
DELFT UNIVERSITY OF TECHNOLOGY

REPORT 10-11

Exploiting the flexibility of IDR(s) for grid computing

Martin B. van Gijzen and Tijmen P. Collignon

ISSN 1389-6520

Reports of the Department of Applied Mathematical Analysis

Delft 2010

Copyright  2010 by Delft Institute of Applied Mathematics Delft, The Netherlands.

No part of the Journal may be reproduced, stored in a retrieval system, or transmitted, in
any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission from Delft Institute of Applied Mathematics, Delft
University of Technology, The Netherlands.

Exploiting the flexibility of IDR(s) for grid computing

Martin B. van Gijzen and Tijmen P. Collignon ∗

March 29, 2010

Abstract

The IDR(s) method that is proposed in [26] is an efficient limited memory method
for solving large nonsymmetric systems of linear equations. In [11] an IDR(s) variant
is described that has a single synchronisation point per iteration step, which makes
this variant well-suited for parallel and grid computing. In this paper, we combine this
IDR(s) variant with an a-synchronous preconditioning iteration to further improve
the performance of IDR(s) on a grid computer. A-synchronous preconditioners do
not require expensive synchronisation and adapt to volatile computational resources,
and are therefore well-suited for such a computational environment. However, an
a-synchronous preconditioning operation is also non-constant by nature: the precon-
ditioner changes in every iteration. The success of the combination of IDR(s) with an
a-synchronous preconditioner therefore depends on the flexibility of IDR(s). We will
explain why IDR(s) can be used as a flexible method, and we will successfully use
the combination of IDR(s) with an a-synchronous preconditioner for solving large
convection-diffusion problems. The numerical experiments are performed on the
DAS-3 grid computer, which is composed of five geographically separated parallel
clusters.

Keywords. Iterative methods, IDR(s), Krylov-subspace methods, grid computing, flexi-
ble methods, a-synchronous preconditioning

AMS subject classification. 65F10, 65F50

1 Introduction

The IDR(s) method and its derivatives are short recurrence Krylov subspace methods for
iteratively solving large nonsymmetric linear systems

Ax = b, A ∈ R
N×N , x, b ∈ R

N . (1)

∗Delft University of Technology, Delft Institute of Applied Mathematics, Mekelweg 4, 2628 CD Delft,
The Netherlands. E-mail: M.B.vanGijzen@tudelft.nl, T.P.Collignon@tudelft.nl

1

The method has attracted considerable attention, e.g., see [24, 19, 25, 21, 22]. For s = 1,
IDR(s) is mathematically equivalent to the ubiquitous Bi-CGSTAB algorithm [27]. For
important types of problems and for relatively small values of s > 1, IDR(s) outperforms
the Bi-CGSTAB method.

The parallelisation of IDR(s) – in particular on Grid computers – is addressed in [11].
The IDR(s) variant that is derived in that paper is called IDR(s) minsync and has only
one global synchronisation point per iteration. Here we define an iteration as all the
operations to compute a new approximate solution and corresponding residual. In IDR(s)
one matrix-vector product is performed per iteration. The IDR(s) minsync algorithm is
a reformulation of the efficient and stable IDR(s) bi-ortho algorithm that is described in
[29]. The IDR(s) bi-ortho and minsync variants require the same amount of arithmetic
operations. The main difference is that in IDR(s) minsync only at one point in an iteration
step inner products with global vectors are explicitly computed, which means that all
(global) communication for these inner products can be combined. All other inner products
are computed via scalar updates, which do not require communication.

In [11] we only evaluated the unpreconditioned IDR(s) minsync algorithm. For most
problems in practice, however, a preconditioner needs to be applied to speed-up the itera-
tive process. The development of efficient and well-parallelisable preconditioners is still an
area of active research. Constructing preconditioners that are suitable for grid computing,
where computational resources are volatile and synchronisation is prohibitively expensive
is still in its infancy.

A-synchronous iterative methods have attracted some attention in the past for parallel
computing, e.g., see [6, 7, 8, 9, 15, 17, 16, 18]. The main advantage of a-synchronous
iterative methods is that no global synchronisation is necessary. However, convergence
of a-synchronous methods is often slow and not always guaranteed. Moreover, efficient
convergence detection is a difficult issue. Therefore, with the advent of fast communica-
tion networks the interest for these methods diminished. Over the past years, however,
a-synchronous iteration methods have received renewed attention in the context of grid
computing. The cost of global synchronisation on grid computers can be prohibitive,
which makes the lack of synchronisation points a feature of pivotal importance. Another
interesting feature of a-synchronous methods is that they adapt to variations in the com-
putational resources, for example in computational load or in network load. References for
a-synchronous methods for grid computing are for example [3, 4, 5, 2, 12, 13].

In [10], an a-synchronous iterative method is successfully used as a preconditioner
in the flexible Conjugate Gradient (FCG) method [1, 20] to solve large sparse symmet-
ric linear systems originating from a 3D bubbly flow problem. The experimental results
showed that using the partially asynchronous algorithm is more efficient than using a fully
synchronous method or a fully a-synchronous method. The results also showed that the
a-synchronous preconditioner adapts to a computational environment in which the network
load varies strongly. Following these results, we will combine in this paper a-synchronous
preconditioning with IDR(s) to solve large convection-diffusion problems. A-synchronous
preconditioners are non-constant by nature and are therefore in principle only applicable
to speed-up flexible iterative methods, where the preconditioner is allowed to change in

2

each iteration step. Examples of such methods are flexible CG and GMRESR [28]. We
will explain in this paper why an a-synchronous preconditioner can be used with IDR(s)
algorithms.

This paper is organised as follows. In Section 2 the IDR(s) minsync method from [11] is
reproduced, and the parallelisation of the algorithm is explained. Also, a description of an
a-synchronous preconditioner is given and it is explained why a non-constant preconditioner
can be combined with IDR(s), without compromising the final accuracy of the solution.
Section 3 contains extensive numerical experiments on the DAS-3 grid computer. We make
concluding remarks in Section 4.

2 Combining IDR(s) with an a-synchronous precon-

ditioner

2.1 An IDR(s) variant with a minimum number of synchronisa-
tion points

We first review the IDR(s) minsync algorithm and its parallelisation. The (right) precon-
ditioned version of the algorithm is shown in Alg. 1. The derivation of the algorithm is
described in detail in [11]. It is mathematically equivalent with the IDR(s) bi-ortho variant
that is described in [29].

The IDR(s) minsync algorithm is composed of only a few building blocks: matrix-
vector multiplications (lines 10 and 33), preconditioning operations (lines 12 and 32), vector
updates (lines 11, 13, 18, 23, 24, 35 and 36), inner products (lines 15 and 34), and scalar
operations (lines 10, 16, 20, 22, 26–29, 37). All the operations can be straightforwardly
parallelised on distributed memory computers by making a block partitioning of the matrix
and of the vectors:

A =





A11 A12 · · · A1p

A21 A22 · · · A2p

...
...

. . .
...

Ap1 Ap2 · · · App




, x =





x1

x2
...
xp




. (2)

Each block is assigned to a processor; all data corresponding to a block is processed by
its corresponding processor and are stored in the processors local memory. Using this
approach, the different operations can be parallelised as follows:

– The vector updates are performed locally: every processor performs the update for
its part of the vector without communication.

– The inner products are computed by computing the local inner products and broad-
casting the results to all other processors. This is an inherently global operation.

3

Algorithm 1 IDR(s) minsync with bi-orthogonalisation of intermediate residuals and
with minimal number of synchronisation points

input: A ∈ CN×N ; x, b ∈ CN ;Q ∈ CN×s; preconditioner B ∈ CN×N ; accuracy ε
output: Approximate solution x such that ||b−Ax|| ≤ ε.

1: // Initialisation
2: G = U = 0 ∈ CN×s;M = [µ] = I ∈ Cs×s;ω = 1
3: Compute r = b− Ax
4: φ = QHr, φ = (φ1, . . . , φs)

T

5: // Loop over nested Gj spaces, j = 0, 1, . . .
6: while ||r|| > ε||b|| do
7: // Compute s linearly independent vectors gk in Gj

8: for k = 1 to s do
9: // Compute v ∈ Gj ∩Q

⊥

10: Solve Mlγ(k:s) = φ(k:s)
11: v = r −

∑s

i=k γigi

12: ṽ = B−1v // Preconditioning step
13: ûk =

∑s

i=k γiui + ωṽ // Intermediate vector ûk

14: ĝk = Aûk // Intermediate vector ĝk

15: ψ = QH ĝk // s inner products (combined)
16: Solve Mtα(1:k−1) = ψ(1:k−1)

17: // Make ĝk orthogonal to q1, . . . , qk−1 and update ûk accordingly
18: gk = ĝk −

∑k−1
i=1 αigi, uk = ûk −

∑k−1
i=1 αiui

19: // Update column k of M
20: µi,k = ψi −

∑k−1
j=1 αjµ

c
i,j for i = k, . . . , s

21: // Make r orthogonal to q1, . . . , qk and update x accordingly
22: β = φk/µk,k

23: r ← r − βgk

24: x← x+ βuk

25: // Update φ = QHr
26: if k + 1 ≤ s then
27: φi = 0 for i = 1, . . . , k
28: φi ← φi − βµi,k for i = k + 1, . . . , s
29: end if
30: end for
31: // Entering Gj+1. Note: r ⊥ Q
32: ṽ = B−1r // Preconditioning step
33: t = Aṽ
34: ω = (tHr)/(tHt);φ = −QHt // s+ 2 inner products (combined)
35: r ← r − ωt
36: x← x+ ωṽ
37: φ← ωφ
38: end while

4

– The matrix-vector products are computed by performing local products with the sub-
matrices. Multiplication with a diagonal block Aii does not require communication,
but multiplication with an off-diagonal block requires communication with another
processor. Note that almost all off-diagonal blocks are zero in the type of application
we are interested in.

– The scalar operations are inexpensive and are not parallelised, but are performed on
all processors.

– The preconditioning operation will be discussed separately below.

For our type of application, the communication for the matrix-vector multiplication is
nearest-neighbour only and does not require global synchronisation. The inner products
do require global communication, involving all the processors, and are therefore synchro-
nisation points in the algorithm. In the IDR(s) minsync algorithm shown in Alg. 1 the
operations are organised so that all communication for the inner products can be combined.
As a result, there is only one global synchronisation point per iteration step.

2.2 A-synchronous preconditioning

A-synchronous preconditioners are attractive in the context of grid computing since they
do not require global synchronisation and can adapt to changes in computational load and
network load [10]. In the IDR(s) minsync algorithm, an a-synchronous preconditioning
step is performed by applying an a-synchronous iterative method to the system Aṽ = v
(line 12) or Aṽ = r (line 32) for a fixed amount of time Tmax.

Algorithm 2 (A-)synchronous block Jacobi iteration using p processors applied to Aṽ = r.

1: Initialize ṽ(0);
2: for n = 1, 2, . . . , until convergence do
3: for i = 1, 2, . . . , p do

4: (i.) Solve Aiiṽ
(n)
i = ri −

p∑

j=1,j 6=i

Aij ṽ
(n−1)
j ; // synchronous iterations

5: (ii.) Solve Aiiṽ
new
i = ri −

p∑

j=1,j 6=i

Aij ṽ
old
j ; // a-synchronous iterations

6: end for
7: end for

A-synchronous methods generalise simple iterative methods such as the classical block
Jacobi iteration. In the standard synchronous Jacobi iteration process (see line 4 of Alg. 2),
the processors operate in parallel on their part of the vector ṽ(n), followed by a synchroni-
sation point at each Jacobi iteration step n. In our a-synchronous algorithm (see line 5 of
Alg. 2), a processor computes ṽnew using information ṽold that is available on the process
at that particular time. As a result, each separate block Jacobi iteration process may use

5

out-of-date information, but the lack of synchronisation points and the reduction of com-
munication can potentially result in improved parallel performance. Note that in practical
implementations, the inner systems of Alg. 2 are often solved (approximately) by some
other iterative method.

De-synchronising the preconditioning phase in this manner has the advantage that:
(i) the preconditioner can be easily and efficiently parallelised on Grid computers, (ii) no
additional synchronisation points are introduced, and (iii) by devoting the bulk of the
computational effort to the preconditioner, the computation to communication ratio can
be improved significantly, while reducing the number of expensive (outer) synchronisations
considerably.

2.3 Flexible preconditioning in IDR(s) methods

The a-synchronous preconditioning step consists of a random (typically nonlinear) process,

ṽ = B(r), B : R
N → R

N , (3)

which differs from one iteration to the next. The IDR(s) algorithm, however, is designed
for constant preconditioners, and its theoretical properties rely on this. So the question
arises whether we can use IDR(s) with a non-constant preconditioner, i.e., can we use
IDR(s) as a flexible method?

for k = 1 to s do
v = r −Gγ
u = ωv + Uγ
g = AB−1u
r = r − g
y = y + u

end for
x = B−1y

for k = 1 to s do
v = r −Gγ
B−1u = ωB−1v +B−1Uγ
g = AB−1u
r = r − g
B−1y = B−1y +B−1u

end for
x = B−1y

for k = 1 to s do
v = r −Gγ
u′ = ωB−1v + U ′γ
g = Au′

r = r − g
x = x+ u′

end for
×

Figure 1: Flexible preconditioning in IDR(s), shown for a single cycle.

In the following it is shown that the (simplified) key recursions of IDR(s) remain valid
within the context of flexible preconditioning. Applying a right preconditioner B−1 to the
system Ax = b gives

AB−1y = b, x = B−1y. (4)

Applying the key IDR(s) recursions to the preconditioned system (4) gives the leftmost
part of Fig. 1, where the final solution is obtained by x = B−1y. The main problem with
this approach is that if the preconditioner B changes in each iteration step, the computed
iterates do not correspond to the computed residuals.

This inconsistency can be remedied by premultiplying y with B−1, scaling back the
iterates (middle part of Fig. 1). Again the solution is obtained by x = B−1y. Note that

6

as a result, the update u is also scaled back. Defining u′ = B−1u for the new updates and
setting x = B−1y gives the correct right-preconditioned recursions for IDR(s) (rightmost
part of Fig. 1). The iterate x and residual r are now computed in a consistent manner
(and basically independent of how the update u′ is constructed).

Note that according to the theoretical finite termination property of IDR(s), finite
termination at the exact solution should occur within N + N/s iterations [26]. However,
this no longer holds if IDR(s) is used as a flexible method. However, the method is still
finite for s = N , since in that case a full set of basis vectors for RN is generated and the
method terminates at the exact solution after N iteration.

3 Numerical experiments

3.1 Test problem

As a test problem we take the following three-dimensional convection-diffusion equation:

∇2u+ wux = f(x, y, z), (5)

defined on the unit cube [0, 1]×[0, 1]×[0, 1]. Homogeneous Dirichlet conditions are imposed
on the boundaries. The vector f is such that the solution is

u = exp(xyz) sin(πx) sin(πy) sin(πz). (6)

Discretisation by the finite difference scheme with a seven point stencil on a uniform
nx × ny × nz grid results in a sparse linear system of equations Ax = b where A is of
order N = nxnynz. Centered differences are used for the first derivatives. The grid points
are numbered using the standard (lexicographic) ordering.

The matrix Q consists of s orthogonalised random vectors. The initial guess is set to
x0 ≡ 0 and the iteration is terminated when ||r||/||b|| ≤ ε ≡ 10−6. At the end of the
iteration process convergence is verified by comparing the true residual with the iterated
final residual.

3.2 Hardware and grid middleware

The target hardware consists of the distributed ASCI Supercomputer 3 (DAS-3), which is
a cluster of five geographically separated clusters spread over four academic institutions in
the Netherlands [23]. The DAS-3 multi-cluster is designed for dedicated parallel computing
and although each separate cluster is relatively homogeneous, the system as a whole can
be considered to be heterogeneous.

We have used the CRAC library [13] to implement the complete algorithm. CRAC has
been specifically designed to build parallel iterative asynchronous applications.

7

3.3 Results for unpreconditioned IDR(s)

In order to illustrate the parallel performance of the basic, unpreconditioned algorithm we
consider a test problem ofN = 2563 ≈ 17, 000, 000 equations. For the convection parameter
we take w = 100. The domain is partitioned into rectangular cuboids. A total of four of
the five clusters is used, with 32 nodes on each cluster. We have excluded the fifth cluster
in this experiment since it uses a slower communication network. Figures 2(a) and 2(b)
show the speed-up of the algorithm, which includes the speed-up results for the IDR(s) bi-
ortho algorithm for comparison. Clearly, the minimum number of synchronisation points
in IDR(s) minsync results in a better parallel performance, in particular for higher values
of s.

For completeness, the total number of iterations of both variants for this test problem is
shown in Tab. 1. Also, Fig. 2(c) and 2(d) shows the total wall clock times of both variants.
This shows that the reduction in iteration steps for increasing s is similar for both variants.
However, for this test problem and particular computational hardware, the differences in
execution times of both variants is relatively small.

s IDR(s) minsync IDR(s) bi-ortho
1 1362 1422
3 948 916
5 870 882
10 737 737

Table 1: Total number of iterations.

3.4 Results for IDR(s) with a-synchronous preconditioning

For the asynchronous preconditioning experiments, the domain is partitioned in horizontal
slices along the z-direction. For all experiments we use 60 computing nodes, distributed
evenly over all five sites. The problem size is N = 1803 ≈ 6, 000, 000 equations and the
local systems in the preconditioning iteration are solved using (truncated) GCR(100) [14]
with relative accuracy 10−1.

We will consider the following values for the convection parameter: w = 180, yielding a
mesh-Péclet number of Pe = 0.5, w = 360, which gives Pe = 1, and w = 1440, which gives
Pe = 4. We apply a-synchronous preconditioning for Tmax = 0s (i.e., no preconditioning),
Tmax = 5s, Tmax = 10s, Tmax = 15s, and Tmax = 20s.

In realistic Grid computing environments, network load may vary extensively and can
result in highly expensive global synchronisation. In order to simulate such an environment,
network load will be varied artificially. Similar to [10], experiments will be performed on
both a lightly loaded global network and on a heavily loaded global network. The results
are displayed in Fig. 3.

We can make the following observations:

8

 32 64 128
 1

 2

 4

 8

nodes

sp
ee

du
p

IDR(1)
IDR(3)
IDR(5)
IDR(10)

(a) Speed-up IDR(s) minsync.

 32 64 128
 1

 2

 4

 8

nodes

sp
ee

du
p

IDR(1)
IDR(3)
IDR(5)
IDR(10)

(b) Speed-up IDR(s) bi-ortho.

32 64 96 128
0

100

200

300

400

500

nodes

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

IDR(1)
IDR(3)
IDR(5)
IDR(10)

(c) Total time IDR(s) minsync.

32 64 96 128
0

100

200

300

400

500

nodes

w
al

l c
lo

ck
 ti

m
e

(s
ec

)

IDR(1)
IDR(3)
IDR(5)
IDR(10)

(d) Total time IDR(s) bi-ortho.

Figure 2: Speed-up on DAS-3, fixed problem size of N = 2563 with w = 100.

• In all experiments with preconditioning, after the convergence criterion was satis-
fied, the required accuracy was indeed achieved. This shows that the a-synchronous
preconditioner can be used with IDR(s) without compromising the final accuracy.

• For the lower Péclet numbers Pe = 0.5 and Pe = 1, the unpreconditioned algorithm
is fastest, but the unpreconditioned method does not converge for Pe = 4 for any of
the values of s that we tested. With a-synchronous preconditioning IDR(s) converges
for all experiments except for Pe = 0.5, s = 10 with Tmax = 5 or Tmax = 10. Moreover,
the performance becomes better for increasing mesh-Péclet number.

• The a-synchronous preconditioner is robust against changes in network load: little
change in performance can be observed between the results with preconditioning for

9

1 3 5 10
0

200

400

600

800

1000

1200

s

to
ta

l t
im

e
(in

 s
ec

on
ds

)

Tmax = 0
Tmax = 5
Tmax = 10
Tmax = 15
Tmax = 20

(a) w = 180, P e = 0.5, lightly loaded network.

1 3 5 10
0

200

400

600

800

1000

1200

s

to
ta

l t
im

e
(in

 s
ec

on
ds

)

Tmax = 0
Tmax = 5
Tmax = 10
Tmax = 15
Tmax = 20

(b) w = 180, P e = 0.5, heavily loaded network.

1 3 5 10
0

100

200

300

400

500

600

700

800

s

to
ta

l t
im

e
(in

 s
ec

on
ds

)

Tmax = 0
Tmax = 5
Tmax = 10
Tmax = 15
Tmax = 20

(c) w = 360, P e = 1.0, lightly loaded network.

1 3 5 10
0

100

200

300

400

500

600

700

800

s

to
ta

l t
im

e
(in

 s
ec

on
ds

)

Tmax = 0
Tmax = 5
Tmax = 10
Tmax = 15
Tmax = 20

(d) w = 360, P e = 1.0, heavily loaded network.

1 3 5 10
0

50

100

150

200

250

300

350

400

s

to
ta

l t
im

e
(in

 s
ec

on
ds

)

Tmax = 0 (NC)
Tmax = 5
Tmax = 10
Tmax = 15
Tmax = 20

(e) w = 1440, P e = 4.0, lightly loaded network.

1 3 5 10
0

50

100

150

200

250

300

350

400

s

to
ta

l t
im

e
(in

 s
ec

on
ds

)

Tmax = 0 (NC)
Tmax = 5
Tmax = 10
Tmax = 15
Tmax = 20

(f) w = 1440, P e = 4.0, heavily loaded network.

Figure 3: A-synchronous preconditioning, total computing time (NC denotes ‘no conver-
gence’).

10

low and high network load. Synchronisation is more expensive if the network load is
high. As a result, the computing times of unpreconditioned IDR(s) are importantly
higher if the network load is high. The preconditioned method therefore performs
relatively better in this case.

• IDR(s) without preconditioning performs better for higher s. With a-synchronous
preconditioning, choosing a higher s negatively affects the convergence if Tmax is
chosen too small. In this case the preconditioner varies too much. This also explains
the non-convergence in the cases metioned above (Pe = 0.5, s = 10 with Tmax = 5
or Tmax = 10). For higher Tmax, the variations in the preconditioner are smaller, and
the theoretical properties of IDR(s) are less compromised.

4 Conclusions

We have discussed the combination of IDR(s) with an a-synchronous preconditioner in the
context of grid computing. Experiments on convection-diffusion problems using a grid com-
puter that consists of five geographically separated clusters show that this combination is
particularly effective for high Péclet numbers. Moreover, the a-synchronous preconditioner
makes the performance of the solution algorithm robust against variations in network load.

By using IDR(s) as a flexible method, some of its theoretical properties are lost. Because
of this, choosing s high does not result in a faster convergence, as is normally the case
with unpreconditioned IDR(s). By making the preconditioning step more accurate, the
theoretical properties can in part be recovered. How accurate the preconditioning step
should be, or more precisely, for how long an a-synchronous preconditioning step should
be performed is at this moment still an open question.

Acknowledgments

The work of the second author was financially supported by the Delft Centre for Com-
putational Science and Engineering (DCSE) within the framework of the DCSE project
entitled “Development of an Immersed Boundary Method, Implemented on Cluster and
Grid Computers”. The Netherlands Organisation for Scientific Research (NWO/NCF) is
gratefully acknowledged for the use of the DAS-3 system.

References

[1] Owe Axelsson. Iterative Solution Methods. Cambridge University Press, New York,
NY, USA, 1994.

[2] J. Bahi, R. Couturier, and P. Vuillemin. Asynchronous iterative algorithms for com-
putational science on the grid: three case studies. In procs. of Vecpar 2004, volume
3402 of LNCS, pages 302–314, Valencia, Spain, June 2004. Springer–Verlag.

11

[3] Jacques M. Bahi, Sylvain Contassot-Vivier, and Raphaël Couturier. Asynchronism for
iterative algorithms in a global computing environment. In HPCS ’02: Proceedings of
the 16th Annual International Symposium on High Performance Computing Systems
and Applications, pages 90–97, Washington, DC, USA, 2002. IEEE Computer Society
Press.

[4] Jacques M. Bahi, Sylvain Contassot-Vivier, and Raphaël Couturier. Coupling dy-
namic load balancing with asynchronism in iterative algorithms on the computational
grid. In IPDPS ’03: Proceedings of the 17th International Symposium on Parallel
and Distributed Processing, page 40.1, Washington, DC, USA, 2003. IEEE Computer
Society.

[5] Jacques M. Bahi, Sylvain Contassot-Vivier, and Raphaël Couturier. Evaluation of the
asynchronous iterative algorithms in the context of distant heterogeneous clusters.
Parallel Comput., 31(5):439–461, 2005.

[6] D. El Baz. A method of terminating asynchronous iterative algorithms on message
passing systems. Parallel Algorithms and Applications, 9:153–158, 1996.

[7] Didier El Baz, Pierre Spiteri, Jean Claude Miellou, and Didier Gazen. Asynchronous
iterative algorithms with flexible communication for nonlinear network flow problems.
J. Parallel Distrib. Comput., 38(1):1–15, 1996.

[8] Dimitri P. Bertsekas and John N. Tsitsiklis. Convergence rate and termination of
asynchronous iterative algorithms. In ICS ’89: Proceedings of the 3rd international
conference on Supercomputing, pages 461–470, New York, NY, USA, 1989. ACM Press.

[9] Kostas Blathras, Daniel B. Szyld, and Yuan Shi. Timing models and local stopping
criteria for asynchronous iterative algorithms. Journal of Parallel and Distributed
Computing, 58(3):446–465, 1999.

[10] Tijmen P. Collignon and Martin B. van Gijzen. Fast iterative solution of large sparse
linear systems on geographically separated clusters. Technical report, Delft University
of Technology, Delft, the Netherlands, 2009. DUT report 09–12.

[11] Tijmen P. Collignon and Martin B. van Gijzen. Fast solution of nonsymmetric linear
systems on Grid computers using parallel variants of IDR(s). Technical report, Delft
University of Technology, Delft, the Netherlands, 2010. DUT report 10–05.

[12] Raphaël Couturier, Christophe Denis, and Fabienne Jézéquel. GREMLINS: a large
sparse linear solver for grid environment. Parallel Comput., 34:380–391, July 2008.

[13] Raphaël Couturier and Stéphane Domas. CRAC: a Grid Environment to solve Scien-
tific Applications with Asynchronous Iterative Algorithms. In 21th IEEE and ACM
Int. Symposium on Parallel and Distributed Processing Symposium, IPDPS’2007, page
289 (8 pages), Long Beach, USA, March 2007. IEEE computer society press.

12

[14] Stanley C. Eisenstat, Howard C. Elman, and Martin H. Schultz. Variational itera-
tive methods for nonsymmetric systems of linear equations. SIAM J. Numer. Anal.,
20:345–357, 1983.

[15] Andreas Frommer, Hartmut Schwandt, and Daniel B. Szyld. Asynchronous weighted
additive Schwarz methods. Electronic Transactions on Numerical Analysis, 5:48–61,
1997.

[16] Andreas Frommer and Daniel B. Szyld. Asynchronous two-stage iterative methods.
Numer. Math., 69(2):141–153, 1994.

[17] Andreas Frommer and Daniel B. Szyld. Asynchronous iterations with flexible com-
munication for linear systems. Calculateurs Parallèles Réseaux et Systèmes Répartis,
10:421–429, 1998.

[18] Andreas Frommer and Daniel B. Szyld. On asynchronous iterations. Journal of
Computational and Applied Mathematics, 123:201–216, 2000.

[19] Martin H. Gutknecht. IDR Explained. Electr. Trans. Numer. Anal., October 2009.
(to appear).

[20] Y. Notay. Flexible Conjugate Gradients. SIAM Journal on Scientific Computing,
22:1444–1460, 2000.

[21] Yusuke Onoue, Seiji Fujino, and Norimasa Nakashima. Improved IDR(s) method
for gaining very accurate solutions. World Academy of Science, Engineering and
Technology, 55:520–525, 2009.

[22] Yusuke Onoue, Seiji Fujino, and Norimasa Nakashima. An overview of a family of
new iterative methods based on IDR theorem and its estimation. In Proceedings of
the International MultiConference of Engineers and Computer Scientists 2009 Vol II
IMECS 2009, March 18 - 20, 2009, Hong Kong, pages 2129–2134, 2009.

[23] Frank J. Seinstra and Kees Verstoep. DAS–3: The distributed ASCI supercomputer
3, 2007. http://www.cs.vu.nl/das3/.

[24] Valeria Simoncini and Daniel B. Szyld. Interpreting IDR as a Petrov–Galerkin method.
Technical Report 09-10-22, Department of Mathematics, Temple University, October
2009.

[25] Gerard L. G. Sleijpen, Peter Sonneveld, and Martin B. van Gijzen. Bi–CGSTAB as
an induced dimension reduction method. Applied Numerical Mathematics, In Press,
Corrected Proof, 2009.

[26] Peter Sonneveld and Martin B. van Gijzen. IDR(s): a family of simple and fast
algorithms for solving large nonsymmetric linear systems. SIAM J. Sci. Comput.,
31(2):1035–1062, 2008.

13

[27] H. A. van der Vorst. Bi–CGSTAB: A fast and smoothly converging variant of Bi–
CG for the solution of nonsymmetric linear systems. SIAM Journal on Scientific and
Statistical Computing, 13(2):631–644, 1992.

[28] H. A. van der Vorst and C. Vuik. GMRESR: a family of nested GMRES methods.
Num. Lin. Alg. Appl., 1(4):369–386, 1994.

[29] Martin B. van Gijzen and Peter Sonneveld. An elegant IDR(s) variant that efficiently
exploits bi–orthogonality properties. Technical report, Delft University of Technology,
Delft, the Netherlands, 2008. DUT report 08–21.

14

