
 
 

Delft University of Technology

Fully implicit, stabilised MPM simulation of large-deformation problems in two-phase
elastoplastic geomaterials

Zheng, Xiangcou; Pisanò, Federico; Vardon, Philip J.; Hicks, Michael A.

DOI
10.1016/j.compgeo.2022.104771
Publication date
2022
Document Version
Final published version
Published in
Computers and Geotechnics

Citation (APA)
Zheng, X., Pisanò, F., Vardon, P. J., & Hicks, M. A. (2022). Fully implicit, stabilised MPM simulation of large-
deformation problems in two-phase elastoplastic geomaterials. Computers and Geotechnics, 147, Article
104771. https://doi.org/10.1016/j.compgeo.2022.104771

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.compgeo.2022.104771
https://doi.org/10.1016/j.compgeo.2022.104771


Computers and Geotechnics 147 (2022) 104771

A
0

Contents lists available at ScienceDirect

Computers and Geotechnics

journal homepage: www.elsevier.com/locate/compgeo

Research paper

Fully implicit, stabilised MPM simulation of large-deformation problems in
two-phase elastoplastic geomaterials
Xiangcou Zheng, Federico Pisanò, Philip J. Vardon, Michael A. Hicks ∗

Geo-Engineering Section, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, The Netherlands

A R T I C L E I N F O

Keywords:
B approach
Coupled poromechanics
Implicit time integration
Large deformation
Material point method
Volumetric locking

A B S T R A C T

The Material Point Method (MPM) has been gaining increasing popularity as an appropriate approach to the
solution of coupled hydro-mechanical problems involving large deformations. This study extends the implicit
GIMP-patch method for coupled poroelastic problems recently proposed by Zheng et al. (2021b) to tackle large-
deformation problems in (nearly) isochoric elastoplastic geomaterials, particularly by remedying the numerical
inaccuracies caused by volumetric locking, such as spurious stress oscillations and an excessively stiff overall
response of the system at hand. To overcome these difficulties in two-phase coupled analyses, the B approach
of Hughes (1980) is incorporated into an existing version of the implicit GIMP-patch method. Details regarding
the formulation and implementation of the proposed method are provided, while several benchmark problems
are numerically analysed to evaluate its performance in the presence of elastoplastic behaviour. Particular
emphasis is placed on (i) mitigating effective stress oscillations and (ii) solving several two-phase, coupled,
large deformation geotechnical problems. The numerical results confirm the suitability of the implicit B GIMP-
patch method for the solution of geotechnical problems spanning weak to strong hydro-mechanical coupling
and small to large deformations.
1. Introduction

The numerical simulation of large-deformation problems in fluid-
saturated geomaterials is central to numerous geotechnical applica-
tions. In this respect, it has been largely recognised that purely La-
grangian, mesh-based numerical methods are not suitable for large-
deformation modelling, as they would usually suffer from the detri-
ments of excessive mesh distortion in terms of numerical accuracy
and stability (Lee and Bathe, 1993; Rajendran, 2010). To remedy this
issue, it is necessary to resort to specific techniques for re-meshing and
variable mapping across a sequence of different spatial discretisations.
An alternative approach for mitigating mesh distortion effects is to
combine the advantages of both Lagrangian and Eulerian methods,
which is the basis of the so-called Material Point Method (MPM). The
MPM uses a background mesh for solving relevant governing equations
in their discrete form, while material state variables are stored at
Material Points (MPs) that can freely move through the background
mesh. Based on this idea, the MPM can overcome the inconveniences
of mesh distortion and is being increasingly recognised as a suitable
approach for large-deformation modelling (Zhang et al., 2007, 2009;
Higo et al., 2010; Zabala and Alonso, 2011; Abe et al., 2014; Jassim
et al., 2013; Zheng et al., 2013; Bandara and Soga, 2015; Higo et al.,
2015; Yerro et al., 2015; Ceccato et al., 2016; Liu et al., 2017; Yang
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et al., 2017; Yerro et al., 2017; Wang et al., 2018; González Acosta
et al., 2019; Lei et al., 2020; Zhao and Choo, 2020; Zheng et al.,
2021a; Martinelli and Pisanò, 2022). An overview of different appli-
cations of the MPM to geotechnical large-deformation problems can
be found in, for instance, Soga et al. (2015). It is well-known that
MPM also suffers from many issues due to numerical oscillations in
the simulation of large deformations. Some techniques, such as the
Generalised Interpolation Material Point (GIMP) method (Bardenhagen
and Kober, 2004), the Convected Particle Domain Interpolation (CPDI)
method (Sadeghirad et al., 2011), the B-spline Material Point Method
(BSMPM) (Steffen et al., 2008), and the Composite Material Point
Method (CMPM) (González Acosta et al., 2017, 2020), have been pro-
posed and these have been found to significantly improve the accuracy
of MPM.

Given the focus of the present work on fluid-saturated geomaterials,
Table 1 summarises the main features of the MPM studies that have
been previously devoted to hydro-mechanical large-deformation prob-
lems. It should be noted that most of the listed publications build on
the 𝑢–𝑝 and 𝑣–𝑤 formulations (where 𝑢 is the total solid displacement,
𝑝 is the pore water pressure, and 𝑣 and 𝑤 are the velocities of the
solid and water phases, respectively). The main difference between
these two formulations lies in the relative acceleration of the fluid with
vailable online 7 May 2022
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Table 1
Overview of existing MPM formulations for large-deformation problems in fluid-saturated porous media.
Reference Formulation MP layering Time integration Soil model Pore pressure stabilisation method

Zhang et al. (2007) 𝑢–𝑈 Two-layers Explicit Elastic No stabilisation (or not mentioned)
Zhang et al. (2009) 𝑢–𝑝 Single-layer Explicit Elastic No stabilisation (or not mentioned)
Zabala and Alonso (2011) 𝑢–𝑝 Single-layer Explicit Mohr–Coulomb Reduced integration (RI)
Abe et al. (2014) 𝑢–𝑝 Two-layers Explicit Mohr–Coulomb Reduced integration (RI)
Jassim et al. (2013) 𝑣–𝑤 Single-layer Explicit Mohr–Coulomb Nodal volumetric strain averaging
Zheng et al. (2013) 𝑢–𝑝 Single-layer Explicit Elastic No stabilisation (or not mentioned)
Bandara and Soga (2015) 𝑣–𝑤 Two-layers Explicit Mohr–Coulomb Reduced integration (RI)
Martinelli and Rohe (2015) 𝑣–𝑤 Two-layers Explicit Mohr–Coulomb No stabilisation (or not mentioned)

Ceccato et al. (2016) 𝑣–𝑤 Single-layer Explicit Modified Cam Clay Nodal strain averaging +
Constant pore pressure in element

Liu et al. (2017) 𝑣–𝑤 Two-layers Explicit Drucker–Prager No stabilisation (or not mentioned)
Tran and Sołowski (2019) 𝑣–𝑤 Two-layers Explicit Elastic No stabilisation (or not mentioned)
Lei et al. (2020) 𝑣–𝑤 Single-layer Explicit Mohr–Coulomb Cell-based strain averaging
Zhao and Choo (2020) 𝑢–𝑝 Single-layer Implicit Elastic Polynomial pressure projection
Cuomo et al. (2021) 𝑣–𝑤 Single-layer Explicit Mohr–Coulomb Nodal volumetric strain averaging
Kularathna et al. (2021) 𝑢–𝑈 Single-layer Semi-implicit Mohr–Coulomb Fractional time stepping
Zheng et al. (2021a) 𝑣–𝑤 Single-layer Explicit Elastic RI + MLSA patch recovery
Zheng et al. (2021b) 𝑢–𝑝–𝑈 Single-layer Implicit Elastic RI + MLSA patch recovery

Martinelli and Galavi (2022) 𝑣–𝑤 Single-layer Explicit Tresca & Modified Cam Clay B approach + Constant
pore pressure in element
c
p
b

respect to the solid being taken into account in the 𝑣–𝑤 formulation
(in essence, equivalent to the 𝑢–𝑈 form described by Zienkiewicz et al.
(1980), where 𝑢 and 𝑈 are the total displacements of the solid and
fluid phases, respectively), while that is not the case for the simplified
𝑢–𝑝 formulation. Although the 𝑢–𝑝 formulation is known to be inac-
curate for fast dynamic phenomena (Zienkiewicz et al., 1980), it has
nevertheless served as a basis for a variety of coupled MPMs. In the
context of coupled MPMs, both one and two sets of MPs have been
adopted in the development of, respectively, single-layer and two-layer
versions of the method — see Soga et al. (2015) for a discussion on
their advantages and drawbacks. The lower computational costs that
are normally associated with the single-layer approach have motivated
its most frequent use in previous MPM research, as well as in this study.
The time integration algorithm is another key factor in MPM modelling,
as it can affect the overall stability and efficiency of the numerical
scheme. As shown in Table 1, most coupled MPM formulations have so
far been developed in combination with explicit, conditionally stable
time integration. To allow the use of larger time steps and more
convenient stability properties, semi-implicit (Kularathna et al., 2021)
and fully implicit (Zhao and Choo, 2020; Zheng et al., 2021b) MPMs
have recently begun to emerge in the literature.

Similarly to the case of coupled Finite Element Methods (FEMs),
MPMs also perform poorly in the presence of incompressibility con-
straints when built on low-order spatial interpolation. With regard to
fluid-saturated geomaterials, incompressible behaviour may be associ-
ated with hindered pore water drainage and/or a (nearly) isochoric
response of the solid skeleton (Bandara and Soga, 2015). While the
former may induce well-known instabilities in the simulated pore pres-
sure field, the latter may give rise to an excessively stiff response
of the system in hand (volumetric locking) – it is worth recalling
that constitutive models for geomaterials produce only limited volu-
metric strain increments when substantial plasticity is mobilised. To
suppress pore pressure instabilities in low-order coupled MPMs, sev-
eral stabilisation approaches have been adopted, including fractional
time stepping (Kularathna et al., 2021), polynomial pressure projec-
tion (Zhao and Choo, 2020), reduced integration (Abe et al., 2014;
Bandara and Soga, 2015; Wang et al., 2018; Zheng et al., 2021a,b;
Martinelli and Galavi, 2022), and volumetric strain averaging (Jassim
et al., 2013; Ceccato et al., 2016; Lei et al., 2020). On the other hand,
locking-related inaccuracies can be mitigated in two-phase coupled
problems by means of techniques initially developed for one-phase
media. In the context of one-phase MPM modelling, solutions based,
e.g., on mixed variational principles (Mast et al., 2012; Iaconeta et al.,
2019), fractional time stepping (Kularathna and Soga, 2017; Zhang
et al., 2017), and F and B methods (Coombs et al., 2018; Bisht et al.,
2

2021; Yuan et al., 2021), have already proven successful against locking
in one-phase large-deformation problems. In very few instances, such
locking remedies have also been implemented in coupled (standard)
MPMs (Jassim et al., 2013; Bandara and Soga, 2015), but exclusively in
combination with explicit time integration. Most recently, Kularathna
et al. (2021) proposed a stable time-stepping scheme for the MPM
modelling of fluid-saturated porous media within the framework of the
Generalised Interpolation Material Point (GIMP) method (which is a
variant of standard MPM).

This study demonstrates the benefits of combining the well-known
anti-locking B approach (originally proposed by Hughes (1980) for in-
ompressible FEM modelling) with the fully implicit, three-field GIMP-
atch method for two-phase poroelastic materials recently developed
y Zheng et al. (2021b). The resulting method, named the ‘implicit B

GIMP-patch’ method, is shown to score two important goals: (i) it can
substantially alleviate (undrained) pore pressure instabilities, owing to
a beneficial combination of selective reduced integration and patch re-
covery based on a Moving Least Square Approximation (MLSA) (Zheng
et al., 2021a); (ii) it exploits the B approach to remedy locking-related
inaccuracies in the presence of a (nearly) isochoric plastic behaviour of
the solid skeleton.

To the authors’ knowledge, the proposed combination of pressure
stabilisation and anti-locking techniques is here explored for the first
time in the framework of a fully implicit coupled MPM (within the
framework of GIMP). The contents of the paper are organised as
follows: after summarising in Section 2 the fundamentals of the earlier
implicit GIMP-patch method (based on a 𝑢–𝑝–𝑈 formulation of the
reference hydro-mechanical problem), technical details regarding the
incorporation of the B method are covered in Section 3; in Section 4
the performance of the proposed method is discussed with reference to
a number of numerical verification examples.

2. Formulation of the implicit GIMP-patch method

In this section, the equations governing the dynamics of saturated
soil-like materials based on the three-field 𝑢–𝑝–𝑈 formulation are first
presented; then, the discretisation and stabilisation processes associated
with the implicit GIMP-patch method are also summarised. Note that
only those equations essential to a full understanding of the develop-
ments in this paper are presented. More details and further links to
previous literature may be found in the recent work of Zheng et al.
(2021b).

In what follows, a single set of MPs is used to represent both the soil
skeleton and the pore fluid (water), with each material point storing
information for both phases following the deformation of the solid
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skeleton. The density of the soil–water mixture is obtained from the
individual phase densities as 𝜌 = (1 − 𝑛) 𝜌𝑠 + 𝑛𝜌𝑤, where the subscripts
𝑠 and 𝑤 denote the solid and water phases, respectively, and 𝑛 is
the volume porosity. Based on the well-established effective stress
principle, the behaviour of the solid skeleton is assumed to be governed
by the effective stress 𝝈′, defined, in vector notation, as 𝝈′ = 𝝈 + 𝒎𝑝,
where 𝝈 is the total stress, 𝑝 the pore water pressure, and 𝒎 the vector
representation of the Kronecker tensor. In what follows, bold symbols
indicate matrices and vectors, while positive values are used for tensile
total/effective stress components and compressive pore pressures.

2.1. Governing equations

For fully-saturated porous media, the momentum balance equations
associated with the whole two-phase mixture and the pore water phase
read respectively as (Zienkiewicz and Shiomi, 1984; Zienkiewicz et al.,
1999)

𝐒T𝝈 − 𝜌�̈� − 𝜌𝑤�̈�𝑟 + 𝜌𝒃 = 𝟎 (1)

∇𝑝 −𝑹 − 𝜌𝑤�̈� − 𝜌𝑤
�̈�𝑟
𝑛

+ 𝜌𝑤𝒃 = 𝟎 (2)

here 𝐒 is a differential divergence operator, 𝒖 is the absolute displace-
ent of the soil skeleton, 𝒖𝑟 is the displacement of the water phase

elative to the solid phase and defined by 𝒖𝑟 = 𝑛 (𝑼 − 𝒖) (where 𝑼 is
he absolute displacement of the water phase), 𝒃 is an external body
orce, and 𝑹 is the drag force exchanged by the soil skeleton and the
ore water due to their relative motion; dots are used to indicate time
ifferentiation.

The pore water flow must satisfy the following mass conservation
quation:

⋅ �̇�𝑟 + ∇ ⋅ �̇� +
�̇�
𝑄

= 𝟎 (3)

ith the stiffness parameter 𝑄 defined as 1∕𝑄 = 𝑛∕𝐾𝑤 + (1 − 𝑛) ∕𝐾𝑠,
in which 𝐾𝑤 and 𝐾𝑠 are the bulk moduli of the water phase and soil
articles, respectively.

In addition to the above conservation laws, hydraulic and mechan-
cal constitutive relationships are also required, namely for the drag
orce 𝑹 (= 𝑛𝜌𝑤𝑔

𝑘

(

�̇� − �̇�
)

), with 𝑘 and 𝑔 denoting the soil permeabil-
ity and gravitational acceleration, respectively) and the soil skeleton
behaviour. The latter is normally expressed by relating the rates of
effective stress (�̇�′) and strain (�̇�):

�̇�′ = 𝐃𝑒𝑝�̇� (4)

where the elasto-plastic stiffness matrix of the solid skeleton (𝐃𝑒𝑝) is
sed in combination with a linearised definition of the strain rate (Bar-
enhagen and Kober, 2004; Zhang et al., 2011; González Acosta et al.,
021; Tran and Sołowski, 2019; Zheng et al., 2021a; Lei et al., 2021a,b).
t should be noted that this work focuses on the implementation of
he B approach in a coupled implicit MPM, and on its verification

for coupled elastoplastic problems — particularly with respect to the
notorious numerical oscillation issues that are often associated with
MPM modelling (González Acosta et al., 2017, 2020; Zheng et al.,
2021a). Fully general modelling of large deformations can be achieved
by introducing well-established finite strain measures (Holzapfel, 2000)
– such an extension is not expected to heavily impact the hydromechan-
ical performance of the proposed method and will be pursued in future
work.

2.2. Space and time discretisation

In the context of a three-field 𝑢–𝑝–𝑈 formulation, the primary
variables 𝒖 (solid displacement), 𝑝 (pore pressure) and 𝑼 (fluid dis-
placement) are first approximated using their nodal values (�̄�, �̄� and
�̄� ) in the background mesh:

𝒖 = 𝐍 �̄�, 𝑝 = 𝑵 �̄�, 𝑼 = 𝐍 �̄� (5)
3

𝑢 𝑝 𝑈
where 𝐍𝑢, 𝑵𝑝 and 𝐍𝑈 are matrices containing shape functions of
the same low order (bilinear in 2D problems). Substituting the above
approximations (Eq. (5)) into the weak form of the governing equations
((1), (2), and (3)) leads to the following discrete system of ordinary
differential equations:

⎡

⎢

⎢

⎣

𝐌𝑢 𝟎 𝟎
𝟎 𝟎 𝟎
𝟎 𝟎 𝐌𝑈

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

̈̄𝒖
̈̄𝒑
̈̄𝑼

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝐂1 𝟎 −𝐂2
𝟎 𝟎 𝟎

−𝐂T
2 𝟎 𝐂3

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

̇̄𝒖
̇̄𝒑
̇̄𝑼

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝐊𝑢 −𝐆1 𝟎
−𝐆T

1 𝐏 −𝐆T
2

𝟎 −𝐆2 𝟎

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

�̄�
�̄�
�̄�

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

�̄� 𝑠
𝟎
�̄�𝑤

⎤

⎥

⎥

⎦

(6)

here: 𝐌𝑢 and 𝐌𝑈 are mass matrices for the soil and water phases;
1, 𝐂2 and 𝐂3 are damping matrices physically associated with the
rain–fluid drag (no Rayleigh damping included); 𝐊𝑢 is the stiffness
atrix of the solid skeleton; 𝐏 is a compressibility matrix determined

y the bulk stiffness of the solid grains and pore water; 𝐆1 and 𝐆2 are
wo matrices describing the hydro-mechanical coupling between the
keleton deformation and pore water flow; and �̄� 𝑠 and �̄�𝑤 are nodal
orce vectors associated with the solid and water phases. The detailed
xpressions of these matrices emerge from the spatial discretisation
rocess, and are provided by Zienkiewicz and Shiomi (1984) and Zheng
t al. (2021b) with reference to FEM and MPM modelling, respectively.

Within the framework of MPM, the matrices in Eq. (6) can be
btained through the assembly of matrix contributions evaluated at the
rid cell nodes after mapping from the MPs. If the same bilinear shape
unctions (in 2D problems) as in low-order FEM are used, then standard
PM results may suffer from spurious oscillations associated with

iscontinuous shape function gradients, particularly in the event of MP
ell-crossing (Bardenhagen and Kober, 2004). To mitigate such oscil-
ations, Bardenhagen and Kober (2004) proposed the GIMP approach,
hich is based on shape functions constructed by integrating linear

hape functions 𝑁𝑖(𝑥) over the MP support domain 𝛺𝑚𝑝 – the subscripts
and 𝑚𝑝 indicate the 𝑖th node and 𝑚𝑝th MP. For 1D problems, the GIMP
hape function 𝑆𝑖(𝑥𝑚𝑝) (solid lines in Fig. 1(a)) and its gradient 𝐵𝑖(𝑥𝑚𝑝)
solid lines in Fig. 1(b)) are shown in Fig. 1, where 𝑥𝑚𝑝 is the position
f the 𝑚𝑝th MP, and 2𝑙𝑝 defines the width of the support domain.

Using GIMP shape functions and their gradients, the matrices in the
iscrete system (6) can be re-obtained as shown in the Appendix. The
hole equation set after space discretisation can be represented in the

ollowing compact form:

𝒂 + 𝐂𝒗 +𝐊𝒅 = �̄� (7)

here: 𝐌, 𝐂 and 𝐊 are generalised mass, damping and stiffness matri-
es, respectively; �̄� is a time-varying external load term; 𝒂 =

[

̈̄𝒖, ̈̄𝒑, ̈̄𝑼
]T

,
= [ ̇̄𝒖, ̇̄𝒑, ̇̄𝑼 ]T, and 𝒅 = [�̄�, �̄�, �̄� ]T are generalised nodal acceleration,

elocity, and displacement vectors, respectively.
The ordinary differential system in Eq. (7) can be implicitly inte-

rated in time using the well-established Newmark algorithm (New-
ark, 1959). Using two time integration parameters, 𝛾 and 𝛽, the corre-

ponding recurrence relations for stepping from 𝑛 to 𝑛+1 are (Hughes,
987):

𝑛+1 = 𝒂𝑛 + 𝛥𝒂 (8a)

𝑛+1 = 𝒗𝑛 + 𝛥𝑡
[

(1 − 𝛾)𝒂𝑛 + 𝛾𝒂𝑛+1
]

(8b)

𝑛+1 = 𝒅𝑛 + 𝒗𝑛𝛥𝑡 +
𝛥𝑡2

2
[

(1 − 2𝛽)𝒂𝑛 + 2𝛽𝒂𝑛+1
]

(8c)

in which 𝛥𝑡 = 𝑡𝑛+1− 𝑡𝑛 is the (constant) time step size. After substituting
the above recurrence relations into Eq. (7), the following algebraic
system of fully discretised equations is obtained:

𝐊𝛥𝒅𝑛+1 = 𝒇 𝑛+1 − 𝒇 𝑖𝑛𝑡𝑛 +𝐌𝑛

[

𝑓1
𝛥𝑡

𝒗𝑛 +
(

𝑓1
2

− 1
)

𝒂𝑛
]

+ 𝐂𝑛
[

(

𝑓2 − 1
)

𝒗𝑛 +
(

𝑓2 − 1
)

𝒂𝑛𝛥𝑡
]

(9)

2
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Fig. 1. One-dimensional GIMP shape function and its gradient.
where 𝐊 =
𝑓1
𝛥𝑡2

𝐌𝑛 +
𝑓2
𝛥𝑡

𝐂𝑛 + 𝐊𝑛 is an algorithmic dynamic stiffness
matrix, based on the evaluations at the 𝑛th step of the generalised mass,
damping and stiffness matrices (𝐌𝑛, 𝐂𝑛 and 𝐊𝑛, respectively); 𝑓1 = 1∕𝛽,
𝑓2 = 𝛾∕𝛽, and 𝒇 𝑖𝑛𝑡𝑛 =

[

𝒇 𝑖𝑛𝑡𝑢,𝑛,𝒇
𝑖𝑛𝑡
𝑝,𝑛,𝒇

𝑖𝑛𝑡
𝑈,𝑛

]T
is the internal nodal force vector,

in which

𝒇 𝑖𝑛𝑡𝑢,𝑖 =
𝑁𝑚𝑝
∑

𝑚𝑝=1
𝐁T
𝑢,𝑖

(

𝒙𝑚𝑝,𝑛
)

[

𝝈′
𝑚𝑝,𝑛 − (1 − 𝑛)𝒎𝑝𝑚𝑝,𝑛

]

𝑉𝑚𝑝,𝑛 (10a)

𝑓 𝑖𝑛𝑡𝑝,𝑖 =
𝑁𝑚𝑝
∑

𝑚𝑝=1

[

− (1 − 𝑛)𝑆𝑝,𝑖(𝒙𝑚𝑝,𝑛)𝜀𝑢𝑣𝑜𝑙,𝑚𝑝 − 𝑆𝑝,𝑖(𝒙𝑚𝑝,𝑛)
𝑝𝑚𝑝,𝑛
𝑄

− 𝑛𝑆𝑝,𝑖(𝒙𝑚𝑝,𝑛)𝜀𝑈𝑣,𝑚𝑝
]

𝑉𝑚𝑝,𝑛 (10b)

𝒇 𝑖𝑛𝑡𝑈,𝑖 = −
𝑁𝑚𝑝
∑

𝑚𝑝=1
𝐁T
𝑈,𝑖

(

𝒙𝑚𝑝,𝑛
)

𝑛𝒎𝑝𝑚𝑝,𝑛𝑉𝑚𝑝,𝑛 (10c)

and 𝑁𝑚𝑝 is the total number of MPs; 𝜀𝑢𝑣𝑜𝑙,𝑚𝑝 and 𝜀𝑈𝑣𝑜𝑙,𝑚𝑝 are the volu-
metric strain of the soil and water phases at the 𝑚𝑝th MP; 𝒙𝑚𝑝,𝑛 and
𝑉𝑚𝑝,𝑛 are the coordinate and volume of the 𝑚𝑝th MP at step 𝑛, while
𝝈′
𝑚𝑝,𝑛 and 𝑝𝑚𝑝,𝑛 indicate the corresponding effective stress and pore

pressure values; and subscripts/superscripts 𝑢, 𝑝 and 𝑈 , respectively,
indicate variables associated with the primary variables in the 𝑢–𝑝–𝑈
formulation. In the remainder of this study, a single pair of integration
parameters, 𝛽 = 0.25 and 𝛾 = 0.5, is exclusively adopted.

Since elasto-plastic large-deformation problems are inevitably non-
linear, the discretised system (9) must be solved iteratively. To this end,
each time step is solved through the Modified Newton–Raphson itera-
tion scheme (Zienkiewicz et al., 2005). When equilibrium is reached,
all relevant variables are updated at the MPs using the computed nodal
values as follows:

𝒂𝑢𝑚𝑝,𝑛+1 =
𝑁𝑛𝑜𝑑𝑒
∑

𝑖=1
𝐒𝑢,𝑖(𝒙𝑚𝑝,𝑛) ̈̄𝒖𝑖,𝑛+1 (11a)

𝒂𝑈𝑚𝑝,𝑛+1 =
𝑁𝑛𝑜𝑑𝑒
∑

𝑖=1
𝐒𝑈,𝑖(𝒙𝑚𝑝,𝑛) ̈̄𝑼 𝑖,𝑛+1 (11b)

𝒗𝛼𝑚𝑝,𝑛+1 = 𝒗𝛼𝑚𝑝,𝑛 +
𝒂𝛼𝑚𝑝,𝑛+1 + 𝒂𝛼𝑚𝑝,𝑛

2
𝛥𝑡 (𝛼 = 𝑢, 𝑈 ) (11c)

𝝈′
𝑚𝑝,𝑛+1 = 𝝈′

𝑚𝑝,𝑛 + 𝐃𝑒𝑝
𝑁𝑛𝑜𝑑𝑒
∑

𝑛=1
𝐁𝑢,𝑖(𝒙𝑚𝑝,𝑛)�̄�𝑖,𝑛+1 (11d)

𝑝𝑚𝑝,𝑛+1 = 𝑝𝑚𝑝,𝑛 +
𝑁𝑛𝑜𝑑𝑒
∑

𝑛=1
𝑆𝑝,𝑖(𝒙𝑚𝑝,𝑛)�̄�𝑖,𝑛+1 (11e)

𝒙𝑚𝑝,𝑛+1 = 𝒙𝑚𝑝,𝑛 +
𝑁𝑛𝑜𝑑𝑒
∑

𝑛=1
𝐒𝑢,𝑖(𝒙𝑚𝑝,𝑛)�̄�𝑖,𝑛+1 (11f)

where the superscripts 𝑢 and 𝑈 respectively denote variables associated
with the solid and water phases, 𝑁 is the total number of nodes,
4

𝑛𝑜𝑑𝑒
̈̄𝒖𝑖,𝑛+1 is the solid acceleration for the 𝑖th node at the (𝑛 + 1)th step
(defined as 4�̄�𝑖,𝑛+1

𝛥𝑡2
− 4 ̇̄𝒖𝑖,𝑛

𝛥𝑡 − ̈̄𝒖𝑖,𝑛1), ̈̄𝑼 𝑖,𝑛+1 is the water nodal acceleration

(calculated as 4�̄� 𝑖,𝑛+1
𝛥𝑡2

− 4 ̇̄𝑼 𝑖,𝑛
𝛥𝑡 − ̈̄𝑼 𝑖,𝑛), and �̄�𝑖,𝑛+1 and �̄�𝑖,𝑛+1 are the nodal

incremental displacement of the solid phase and the nodal incremental
pore pressure. Since this study considers a single-layer MPM formula-
tion, the positions of the MPs are updated following the motion of the
solid phase.

To alleviate pore pressure instabilities in coupled analyses, a patch
recovery algorithm based on a Moving Least Square Approximation
(MLSA) has been introduced in the implicit GIMP method by Zheng
et al. (2021b) after an earlier explicit implementation (Zheng et al.,
2021a). In the MLSA-based patch recovery, a rectangular area can be
delimited around a node using central GPs in the four neighbouring
quadrilateral grid cells; therefore, a linear patch can be defined within
this area using the mapped pore pressure increments at central GPs. The
pore pressure increments at MPs are thus determined by the established
MLSA-based linear patch. More details regarding the fundamentals of
the reference patch recovery algorithm can be found in Zienkiewicz
and Zhu (1992) and Zheng et al. (2021a). The implicit GIMP-patch
method was first tested for poroelastic coupled problems by Zheng et al.
(2021b) and proven to produce stable and oscillation-free solutions.
As the implicit GIMP method is not covered further herein, interested
readers are referred to Zheng et al. (2021b).

3. Implementation of the 𝐁 locking antidote into the implicit
GIMP-patch method

In a similar manner to low-order FEMs, the accuracy of the coupled
implicit GIMP-patch method may also be negatively impacted by volu-
metric locking effects, which are likely to manifest themselves when
the soil skeleton deforms at (nearly) constant volume (e.g., during
plastic flow) and a full strain integration is adopted in the stress
analysis (Coombs et al., 2018). In this study, the original version of
the B method for low-order FEMs (Hughes, 1980) is implemented in
the implicit GIMP-patch method to remedy locking-related inaccuracies
in elasto-plastic large-deformation problems. The essence of the B ap-
proach is to evaluate the excessively stiff volumetric component of the
compatibility matrix (𝐁𝑖) via reduced quadrature, while full quadrature
is still employed for the complementary deviatoric part (Hughes, 1980).
Accordingly, the compatibility matrix 𝐁𝑖 is first split at a given node 𝑖
into deviatoric (𝐁𝑑𝑒𝑣𝑖 ) and volumetric (𝐁𝑣𝑜𝑙𝑖 ) components, so that 𝐁𝑖 =
𝐁𝑑𝑒𝑣𝑖 + 𝐁𝑣𝑜𝑙𝑖 . In the case of plane strain conditions, the 𝐁𝑖 and 𝐁𝑣𝑜𝑙𝑖

1 The recurrence relation for the solid acceleration at step 𝑛+1 is obtained
by substituting Eq. (8c) into Eq. (8a). More details can be found in Hughes
(1987) and Zheng et al. (2021b).
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matrices assume the following forms:

𝐁𝑖 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝑁𝑖
𝜕𝑥 0
0 𝜕𝑁𝑖

𝜕𝑦
𝜕𝑁𝑖
𝜕𝑦

𝜕𝑁𝑖
𝜕𝑥

0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐁𝑣𝑜𝑙𝑖 = 1
3

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝑁𝑖
𝜕𝑥

𝜕𝑁𝑖
𝜕𝑦

𝜕𝑁𝑖
𝜕𝑥

𝜕𝑁𝑖
𝜕𝑦

0 0
𝜕𝑁𝑖
𝜕𝑥

𝜕𝑁𝑖
𝜕𝑦

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐁𝑑𝑒𝑣𝑖 = 𝐁𝑖 − 𝐁𝑣𝑜𝑙𝑖 (12)

where 𝑁𝑖 is the shape function associated with the 𝑖th node.
In the FEM B method, the original volumetric matrix 𝐁𝑣𝑜𝑙𝑖 is replaced

by the following ‘improved’ version evaluated at the grid cell centres
(gc):

𝐁
𝑣𝑜𝑙
𝑖 = 1

3

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜕𝑁𝑖,𝑔𝑐
𝜕𝑥

𝜕𝑁𝑖,𝑔𝑐
𝜕𝑦

𝜕𝑁𝑖,𝑔𝑐
𝜕𝑥

𝜕𝑁𝑖,𝑔𝑐
𝜕𝑦

0 0
𝜕𝑁𝑖,𝑔𝑐
𝜕𝑥

𝜕𝑁𝑖,𝑔𝑐
𝜕𝑦

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(13)

while the deviatoric matrix 𝐁𝑑𝑒𝑣𝑖 is directly calculated at the Gauss point
gp) locations. As a result, the following global compatibility matrix 𝐁𝑖
s obtained:

𝐁𝑖 = 𝐁𝑑𝑒𝑣𝑖 + 𝐁
𝑣𝑜𝑙
𝑖 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2
3
𝜕𝑁𝑖,𝑔𝑝
𝜕𝑥 + 1

3
𝜕𝑁𝑖,𝑔𝑐
𝜕𝑥 − 1

3
𝜕𝑁𝑖,𝑔𝑝
𝜕𝑦 + 1

3
𝜕𝑁𝑖,𝑔𝑐
𝜕𝑦

− 1
3
𝜕𝑁𝑖,𝑔𝑝
𝜕𝑥 + 1

3
𝜕𝑁𝑖,𝑔𝑐
𝜕𝑥

2
3
𝜕𝑁𝑖,𝑔𝑝
𝜕𝑦 + 1

3
𝜕𝑁𝑖,𝑔𝑐
𝜕𝑦

𝜕𝑁𝑖,𝑔𝑝
𝜕𝑦

𝜕𝑁𝑖,𝑔𝑝
𝜕𝑥

− 1
3
𝜕𝑁𝑖,𝑔𝑝
𝜕𝑥 + 1

3
𝜕𝑁𝑖,𝑔𝑐
𝜕𝑥 − 1

3
𝜕𝑁𝑖,𝑔𝑝
𝜕𝑦 + 1

3
𝜕𝑁𝑖,𝑔𝑐
𝜕𝑦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(14)

The same B approach has been previously incorporated into two-
hase standard MPM (Bandara and Soga, 2015; Martinelli and Galavi,
022) and one-phase GIMP (Bisht et al., 2021; Yuan et al., 2021), in
oth cases within an explicit time stepping scheme. It should be noted
hat such an implementation can easily be performed for a standard
PM, since the centre of each grid cell can be directly determined. In

ontrast, the B extension of GIMP is less straightforward – a specific MP
may in fact be influenced by multiple cells when its support domain
lies across more than one grid cell, which frequently happens during
the movement of MPs. Following the approach proposed by Coombs
et al. (2018), only that portion of the MP support domain lying within
the domain of a grid cell is considered to contribute to the volumetric
behaviour of the cell itself.

In order to construct the GIMP shape function and its gradient, the
shape function 𝑁𝑖,𝑔𝑐 and its gradient ∇𝑁𝑖,𝑔𝑐 take values at the centre of
a grid cell, which remain constant (𝑁𝑖,𝑔𝑐 =

1
2 and ∇𝑁𝑖,𝑔𝑐 = ± 1

ℎ , where ℎ
is the size of a quadrilateral cell in a regular background mesh) through
the entire cell. The one-dimensional GIMP shape function 𝑆𝑖,𝑔𝑐 is then
omputed as

𝑖,𝑔𝑐 =
1
𝑉𝑚𝑝 ∫𝛺𝑚𝑝

1
2
d𝑥 (15)

Fig. 2 shows the GIMP shape functions and their gradients sampled
at the centre of the grid cell. Using the GIMP shape function, the
modified �̄�𝑖 matrix can be written as

�̄�𝑖 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

2
3
𝜕𝑆𝑖,𝑚𝑝
𝜕𝑥 + 1

3
𝜕𝑆𝑖,𝑔𝑐
𝜕𝑥 − 1

3
𝜕𝑆𝑖,𝑚𝑝
𝜕𝑦 + 1

3
𝜕𝑆𝑖,𝑔𝑐
𝜕𝑦

− 1
3
𝜕𝑆𝑖,𝑚𝑝
𝜕𝑥 + 1

3
𝜕𝑆𝑖,𝑔𝑐
𝜕𝑥

2
3
𝜕𝑆𝑖,𝑚𝑝
𝜕𝑦 + 1

3
𝜕𝑆𝑖,𝑔𝑐
𝜕𝑦

𝜕𝑆𝑖,𝑚𝑝
𝜕𝑦

𝜕𝑆𝑖,𝑚𝑝
𝜕𝑥

− 1
3
𝜕𝑆𝑖,𝑚𝑝
𝜕𝑥 + 1

3
𝜕𝑆𝑖,𝑔𝑐
𝜕𝑥 − 1

3
𝜕𝑆𝑖,𝑚𝑝
𝜕𝑦 + 1

3
𝜕𝑆𝑖,𝑔𝑐
𝜕𝑦

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(16)

After determining the modified �̄�𝑖 matrix, the nodal stiffness and
internal force matrices (see the Appendix for more details) in Eq. (9)
and the effective stress vector in Eq. (11d) can be computed by simply
replacing the original 𝐁 matrix with the modified �̄�𝑖 matrix. Aside
from the inclusion of the �̄� matrix, all other steps regarding space and
time discretisation are the same as in the implicit GIMP-patch method
proposed by Zheng et al. (2021b).
5

1

Table 2
Material properties adopted for the footing and the (two-phase) soil for the total stress
analysis of the undrained bearing capacity problem in Fig. 3.

Property Symbol Unit SD analysis LD analysis

Young’s modulus (footing) 𝐸𝑓 [kPa] 10000 10000
Poisson’s ratio (footing) 𝜈𝑓 [–] 0.3 0.3
Young’s modulus 𝐸 [kPa] 1000 100
Poisson’s ratio 𝜈 [–] 0.49 0.49
Soil grain density 𝜌𝑠 [kg∕m3] 2600 2600
Water density 𝜌𝑤 [kg∕m3] 1000 1000
Friction angle 𝜙 [◦] 0 0
Dilation angle 𝜓 [◦] 0 0
Cohesion 𝑐 [kPa] 0.1 1.0
Initial porosity 𝑛 [–] 0.4 0.4
Water bulk modulus 𝐾𝑤 [kPa] 2.2 × 106 2.2 × 106

Soil grain bulk modulus 𝐾𝑠 [kPa] 1.0 × 1010 1.0 × 1010

Permeability 𝑘 [m/s] 1.0 × 10−1 1.0 × 10−1

4. Numerical verification and application examples

This section presents the numerical solutions obtained for several
verification and application examples using the proposed implicit B
GIMP-patch method. In all examples, the mechanical behaviour of the
soil skeleton is reproduced by the Mohr–Coulomb model, based on a
model implementation that does not include a tension cut-off (not a
point of focus in this study).

4.1. Bearing capacity of a strip footing

Numerical studies regarding the undrained bearing capacity of
rough strip footings have often been performed by modelling the soil as
a single-phase incompressible material (total stress analysis), both un-
der small- and large-deformation conditions. Such a reference problem
has recently been studied by Kiriyama and Higo (2020) and Bisht et al.
(2021) via single-phase MPM simulations. As a preliminary verification
of the implicit B GIMP-patch method, its single-phase, total stress per-
formance is first verified with respect to the bearing capacity problem
shown in Fig. 3 (the symmetry with respect to the median plane has
been exploited to reduce the computational cost). To comply with the
total stress approach, the inherently two-phase numerical model has
been set up to function as a one-phase system by (i) introducing a
very large permeability, and (ii) reducing the Mohr–Coulomb frictional
model to its cohesive/isochoric version (Tresca model, in which the
cohesion 𝑐 coincides with the undrained strength 𝑠𝑢) – all material
roperties are listed in Table 2. As is usual in total stress limit load
alculations, the initial stress state of the soil is not influential and,
herefore, there is no need to account for its self-weight in the analysis
although a mass density is still assigned to the MPs for the calculation
f the inertial terms associated with the 𝑢–𝑝–𝑈 formulation).

Both the footing (breadth 𝐵 = 1 m) and the soil layer have been
discretised using 4-node quadrilateral grid cells, with each cell initially
hosting 2 × 2 equally-spaced MPs. To enable meaningful comparison
to static, one-phase solutions, the external load has been applied at
a sufficiently slow rate, so as to ensure negligible acceleration and
excess pore pressure generation. Both numerical simulations have been
performed with a time step size equal to 𝛥𝑡 = 5.0 × 10−2 s, and by
dopting the same material parameters as those adopted by Bisht et al.
2021) for fair comparison. The selected time step size and loading
ate have been verified to enable proper modelling of the inherently
uasi-static process under consideration using the fully dynamic MPM
ormulation developed in this study.

.1.1. Small-deformation analysis
The small-deformation (SD) analysis of the problem in Fig. 3 has

een performed in combination with a large ratio between the Young’s
odulus and the cohesion (undrained shear strength) of the soil, 𝐸∕𝑐 =

0000, so as to achieve the bearing capacity limit – 𝑞∕𝑐 = 2 + 𝜋 ≈ 5.14
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Fig. 2. One-dimensional GIMP shape function and its gradient sampled at the centre of a grid cell.
Fig. 3. Reference bearing capacity problem for a strip footing: computational domain
and boundary conditions.

– with only a small settlement of the foundation. In this SD example
the external vertical pressure 𝑞 has been directly applied on the grid
nodes below the footing, at a rate of 0.01 kPa∕s. Fig. 4 shows the
SD relationship between the normalised load (𝑞∕𝑐) and displacement
(𝑑∕𝐵) obtained for a grid cell size ℎ equal to 0.25m. In Fig. 4, the
implicit B GIMP-patch solution is compared to those solutions obtained
ia the previous implicit GIMP-patch method by Zheng et al. (2021b)
nd the explicit B GIMP by Bisht et al. (2021). It is apparent that

the implicit GIMP-patch solution severely overestimates the analytical
capacity limit, while excellent agreement is observed between the result
obtained by the method proposed in this study and the result obtained
by Bisht et al. (2021). This outcome supports the anti-locking effec-
tiveness of the implicit B GIMP-patch method, with a computational
onvenience that is expected to be superior to Bisht et al.’s method
wing to the implicit time stepping scheme.

In more detail, Fig. 5 displays the final distributions of the mean
tress obtained through the implicit GIMP-patch method, as computed
sing both its original and B versions. Even for an SD analysis in
hich the displacements are negligible, Fig. 5(a) shows that the implicit
IMP-patch method generates spurious stress oscillations when no anti-

ocking measures are undertaken. In contrast, the corresponding picture
rising from the B analysis shows the typical compression bulb under

the foundation without any undesired oscillations (Fig. 5(b)).
To explore the influence of space discretisation in the implicit

B GIMP-patch method, Fig. 6 shows the load–displacement curves
btained with four different space discretisations (ℎ = 0.5m, 0.25m,
.1m, and 0.05m). In all cases, the implicit B GIMP-patch solution
6

Fig. 4. SD relationship between normalised load (𝑞∕𝑐) and displacement (𝑑∕𝐵) for the
undrained bearing capacity problem in Fig. 3.

captures the undrained bearing capacity of the strip footing, with a
clearly converging trend towards Prandtl’s solution as finer background
meshes are considered.

4.1.2. Large-deformation analysis
The static, undrained bearing capacity of a strip footing under large

deformations (LD) has previously been studied within a one-phase total
stress framework using a variety of numerical methods, including the
Arbitrary Lagrangian–Eulerian (ALE) approach (Nazem et al., 2006,
2009), sequential limit analysis (Da Silva et al., 2011), the remeshing
and interpolation technique with small strain (RITSS) (Wang et al.,
2015), and MPM (Sołowski and Sloan, 2015; Woo and Salgado, 2018;
Iaconeta et al., 2019; Kiriyama and Higo, 2020; Bisht et al., 2021). In
what follows, the LD performance of the (coupled) implicit B GIMP-
patch method is assessed, following the same adopted strategy as in the
previous SD sub-section, i.e., with a sufficiently slow application of the
external load (0.1 kPa∕s) and, therefore, negligible pore pressure build-
up. It is also worth mentioning that, within the MPM framework, it is
rather difficult to exactly enforce natural boundary conditions such as
surface tractions, due to the substantial displacement of MPs associated
with LD processes. Therefore, it has been preferred to model the footing
in Fig. 3 as a solid of increasing unit weight, which easily enables
the application of a desired vertical pressure — as previously done
by Kiriyama and Higo (2020). For comparison purposes, the simulated
load–displacement curve for the foundation has been obtained by cal-
culating the external pressure via the average contact force between
the footing block and the underlying (weightless) soil.

In Fig. 7, the load–displacement curves obtained through the im-
plicit B GIMP-patch method, and grid cell sizes of ℎ = 0.25m and
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Fig. 5. SD mean stress distribution associated with the last calculation step of the analyses in Fig. 4: (a) implicit GIMP-patch method by Zheng et al. (2021b) vs (b) implicit B
GIMP-patch method (this study). The horizontal and vertical axes refer to distance non-dimensionalised with respect to the foundation width 𝐵.
Fig. 6. SD mesh sensitivity of the implicit B GIMP-patch method for the undrained
bearing capacity problem in Fig. 3 (including a zoom-in on the detail at bearing failure).

0.125m, are plotted. The LD solutions from explicit B GIMP (Bisht et al.,
2021), RITSS (Wang et al., 2015), and sequential limit analysis (Da
Silva et al., 2011) are also included for comparison — note that
the soil is modelled as a strictly rigid-plastic material in the case of
sequential limit analysis (Da Silva et al., 2011), whereas typical elasto-
plastic behaviour is assumed in all other numerical solutions. It can be
observed that the implicit B GIMP-patch solution is in good agreement
with other LD results from the literature. The small differences between
the B GIMP-patch solutions and the other solutions are likely to be due
to the use of a relatively coarse/structured grid in this study, while
locally refined meshes have been adopted in the referenced studies.

To further assess the LD performance of the implicit B GIMP-patch
method, Fig. 8 illustrates the distributions of the mean (effective) stress
distribution and the deviatoric plastic strain invariant 𝜖𝑑𝑝 =

√

2∕3𝑒𝑒𝑒𝑝 ∶ 𝑒𝑒𝑒𝑝
(with 𝑒𝑒𝑒𝑝 being the deviatoric plastic strain tensor) associated with a
normalised settlement of the footing equal to 𝑑∕𝐵 = 1. Also under LD
conditions, the mean stress field is mostly oscillation-free and exhibits
a well-shaped compression bulb — see Fig. 8(a); in Fig. 8(b), large
values of deviatoric plastic strain appear around the foundation, which
compare well with the quantitative observations of Iaconeta et al.
(2019) and Bisht et al. (2021). However, some small oscillations are
still visible near the bottom-right corner of the footing block, where
7

Fig. 7. LD normalised load–displacement curves for the undrained bearing capacity
problem in Fig. 3.

substantial relocation of the MPs takes place during the large settlement
of the foundation. Such a relocation can lead to a discontinuous support
domain of MPs (see also Charlton, 2018) and, as a consequence, cause
stress oscillations (though not due to locking effects). Furthermore,
positive (tensile) values of the mean effective stress can be observed
around the bottom-right corner of the footing, in a fashion similar to the
results shown by Bisht et al. (2021). Combining a constitutive tension
cut-off with a more advanced algorithm for support-domain updating
– of the kind proposed in previous studies (Sadeghirad et al., 2011;
Charlton, 2018; Coombs et al., 2020) – is expected to positively impact
stress recovery calculations.

4.2. Earthen slope failure

In this section, the performance of the implicit B GIMP-patch
method is evaluated with respect to slope failure processes triggered by
gravity. As is shown in Fig. 9, the reference slope comprises two soil
layers that are henceforth referred to as ‘upper’ and ‘lower’ (foundation)
layers — all material properties are listed in Table 3. The free surface
of the slope is unconstrained and freely draining, while the lateral
and bottom boundaries are impermeable and supported by rollers.
In both example cases considered hereafter, the problem domain has
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Fig. 8. LD mean stress and deviatoric plastic strain distributions associated with the last calculation step of the analyses in Fig. 7 (grid cell size ℎ = 0.125m). The horizontal and
vertical axes refer to distance non-dimensionalised with respect to the foundation width 𝐵.
Fig. 9. Reference slope stability problem: computational domain and boundary conditions.
Table 3
Soil properties associated with the reference slope in Fig. 9.
Property Symbol Clay slope Sand slope

Upper layer Lower layer Upper layer Lower layer

Young’s modulus 𝐸 [kPa] 1000 1000 1000 1000
Poisson’s ratio 𝜈 [–] 0.49 0.49 0.3 0.3
Soil grain density 𝜌𝑠 [kg∕m3] 2650 2650 2650 2650
Water density 𝜌𝑤 [kg∕m3] 1000 1000 1000 1000
Friction angle 𝜙 [◦] 0 0 25 25
Initial dilation angle 𝜓𝑖𝑛𝑖 [◦] 0 0 −5 −5
Critical dilation angle 𝜓𝑟 [◦] 0 0 0 0
Dilation evolution parameter 𝜂 [–] – – −25.0 −25.0
Peak cohesion 𝑐𝑝 [kPa] 6.4 20.0 3.0 20.0
Residual cohesion 𝑐𝑟 [kPa] 3.6 20.0 3.0 20.0
Deviatoric plastic strain for 𝑐𝑟 𝜖𝑟𝑝 [–] 0.75 0.75 – –
Initial porosity 𝑛 [–] 0.4 0.4 0.4 0.4
Water bulk modulus 𝐾𝑤 [kPa] 2.2 × 106 2.2 × 106 2.2 × 106 2.2 × 106

Soil grain bulk modulus 𝐾𝑠 [kPa] 1.0 × 1010 1.0 × 1010 1.0 × 1010 1.0 × 1010

Permeability 𝑘 [m/s] 1.0 × 10−1 1.0 × 10−1 1.0 × 10−1 ∼ 1.0 × 10−6
been discretised by means of four-node quadrilateral grid cells of size
0.2m × 0.2m, with each cell initially hosting four equally-spaced MPs;
implicit time integration has been performed with a time step size of
𝛥𝑡 = 5.0 × 10−2 s.

4.2.1. Undrained analysis of slope failure in softening clay
Undrained slope failure is simulated by resorting to the same total

stress approach adopted in Section 4.1 — a Tresca-like soil behaviour
has been introduced to obtain an isochoric material response. To repro-
duce the gradual reduction in undrained strength during soil sliding, a
simple cohesion degradation mechanism has been incorporated into the
8

constitutive law (Wang et al., 2018); specifically, by prescribing a linear
reduction between the peak (𝑐𝑝) and residual (𝑐𝑟) shear strength values
with accumulated plastic deviatoric strain 𝜖𝑑𝑝 , and 𝑐𝑟 being attained
for a value of 𝜖𝑑𝑝 equal to 𝜖𝑟𝑝, with the latter being an additional
material parameter. Note that a much larger strength is assigned to
the foundation layer (Table 3), in order to force slope failure to occur
within the upper layer. Furthermore, the investigation of possible grid-
dependence effects associated with strain-softening are out of the scope
of this study. The size of the computational domain is defined, with
reference to Fig. 9, by 𝑤1 = 4.0m, 𝑤2 = 2.0m, 𝑤3 = 4.0m, ℎ1 = 2.0m,
and ℎ = 1.0m, with the slope inclination being 𝜑 = 45◦.
2
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Fig. 10. Time evolution of mean stress in the soil during undrained slope failure in softening clay. Results obtained through (a) implicit GIMP-patch method and (b) implicit B
GIMP-patch method.
Two slope failure analyses have been carried out using both the
original and B versions of the implicit GIMP-patch method, according
to the following two steps: (i) generation of the initial soil stresses by
gradually applying gravity in combination with kinematic constraints
to prevent immediate slope deformation; (ii) free slope deformation
and failure under its own weight with a degrading cohesion (the peak
cohesion in Table 3 has been purposely selected to render the 45◦

slope unstable). In contrast to the footing problem in Section 4.1, the
gravity-driven failure of a slope does not allow the attainment of a
limit response with exactly no pore pressure build-up, not even if a
very large permeability value is used. Therefore, the pore pressure
degrees-of-freedom have been forcedly set to zero in the MPM code to
study the anti-locking performance of the implicit B GIMP strategy in a
large-deformation problem involving material plasticity and softening.

Fig. 10 shows the mean (total) stress contours at four different time
instants, namely 𝑡 = 0 s, 1.0 s, 3.0 s, and 5.0 s. Fig. 10(a) confirms that se-
vere stress oscillations are returned by the implicit GIMP-patch method
without a proper mitigation of volumetric locking. Such oscillations
become particularly apparent where plastic straining takes place most
intensely (i.e., near the interface between upper and lower layers —
see Fig. 11), and tend to become more severe over time. In contrast,
the benefits of the B technique are confirmed once again in Fig. 10(b),
even in the presence of material softening. Furthermore, Fig. 11 also
shows how locking can significantly affect the slope failure mecha-
nism: the implicit GIMP-patch method returns a completely ‘locked’
deformation pattern, whereas significant slope run-out is obtained with
the B-enhanced calculations. This confirms the possibly extreme con-
sequences of volumetric locking, and the practical importance of its
remediation in large-deformation problems.
9

4.2.2. Coupled analysis of slope failure in water-saturated sand
In this example, the coupled analysis of a sandy slope collapsing

under its self-weight is tackled using the implicit B GIMP-patch method.
The problem domain in Fig. 9 is defined by 𝑤1 = 4.0m, 𝑤2 = 2.0m,
𝑤3 = 5.0m, ℎ1 = 2.0m, and ℎ2 = 1.0m, and the slope inclination is
𝜑 = 45◦.

Sand behaviour has been simply modelled through the standard,
state-independent Mohr–Coulomb model. To more realistically capture
the contractive plastic response of a loose sand, a negative initial
dilation angle (𝜓𝑖𝑛𝑖) has been adopted at the beginning of the analysis;
upon plastic straining, the dilation angle evolves with deviatoric plastic
strain 𝜖𝑑𝑝 towards its (nil) critical state value (𝜓𝑐𝑟𝑖𝑡) according to the
following relationship (Lei et al., 2020):

𝜓 = 𝜓𝑐𝑟𝑖𝑡 +
(

𝜓𝑖𝑛𝑖 − 𝜓𝑐𝑟𝑖𝑡
)

𝑒−𝜂𝜖
𝑑
𝑝 (17)

where 𝜂 is a material parameter governing the variation of 𝜓 with 𝜖𝑑𝑝 .
The material properties chosen for this example are listed in Table 3
and include, for simplicity, constant values of cohesion and frictional
angle. Some small cohesion has been introduced for the upper layer
to enable smoother calculations under low mean effective stress; con-
versely, an unrealistically large cohesion has been set for the foundation
layer, with the sole goal of containing the slope failure within the upper
layer.

Fig. 12 shows the contours of pore pressure and mean effective
stress at four different time instants, obtained with a soil permeability
𝑘 of 1.0 × 10−4 m∕s. The gradual development of slope failure due to
shear banding is also visible and the slope face (indicated by the dashed
line) is compared to the initial geometry (indicated by the dotted line).
During all phases of the slope failure, the implicit B GIMP-patch method
returns perfectly smooth, oscillation-free distributions of effective stress
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Fig. 11. Final distributions of deviatoric plastic strain and total displacement associated with undrained slope failure in softening clay. Results obtained through (a) implicit
GIMP-patch method and (b) implicit B GIMP-patch method.
Fig. 12. Time evolution of excess pore pressure and mean effective stress during slope failure in water-saturated sand. Results obtained with soil permeability 𝑘 = 1.0 × 10−4 m∕s
and initial dilatancy angle 𝜓𝑖𝑛𝑖 = −5◦.
and pore water pressure. In particular, as failure develops, positive
(compressive) excess pore pressures build up where high deviatoric
plastic straining takes place, which is consistent with the choice of a
negative dilation angle for the soil. The excess pore pressure begins
to gradually dissipate after about 1.25 s, i.e., as the slope gradually
approaches its final equilibrium configuration.

To appreciate the influence of soil permeability on the results of
the coupled analysis, the final configuration of the slope at 𝑡 = 50.0 s is
shown in Fig. 13 for three different 𝑘 values. As expected, the numerical
model captures correctly that larger soil displacements develop at the
10
slope toe as the permeability is reduced. Such an occurrence is clearly
due to the build-up of larger pore pressures, and therefore to a more
pronounced reduction in mean effective stress and, proportionally, soil
shear resistance. On a related note, Fig. 14 displays the time evolution
of the excess pore pressure (difference between the current/total pore
pressure value and the hydrostatic pore pressure value at the start of
simulation) at a point initially located near the slope toe — point A
in Fig. 12(a). The figure confirms that larger pore pressure peaks are
attained for lower permeability values, with a slower pore pressure
dissipation afterwards. The latter is a consequence of the larger drag
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Fig. 13. Configuration after slope failure (at 𝑡 = 50.0 s) in water-saturated sand for different values of soil permeability, and associated contours of total pore pressure and deviatoric
plastic strain. Results obtained with initial soil dilatancy angle 𝜓𝑖𝑛𝑖 = −5◦.
Fig. 14. Time evolution of the excess pore pressure at the point A shown in Fig. 12(a)
(initially located near the slope toe) for different values of soil permeability. Results
obtained with soil initial dilatancy angle 𝜓𝑖𝑛𝑖 = −5◦.

forces 𝑹 that locally arise with low permeability, which in turn hinders
the relative displacement of the soil skeleton and pore water (see Sec-
tion 2.1). On the other hand, the oscillatory pore pressure dissipation
trends obtained for low 𝑘 values reflect the more pronounced dynamic
effects that are associated with a farther/faster soil run-out (Fig. 13).

The impact of the deviatoric–volumetric coupling on soil behaviour
is numerically investigated by considering different values of the initial
dilation angle (𝜓𝑖𝑛𝑖 in Eq. (17)), namely −5◦ (contractive soil), 0◦,
and 5◦ (dilative soil), in combination with a soil permeability 𝑘 =
1.0 × 10−4 m∕s. The distributions of the total displacement and the
deviatoric plastic strain at the end of the simulation (𝑡 = 50.0 s) are
shown in Fig. 15. It is evident that the slope toe undergoes rather lim-
ited displacement when dilative soil behaviour is considered, whereas
11
considerable slope deformation takes place in the case of a contractive
soil. Such occurrences mainly stem from the fact that much larger
positive excess pore pressures build up when the soil is contractive,
which can lead to a significant reduction in the mean effective stress
across the soil domain, and therefore to a lower resistance to shear
loading. In contrast, negative excess pore pressures result during the
deviatoric plastic straining of a dilative soil, which ultimately limits the
deformations experienced by the slope as a consequence of an enhanced
resistance to shear. These observations are further supported by the
excess pore pressure curves plotted in Fig. 16 for the same point A
(near the slope toe) as indicated in Fig. 12(a). The figure confirms the
qualitative expectations about the relationship between the value of 𝜓𝑖𝑛𝑖
and the sign of the resulting excess pore pressure (Navas et al., 2018).

4.3. Bearing capacity of a strip footing near a slope

As a final application example, the implicit B GIMP-patch method
is used to analyse the bearing capacity of a rough strip footing near the
crest of a cohesive–frictional, water-saturated slope. The computational
model and the associated boundary conditions are displayed in Fig. 17.
The slope comprises two layers of fluid-saturated soil; 𝐵 = 1.0m is the
breadth of the foundation, while 𝜆 ⋅ 𝐵 denotes the distance between
the footing edge and the slope crest. The relevant domain dimensions
in Fig. 17 are 𝑤1 = 13.0𝐵, 𝑤2 = 5.0𝐵, 𝑤3 = 8.0𝐵, ℎ1 = 5.0𝐵,
and ℎ2 = 1.0𝐵 – note that the rather large 𝑤1 has been chosen to
avoid boundary effects for all the values of 𝜆 ⋅ 𝐵 considered in the
following. The strip footing has been modelled as a stiff elastic block
with a Young’s modulus 𝐸𝑓 = 10 000 kPa and a Poisson’s ratio 𝜈𝑓 = 0.3,
while the Mohr–Coulomb parameters of the soil are listed in Table 4.
Numerical simulations have been performed using a time step size of
𝛥𝑡 = 5 × 10−2 s and a loading rate of 20.0 kPa∕s. Both the footing and
the soil base have been discretised through 4-node quadrilateral grid
cells of size 0.5m× 0.5m, with each cell initially hosting 2 × 2 equally-
spaced MPs. The main purpose of this example case is to demonstrate
the suitability of the proposed B GIMP-patch method to study the
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Fig. 15. Configuration after slope failure (at 𝑡 = 50.0 s) in water-saturated sand for different values of the initial soil dilatancy angle 𝜓𝑖𝑛𝑖, and associated contours of total displacement
and deviatoric plastic strain. Results obtained with soil permeability 𝑘 = 1.0 × 10−4 m∕s.
Fig. 16. Time evolution of the excess pore pressure at the same point A indicated in
Fig. 12(a) (initially located near the slope toe) for different values of the initial soil
dilatancy angle 𝜓𝑖𝑛𝑖. Results obtained with soil permeability 𝑘 = 1.0 × 10−4 m∕s.

interplay between the foundation failure and slope collapse mechanism
as a function of the footing-to-crest distance.

Fig. 18 shows how the footing-to-crest distance factor 𝜆 affects
the large-deformation response of the foundation under the vertical
pressure 𝑞. The distance between the footing edge and the slope crest
has a significant influence on the bearing capacity, which tends to
increase for larger values of 𝜆 and converge to the case of a foundation
on level ground with no slope — see the strong similarity of the
responses associated with 𝜆 = 6 and 𝜆 = ∞. The influence of the footing-
to-crest distance becomes gradually more evident as the foundation
response enters the large-deformation regime, i.e., after a displacement
of about 0.1𝐵. The lack of a well-defined capacity plateau may be
due to concurrent factors that gradually manifest themselves as large
12
Table 4
Soil properties associated with the footing–slope interaction problem in Fig. 17.

Property Symbol Unit Upper layer Lower layer

Young’s modulus 𝐸 [kPa] 1000 1000
Poisson’s ratio 𝜈 [–] 0.3 0.3
Soil grain density 𝜌𝑠 [kg∕m3] 2650 2650
Water density 𝜌𝑤 [kg∕m3] 1000 1000
Friction angle 𝜙 [◦] 25 25
Initial dilation angle 𝜓𝑖𝑛𝑖 [◦] −5 −5
Critical dilation angle 𝜓𝑟 [◦] 0 0
Dilation evolution parameter 𝜂 [–] −25.0 −25.0
Cohesion 𝑐 [kPa] 20.0 50.0
Initial porosity 𝑛 [–] 0.4 0.4
Water bulk modulus 𝐾𝑤 [kPa] 2.2 × 106 2.2 × 106

Soil grain bulk modulus 𝐾𝑠 [kPa] 1.0 × 1010 1.0 × 1010

Permeability 𝑘 [m/s] 1.0 × 10−4 1.0 × 10−4

foundation settlement takes place. Such factors include (i) the growing
contribution to the total capacity offered by the lower soil layer with
larger cohesion (see Table 4), as well as (ii) the increase in lateral sur-
charge, which results in enhanced overburden and confinement. These
phenomena are reproduced owing to the large-deformation nature of
the performed MPM simulations, and are quantitatively impacted by
the specific setting of soil’s dilatancy properties.

Fig. 19 shows contours of excess pore pressure and deviatoric plastic
strain associated with a foundation displacement equal to 2𝐵 and
different values of 𝜆. As expected, the largest pore pressure values
emerge in the vicinity of the footing, though with a smaller magnitude
as 𝜆 decreases and more effective water drainage through the slope
surface occurs. 𝜆 also affects the type of governing failure mechanisms.
For a small footing-to-crest distance (e.g., 𝜆 = 0 − 2 in Fig. 19), the
failure mechanism is dominated by the development of a shear band
through the slope, that is from the footing to the slope toe — as a
consequence, the footing experiences a significant in-plane rotation
during its collapse. In contrast, larger 𝜆 values determine a decreasing
influence of the slope, so that a clear vertical foundation failure is first
observed prior to a general sideways displacement of the soil towards
the slope.
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Fig. 17. Reference footing–slope interaction problem: computational domain and boundary conditions (not to scale).
𝐌

𝐂

𝐂

𝐂

𝐊

𝐆

=

Fig. 18. Influence of the footing-to-crest distance on the large-deformation
load–displacement response of the foundation in Fig. 17.

5. Conclusion

This paper has presented a numerical method for the analysis of
large-deformation hydro-mechanical problems in fluid-saturated elasto-
plastic geomaterials. The proposed method belongs in the family of
MPMs, and involves a combination of the recently proposed implicit
GIMP-patch method for poroelastic materials and the B kinematic
enhancement against volumetric locking. The need for such an en-
hancement is motivated by the spurious stress oscillations and ex-
cessively stiff responses that are obtained in the absence of specific
anti-locking measures, especially when a (nearly) isochoric behaviour
of the soil skeleton is considered. Details about the formulation and im-
plementation of the implicit B GIMP-patch method have been provided,
tarting from a three-field 𝑢–𝑝–𝑈 formulation of the coupled hydro-
echanical problem. The proposed B GIMP-patch method has been

evaluated through several 2D benchmark problems (footing bearing
capacity, slope failure, and footing–slope interaction), and found to
be largely satisfactory in terms of accuracy, stability, and anti-locking
performance. Further applications to more complex large-deformation
coupled problems and soil constitutive relationships, including proper
treatment of finite-strain kinematics, will be tackled in future work.
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Appendix. Sub-matrices for the discrete system of governing equa-
tions (6)

In the framework of GIMP, the matrices in Eq. (6) are defined for a
specific grid cell node 𝑖 as follows:

𝐌𝑢,𝑖 =
𝑁𝑚𝑝
∑

𝑚𝑝=1
𝐒T𝑢,𝑖(𝒙𝑚𝑝)𝑚𝑢,𝑚𝑝𝐒𝑢,𝑖(𝒙𝑚𝑝) =

𝑁𝑚𝑝
∑

𝑚𝑝=1
𝐒T𝑢,𝑖(𝒙𝑚𝑝)(1 − 𝑛)𝜌𝑠,𝑚𝑝𝑉𝑚𝑝𝐒𝑢,𝑖(𝒙𝑚𝑝)

(A.1a)

𝑈,𝑖 =
𝑁𝑚𝑝
∑

𝑚𝑝=1
𝐒T𝑈,𝑖(𝒙𝑚𝑝)𝑚𝑈,𝑚𝑝𝐒𝑈,𝑖(𝒙𝑚𝑝) =

𝑁𝑚𝑝
∑

𝑚𝑝=1
𝐒T𝑈,𝑖(𝒙𝑚𝑝)𝑛𝜌𝑤,𝑚𝑝𝑉𝑚𝑝𝐒𝑈,𝑖(𝒙𝑚𝑝)

(A.1b)

1,𝑖 =
𝑁𝑚𝑝
∑

𝑚𝑝=1
𝐒T𝑢,𝑖(𝒙𝑚𝑝)𝑛

2𝑘−1𝐒𝑢,𝑖(𝒙𝑚𝑝)𝑉𝑚𝑝 (A.1c)

2,𝑖 =
𝑁𝑚𝑝
∑

𝑚𝑝=1
𝐒T𝑢,𝑖(𝒙𝑚𝑝)𝑛

2𝑘−1𝐒𝑈,𝑖(𝒙𝑚𝑝)𝑉𝑚𝑝 (A.1d)

3,𝑖 =
𝑁𝑚𝑝
∑

𝑚𝑝=1
𝐒T𝑈,𝑖(𝒙𝑚𝑝)𝑛

2𝑘−1𝐒𝑈,𝑖(𝒙𝑚𝑝)𝑉𝑚𝑝 (A.1e)

𝑢,𝑖 =
𝑁𝑚𝑝
∑

𝑚𝑝=1
∇𝐒T𝑢,𝑖(𝒙𝑚𝑝)𝐃

𝑒∇𝐒𝑢,𝑖(𝒙𝑚𝑝)𝑉𝑚𝑝 =
𝑁𝑚𝑝
∑

𝑚𝑝=1
𝐁
T
𝑢,𝑖(𝒙𝑚𝑝)𝐃

𝑒𝐁𝑢,𝑖(𝒙𝑚𝑝)𝑉𝑚𝑝

(A.1f)

1,𝑖 =
𝑁𝑚𝑝
∑

𝑚𝑝=1
∇𝐒T𝑢,𝑖(𝒙𝑚𝑝)𝒎(1 − 𝑛)𝑆𝑝,𝑖(𝒙𝑚𝑝)𝑉𝑚𝑝

𝑁𝑚𝑝
∑

𝐁
T
𝑢,𝑖(𝒙𝑚𝑝)𝒎(1 − 𝑛)𝑆𝑝,𝑖(𝒙𝑚𝑝)𝑉𝑚𝑝 (A.1g)
𝑚𝑝=1
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Fig. 19. Final excess pore pressure (left) and deviatoric plastic strain (right) distributions associated with the footing–slope interaction problem in Fig. 17. Results obtained with
soil permeability 𝑘 = 1.0 × 10−4 m∕s at a total footing displacement equal to 2𝐵.
𝐆2,𝑖 =
𝑁𝑚𝑝
∑

𝑚𝑝=1
∇𝐒T𝑈,𝑖(𝒙𝑚𝑝)𝒎𝑛𝑆𝑝,𝑖(𝒙𝑚𝑝)𝑉𝑚𝑝 =

𝑁𝑚𝑝
∑

𝑚𝑝=1
𝐁
T
𝑈,𝑖(𝒙𝑚𝑝)𝒎𝑛𝑆𝑝,𝑖(𝒙𝑚𝑝)𝑉𝑚𝑝

(A.1h)

𝑃𝑖 =
𝑁𝑚𝑝
∑

𝑚𝑝=1
𝑆T
𝑝,𝑖(𝒙𝑚𝑝)

1
𝑄
𝑆𝑝,𝑖(𝒙𝑚𝑝)𝑉𝑚𝑝 (A.1i)

where the subscript 𝑖 defines the 𝑖th grid cell node; subscripts 𝑢 and 𝑠
define the values related to the soil phase, while subscripts 𝑈 and 𝑤
define the values related to the water phase; 𝒙𝑚𝑝 are the coordinates
of the MPs; 𝑁𝑚𝑝 is the total number of MPs; 𝐌𝑢 and 𝐌𝑈 are mass
matrices for the soil and water phases; 𝐂1, 𝐂2 and 𝐂3 are damping
matrices physically associated with the grain–fluid drag; 𝐊𝑢 is the
stiffness matrix of the solid skeleton; 𝐏 is a compressibility matrix
determined by the bulk stiffness of the solid grains and pore water;
and 𝐆1 and 𝐆2 are matrices describing the hydro-mechanical coupling
between the skeleton deformation and pore water flow.

Similarly, the external force vectors in Eq. (6) are re-written as

�̄� 𝑠,𝑖 =
𝑁𝑏𝑚𝑝
∑

𝑚𝑝=1
𝐒T𝑢,𝑖(𝒙𝑚𝑝)�̃�(𝑡) +

𝑁𝑏𝑚𝑝
∑

𝑚𝑝=1
𝐒T𝑢,𝑖(𝒙𝑚𝑝)𝑚𝑢,𝑚𝑝𝒃 (A.2a)

�̄�𝑤,𝑖 =
𝑁𝑏𝑚𝑝
∑

𝑚𝑝=1
𝐒T𝑢,𝑖(𝒙𝑚𝑝)𝑚𝑈,𝑚𝑝𝒃 (A.2b)

where �̄� 𝑠 and �̄�𝑤 are nodal force vectors associated with the solid and
water phases, �̃�(𝑡) is the prescribed surface traction, 𝒃 is the body force,
and 𝑁𝑏𝑚𝑝 is the total number of boundary MPs.
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