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To optimally compensate for time-varying phase aberrations with adaptive optics, a model of the dynamics of
the aberrations is required to predict the phase aberration at the next time step. We model the time-varying
behavior of a phase aberration, expressed in Zernike modes, by assuming that the temporal dynamics of the
Zernike coefficients can be described by a vector-valued autoregressive (VAR) model. We propose an iterative
method based on a convex heuristic for a rank-constrained optimization problem, to jointly estimate the param-
eters of the VAR model and the Zernike coefficients from a time series of measurements of the point-spread
function (PSF) of the optical system. By assuming the phase aberration is small, the relation between aberration
and PSF measurements can be approximated by a quadratic function. As such, our method is a blind identification
method for linear dynamics in a stochastic Wiener system with a quadratic nonlinearity at the output and a phase
retrieval method that uses a time-evolution-model constraint and a single image at every time step. © 2019

Optical Society of America

https://doi.org/10.1364/JOSAA.36.000809

1. INTRODUCTION

Phase aberrations in optical systems cause blurring in the im-
ages taken with these systems. In order to improve the degraded
image quality of an optical system due to aberrations, adaptive
optics (AO) can be used to compensate for the aberrations on-
line, or post-processing techniques can be used. For example, in
(most) high-performance telescopes, these aberrations are wave-
front (phase) aberrations induced by turbulence, misalignment,
etc. To compensate for a phase aberration, by both online com-
putations as well as post-processing of image data, information
on this aberration is required. A classical method to obtain a
phase aberration is using a Shack–Hartmann (SH) wavefront
sensor [1] (see Fig. 1). This sensor measures the spatial deriv-
atives of the wavefront, and from these measurements, the
wavefront aberration itself can be estimated, as for example
used in [2,3] for (quasi-)static phase aberrations. To optimally
compensate for a dynamic aberration, a prediction of future
aberrations has to be made. To predict the phase aberration
at a future time step, a model that describes the (time) dynam-
ics of the aberration is required. This model can be obtained
from, for example, physical modeling [4,5], which is not always
possible and/or not always accurate. Also, [4] lists a number of

different model assumptions. A different way to obtain a model
is from identification [6,7] based on data from the SH wave-
front sensor. However, the use of a SH wavefront sensor does
not allow for the identification of (dynamic) noncommon path
errors. As can be seen in Fig. 1, the optical paths from the in-
coming wavefront to the wavefront sensor and the path from
incoming wavefront to the camera are different. Any additional
aberration that occurs in only one of the two paths gives a mis-
match between the estimated aberration and the aberration as
seen by the camera. This issue is encountered in for example
astronomy [8–10] and ophthalmic imaging [11–13].

A phase aberration can be estimated from the camera mea-
surements by using phase retrieval methods [2,3,9,10,14,15].
These techniques use two (or more) images, of which one usu-
ally has an added phase diversity. The phase diversity is often a
defocus [16,17] since this diversity image can be obtained by
simply moving the camera out of focus. From the time series
of the estimated phase aberrations, a model can be identified
using the same techniques as with the SH wavefront sensor
measurements. However, taking multiple images with different
phase diversities but the same aberration might be impossible
in a dynamical setting, without introducing noncommon paths
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in the setup. In addition to the drawback of taking multiple
images, the approach to first reconstruct at each time instance
the phase aberration and subsequently model the temporal
dynamics of the reconstructed aberrations, may suffer from ac-
cumulation of the estimation errors in the two-step process.
Identification of phase aberration dynamics based on measure-
ments directly with the camera has not yet been investigated.
The prior knowledge that the phase aberration behaves in
a nonspecific dynamical manner (i.e., the dynamics are con-
tained in a specific model set) has, to our knowledge, not
been incorporated previously in a phase aberration estimation
procedure.

In this paper, we introduce a method to estimate both phase
aberrations and aberration dynamics directly from intensity
measurements of the point-spread function (PSF), when the
phase aberration dynamics can be described with a vector-
valued autoregressive (VAR) model, driven by a stochastic
input (see Fig. 2). Here, we circumvent the problem of non-
common paths by requiring multiple images for every time step
and avoid the accumulation of errors of the two-step process.

To accomplish this, we assume the phase aberrations are
small and the PSF can be well approximated by a second-order
Taylor series expansion of the image intensities as functions of
the Zernike coefficients of the wavefront aberration. We show
how the estimation problem has a convex heuristic from which
we can iteratively estimate both the phase aberrations and their
temporal dynamics.

Since we estimate both the aberrations and the dynamics,
one way to view this method is as a system identification
method with PSF data. A second way to view this method
is as a phase retrieval method with a time-evolution model con-
straint in the pupil plane. In this sense, it also differs from the
method in [18,19] where linear, but known, constraints on the
phase aberration are used to reduce the parameter search space;
our constraints are bilinear. Available literature applicable spe-
cifically to noise-driven linear systems with nonlinear outputs
seems to be quite sparse. In [20], an identification method is
proposed for blind identification of Wiener systems, but an
invertible nonlinearity is assumed. Applicable identification
methods for these types of systems are based on Bayesian ap-
proaches [21–24] using maximum likelihood and expectation
maximization algorithms to jointly estimate the dynamics and
the nonlinearity itself. However, since the type of nonlinearity
is known, we exploit the fact that our estimation problem has a
convex heuristic in the sought-after parameters.

Article overview: In Section 2, we set out the mathematical
notation, the optical conventions, and the problem statement.
Section 3 contains a reformulation of the estimation problem
and introduces its convex heuristic. Furthermore, we propose
an iterative algorithm that uses the heuristic to compute an
estimated model and phase. In Section 4, we conduct a numeri-
cal experiment to compare the performance of our method with
those of two straightforward approaches. Section 5 contains the
conclusion and some suggestions for future research.

A. Notation

In this paper, we make use of the vectorization function
vec�·�:X → x,X ∈ Rm×n, x ∈ Rmn, i.e., a linear transformation
of a matrix X into a column vector x, stacking the columns of
X . This transformation is invertible, and we thus also define
vec−1�·�:x → X . The nuclear norm of a matrix X is defined
as kX k� � P

iσi�X �, the sum of the singular values of X .
kX kF denotes the Frobenius norm of X . As a performance
measure, given a true sequence fαkgKk�1 and an estimated se-
quence fα̂kgKk�1, we define

VAF�α, α̂� � max

�
0,
�
1 −

PK
k�1 kαk − α̂kk22PK

k�1 kαkk22

��
, (1)

where VAF is the abbreviation for variance accounted for.
Finally, given matrices X 1,…,X n, we define the matrix direct
sum as ⊕n�1,…,NX n ≔ blkdiag�X 1,X 2,…,XN �, so, e.g.,

⊕
n�1,2

X n ≔ blkdiag�X 1,X 2� �
�
X 1 0
0 X 2

�
: (2)

2. PROBLEM DESCRIPTION

A. Linear and Quadratic Approximations of the PSF
for Small Phase Aberrations

We follow the description of the optical setup in [25]
where a linear quadratic controller is designed using quadratic
output measurements based on Taylor series expansions of
the PSF. The controller is based on a linear time-invariant
model of the disturbance. We consider the same optical prob-
lem and Taylor approximation setting, but focus on the model
identification.

Fig. 2. Overview of identification methods. y denotes the measure-
ment, ϕ is the phase aberration, α is the vector of Zernike coefficients,
wk a noise signal, k is a time index, and f �·� is the model function.
I. Phase retrieval first, then model estimation. II. Model estimate based
on phase measurements. III. Our method: model estimation and phase
retrieval from PSF measurements.

Fig. 1. Classical optical setup for estimating the temporal dynamics
of an aberrated wavefront. This setup includes three lenses with focal
length f .
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The PSF of an optical system is the Fourier transform of the
generalized pupil function (GPF). The GPF is the complex-
valued function

P�x, y� � A�x, y� exp�jϕ�x, y��, (3)

where �x, y� are the Cartesian coordinates in the pupil plane,
A�x, y� is the real-valued aperture apodization function, ϕ�x, y�
is the real-valued phase function, and j2 � −1. We assume
that ϕ�x, y� � ϕa�x, y� � ϕd �x, y�, where ϕa�x, y� is the phase
aberration function and ϕd �x, y� is the phase diversity function.
We assume that ϕa�x, y� can be well approximated by a
weighted sum of Zernike basis functions:

ϕa�x, y, α� ≔
Xs

r�1

Zr�x, y�αr , (4)

where Z r�x, y� is the rth basis function and αr ∈ R are the
weights. Similarly, but with different weights, ϕd �x, y, β� ap-
proximates ϕd �x, y�. Hence

ϕ�x, y, α, β� � ϕa�x, y, α� � ϕd �x, y, β�,
and it follows from the definition in Eq. (4) that

ϕ�x, y, α, β� � ϕ�x, y, α� β, 0�,
because of linearity in the weights. Now, we define a grid of
points x̃ × ỹ where x̃ � fx1,…, xmg and ỹ � fy1,…, ymg.
Over this grid, we define

Φ�α, β� �

2
64
ϕ�x1, y1, α, β� … ϕ�xm, y1, α, β�

..

.
… ..

.

ϕ�x1, ym, α, β� … ϕ�xm, ym, α, β�

3
75, (5)

and with this definition, we can express the vectorization of
Φ�α, β� as a matrix multiplication

vec�Φ�α, β�� � Z �α� β�, (6)

where Z ∈ Rm2×s for a matrix Z composed of Z r�xk, yk�.
Similarly, we define

Γ �

2
64
A�x1, y1� … A�xm, y1�

..

.
… ..

.

A�x1, ym� … A�xm, ym�

3
75: (7)

The complex field in the imaging plane with incoherent illu-
mination is the Fourier transform of the GPF. Taking intensity
measurements with a noise-free camera gives the PSF, the
squared amplitude of this field:

y�α, β� � vec�jFfΓ⊙ exp�jvec−1�Z �α� β���gj2�, (8)

where y�α, β� ∈ Rp2
� and p2 is the number of pixels, ⊙ denotes

the Hadamard product, exp�·� denotes the element-wise expo-
nential function, and j · j2 denotes the square of the absolute
value of the elements of the matrix.

A linear approximation of the PSF measurements for the ith
pixel is given by a first-order Taylor expansion of a small aber-
ration α about the diversity β [25]:

yi�α, β� � D0,i�β� � D1,i�β�α�O�kαk2�, (9)

where O�kαk2� denotes terms of order 2 and higher. The ma-
trices D0,i and D1,i are given, respectively, by

D0,i�β� � yi�α, β�jα�0 ∈ R,

D1,i�β� �
∂yi�α, β�

∂α

����
α�0

∈ R1×s : (10)

The first-order approximation has limited approximation
power. For larger aberrations, a second-order Taylor expansion
can be used [25]:

yi�α, β� � D0,i�β� � D1,i�β�α� 1

2
αTD2,i�β�α�O�kαk3�,

(11)

where

D2,i�β� �
∂2yi�α, β�
∂αT ∂α

����
α�0

∈ Rs×s : (12)

Since the quadratic approximation holds for aberrations of
larger magnitudes, and an identification method that is de-
signed for this approximation would therefore be valid for a
larger number of cases, we continue with the model with a
quadratic approximation of the PSF and assume D2,i to be
nonzero. We use Zernike polynomials normalized to 1 radian
amplitude. To give an indication of the validity of the approxi-
mation, consider Zernike modes with OSA/ANSI-index 3 to 9.
Drawing Zernike coefficients from a normal distribution, the
quadratic approximation of the PSF is a good approxima-
tion with

VAF�yi�α, β� − D0,i�β�,D1,i�β�α� 1

2
αTD2,i�β�α�� > 0.9,

(13)

where VAF stands for variance accounted for (defined in the
notation section), for kαk2 < 1.0 to 1.4 with defocus diversity
β ranging between 0 and 0.5. The linear approximation is
invalid without defocus and only valid up to kαk2 < 0.3 for
β � 0.5. This trend also holds for similar values of β.
Aberrations of small magnitudes can for example be encoun-
tered in AO systems operating in a closed loop. See also [26]
for a discussion.

B. VAR Models and the Identification Problem

We assume that the total phase Φ�α, β� is time-dependent.
In vectorized form, this becomes

vec�Φ�αk, βk�� � Z �αk � βk�, (14)

where we use k as the time index. Similarly, the ith pixel at time
k is denoted with yi�αk, βk�.

The assumption on the model structure is that the vector of
Zernike coefficients of the phase aberration evolves according
to a vector-valued autonomous autoregressive model of order
N (VAR�N �):

αk � f �αk−1,…, αk−N ,wk�
� A1αk−1 � � � � � ANαk−N � wk, (15)

where An ∈ Rs×s are coefficient matrices and wk ∈ Rs is
driving, white noise. This is a common dynamic model, for
example, for a turbulent phase [4,5,27,28].

The system that generates the measurements
fyi�αk, βk�gi�1,…,p2

k�1,…,K becomes
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αk� f �αk−1,…,αN ,wk�
�A1αk−1�����ANαk−N �wk,

yi�αk,βk��D0,i�βk��D1,i�βk�αk�αTk D2,i�βk�αk�vi,k, (16)

where vi,k is a noise signal consisting of measurement noise
and the approximation error O�kαk3� in the Taylor expansion
of ϕa.

The identification problem to find fαkgKk�1, fAngNn�1,
fwkgKk�1, and fvi,kgk�1,…,K

i�1,…,p2 in Eq. (16) is cast into a minimi-
zation problem

minimize
Ak , αk ,wk , vi,k

XK
i�1

kwkk22 � γ
XK
k�1

Xp2
i�1

kvi,kk22

subject to αk � f �αk−1,…, αN ,wk�,
yi�αk, βk� � D0,i�βk�

� D1,i�βk�αk � αTk D2,i�βk�αk � vi,k,

(17)

for a trade-off parameter γ ∈ R�. This formulation can be seen
as a generalization of a standard state reconstruction problem (see
for example [29]), where the difference lies in the quadratic term
in the output and the unknown parameter values of the model.

In the following section, we reformulate the equality
constraints, which are both bilinear, into rank constraints.
Subsequently, we use a heuristic formulation for the rank con-
straints and create a convex optimization problem.

3. BLIND IDENTIFICATION FROM QUADRATIC
MEASUREMENTS

A. Reformulating Equation (17) into a
Rank-Constrained Problem

The time evolution of the Zernike coefficients can be written as
a matrix equation in the following manner:

�αK … αN�1 �|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
AK

�
�A1 … AN �|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

A

0
BBBBB@

αK −1 αK −2 … αN

αK −2 αK −3 … αN−1

..

. ..
. ..

. ..
.

αK −N … … α1

1
CCCCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
H

�W , (18)

whereH is a Hankel matrix andW � �wK … wN�1 �. Now,
the measurement equations in Eq. (16) can be rearranged to

yi�αk,βk� −D0,i�βk� −D1,i�βk�αk − vi,k � αTk D2,i�βk�αk: (19)

Furthermore, let Ŵ be the estimate of W and

Dy � ⊕
i,k
yi�αk, βk� − D0,i�βk� − D1,i�βk�αk,

Dα � ⊕
i,k
αk,

D2 � ⊕
i,k
D2,i�βk�,

V̂ � ⊕
i,k
vi,k: (20)

Now, Eq. (17) can be rewritten compactly as

minimize
α,A,Ŵ ,V̂

kŴ k2F � γkV̂ k2F

subject to AK − Ŵ � AH

Dy − V̂ � DT
α D2Dα: (21)

The optimization problem in Eq. (21) is an optimization prob-
lem with two bilinear equality constraints. Following [30], we
will convert these constraints into equivalent rank constraints
using Lemma 1.

Lemma 1 ([30]) Let the matrix-valued function L�·� be
defined as

L�A, P,B,C ,X,Y�

�
�
C � APY � XPB � XPY �A� X�P

P�B � Y� P

�
: (22)

For this matrix, it holds that

rankL�A, P,B,C ,X,Y� � rankP ⇔ APB � C (23)

for any choice of X,Y and any nonzero P of appropriate size.
Define now the twomatricesMVAR andMmeas, respectively, as

MVAR ≔ L�A, IN s,H,AK − Ŵ ,X1,Y1�,
Mmeas ≔ L�DT

α ,D2,Dα,Dy − V̂ ,X2,Y2�: (24)

Here IN s is an identity matrix of size Ns × Ns. Applying Lemma
1 to the two constraints in problem (21) gives us

rankMVAR � rankIN s � Ns,

rankMmeas � rankD2 (25)

as equivalent constraints. Problem (21) can now be formulated as

minimize
α,A,Ŵ ,V̂

kŴ k2F � γkV̂ k2F

subject to rankMVAR � Ns

rankMmeas � rankD2: (26)

B. Convex Heuristic for Equation (26)

Rank-constrained problems (or problems with bilinear matrix
equalities) are in general NP-hard (nondeterministic polyno-
mial-time hard) to solve [31]. The proposed solution is to solve
a convex heuristic for the problem by adding the sum of the
nuclear norms of matrices MVAR and Mmeas in Eq. (25) to the
objective function and verifying their rank afterwards. The fact
that the two matrices are affinely parameterized by the decision
variables A, αk,wk, and vi,k, even though problem (17) is not,
allows applying the nuclear norm to make the problem convex.
The advantage of using the nuclear norm is that standard soft-
ware like YALMIP [32] or CVX [33] is available to implement
the convex optimization problem. Alternatively to employing the
nuclear norm, other rank-minimizing heuristics could be applied,
like for example the use of the truncated nuclear norm [34].

We introduce a regularization parameter λ to weigh the nu-
clear norms, following from the two rank constraints in
Eq. (26), against each other and a parameter ξ to weigh the
original objective function with the low-rank inducing terms,
and obtain the convex problem
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minimize
A,α,Ŵ ,V̂

kŴ k2F � γkV̂ k2F � ξ�λkMVARk� � kMmeask��:

(27)
In this optimization problem, Ŵ appears in the first and third
terms [see Eq. (24)], and V̂ , likewise, in the second and third
terms, and there are three parameters �γ, ξ, λ� to tune.

We found it more efficient to work with the following simplified
optimization problem with only one single regularization param-
eter. Define the two matrices QVAR and Qmeas, respectively, as

QVAR ≔ L�A, IN s,H,AK ,X1,Y1�,
Qmeas ≔ L�DT

α ,D2,Dα,Dy,X2,Y2�: (28)

The size of QVAR is �N � 1�s × K � N �s − 1� and Qmeas is a
square with sides �s � 1�K p2. The objective function is sim-
plified to

minimize
A,α

λkQVARk� � kQmeask�: (29)

If we assume K ≫ N and p2 ≫ s, and assume that, in general,
semi-definite programming problems scale with O�n6� [35] for
problems with n decision variables, then a conservative upper
bound for the computational complexity is O��K p2s�6�. The
noise terms Ŵ and V̂ are simply interpreted as the feasibility
gap of the bilinear matrix equalities with optimal A� and α�k :

Ŵ � ≔ A�
K − A�H�,

V̂ � ≔ Dy − �D�
α�TD2D�

α : (30)

We observe that Eq. (29) minimizes the feasibility gap (inter-
preted as the norms of Ŵ and V̂ ), and we therefore drop the
two terms in Eq. (27) that have become redundant.

Since the problem in Eq. (29) is convex in the parameters A
and αk, it is easy to include several forms of prior information
through the use of convex constraints, or regularization of the
objective function. Examples are constraints expressing an af-
fine parameter dependence of matrix A, or the inclusion of an
additional term to the objective function, such as μkAk2F , for
some regularization parameter μ, to prevent the elements of
matrix A from having large magnitudes.

The optimization in Eq. (29) can be performed for different
choices of the parameters X1,Y1,X2, and Y2. This freedom can
be used in an iterative manner, as outlined in Algorithm 1.

Algorithm 1. Sequential convex optimization-based identification

1: procedure SCOBI
2: while not converged do
3: Solve Eq. (29) with parameters X1, Y1,X2,Y2 to obtain

optimal A�,A�
K ,D

�
α , and D�

y .
4: Set

X�
1 � −A�, Y�

1 � −A�
K ,

X�
2 � −�D�

α�T , Y�
2 � −D�

α : (31)
5: end while
6: end procedure

4. NUMERICAL EXPERIMENTS

A. Experimental Setting

To test the performance of Algorithm 1, we generate data for
two separate identification experiments as described below.

We assume that the time-varying aberration consists of
oblique astigmatism and coma and the diversity of only a de-
focus. That is, we consider a case with s � 3 aberrated Zernike
modes, so

ϕ�αk, βk� � Z −2
2 αk�1� � Z −1

3 αk�2� � Z 1
3αk�3� � Z 0

2βk:

(32)

The first mode, Z −2
2 , is an even mode and the effect is that

without an added diversity, α�1� and −α�1� are indistinguish-
able from a single PSF measurement.

In the first experiment, every tenth measurement is taken
with a defocus diversity and the remaining 90% of the images
are taken without diversity (βk � 0). That is,

βk �
�
0.5 k � 1, 11, 21,…
0 otherwise

�Experiment 1�: (33)

The motivation is that the out-of-focus images are used to dis-
tinguish between αk�1� and −αk�1�, and the use of the model-
set constraint determines the sign for the remaining in-focus
images.

In the second experiment, every image is taken out of
focus, i.e.,

βk � 0.5 ∀ k �Experiment 2�: (34)

For both experiments, the coefficients α evolve according to a
VAR(2) model. The state-space formulation of the VAR model
has the system matrix

As �
�
Atrue
1 Atrue

2

I 0

�
, (35)

where the block matrix �Atrue
1 Atrue

2 � is random and the poles
of As have absolute value between 0.75 and 0.9. Thus, the poles
are chosen to be relatively “slow” (toward the edge of the unit
circle). The effect of this choice is that their corresponding dy-
namics are more clearly present in a relatively short data set.
The decorrelation time of the states of a representative ran-
domly generated system is approximately 40–50 samples.
These two experiments are repeated 100 times with different
system matrices As, state, and measurement noise sequences
for every repetition. Parameter settings are listed in Table 1.
In both experiments, the driving noise w has a noise power that
ensures thatO�kαk3� is small. Both the driving noise and mea-
surement noise are Gaussian white noise with mean and vari-
ance as specified in Table 1. From the PSF generated according
to Eq. (8), we use a subset of (only) 25 pixels (see Fig. 3). The
number of pixels that are used is limited to reduce the compu-
tation time of the optimization, which is roughly 800 s on a
desktop computer. The initial guess for X1,X2,Y1,Y2 is drawn

Table 1. Settings for the Two Numerical Experiments

Experiment 1 Experiment 2

wk N �0, 3 · 10−2I� N �0, 2 · 10−1I�
Measurement noise in vk N �0, 1 · 10−7I� N �0, 1 · 10−5I�
Time series K 100 100
VAR order N 2 2
Pixels p2 25 25
Iterations Alg. 1 150 150
Repetitions 100 100
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randomly from a normal distribution N �0, 10−5I�. The prob-
lem in Eq. (29) is solved for λ � 0.25, 0.5,…, 0.25 · �z − 1�,
0.25 · z, where λ � 0.25 · z corresponds to the first solution
that worsens the VAF of the states compared with the corre-
sponding solution for λ � 0.25 · �z − 1�. A small regularization
of the form 0.005kAk2F is added to avoid over-fitting of the
model to the estimated state sequence. A side effect is that
it reduces the spectral radius [36].

B. Alternative Methods

For benchmarking purposes, we consider two alternative meth-
ods to our proposed method for solving Eq. (17).

Two-step least squares: The first alternative is to estimate
the system dynamics in a two-step method based on the linear
approximation. It has the following two steps:

I� α̂ � arg min
α

X
i, k

kyi�αk, βk� − D0,i�βk� − D1,i�βk�αkk2F ,

II� �Â1, Â2� � arg min
A1,A2

X
k

kα̂k − A1α̂k−1 − A2α̂k−2k2F : (36)

For images taken without diversity, the first problem is ill-
conditioned, and this method is not applicable.

Separable nonlinear least squares (SNLLSs): The second
method minimizes a nonlinear least squares cost function that
exploits the separability of the optimization problem. For the
minimization, we use MATLAB’s built-in nonlinear least
squares optimizer where we can make use of an exact or appro-
ximate gradient (for settings, see Appendix B). That is, the
identification problem can also be formulated as

minimize
A,α

kG�α�Ā� h�α�k22; (37)

Ā � vec�A�, and G and h are given in Appendix A.
The first step is to optimize over Ā and then substitute the

optimal solution Ā�α� � −G†�α�h�α� into Eq. (37), which
yields the problem

minimize
A,α

kGĀ� hk22
� minimize

α
k�I − GG†�hk22

� minimize
α

kP⊥
Ghk22, (38)

which may be solved using a nonlinear least squares solver.
With the residual, r � GĀ�α� � h � P⊥

Gh, the solver can
be fed either the exact gradient

∂r
∂α

� ∂P⊥
G

∂α
h� P⊥

G
∂h
∂α

(39)

or an approximate gradient

∂r
∂α

≈ P⊥
G

�
∂G
∂α

� ∂h
∂α

�
, (40)

which is considerably faster computationally [37]. The solver
was initialized in three different ways: first, with the results
from the two-step least squares; second, with the result of our
proposed method; and third, with 100 random initial guesses.
This number corresponds to solving the same problem with the
proposed method in terms of computational time.

C. Performance Measures

We compare the estimation results in two ways. First, we com-
pare the estimated state sequence (Zernike coefficients). Second,
we compare how well the estimated dynamics can be used to
predict a state of an independent data set generated under the
same circumstances as the data set used for identification. The
estimation error for an estimated Â1 and Â2 is defined as

ek � αk − Â1αk−1 − Â2αk−2: (41)

D. Results and Discussion

Despite the benefit of several random initial guesses for each
experiment, the SNLLS method consistently failed to produce
good results for any of the experiments. Thus, the results of
random initial guesses are omitted from the results. In the
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Fig. 3. On the left is the PSF at a time step of k � 100. Outlined in red are the 25 pixel values used in the identification. On the right, top, are the
Zernike coefficients for an example data set for k � 1,…, 100. At the bottom are the time series for k � 1,…, 100 for the corresponding pixel
values.
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experiments, it was noted that initialization with the correct
solution in the SNLLS algorithm yields the correct solution.
However, with small perturbations of this initialization, the sol-
ution will instead converge to a different local minimum with
the SNLLS method. We conclude that the SNLLS method is
very sensitive to the initialization. The VAF of the estimated
states are displayed in the histogram in Figs. 4 and 5. We draw
two conclusions from these figures.

First, the proposed method is the only one that can correctly
identify the states in Experiment 1 (top histogram). In most
instances, the estimated states were close to the true states, even
though 90% of the images were taken without added phase
diversity.

Second, the proposed method, with its quadratic approxi-
mation of the measurements, outperforms the linear model
of the measurements (bottom histogram) in Experiment 2.

In Figs. 6 and 7, we compare the average root mean square
(RMS) error of the state estimates for the validation data sets.
The SNLLS method produced bad estimates in terms of RMS
error, on average about 1000 times worse compared with the
proposed method. Thus, it is left out of these figures. We give
the RMS estimation error produced by the true model, and the
average RMS estimation error produced by the static model
αk�1 � αk for comparison. From these figures, we conclude
that the proposed method can identify the true model with
good performance, since its performance is close to that of
the true model, and that it significantly improves upon the
assumption of a static aberration.

Some of the limitations we found that worsened the estima-
tion results, were increasing noise levels, and the limitations of
the quadratic approximation when the aberration increased in
strength. Also, with the relatively short data set we used, it was
more difficult to estimate fast dynamics.

5. CONCLUSION AND FUTURE RESEARCH

We presented a method to jointly estimate the temporal dy-
namics of a phase aberration and the phase aberration itself
of an optical system based on measurements of the PSF of
the optical system. The approach is novel first in the sense that
a model set of temporal dynamics is used as prior information
for phase retrieval, and second, as it uses a convex heuristic ap-
proach with good results to a blind system identification prob-
lem with a nonlinear output function. Future research lines
include modeling spatial dynamics in anisoplanatism instead
of temporal dynamics and increasing the accuracy of the (small)
phase approximation for larger phase aberrations.

APPENDIX A: MATRICES IN EQ. (37)

G �

0
BBBBBBBB@

In ⊗ αTK −1 In ⊗ αTK −2 … In ⊗ αTK −M

..

. ..
. ..

. ..
.

In ⊗ αTK −N … … In ⊗ αT1
0 0
..
. ..

. ..
. ..

.

0 0

1
CCCCCCCCA
,

(A1)
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Fig. 4. VAF of the estimated state sequences for the first experi-
ment. T-S is for the initial guess from the two-step least squares
and pr.m. is for the initial guess from the solution of the proposed
method. Note that from this figure, it is apparent that the first least
squares problem of the two-step least squares solution (36) fails to pro-
duce a good estimate of the states.
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Fig. 5. VAF of the estimated state sequences for the second experi-
ment. T-S is for the initial guess from the two-step least squares and
pr.m. is for the initial guess from the solution of the proposed method.
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Fig. 6. Comparison of RMS error for the next predicted state by the
proposed method, states remain constant, and the true model for the
first experiment.
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Fig. 7. Comparison of RMS for the next predicted state by the pro-
posed method, states remain constant, and the true model for the first
experiment.

Research Article Vol. 36, No. 5 / May 2019 / Journal of the Optical Society of America A 815



h �

0
BBBBBBBBBBBBBBBBBBBBBBBBB@

−αK
..
.

−αN�1

y1,K − D0,1�βk� − D1,1�βk�αK − αTK D2,1�βk�αK
..
.

yp2,K − D0,p2�βk� − D1,p2�βk�αK − αTK D2,p2�βk�αK
..
.

y1,1 − D0,1�βk� − D1,1�βk�αK − αTK D2,1�βk�αK
..
.

yp2, 1 − D0,p2�βk� − D1,p2�βk�α1 − αT1 D2,p2�βk�α1

1
CCCCCCCCCCCCCCCCCCCCCCCCCA

:

(A2)

APPENDIX B: SETTINGS OF THE NONLINEAR
SOLVER

Apart from SpecifyObjectiveGradient=true, default
settings for lsqnonlin have been used for all experiments
involving SNLLSs. For a complete list of the default settings,
we refer to MATLAB’s official documentation.
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