller rotation assumption is deemed to be acceptable for this calculation.

J = VA

np Dp
= (1−w) ·Vs

np Dp
(6.4)

RT = (1− t )KTρsw n2
p D4

p (6.5)

T = KTρsw n2
p D4

p (6.6)

Table 6.1: Verification of total resistance calculation within integration framework with the sea trial data

Parameter Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

Vs [kts] 16.15 16.75 15.70 16.17 14.90 15.36
ne [rpm] 68.50 69.00 65.20 65.60 61.30 61.80
ηS [-] 0.99 0.99 0.99 0.99 0.99 0.99
ηR [-] 1.03 1.03 1.03 1.03 1.03 1.03

RT measured [kN] 1477.06 1417.52 1296.80 1246.72 1085.41 1036.63
RT calculated [kN] 1472.15 1419.03 1285.67 1247.00 1117.58 1088.08

∆RT [%] -0.3 +0.1 -0.9 +0.0 +3.0 +5.0

In the case of an increase of air resistance due to the windage of non-retractable masts or rotors, the resis-
tance RT is higher than the previous situation without installed rotors or masts. This additional air resistance
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is added to the derived total resistance. Next, using the propeller open water characteristics (Appendix D) the
new propeller working point is derived, which includes the values for the advance ratio J (Equation 6.4), pro-
peller thrust coefficient KT (Equation 6.6) and propeller torque coefficient KQ (Equation 6.7). These propeller
characteristics relate to each other in the open water efficiency of the respective propeller (Equation 6.8).

Q = KQρsw n2
p D5

p (6.7)

η0 = KT

KQ
· J

2π
(6.8)

6.3. Brake power calculation
With the parameters of the propeller working point known, the required brake power for that situation can be
calculated using Equation 6.9. The new propeller rotation (np ) is calculated using Equation 6.4. The relative-
rotative efficiency (ηR ) is calculated with Equation 6.10 (Holtrop & Mennen, 1982).

PB =
2πρsw D5

p n3
p KQ

ηSηGBηR
(6.9)

ηR = 0.9922−0.05908(Ae/Ao)+0.07424(CP −0.0225l cb) (6.10)

6.4. Correction factor
Because the current brake power is recorded in the BDNs, a correction factor (cf) can be calculated per data
point to improve accuracy in the power computation. This cf can be seen as a variable value for all the effi-
ciencies used in the brake power calculation (i.e., ηS ,ηGB ,ηR ). Equation 6.11 is used to calculate the cf per
data point. The calculated brake power (PB ) is derived using: the advance ratio corresponding with the pre-
viously mentioned total resistance calculation; the propeller torque coefficient which can be derived with the
advance ratio (using Equation 6.7); and finally Equation 6.9. The correction factor is then multiplied by the
ship’s brake power with operating WASP.

c f = PB (BDNs)

PB (calculated)
(6.11)

The obtained brake power is transformed into a power measure per hour, as presented in the preprocess-
ing framework. Finally, the brake power is ready to be used for the ANN to predict the ship’s fuel consumption
with operating WASP. Table 6.2 shows the cf values for the six sea trial runs in order to provide an insight into
the value range of this cf.

Table 6.2: Correction factor values of sea trial report data

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

Vs [kts] 16.15 16.75 15.70 16.17 14.90 15.36
ηS [-] 0.99 0.99 0.99 0.99 0.99 0.99
ηR [-] 1.03 1.03 1.03 1.03 1.03 1.03

PB measured [kW] 14877 15212 12726 12943 10478 10704
PB calculated [kW] 15253 15618 13170 13434 10952 11238

c f [-] 0.975 0.974 0.966 0.963 0.957 0.952

6.5. Integration adjustments for future data set
The presented integration framework is adopted with regard to the available data from the BDNs. In the
case of using data regarding sailing trips in the future, two of the presented steps need to be adjusted due
to the lack of specific data. First, the total resistance calculation used in the matching procedure can not be
performed. If additional wave data is available or a prediction of these, then the Holtrop & Mennen method
can be used to predict the necessary total ship resistance. The other adjustment is the cf calculation. This
calculation is only performed because the measured PB is available and will therefore be skipped for future
data sets.
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6.6. Case-study
With the model integration completed, the green ship DM is ready to be used for the case-study. The nine
selected WASP configurations (4x kite, 3x DynaRig, 2x rotor) will be evaluated on the operational data regard-
ing the periods Q3 2022 till Q3 2023, using the selected assessment methods presented in Section 4.5. The
feasibility assessment is already performed during the selection of WASP configurations. The results of this
evaluation are presented in the next chapter.

6.7. Conclusion on modeling integration framework
This chapter presented the integration of the FCM and WASP models, resulting in one green ship DM to be
used for the case-study and providing the answer for RQ5: ‘To what extent can the output of the digital models
be integrated into one green ship DM?’

The output of the WASP models is propulsion force and power demand if applicable. One of the inputs
of FCM is the ship’s brake power. The integration of the models is performed by transforming the WASP’s
propulsion force into the ship’s brake power in the case of an operating WASP system. This transformation is
done by adding this propulsion force into the ship’s force balance and deriving the new working point of the
propeller. This is also known as the propeller matching procedure. Vigna and Figari (2023) have performed
this procedure to derive the ship’s brake power with an operating Flettner rotor. This derived brake power
with WASP is then used as input in the FCM which predicts the fuel consumption of the bulk carrier with the
respective operating WASP system.

The steps in the adopted integration framework are based on the available BDNs. In a future situation in
which data for later predictions will be used, some alterations are required to the presented framework. The
ship’s total resistance calculation, performed in this framework, will not be valid anymore and needs to be
replaced with a prediction method. Moreover, a brake power correction calculation is disregarded in case of
future situations. This correction calculation, which can be seen as a dynamic efficiency term, can now be
performed because the brake power is recorded in the BDNs.

With the integration framework completed, the models will form the final green ship DM for the the case-
study. This is performed for the bulk carrier with the available data from the BDNs regarding the periods Q3
2022 to Q3 2023.
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Results

This chapter presents the results of the performed case-study, which drive the potential retrofit decision by
the shipowner and directly answers RQ6: ‘To what extent does the output of the green ship DM directly impact
the retrofit design?’.

7.1. Overall savings Q3 2022 - Q3 2023
With the model integration completed, the retrofit potential for the bulk carrier can be examined based on
the available data. For each WASP configuration, the monetary, fuel, and CO2 savings are calculated, over
the 5,678 sailing hours (≈ 237 sailing days). A fuel price of $618.50/mt-fuel is used in this calculation. The
results are provided in Table 7.1. The percentage reduction is applicable for all the listed savings as it is all
directly linked to the same variable: fuel consumption. The savings are calculated as the difference between
the predicted fuel consumption by the green ship DM of the bulk carrier with and without WASP. The MAPE
between the actual (BDNs) and the predicted fuel consumption (green ship DM), both without WASPs, is
0.3%. This indicates the high accuracy of the model and verifies the use of the model. By calculating the dif-
ference between both values predicted by the green ship DM, the result will lay in the same accuracy domain.
If the difference would be calculated between the actual fuel consumption recorded in the BDNs and the pre-
dicted consumption with WASP by the green ship DM, potential uncertainties regarding the used sensors are
introduced of which no information is available.

Table 7.1: Total WASP system savings during 5,678 sailing hours

WASP configuration Fuel savings [mt] $-savings [K$] CO2 savings [mt] Percentage savings [%]

Kite300 1,031 637 3,240 -12.5
Kite800 1,048 648 3,293 -12.7

Kite1280 1,070 662 3,364 -13.0
Kite2500 1,129 698 3,549 -13.7

DynaRig single 1,145 708 3,599 -13.9
DynaRig double 2.5 1,148 710 3,610 -14.0
DynaRig double 4 1,068 660 3,357 -13.0
1x Rotor H35D5 1,197 740 3,762 -14.6
4x Rotor H35D5 1,598 989 5,025 -19.4

Furthermore, Table 7.2 shows the resulting reductions per sailing hour based on the sailing conditions
between Q3 2022 and Q4 2023. The potential monetary savings per hour are required for the payback period
calculation of the financial assessment presented in Section 7.3. A first impression of the overall results shows
that the CO2 reduction potential is within the range of 12% to 20% regarding the investigated WASP config-
urations. This is in line with the literature study conducted by Bouman et al. (2017) into CO2 reduction by
green ship technologies. Comparing a single configuration of each WASP system (1 kite, 1 sail, 1 rotor), shows
that the rotor is the most beneficial to apply in terms of savings potential. The kite configurations progres-
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sively increase in saving potential with increasing kite sail area. The difference between the 2 double DynaRig
configurations is due to the smaller sail in the double 4 configuration (Section 5.4.3).

Table 7.2: Total WASP system savings per sailing hour

WASP configuration Fuel savings [kg/h] $-savings [$/h] CO2 savings [kg/h] Percentage savings [%]

Kite300 182 112 571 -12.5
Kite800 184 114 580 -12.7

Kite1280 188 117 592 -13.0
Kite2500 199 123 625 -13.7

DynaRig single 202 125 634 -13.9
DynaRig double 2.5 202 125 636 -14.0
DynaRig double 4 188 116 591 -13.0
1x Rotor H35D5 211 130 663 -14.6
4x Rotor H35D5 281 174 885 -19.4

7.2. Environmental assessment
7.2.1. EEXI
The main environmental assessment tool selected for this research is the EEXI. Through the EEXI, the ship’s
impact on the environment is assessed in terms of the ship’s design. The EEXI calculation according to the
IMO is provided in Equation 7.1.

EE X I = PME ·C f · s f cME +P AE ·CF · s f cAE −PW ASP ·CF · s f cME

fi · fc · fl · fw · fm ·DW T ·Vr e f
(7.1)

Here the main engine specifications at 75% MCR (PME and s f cME ) and fuel conversion factor (C f ) are
provided by the available engine reports of the bulk carrier. There are no auxiliary engine specifications avail-
able. These are calculated in accordance with the guidelines provided by the IMO (2022b). The ship’s refer-
ence speed is obtained from the available speed-power curve, at 75% MCR draught condition. The correction
factors fi till fm are all set to 1 because these are not applicable for the used bulk carrier (IMO, 2022b). The
values of the mentioned parameters are listed in Table 7.3.

Table 7.3: Parameters used for the EEXI calculation

Parameter Value

PME [kW] 11,467
C f [mt-CO2/mt-fuel] 3.114

s f cME [g/kWh] 162.56
P AE [kW] 631.25

s f cAE [g/kWh] 255.4
DW T [mt] 209,472
Vr e f [kts] 14.20

The power reduction due to an operating WASP (PW ASP ) is calculated with Equation 4.3, according to
the procedure presented in Section 4.5.1. The global wind probability matrix provided by the IMO (2021) is
used for this calculation. Examining the sailing route of the bulk carrier during the period Q3 2022 - Q3 2023
showed that the vessel had sailed approximately 90% on the same shipping routes on which the wind matrix
is based (Figure 4.8). This indicates that this wind prediction method has sufficient accuracy regarding this
ship’s operational area. The ship’s current, required, and resulting EEXI values per investigated WASP config-
uration are provided in Table 7.4.

All the investigated WASP configurations decrease the ship’s EEXI value as suspected and consequently
comply with the required EEXI value. Moreover, as with the overall results in Section 7.1 installing a rotor
results in the highest CO2 reduction. The 4x Rotor H35D5 configuration is simply a factor 4 environmental
beneficial in terms of design potential, as the result of Equation 4.3.
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Table 7.4: New EEXI value per installed WASP configuration

WASP configuration EEXI [g/(mt-nm)] Reduction [%]

Required value (max) 2.370 -
No WASP (current) 2.120 -

Kite300 2.112 -0.4
Kite800 2.101 -0.9

Kite1280 2.085 -1.6
Kite2500 2.044 -3.6

DynaRig single 2.054 -3.1
DynaRig double 2.5 2.052 -3.2
DynaRig double 4 2.095 -1.2
1x Rotor H35D5 2.029 -4.3
4x Rotor H35D5 1.754 -17.2

7.2.2. CII
The ship’s operational aspect is evaluated by calculating the corresponding CII. The traveled distance and
total fuel consumption during the selected 11 months are listed in Table 7.5. As mentioned in Section 4.5 this
will not be the official CII value as it is required to use a whole calendar year for that calculation. Nevertheless,
this CII calculation provides a useful indication of the vessel’s operational impact. The required CII values in-
cluding the rating for the years 2023, 2024, and 2025 corresponding to the used bulk carrier are depicted in
Figure 7.1.

Table 7.5: Sailing distance and predicted fuel consumption (without WASP system) per period for CII calculation

Period Distance travelled [nm] Fuel consumption [liters]

Q3 2022 12,447 2,591,950
Q4 2022 18,597 3,161,470
Q1 2023 8,601 1,490,790
Q2 2023 10,295 1,799,420

"E" Rating

2.607

2.552

2.497 "D" Rating

2.342

2.292

2.243 "C" Rating

2.077

2.033

1.989 "B" Rating

1.900

1.860

1.820 "A" Rating

Required CII

2023 2024 2025

Figure 7.1: Attained CII values of the investigated bulk carrier; required CII values for 2023, 2024, and 2025 are respectively 2.212, 2.166,
2.119

For the calculations of the attained CII per installed WASP configuration, a fuel oil density of 0.8352 g/cm3

is used. The fuel consumption is predicted with the constructed green ship DM. The results are provided in
Table 7.6, including color labeling per CII corresponding to its rating for the year 2023.
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The bulk carrier is currently above the required CII, in the C-rating. All the WASP configurations bring the
bulk carrier in the B-rating regarding the year 2023, whereas both rotor configurations also comply with the
B-rating regarding the year 2024 and 4x Rotor H35D5 extend B-compliance for the year 2025.

Table 7.6: CII approximation per WASP configuration of 11 months during Q3 2022 - Q2 2023

WASP configuration Attained CII [g/(mt-nm)]

Required (2023) 2.212
No WASP 2.248
Kite300 2.059 (-8.4%)
Kite800 2.056 (-8.6%)

Kite1280 2.051 (-8.8%)
Kite2500 2.039 (-9.3%)

DynaRig single 2.035 (-9.5%)
DynaRig double 2.5 2.035 (-9.5%)
DynaRig double 4 2.052 (-8.8%)
1x Rotor H35D5 2.020 (-10.2%)
4x Rotor H35D5 1.931 (-14.1%)

7.3. Financial assessment
Lastly, the financial assessment is performed by calculating the payback period per WASP configuration. Each
financial parameter in the payback period calculation (Equation 4.4) will be discussed next before the pay-
back period per configuration is determined.

A: $-saving per sailing hour by WASP
The $-savings per hour is the driving parameter of the payback period. This saving directly determines how fi-
nancially beneficial the respective system is. The $-savings per hour of each investigated WASP configuration
are provided in Table 7.2, based on the BDNs.

B: Purchase & installation
For the purchase and installation costs, the estimations provided by GloMEEP (2019) are used. Besides in-
formation on energy-efficient measures for global shipping, GloMEEP also provides reliable estimations of
purchase and installation costs of WASP systems (i.e., kite, sails, and rotors). Table 7.7 shows the estimation
costs for a towing kite.

Table 7.7: Purchase costs estimation towing kite (GloMEEP, 2019)

Kite sail area [m2] Costs [K$]

160 280
320 480
640 920

1,280 1,755
2,500 2,590

The estimation of implementation costs for DynaRig sails (fixed sails) is $170,000 to $300,000 per installed
mast. Thus, for the DynaRig single configuration the costs are between $170,000 and $300,000, and for the
DynaRig double 2.5 and DynaRig double 4 the costs are between $340,000 and $600,000.

The estimation of implementation costs for rotors is $400,000 to $950,000 per installed rotor. Because
the biggest rotor dimensions currently available are used for this research, the costs are estimated in the
higher range from GloMEEP (2019). Thus for one rotor: $700,000 to $950,000, and for 4 rotors: $2,800,000 to
$3,600,000.
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C: Out of service costs & dry docking
Unfortunately, no evident information or estimations are available online for the costs regarding taking the
ship out of service for retrofitting and dry docking. This is mainly due to the fact shipping companies and
maintenance docks only provide such information through a direct offer. Consequently, this expense will not
be taken into account in the payback period calculation of this research. However, it does not mean it can be
neglected when considering WASP installation.

D: Operational & maintenance costs
The costs regarding operations and maintenance of the respective WASP system are in general provided by
the manufacturer. For this research, these costs are estimated to be annually at 2% of the WASP installation
costs, which is in line with research conducted by van der Kolk et al. (2019) who did a technological and
economical assessment of WASP systems for transport vessels.

Payback period
Next, the payback period (P), without costs ’C’, per WASP configuration can be calculated, based on the op-
erational data. The results in different time scales are provided in Table 7.8, in which the time is considered
as the vessel in operational condition (i.e., minimal ship speed of 6 knots). To obtain the total payback pe-
riod accounting for all, one must include the term C

A to the provided payback period results with their known
value for ’C’.

Table 7.8: Payback period (P) of WASP configurations expressed in operating time, without costs ’C’

WASP configuration P [hrs] P [days] P [years]

Kite300 4,091 170 0.5
Kite800 10,121 422 1.2

Kite1280 15,596 650 1.8
Kite2500 22,128 922 2.5

DynaRig single 1,368 ∼ 2,419 57 ∼ 101 0.2 ∼ 0.3
DynaRig double 2.5 2,735 ∼ 4,850 114 ∼ 202 0.3 ∼ 0.6
DynaRig double 4 2,943 ∼ 5,220 123 ∼ 218 0.3 ∼ 0.6
1x Rotor H35D5 5,437 ∼ 7,411 227 ∼ 309 0.6 ∼ 0.8
4x Rotor H35D5 16,696 ∼ 21,702 696 ∼ 904 1.9 ∼ 2.5

The resulting payback periods show that both Kite2500 and 4x Rotor H35D5 take the longest time to be
financially profitable. The DynaRig configurations are on average the best option in terms of payback period.

7.4. Conclusion on case-study results
The results of the performed bulk carrier case-study are presented in this chapter. These results represent the
required information identified for a possible retrofit design, and aim to answer RQ6: ‘To what extent does the
output of the green ship DM directly impact the retrofit design?’

The fuel savings per WASP configuration are predicted with the green ship DM over the selected periods.
The range of saving potential is between 12% and 20%, with the 4x Rotor H35D5 configuration showing to
have the highest reduction potential. The four kite configurations progressively increase in saving poten-
tial logically with increasing kite area. The DynaRig sail configuration with the same dimensions (DynaRig
single and DynaRig double 2.5) both show similar reduction results. The lower reduction potential of the
DynaRig double 4 is due to its smaller sail dimensions. The fuel difference is calculated with the green ship
DM for both the situations with and without installed WASP configuration. The MAPE between the predicted
fuel consumption without WASP (by the green ship DM) and the actual fuel consumption without WASP (by
BDNs) is 0.3% indicating the high accuracy of the model and verifying its use.

The environmental assessment of the green ship DM is performed with the EEXI and CII. For all the inves-
tigated WASP configurations the bulk carrier’s EEXI value is reduced. This reduction represents the estimated
design CO2 emissions per transported tonne over a nautical mile. The 4x Rotor H35D5 resulted in the highest
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estimated design emission reduction. This is also noticed with the CII calculation. Under the current cir-
cumstances (based on 11 months of operational data) the 4x Rotor H35D5 brings the bulk carrier in the CII
B-rating for years 2023 to 2025. For solely the year 2023, all the investigated WASP configurations result in a
B-rating, indicating the ship’s compliance regarding its environmental impact due to operations.

Additionally, a financial assessment is performed. The payback period per WASP configuration is derived
to provide a time-related indication for a potential retrofit. For this calculation, the overall $-savings result
during the investigated period is divided by the total number of operation hours, resulting in a $-savings
per operating hour per WASP configuration. Together with estimations of retrofit-related costs, the payback
period is calculated. Even though not all costs are known, the first estimation showed that on average the
DynaRig configurations are the best option in financial terms. The Kite2500 and 4x Rotor H35D5 have the
longest payback period.

In conclusion, both the environmental and financial impact per WASP configuration regarding the bulk
carrier are investigated. These assessments drive the potential retrofit decision by the ship owner. The en-
vironmental assessment showed that installing the 4x Rotor H35D5 will lead to the highest CO2 reduction
in both a design and operational view. Nevertheless, this is also the configuration with the highest payback
time. Moreover, the DynaRig configurations are on average the most financially attractive, without taking
into account dry-docking and out-of-service costs. The final decision will depend on the requirements set by
the ship owner.



8
Conclusions

This research proposed and investigated the use of a data-driven design method for ship retrofit modeling to
reduce CO2 emissions. WASP models are evaluated with adopted environmental assessment tools together
with a financial assessment. The conclusions of this research are presented in this chapter. First, the answers
to the six research questions supporting the main objective are presented, as stated in Chapter 1. Next, the
conclusion of the main research objective is provided.

8.1. Conclusions on research questions
8.1.1. RQ1: What is the state-of-the-art in data-driven ship design for green ships?
Green ship design refers to the goal of designing environmentally friendly ships while maintaining safe op-
erational conditions. The design of green ships introduces new risks in terms of safety and logistics, com-
pared to traditional ship design. Therefore, newly developed design techniques are required to mitigate these
potential risks. With its capabilities of handling big data together with complex simulation characteristics,
DT-supported design is identified as a favorable method for green ship design.

A literature investigation showed that scientific research into maritime DT applications is currently in the
early stages of development. Only conceptual DTs or DTs covering a vessel’s subsystem are found regarding
new-build ships. Furthermore, publications of DT applications for retrofit design are not available. A re-
search gap of DT-supported design for both new-build ships and retrofitting is identified. The potential for
retrofitting is investigated in this research.

8.1.2. RQ2: Which steps are involved in constructing a DT for retrofit design?
To correctly answer this question the definition of a DT needs to be defined clearly. A DT consists of a physical
and virtual product connected through a two-way automated data flow. The steps involved in constructing a
DT for retrofit are identified as the following:

1. Determining the DT objective. By formulating its objective, the overlap between the required and fea-
sible digital models can be identified. These models depend on respectively the objective and the avail-
able data on which the models will be based.

2. Establish the data acquisition system. This determines the availability and quality of the data. Re-
garding a DT, utilizing operational data acquisition systems, such as IMO’s DCS, is considered to be
convenient as it provides a solid source of operational data during the ship’s whole lifetime.

3. Adopt a data preprocessing framework. Applying techniques, such as feature selection and noise iden-
tification will result in high-quality data in the right format to be used for model construction.

4. Selection modeling approaches. There are various ways to construct virtual models depending on the
data amount and the objective. Regarding data science in general, the three main approaches are BBM,
WBM, and GBM. A trade-off should guide the choice between these options.
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5. Perform model training. In the case of statistical-based models (BBM or GBM), model training is re-
quired to calibrate and achieve acceptable accuracy.

6. Verify and validate (V&V) the virtual models. Performing a V&V-procedure, the accuracy, and conse-
quently, the reliability of the total system is ensured. This can be done through a case-study or by
applying model tests.

7. Integration of the virtual part with the physical part. After this step, the virtual and physical parts are
directly linked and represent each other. Following the adopted DT definition, the result of this inte-
gration is the DT.

8.1.3. RQ3: What is the most suitable green ship digital model using bunker delivery
notes for CO2 reduction?

The final green ship digital model is composed of a model part representing the ship, and a model part repre-
senting the green ship technology. The model(s) within these parts depend on the available data. This results
in a FCM representing the ship, and three types of WASP models representing the green ship technology part.

Literature showed the available data in the BDNs is feasible to construct a ship resistance model and an
ANN, respectively characterized as a WBM and a BBM. Combining both models results in one gray box FCM.
The three WASP systems (towing kite, DynaRig sail, and Flettner rotor) are modeled as WBMs using the avail-
able wind data in the BDNs.

The evaluation of the CO2 emission reduction by these WASP systems will be performed using environ-
mental assessment tools adopted by the IMO. This assessment involves the design and operational CO2 emis-
sions.

8.1.4. RQ4: To what extent can data from bunker delivery notes be incorporated into the
selected digital models?

A preprocessing framework is adopted regarding the BDNs. This framework is the result of investigating the
data requirements of the chosen digital models. The main identified driver of the resulting data is the data
selection. As the environmental assessment is linked to the ship in operational conditions, the ship speed
is set to a minimum speed. In this research the minimum speed is set to 6 knots, consequently eliminating
more than 40% of the data in the BDNs.

Ship characteristics and environmental data are integrated into the selected resistance model, the white
box part within the FCM. These data types are presented in the accepted procedures on which the resistance
model is based. The output of this model is used as one of the inputs of the ANN, providing the gray box
characteristic of the FCM.

A Spearman correlation analysis including chosen criteria is used to identify data types within the BDNs
that are strongly linked to the fuel consumption of the ship’s main engine. The identified data types are
selected as inputs for the ANN, the black box part within the FCM. The output of the total FCM is fuel con-
sumption per hour.

The three WASP models only require wind data to determine the potential propulsion force generated
by the WASP system. The wind speed in the BDNs is recorded by a wind sensor at a certain height. Due to
the varying wind profile over height, this speed needs to be converted with regard to the effective height of
the respective WASP system. This conversion is performed for each system before the propulsion force is
calculated.

8.1.5. RQ5: To what extent can the output of the digital models be integrated into one
green ship DM?

The constructed WASP models provide a propulsion force of the respective operating WASP system. One of
the inputs of FCM is the ship’s brake power. To combine both models into one green ship DM, the WASP’s
propulsion force is transformed into a new ship’s brake power by integrating this force into the ship’s force
balance. Herein the propeller’s new working point is derived via the propeller-engine matching procedure,
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resulting in the new ship’s brake power. This new brake power is used as input into the FCM. With this integra-
tion, the green ship DM is constructed with which the fuel consumption per operating WASP configuration
can be predicted.

The adopted integration framework is based on the available data in the BDNs. Some calculations within
the framework depend on specific data. When the green ship DM is used with data originating from other
sources, some steps need to be alternated. This indicates that the integration is flexible when treated carefully.

8.1.6. RQ6: To what extent does the output of the green ship DM directly impact the
retrofit design?

With the green ship DM, the saving potential per WASP configuration can be evaluated during the selected
period. This indicates the environmental and financial benefits in terms of CO2 emissions and fuel costs of
this period.

The environmental assessment tools EEXI and CII represent respectively the ship’s estimated design and
operational environmental impact. Evaluating the EEXI and CII reduction as a result of a certain WASP con-
figuration provides the environmental justification for a retrofit design. Moreover, as the CII is a yearly evalu-
ation of the ship’s performance, the final DT can provide continuous operational evaluation.

The financial assessment per WASP configuration through the green ship DM provides insight into the
payback period of the system. This payback period is based on the potential $-savings per configuration.
Together with the environmental benefits, the ship owner can decide if a certain retrofit is environmentally
necessary and financially beneficial. Such a choice can be made through a trade-off with this information.

8.2. Conclusion on main objective
The main objective of this research was:

“To what extent can available operational ship data be used to improve future green ship design by reducing
CO2 emissions?”

Incorporating operational data into ship design resulted in the investigation of a DT-supported design
method. The beneficial characteristics of a DT are its capability to handle large amounts of data and perform
virtual simulations. The risks introduced by environmentally friendly ship design can be reduced by applying
such a data-driven method. Within the field of green ship technologies to reduce CO2 emissions, WASP sys-
tems are evaluated for DT design. With the lifetime ability of a DT, operational data collected by an already
mandatory data acquisition system is selected as the data source for the modeling construction. The selected
source is the IMO’s BDNs which provide HF operational data and have proven to be feasible for modeling
construction. A green ship DM is constructed which incorporates ship characteristics, route-dependent, and
environmental data to predict the fuel consumption with an operating WASP system. The fuel consump-
tion can be compared to the situation without an installed WASP system, resulting in potential CO2 emission
reduction (environmental) and its payback period (financial). Together with adopted environmental assess-
ment tools by the IMO using the constructed green ship DM, enables the ship owner to make a trade-off for a
potential retrofit design.





9
Discussion & recommendations

In this chapter, the adopted methodology and recommendations are discussed. First, the contribution to
scientific research is presented, highlighting the novelties within the work. This is followed by an evaluation
of the methodology and choice of data source. Additionally, assumptions and necessary changes concerning
the transformation towards a DT for operational use are provided. Lastly, the author’s vision of developing a
DT for new-build design using retrofit DTs is presented.

9.1. Scientific contribution
In this research, a DT-supported method has been selected with a chosen data source to investigate envi-
ronmentally friendly ship design. The performed literature investigation identified a literature gap for both
new-build DTs and retrofit DTs. Together with the available data and personal vision of the design DT devel-
opment (Section 9.5), a DT for retrofit design is selected for this research. As identified by Mauro and Kana
(2023) computer models are often falsely labeled as Digital Twins. In order to prevent contributing to this
error in nomenclature, this research strictly followed the DT definitions by Kritzinger et al. (2018) and Grieves
(2014), to identify the steps toward the development of a DT-supported retrofit design (Figure 3.9). Follow-
ing this definition resulted in the construction of a green ship DM which supports the DT for retrofit purposes.

The first proposed step in constructing this green ship DM is to find the overlap in models regarding the
objective and available data (Figure 4.2). The objective is to reduce CO2 emissions which led to the IMO’s
environmental assessment tools EEXI and CII. The BDNs fulfilled the role of the available operational data.
The BDNs are one of the mandatory IMO’s DCS methods, that have not been used for research purposes yet,
only for the ship’s yearly mandatory CII calculation. By proving BDNs as a feasible data source for DTs, an
incoming HF data flow consisting of operational ship data is guaranteed. The proposed framework for con-
structing a green ship DM for retrofit design (Figure 4.9) consists of constructing a model representing a ship
and one representing the green ship part that is integrated into one green ship DM (Figure 4.3). This DM can
predict the ship’s fuel consumption with an operating WASP system using route-dependent and environmen-
tal data. By linking this output with the selected tools EEXI & CII, together with a financial assessment, advice
for possible retrofit design is provided.

9.2. Methodology evaluation
9.2.1. Modeling framework evaluation
During the data preprocessing filtering stage, no interpolations were performed for invalid data points. This
resulted in 5.2% of the data points being disregarded due to noise identification in this data set. Moreover,
a time conversion was performed on the data, transforming the respective points from a sampling time of 5
minutes into 1 hour. Also, no interpolation was implemented in the case that an hour is incomplete. This
resulted in a data loss of 1.1%. Even though in both cases the data loss is a fraction of the total amount, inter-
polation can help prevent unnecessary loss.
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For the hour conversion of the feature ‘wind direction’, a weighted average was taken over the respective
hour. This wind direction is only used as input for the ANN, not for the WASP models. But no one-truth is
found to correctly average the wind direction over a given time.

The focus of this research lies in the integration of operational data into a retrofit design. The constructed
WASP models are at a high level. For example, the aerodynamics in the towing kite model are approximated
by only one value; the wind energy transfer efficiency ϵ. To get more accurate predictions of the WASP sys-
tem’s propulsion force, more refined WASP models should be used.

One of the foremost assumptions within this research is regarding the fuel consumption prediction by the
green ship DM with an operating WASP system. The FCM is validated with high accuracy for known sailing
conditions regarding given inputs. One of these inputs is the ship’s brake power. During the case-study only
the value for the brake power is changed to investigate the influence of an installed WASP system, assuming
that the resulting fuel consumption corresponds to that situation. To correctly verify this assumption, model
or full-scale tests need to be executed including installing the respective WASP system. Only in this way, the
verification loop of the proposed method can be closed. Additionally, by conducting these verification tests,
the extrapolation capabilities of the presented method are investigated.

9.2.2. BDNs evaluation
The bunker delivery notes as a data source have proven to be feasible for the selected modeling construction.
The numerous amount of data points regarding route-dependent and environmental information are used
for the fuel prediction. Nevertheless, no information is available about the method and quality of the sensors
used for the data collection. Without having this information, no certainty can be provided about the poten-
tial errors within these values due to sensor sensibility or recording method.

Despite the many different recorded data types, no data regarding waves, trim, and draft were available.
By incorporating these types of data within the constructed resistance model, a more reliable estimation of
the ship’s resistance, and even the total resistance can be determined. The water depth, which can be used in
speed loss due to shallow water effects (Fan et al., 2020) is present in the BDNs but incomplete and consists
of multiple anomalies. Therefore, it is disregarded in this research.

Moreover, data from one month (March 2023) is missing, which is probably the result of human error.
Unfortunately, this resulted in an incomplete calculation for the CII using 11 months, instead of the required
12 consecutive months.

9.2.3. Assessment evaluation
Two environmental assessment tools by the IMO were in this research: the EEXI and the CII. The EEXI is cal-
culated following its procedure. Because the current EEXI value of the bulk carrier is known, the calculation
could be verified. By using the EEXI, an acceptable and mandatory evaluation of the ship’s environmental
impact is provided in terms of ship design. One of the reasons for using the EEXI in this research is its focus
on CO2 reduction through design, making it a logical choice as a measure linked to design. Moreover, by
adopting an international mandatory measure, the compliance of the retrofit is highly acceptable.

Due to the aforementioned missing data of one month, only an incomplete prediction of the CII can
be provided instead of performing the actual calculation. The CII calculation is sensitive to minor changes
in its parameters which indicates that more accurate values for distance and fuel conversion, together with
information about the sensors would improve the reliability of the derived CII value. Additionally, since no
values from previous years or calculations are available, verification cannot be performed. Nevertheless,
by demonstrating the feasibility of the calculation with the proposed framework, the resulting DT is future-
proofed, given that the BDNs will be collected throughout the vessel’s entire lifetime.

9.3. Data changes when using future data set
The presented design approach is based on the available data set and also evaluates the vessel during that pe-
riod. With the simulation performance ability, and convenience of DT to be of use during the whole lifetime,
data sets containing information for future situations will be used after retrofitting. The changes in certain
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calculations within the model integration, associated with applying this new data set, are already discussed
in section 6.5, covering the ship’s total resistance and brake power. Other recommendations for future state
data sets and the determination of required data types are provided in the next sections.

9.3.1. Environmental data
A good estimation of the wind direction and speed is crucial for the DT as it covers the installation of WASP
systems. It is used to determine the WASP system’s propulsion force and therefore the prediction of the ship’s
fuel consumption. The IMO’s global wind probability matrix can be used in the case that the next route is
still unknown and a first prediction is requested. A recent report by EMSA (2023) showed that when a wind
probability matrix is used based on the intended sailing route, a difference in EEXI value of more than 10%
is found for the respective vessel. This indicates the higher prediction accuracy when using more detailed
wind models. From the selected wind probability density matrix a probability density function can be de-
rived which can be used for prediction.

The speed difference and temperature of seawater can utilize currently known data to derive the proba-
bility density function. Subsequently, a Monte Carlo simulation can be used to construct the dataset. This
method is described and successfully executed in the work of Fan et al. (2020) to construct a data set with
environmental data linked to a selected shipping route. The data of both these parameters can also first be
categorized per sailing route before the probability density is derived, to increase prediction accuracy.

9.3.2. Route-dependent data
The ship’s speed and rudder angle are both route-dependent parameters, which result from the ship owner.
By selecting a sailing route including a (maximum) sailing time, the ship’s heading and speed are determined.

9.4. Recommendations - future work
This section presents the recommendations for future work.

In this research, no interaction effects between the WASP system and the ship itself are taken into ac-
count. Even though these effects are ignored in the IMO’s calculation for the EEXI with WASP (IMO, 2021) as
considered to be of significance only during unsafe operations, they are not to be neglected when considering
the installation of a WASP system. Examples of such effects are:

• Change in center of gravity. Thies and Ringsberg (2023) showed the influence of the longitudinal posi-
tion of the WASP systems on the potential power reduction resulting in differences up to 4%.

• Induced trimming moment due to WASP, resulting in changes of the aero-hydrodynamic performance
of the vessel and influences the WASP lift and drag coefficients (Smith et al., 2013).

• Heel angle due to WASP which influences the ship’s course-keeping ability. In the last decade, a new
type of rudder has been developed that improves the ship’s maneuvering capabilities; the gate rudder
(Stark et al., 2022). As depicted in Figure 9.1, this rudder is composed of two rudder blades located aside
from the propeller. Originally designed as an ESD that generates underwater lift, the gate rudder also
compensates for the induced heel angle and reduces the ship’s leeway (IMO, 2023c).

It is proposed that the installation of a gearbox or controllable pitch propeller is necessary due to the fluc-
tuating nature of propulsion force by the wind. Because the wind is not constantly acting at the same speed
in the same direction, the propeller power demand will also fluctuate if a constant ship speed is desired. It is
believed that a gearbox or a CPP could mitigate the power fluctuations endured by the main engine.

Besides the necessary changes in the data set as discussed in the previous section, other implementations
are identified with regard to the transformation towards an operational applicable DT:

• Applying route optimization for the most beneficial wind propulsion is a convenient next field to in-
vestigate to transform the resulting design DT for operational use. Bentin et al. (2018) showed that the
shortest sailing route is not necessarily the most efficient one when considering wind propulsion.
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Figure 9.1: Gate rudder design by Wartsila (2020)

• Incorporating maintenance data, such as propeller and hull cleaning, to extend the DT operational
performance by taking into account the performance degradation as a result of maintenance checks.

• Besides the CII measure, the EEOI calculation can be integrated to assess specific future routes or trips.

Moreover, the presented method is focused on the model integration of ship and green ship technologies
(WASP systems), providing results linked to a potential retrofit decision. Another perspective could be to
construct a similar framework that optimizes for the specific WASP systems and the respective dimensions.
With a selected environmental or financial objective, the output could potentially provide the corresponding
dimensions for a given WASP system.

9.5. Proposed DT design framework, from retrofit to new-builds
It is a complex task to compose a DT for a new-build vessel because there is no data reference data available
in order to construct and train the respective DT. As previously mentioned in Section 2.5.1 at this moment
only theoretical frameworks for new-build designs are available (Sapkota et al., 2021; Xiao et al., 2022). DTs
that support the operational phase of a vessel have been researched more extensively. During this phase,
operational data is collected from that ship and used with the DT to improve future operations. It is sug-
gested that this operational data also can be used to identify design improvements for the respective vessel
which can result in design decisions for a potential retrofit operation. A design methodology applying a DT
for retrofitting is proposed by the author which is believed to form a basis for a DT design model of new build
vessels. A visual representation of the proposed methodology is depicted in Figure 9.2.

Reasoning for this proposed method: it is possible to retrieve operational data of a particular vessel that
is functioning as a living lab (bulk carrier X-1), by using onboard installed sensors (IoT). With this data, a DT
of that vessel can be composed and trained to achieve the required accuracy. Now with a DT of bulk carrier
X-1 at an acceptable level, design improvements of this vessel can be investigated through simulations per-
formed which can lead to a new version of the respective DT (following adopted definition: DM of bulk carrier
X-1.v2). If the output of this improved DM has proven to achieve the desired retrofitting goals then it can be
used for the retrofit design for bulk carrier X-1 to X-1.v2. After the retrofitting the DM represents the respec-
tive ship and becomes the DT of bulk carrier X-1.v2 (following DT definition). This DT can be standardized
into a DT of the vessel series (DT of bulk carriers X-series). With further standardization of the X-series DT, a
DT for the general vessel type (in this case bulk carriers) can be created.

Whereas retrofitting was at the start of the DT application, the shift goes towards new-build by using the
knowledge from the first retrofit DT (bulk carrier X-1) as a basis. With the acceptable and validated DT of the
general ship type (DT bulk carrier), a new build series of that ship type (bulk carriers Y-series) can be con-
structed using the DT, or with another standardization step a general DT for a ship can be made (DT vessel)
that can be the basis for new build ships of other types (e.g. oil tankers).

The previously mentioned steps are depicted as a block scheme in Figure 9.3, where the red-dashed box
indicates where the proposed DT for retrofitting of Section 3.8 fits into this story, and on which part of this
vision this thesis has been working on.
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A
Available operational data bulk carrier

• DateTimeStamp: Date and time of recorded data.

• ME_REV_COUNTER: Main Engine Revolution Counter.

• ME_RPM: Main Engine RPM.

• ME_RPM_TM: Main Engine RPM torque meter.

• RPM DIFF: Difference in RPM values.

• MCR %: Percentage of Maximum Continuous Rating for the engine.

• FUEL_PUMP_INDEX: Index related to fuel pump operations.

• SHAFT_PWR: Shaft power.

• TORQUE: Torque produced by the engine.

• TINJ: Fuel oil temperature as injected in the engine.

• FO_VISCOSITY: Fuel Oil Viscosity.

• FO_VISCOSITY_2: Fuel Oil viscosity additional data source.

• HEADING_GYRO: Ship’s heading using gyroscopic instrumentation.

• RUDDER_ANGLE_INDICATOR: Angle indicator for the ship’s rudder position.

• RUDDER_ROT: Rudder rate of turn.

• WIND_DIR: Wind direction.

• WIND_TRUE_OR_RELATIVE: True or relative wind direction.

• WIND_SPEED: Wind speed.

• SoG: Speed Over Ground.

• SPEED_THROUGH_WATER: Speed of the ship through the water.

• SPEED_DIFF: Speed difference.

• WATER_DEPTH: Depth of the water.

• TC_1_RPM: RPM of m/e turbocharger No1.

• TC_2_RPM: RPM of m/e turbocharger No2.
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• PWR_G1, PWR_G2, PWR_G3: Power generated by Diesel Generators G1, G2, and G3.

• DG_PWR_TOTAL: Total power generated by all Diesel Generators.

• FM_COUNTER_ME_GE_FO_IN_FLOW: Fuel meter counter for total Fuel Oil supplied to the Main En-
gine and Diesel generators.

• FM_COUNTER_GE_FO_IN_FLOW: Fuel meter counter for Gas Engine Fuel Oil Inflow.

• FM_COUNTER_GE_FO_OUT_FLOW: Fuel meter counter for Gas Engine Fuel Oil Outflow.

• DG_Fuel, ME_Fuel: Fuel consumption for Diesel Generators and Main Engine.

• ME_SFOC, DG_SFOC: Specific Fuel Oil Consumption for Main Engine and Diesel Generators.

• TOTAL_DG_PWR: Total power generated by Diesel Generators.

• T_IN_ME_GE_FO_FLOW, T_IN_ME_GE_MGO_FLOW: Fuel temperature measurements for Main En-
gine Fuel Oil Flow and Diesel Generator MGO Flow.

• T_IN_ME_FO_LOW: Temperature measurement for Main Engine Fuel Oil Low.

• T_FO_SERV, T_FO_SETT: Fuel Oil temperatures in Service and settling tanks.

• TCL_C_01, TCL_C_02, ... , TCL_C_06: Cooling water temperature of each cylinder unit.

• TBTB_TC_01, TBTB_TC_02: Temperature before turbo blower for T/C No1 and No2.

• TATB_TC_01, TATB_TC_02: Temperature after turbo blower for T/C No1 and No2.

• T_ER: Engine room ambient temperature.

• SCAV_PRESS, SCAV_TEMP: Scavenge air pressure and temperature.

• T_IN_AC_01, T_IN_AC_02, T_OUT_AC_01, T_OUT_AC_02: Inlet and Outlet temperatures of air cooler
No1 and No2.

• T_IN_GE_DO_FLOW: Temperature measurement for Diesel Generator Diesel Oil Flow.

• TCW_IN_AC_01, TCW_OUT_AC_01, TCW_OUT_AC_02: Temperature measurements for Cooling Wa-
ter.

• TSW_IN: Temperature of Seawater Inlet.

• TEMPERATURE_ME_THRUST_PAD: Temperature of Main Engine Thrust Pad.

• TEMPERATURE_STERN_TUBE_BRG, TEMPERATURE_STERN_TUBE_BRG_P: Temperatures of Stern Tube
Bearings.

• TEMPERATURE_INTERM_SHAFT_BRG_1: Temperature of Intermediate Shaft Bearing 1.

• T_IN_ME_CO_FLOW: Temperature measurement for Main Engine Cylinder Oil Flow.

• TBTB_G1_1-3, TBTB_G1_4-6, ... , TBTB_G3_1-3, TBTB_G3_4-6: Temperature before turbo blower of
diesel generator No1 (cylinder units 1,2,3 and units 4,5,6). Same for each D/G.

• TATB_G1, TATB_G2, TATB_G3: Temperature after turbo blower of diesel generator No1 (cylinder units
1,2,3 and units 4,5,6). Same for each D/G.

• TCL_C_01_G1, ... , TCL_C_06_G3: Cooling water Temperature of diesel generators 1,2,3.

• T_FW_LT: Temperature of Fresh Water Low Temperature cooling system.

• FM_BO_IN_FLOW: Fuel meter reading for Boiler Oil Inflow.

• LONG_DEGREES, LONG_MINUTES, LONG_LETTER: Longitude coordinates.
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• LAT_DEGREES, LAT_MINUTES, LAT_LETTER: Latitude coordinates.

• SPEED_TRANSVERSE_TW_LOG, SPEED_OVER_GROUND_LOG: Transverse speed through water indi-
cated on speed log, speed over-ground indicated on speed log.

• RUN_HR001, RUN_HR002: Running hours data for specific components.





B
Holtrop & Mennen method

The frictional resistance is calculated according to the ITTC-1957 friction formula:

RF = 0.5C f ρsw SV 2
s (B.1)

The parameters in this equation are the frictional resistance coefficient C f , sea water density ρsw , wetted hull
surface area S and the ship speed Vs . The C f is calculated with the respective Reynolds number Rn :

C f =
0.075

(log10(Rn)−2)2 (B.2)

Where Rn is calculated with Equation B.3, including an interpolation for the kinematic viscosity (ν) of the
seawater depending on the seawater temperature using the seawater properties tables provided by the ITTC
(2011).

Rn = Vs Loa

ν(Tsw )
(B.3)

The hull form factor (1+k1) is derived with Equation B.4:

(1+k1) = c13{0.93+ c12(B/LR )0.92497 · (0.95−CP )−0.521448 · (1−CP +0.0225lcb)0.6906} (B.4)

The longitudinal center of buoyancy lcb, is derived from the available trim tables of the ship depending on
the loading condition during sailing. LR represents the length of a run and is determined with Equation B.5:

LR = Loa ·
(

1−CP +0.06CP l cb

4CP −1

)
(B.5)

Where CP is the ship’s prismatic coefficient. For the resistance of the appendages, only the rudder is taken
into account. RAPP is calculated with Equation B.6:

RAPP = 0.5ρsw V 2
s S APP (1+k2)C f (B.6)

The rudder surface area S APP is derived from the available ship drawings together with the CAD program
Rhino 3D. For the appendage resistance factor (1+ k2), the average rudder value provided by Holtrop and
Mennen (1982) is used.

The wave resistance RW is determined with Equation B.7:

RW = c1c2c5∇ρsw g exp{m1F d
n +m2 cos(λF−2

n )} (B.7)

The ship’s displacement volume ∇ is derived from the ship’s loading condition tables. λ represents a ship
dimensional parameter, depending on CP , B and Loa . The Froude number Fn is calculated with Equation
B.8:

Fn = Vs√
g ·Loa

(B.8)
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90 B. Holtrop & Mennen method

The bulk carrier used for this case-study does not have a bulbous bow, resulting in no additional pressure
resistance due to a bulbous bow RB .
The additional pressure resistance of an immersed transom stern RT R is determined by Equation B.9:

RT R = 0.5ρV 2
s AT R c6 (B.9)

The immersed stern area AT R is derived from the loading condition tables together with the ship’s drawings.
The model-ship correlation resistance RA is calculated with Equation B.10:

RA = 0.5ρsw V 2
s SC A (B.10)

The correlation allowance coefficient C A is derived with Equation B.11:

C A = 0.006(L+100)−0.16 +0.00205+0.003
p

L/7.5C 4
B c2(0.04− c4) (B.11)

Here, CB represents the ship’s block coefficient.

Coefficients directly linked to the ship’s characteristics (e.g., CB and CP ) are determined with its main
particulars. The regression parameters mi and ci are derived according to the regression procedure provided
by Holtrop and Mennen (1982).



C
Errors of ANN training phase

Table C.1: Error during training and validation of network with random state 49

Training Validation
Epoch MSE (Loss) MAE MAPE RMSE MSE (Loss) MAE MAPE RMSE

0 2465045 1542.911 99.90734 1570.046 2407702 1522.971 99.7922 1551.677
1 2439333 1535.354 99.46459 1561.837 2370851 1512.13 99.15735 1539.757
2 2392084 1521.201 98.62144 1546.636 2308417 1493.625 98.08627 1519.348
3 2325454 1501.089 97.43295 1524.944 2242351 1473.701 96.92786 1497.448
4 2243975 1475.698 95.89913 1497.99 2161063 1448.341 95.41381 1470.055
5 2149979 1445.637 94.05566 1466.281 2066658 1417.764 93.54046 1437.588
6 2045755 1411.399 91.97051 1430.299 1966512 1384.812 91.55906 1402.324
7 1933605 1373.395 89.64317 1390.541 1849043 1344.37 89.06075 1359.795
8 1815802 1332.001 87.07497 1347.517 1734790 1303.915 86.58681 1317.114
9 1694043 1287.537 84.32903 1301.554 1613990 1259.564 83.88136 1270.429

10 1569353 1240.282 81.4179 1252.738 1464814 1201.416 80.2218 1210.295
11 1443992 1190.491 78.29713 1201.662 1350278 1154.619 77.27266 1162.015
12 1319501 1138.409 75.02881 1148.695 1234533 1105.594 74.26373 1111.095
13 1195806 1084.248 71.62934 1093.529 1108355 1048.756 70.68819 1052.784
14 1075484 1028.23 68.07657 1037.055 959872.9 976.7413 66.03416 979.731
15 958597.4 970.5698 64.38745 979.0798 912799.9 951.6981 64.13921 955.4056
16 846121.3 911.4315 60.51674 919.8485 767473.6 873.8305 59.18518 876.0557
17 739108.5 851.041 56.58914 859.7142 668762.1 815.9794 55.36193 817.7787
18 637540.4 789.704 52.58406 798.4612 541578.1 734.4239 49.89729 735.9199
19 542858.2 727.5676 48.52253 736.7891 438580.4 661.4337 45.22932 662.254
20 456326 665.033 44.34515 675.519 395514.2 627.9933 42.93793 628.8992
21 377051.3 602.7091 40.25414 614.045 314469 559.9208 38.39895 560.7753
22 305529.5 540.3512 36.05595 552.7473 246214.5 495.3458 34.12618 496.2001
23 242658.5 478.9187 31.96496 492.6038 199190.8 445.0794 30.54033 446.308
24 188293.2 418.4686 27.91095 433.9277 150367.4 386.4856 26.48891 387.7724
25 142927 360.4114 23.96447 378.0569 103824.6 320.6783 22.05906 322.2182
26 105500.9 305.2525 20.37506 324.8091 73312.76 268.4575 18.27778 270.7633
27 75756.54 252.8708 16.82294 275.239 42709.21 203.6389 13.7998 206.6621
28 54080.51 207.6421 13.90936 232.5522 33590.65 178.8206 11.96212 183.2775
29 37952.76 167.577 11.24412 194.8147 17032.36 125.3085 8.834179 130.5081
30 26915.27 136.174 9.264318 164.0587 9474.951 91.22058 6.22761 97.33936
31 20237.81 115.0056 7.982321 142.2597 3970.977 54.81116 3.756348 63.01569
32 16289.53 99.78314 7.057193 127.6304 1504.95 28.21555 2.046987 38.79368
33 14218.54 91.80384 6.643385 119.2415 1734.62 32.57359 2.221003 41.64877

Continued on next page...
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92 C. Errors of ANN training phase

Table C.1: Error during training and validation of network with random state 49 (continued)

Training Validation
Epoch MSE (Loss) MAE MAPE RMSE MSE (Loss) MAE MAPE RMSE

34 13241.74 88.66911 6.44786 115.0728 1175.756 25.36149 1.815253 34.2893
35 12567.7 85.33105 6.315306 112.1058 1204.816 25.98852 1.802023 34.71046
36 12597.84 84.64973 6.361451 112.2401 1723.275 32.61747 2.450715 41.51235
37 12435.26 83.61054 6.244515 111.5135 1775.921 35.56344 2.613762 42.14168
38 12747.54 84.64504 6.320094 112.905 1021.375 24.03058 1.724608 31.95897
39 12505.16 84.00899 6.301022 111.8265 997.1124 23.62039 1.705549 31.57709
40 12591.67 83.9418 6.305784 112.2126 1277.67 28.01414 2.073043 35.74451
41 12391.74 83.51994 6.269414 111.3182 1075.906 25.72665 1.876774 32.80101
42 12333.87 83.54472 6.22465 111.058 2399.346 36.27323 2.888673 48.98312
43 12498.56 84.23117 6.359606 111.797 1621.959 31.45574 2.179924 40.27355
44 12614.97 83.4091 6.379491 112.3164 1306.373 27.08141 1.963614 36.14378
45 12979.87 84.57397 6.466314 113.9292 1626.963 32.29425 2.385154 40.33563
46 12706.54 83.52042 6.365864 112.7233 1286.775 28.43021 2.09014 35.87165
47 12072.18 82.13336 6.213559 109.8735 1229.66 29.87412 2.073615 35.06651
48 11843.17 81.70641 6.154614 108.8263 1013.953 24.89205 1.784978 31.84262
49 12554.19 83.315 6.321984 112.0455 1142.892 26.70129 1.92831 33.80669
50 12554.5 82.81116 6.305888 112.0469 1048.533 24.68557 1.808209 32.38106
51 11970.77 81.94626 6.154331 109.411 1132.345 25.45002 1.854929 33.65034
52 12859.45 82.79678 6.391356 113.3995 1397.36 29.51368 2.153755 37.38128
53 12456.08 81.98456 6.297845 111.6068 1216.267 25.9405 1.860848 34.87502
54 12252.37 82.51878 6.276321 110.6904 1154.127 26.36362 1.919727 33.97245
55 12144.63 82.45028 6.217895 110.2027 1165.382 25.17392 1.919028 34.1377
56 12323.44 82.36961 6.233577 111.011 1680.355 31.94098 2.399673 40.99214
57 11826.9 80.90738 6.097336 108.7515 1186.414 26.33049 1.925174 34.44437
58 12587.49 82.4952 6.37571 112.194 981.1069 24.80891 1.783866 31.32263
59 12600.55 82.90771 6.320329 112.2522 1267.268 27.17869 2.007885 35.59871
60 12407.91 81.85837 6.295652 111.3908 1905.919 35.12192 2.612103 43.65683
61 12340.29 82.60125 6.282541 111.0869 1570.803 29.38385 2.202402 39.63336
62 12520.21 83.45216 6.323977 111.8937 1227.672 26.66749 1.882527 35.03815
63 11949.14 82.6492 6.218721 109.3121 1080.805 26.11579 1.852623 32.8756
64 12227.87 82.61594 6.236753 110.5797 1349.865 28.31828 1.930986 36.74051
65 12097.54 81.84842 6.200966 109.9888 1417.261 29.06462 2.151345 37.64652
66 12118.62 82.01231 6.187086 110.0846 1093.003 25.88125 1.906609 33.0606
67 12214.62 82.21523 6.223451 110.5198 1246.992 29.10003 2.094693 35.31277
68 12335.41 82.71176 6.287487 111.0649 1867.362 33.0472 2.533066 43.21299
69 12365.41 82.36063 6.232543 111.1999 1799.274 34.97041 2.583108 42.41785
70 11862.48 81.16592 6.134624 108.915 1466.796 31.70445 2.252866 38.29877
71 11798.08 81.2743 6.092391 108.619 1454.633 31.48542 2.273426 38.13966
72 12266.17 82.22111 6.228018 110.7528 1213.469 26.24786 1.861372 34.83487
73 12343.68 82.24567 6.31265 111.1021 1535.286 31.56249 2.334212 39.18272
74 12296.31 82.00042 6.230773 110.8887 1810.756 36.66492 2.602189 42.55298
75 12034.9 81.43852 6.125791 109.7037 1508.339 33.16101 2.306128 38.83735
76 12055.72 81.30484 6.203529 109.7986 1058.533 25.9254 1.880059 32.5351
77 11975.65 81.62991 6.183418 109.4333 1118.392 25.69255 1.860484 33.44238
78 11928.14 81.43571 6.133593 109.216 947.8828 23.53033 1.665458 30.78771
79 12544.69 82.70016 6.306401 112.0031 1374.018 27.92305 1.998327 37.06775
80 12029.87 81.23351 6.139983 109.6808 1224.719 27.25368 1.975834 34.99598
81 12399.18 82.03924 6.211481 111.3516 1263.58 28.18548 2.058177 35.54688
82 12114.77 81.38822 6.188673 110.0671 1091.395 25.86692 1.876306 33.03627
83 11935.91 81.34557 6.169895 109.2516 1068.539 25.75674 1.831972 32.68852
84 12031.15 81.88939 6.191379 109.6866 1156.542 27.55715 1.986781 34.00797
85 12132.67 80.74416 6.152738 110.1484 1566.3 31.79484 2.345935 39.57651

Continued on next page...
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Table C.1: Error during training and validation of network with random state 49 (continued)

Training Validation
Epoch MSE (Loss) MAE MAPE RMSE MSE (Loss) MAE MAPE RMSE

86 12208.03 81.73286 6.155221 110.49 1309.118 27.06313 1.986923 36.18174
87 12157.72 82.17152 6.265663 110.2621 1449.712 28.58301 2.075412 38.07508
88 11999.52 80.53216 6.128207 109.5423 1331.024 28.50452 2.097234 36.48321
89 12053.41 81.14512 6.219702 109.788 1033.524 24.2972 1.75493 32.14846
90 11843.84 81.59161 6.154737 108.8294 1556.771 30.85354 2.264947 39.45593
91 11993.13 81.89571 6.177685 109.5132 1423.445 31.31364 2.220592 37.72857
92 12030.92 80.69061 6.13379 109.6855 1250.221 28.05018 2.046225 35.35846
93 12081.38 81.45954 6.184548 109.9153 1263.127 29.86472 2.09995 35.5405
94 11581.37 80.30599 6.100221 107.6168 1173.85 25.76344 1.862141 34.26149
95 11824.43 80.8206 6.10697 108.7402 973.8993 26.0721 1.811594 31.20736
96 11408.68 79.85665 6.046716 106.8114 2419.339 37.69418 2.977834 49.18678
97 11888.65 81.1385 6.124252 109.0351 1036.26 24.61612 1.762916 32.191
98 11878.08 81.14796 6.195281 108.9866 1036.033 26.44053 1.913528 32.18747
99 12266.23 81.40548 6.145874 110.753 1315.767 27.80929 1.904194 36.2735

100 11859.52 80.82539 6.077518 108.9014 1226.953 29.22972 2.060315 35.02789
101 11648.57 80.44719 6.041621 107.9286 1186.748 27.14005 1.941234 34.44921
102 11559.88 80.7275 6.070677 107.5169 1280.516 27.98692 2.021923 35.78429
103 11834.63 80.41065 6.106549 108.7871 1485.409 30.05222 2.228671 38.54101
104 11642.06 81.12582 6.120458 107.8984 1489.99 29.35748 2.257865 38.60038
105 12197.45 81.64355 6.208032 110.4421 1151.304 27.18147 1.940116 33.93087
106 11821.26 81.65841 6.177727 108.7256 2200.119 39.23472 2.896 46.90543
107 11835.41 80.89707 6.190419 108.7907 2551.223 38.50597 2.969786 50.50964
108 12247.89 81.79766 6.212924 110.6702 1065.724 25.10595 1.791046 32.64542
109 12101.78 81.33131 6.174579 110.0081 1218.828 29.13507 2.054044 34.91172
110 11769.22 80.19758 6.071659 108.4861 1792.716 35.84558 2.611732 42.34048
111 12482.1 81.85992 6.269865 111.7233 1052.016 24.85032 1.777541 32.43479
112 12247.27 81.42828 6.168074 110.6674 1077.432 25.6265 1.842145 32.82426
113 11166.96 79.89491 5.933844 105.6739 1472.693 29.77963 2.262267 38.37568





D
Propeller curves of bulk carrier case-study
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Figure D.1: Open water characteristics of the propeller used in the case-study
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