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Dynamic Anomaly Detection With High-Fidelity
Simulators: A Convex Optimization Approach

Kaikai Pan , Member, IEEE, Peter Palensky , Senior Member, IEEE, and Peyman Mohajerin Esfahani

Abstract—The main objective of this article is to develop scal-
able dynamic anomaly detectors with high-fidelity simulators of
power systems. On the one hand, models in high-fidelity simu-
lators are typically “intractable” if one opts to describe them in
a mathematical formulation in order to apply existing model-
based approaches from the anomaly detection literature. On
the other hand, pure data-driven methods developed primar-
ily in the machine learning literature neglect our knowledge
about the underlying dynamics of power systems. In this study,
we combine tools from these two mainstream approaches to
develop a data-assisted model-based diagnosis filter utilizing
both the knowledge from a picked abstract model and also
the data of simulation results from high-fidelity simulators. The
proposed diagnosis filter aims to achieve two desired features:
(i) performance robustness with respect to model mismatch; (ii)
high scalability. To this end, we propose a tractable (convex)
optimization-based reformulation in which decisions are the fil-
ter parameters, the model-based information introduces feasible
sets, and the data from the simulator forms the objective function
to-be-minimized regarding the effect of model mismatch on the
filter performance. To validate the theoretical results, we imple-
ment the developed diagnosis filter in DIgSILENT PowerFactory
to detect false data injection attacks on the Automatic Generation
Control measurements in the three-area IEEE 39-bus system.

Index Terms—Anomaly detection, data-assisted model-based,
diagnosis filter, model mismatch, high-fidelity simulator, convex
optimization.

I. INTRODUCTION

THE PRINCIPLE of anomaly detection in power system
cyber security is to generate a diagnostic signal (e.g.,

residual) that keeps sensitive to malicious intrusions and simul-
taneously robust against other unknowns, given the available
data from system outputs [1], [2]. The detection methods can
be mainly classified into two categories: (i) the approaches
that exploit an explicit mathematical model of the system
dynamics (referred to model-based methods in this article);
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(ii) the data-driven approaches that try to automatically learn
the system characteristics from the output data [3], [4]. Our
work in [5] has developed a scalable diagnosis tool to detect
the class of multivariate false data injection (FDI) attacks
which may remain stealthy in view of a static detector,
by capturing the dynamics signatures of such a disruptive
intrusion. This method is, indeed, model-based that the dynam-
ics of the system trajectories under multivariate FDI attacks
are described via an explicit mathematical model representa-
tion (i.e., linear differential-algebraic equations (DAEs)). The
numerical results in [5] have proven its effectiveness in the
given linear mathematical model. Now here comes another
question:

Can the power of scalable model-based diagnosis tools be
still utilized in real-world applications such as electric
power systems for which there are reliable datasets from
high-fidelity but complex simulators?

We aim to address the question by designing a scalable
diagnosis tool with high-fidelity simulators. To do that, we
need two important pieces of information: (i) the knowledge
of an abstract model; (ii) the system trajectories provided by
a high-fidelity simulator. The abstract model-based knowledge
is utilized for a scalable design such that the design parame-
ters (e.g., the order of the diagnosis tool) should be adjustable
depending on the size or degree of the studied system. The
high-fidelity simulator is a stand-in for actual measurements
to be fitted into the diagnosis tool. Let us further clarify the
terminologies adopted above. An abstract model refers to an
explicit, but perhaps reduced-order, mathematical description
of power system dynamics, e.g., a linear DAE. The actual
measurements now refer to the reliable datasets of simula-
tion results from a high-fidelity simulator like DIgSILENT
PowerFactory. A simulator is said to be high-fidelity when it
is the closest to the reality and may consist of several com-
plex nonlinear DAEs as parts [6]. However, unfortunately, one
may not have access to the mathematical description of such
simulator. The reasons behind come from many aspects, but
particularly, many high-fidelity simulators are still commercial.
Then, it is not hard to observe that the source of challenge to
answer the question above comes from the following aspect:
whatever abstract model we can pick, model mismatch is
always reflected through the difference of the output of the
abstract model and the one from the high-fidelity simulator. It
can be expected that this unknown of model mismatch poten-
tially affects the diagnostic performance. With that in mind, we
propose a scalable diagnosis tool that is robust with respect to
model mismatch, by exploiting the information revealed to us
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through the simulation data together with the abstract-model
based knowledge, resulting a novel data-assisted model-based
design perspective. We will provide further details toward this
objective in Section II.

Literature on model-based and data-driven anomaly
detection: Let us briefly overview the advantages and limi-
tations of the pure model-based and data-driven approaches.
The model-based methods require detailed information of the
studied system. Some research papers deploy the statistical
properties of system outputs, such as the work in [7] using
cumulative sum-type algorithms for a sequential detection and
the one in [8] using the measurement consistency assessment.
These techniques can be essentially confined by some prior
assumptions on system output errors. Recently, approaches
based on moving target defense have been proposed to
actively change the system configuration to detect various
cyber attacks [9], [10], while the additional defense cost has
to be considered. Another major subclass of these schemes is
the observer-based residual generator that historically emerges
from a control-theoretic perspective and has been extended to
linear DAEs by [11]. To our best of knowledge, the study [12]
is the first attempt to apply observer-based detectors to power
system cyber security problem. Recently, a variant of observer-
based method is employed in [13] so as to deal with unknown
exogenous inputs in the linear Automatic Generation Control
(AGC) system. Parameter estimation model-based approaches
have also been extensively investigated. For instance, the
extended Kalman filter algorithm is used to perform such an
estimation for anomaly detection [14]. In [15], a comparison
study is carried out for various Kalman filters and observers
in power system dynamic state estimation with model uncer-
tainties and malicious cyber attacks. The residual generators
above usually have the same degree as the system dynam-
ics, which can be problematic in the online implementation
particularly for large-scale power systems [16]. Our diagnosis
filter in [5] provides a good alternative to detect multivari-
ate FDI attacks in a real-time operation. Still, the challenge
remains as the power system models are mostly nonlinear,
complex and high-dimensional. The work in [17] proposed an
optimization-based filter for detecting a single anomaly in the
control system where the nonlinearity can be fully described
in DAEs. However, as noted earlier, having a detailed math-
ematical description of the model especially in the high-
fidelity simulator or a real electric power system is usually
infeasible.

Another major technique for anomaly detection comes
from data-driven approaches that do not require an explicit
mathematical model of system dynamics. Developments
such as sensing technology, Internet-of-Things and Artificial
Intelligence have contributed to a more data-driven power
system [18]. Anomaly detection is mainly considered as a
classification problem and there are supervised, unsupervised
or semi-supervised learning methods for that purpose. Many
efforts have been made on supervised classifications among
which deep neural networks (DNN) [19], [20], bayesian
networks [21] and support vector machines (SVM) [22] are
the popular approaches. For unsupervised classifications to
detect cyber attacks in smart grids, one can find principle

component analysis (PCA) and its extension [23], autoen-
coders [24], etc. Some other research works have developed
semi-supervised learning type anomaly detectors: in [25], a
semi-supervised SVM is first proposed; a semi-supervised
mixture Gaussian distribution based formulation is introduced
in [26]; the recent study [27] shows a promising semi-
supervised method by integrating the autoencoders into an
advanced generative adversarial network (GAN). In addition
to the approaches above, it is noteworthy that the study of [28]
has deployed a reinforcement learning based algorithm for
online attack detection in smart grids without a prior knowl-
edge of system models or attack types. Overall, data-driven
methods are suitable for real implementations in complex
and large-scale systems. However, their performance highly
depends on the quantity and quality of the accessible data1,
and thus can be intractable in many cases [29]. Besides, the
required pre-processing stage (e.g., data training) may have a
high computational cost.

Contributions and outline: This article aims to develop a
scalable and robust diagnosis filter with high-fidelity simula-
tors like PowerFactory. To achieve that, we propose a tractable
optimization-based reformulation where the abstract model-
based information introduces feasible sets, and the simulation
data forms the objective function to minimize the effect of
model mismatch on the filter residual. In this way, the diag-
nosis filter can be “trained” in the normal operations (without
attacks) to have performance robustness with respect to model
mismatch. Then it can be “tested” in PowerFactory to detect
FDI attacks. Our main contributions are:
(i) Firstly, we develop a data-assisted model-based approach

that utilizes both the model-based knowledge and also
the simulation data from the simulator, for a scalable and
robust design (Definition 2 and the program (9)). Instead
of using any existing machine learning algorithms, we
propose our own optimization-based characterization to
“train” the filter under multiple mismatch signatures
obtained through the simulation data (Remark 2). As far
as we know, this is the first study that builds on such
a perspective. In the optimization-based reformulation,
the objective is to minimize the effect of model mis-
match on the filter residual. We show that, the resulted
optimization programs are convex and hence tractable,
indicating that the proposed filter is not computational
expensive compared to many pure data-driven methods.

(ii) We investigate optimization-based characterizations of
the developed diagnosis filter in both scenarios of univari-
ate and multivariate attacks. A square of L2-inner product
with corresponding norm is proposed to quantify the
effect of model mismatch. Then the L2-norm of the resid-
ual part introduced by model mismatch is reformulated
as a quadratic function. We prove that, the character-
ization of the filter under a univariate attack becomes
a family of convex quadratic programs (QPs), and the
developed filter can even have the capability of track-
ing the attack magnitude through its non-zero steady-state

1To be noted, there are methods like the semi-supervised ones that can help
in reducing the quantity of labeled data for the training [27].
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Fig. 1. Three-area power system with AGC functions modeled in DIgSILENT PowerFactory.

residual (Theorem 1). We also extend to the scenario of
multivariate attack, and it appears that a standard QP can
be derived. Besides, we provide conditions under which
the filter can detect all the plausible multivariate attacks
in an admissible set (Corollary 1).

The process of diagnosis filter construction and validation is
concluded in Algorithms 1 and 2. The effectiveness of the
proposed approach is validated on the three-area IEEE 39-
bus system. Numerical results from the case study illustrate
that the developed data-assisted model-based filter with the
PowerFactory simulator can successfully generate alerts in the
presence of disruptive univariate or multivariate FDI attacks,
while a pure model-based detector may fail.

Section II shows the outline of our proposed solution.
Both the motivating case study and the mathematical frame-
work of our solution are detailed presented. Section III
proposes the tractable optimization-based characterization of
the developed diagnosis filter which has high scalability and
performance robustness to model mismatch. Numerical results
of the developed filter comparing with other pure model-based
ones are reported in Section IV. Conclusions are drawn in
Section V.

II. OUTLINE OF THE PROPOSED SOLUTION

In this section, we start from a case study motivating the
setting of our work. Then the mathematical framework of
our proposed solution to design a diagnosis filter that can be
applied to the high-fidelity simulator is presented.

A. Motivating Case Study

For a detailed description of a real electric power system,
high-fidelity simulators are always exploited to predict its
behavior. Let us consider a multi-area power system equipped

with AGC functions in Figure 1. The three-area IEEE 39-
bus system is modeled in DIgSILENT PowerFactory. In
PowerFactory, the dynamic generator model would consist of
a synchronous machine, along with a voltage regulator for the
exciter, and also the turbine-governor unit. We also implement
AGC in each area for secondary frequency control. The AGC
is a typical automatic control loop that regulates the system
frequency and the power exchanges between areas by con-
trolling the power settings of the generators participating in
AGC to follow load changes. Looking into the system behav-
ior of electromechanical dynamics, we can describe the formal
mathematical model of the studied system in the high-fidelity
simulator by a set of DAEs,

ẋ(t) = f(x(t), a(t), f (t)) (1a)

0 = g(x(t) a(t) d(t)), (1b)

where x ∈ R
nx is the vector of augmented state variables

including the ones of synchronous machines (e.g., damper-
windings, mechanical equations of motion, exciter, voltage
regulator, turbine-governor unit) and AGC controllers. The
vector a ∈ R

na represents the algebraic variables. The vector
d ∈ R

nd denotes the (load) disturbances. The vector f ∈ R
nf

characterizes the possible anomalies that affect the dynamics
of system trajectories, which will be detailed in Section II-B.
We note that (1a) consists of both synchronous generator
dynamics and AGC controller dynamics of the multi-area
power system in PowerFactory.

In the nonlinear DAE formulation of (1), the function
f : R

nx+na+nf → R
nx in (1a) captures the dynamics of

synchronous generators and AGC controllers. The function
g : Rnx+na+nd → R

na in (1b) models the electrical network.
These nonlinear functions involve saturation, sinusoidal terms
and possibly other nonlinearity in the power system. Since (1)
is for a model description in the high-fidelity simulator like
PowerFactory, one may not have access to the detailed DAE
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of (1). In what follows, we show that, to design a diagnosis fil-
ter with the high-fidelity simulator, we do not need an explicit
model of (1), however, it is this simulator that gives us the
trajectory of the system and the output from the simulations
to be fitted into the diagnosis filter for anomaly detection.

First, if the model in (1) is known, a common practice for
the analysis is to linearize (1) under an assumption that the
system works closely around the nominal operating point; one
can find such treatments in many literature sources like [12],
[30]. Next, though (1) in PowerFactory is unknown to the
diagnosis filter design, we can pick an model whose param-
eters are obtained from a simplified version of the system. If
the mathematical description of the complex DAE model (1)
would be available, then a reasonable choice of this abstract
model could be the linearized DAE around the operating point.
However, we emphasize that here this choice does not need
to be a linearized version of the DAE, particularly in view of
the robustification technique introduced in the next step. Such
an abstract model can be picked as

˙̃x(t) = Ac,xx̃(t) + Bc,dd(t) + Bc,f f (t),

y(t) = Cx̃(t) + Df f (t), (2)

where x̃ ∈ R
nx̃ is the state vector of the abstract model

including the dynamics of the multi-area system and also
AGC. The vector y ∈ R

ny denotes the system output of (2).
In (2), Ac,x ∈ R

nx̃×nx̃ is the state matrix; Bc,d ∈ R
nx̃×nd and

Bc,f ∈ R
nx̃×nf relate disturbances and anomalies to the system;

C ∈ R
ny×nx̃ is the output matrix; Df ∈ R

ny×nf characterizes
the corrupted system outputs by anomalies.

The model (2) is picked because, as noted by [31], in
AGC we pay more attention on collective performance of
all generators, and hence we assume that generators in each
area have the same characteristics and each area can be rep-
resented by an aggregated model comprised of equivalent
turbine-governor units and generators [32]. AGC acts as the
secondary frequency control of a multi-area system, and has
relatively slow dynamics. Thus, from the timescales of interest,
the frequency response of AGC can be decoupled from the
loop of automatic voltage regulator. This is due to the fact
that the time constant of voltage regulator dynamics is quite
smaller than that of AGC [13]. It is feasible to use a quasi-state
model that assumes a steady-state operating point of the volt-
age regulator loop ignoring its fast dynamics. Correspondingly,
x̃ in (2) may be a reduced-order one comparing with x in (1).
Of course, the model (2) is not meant to be “low-fidelity”,
instead, as explained above regarding the interested collec-
tive performance of generators and the time scales in system
dynamics, the model (2) decoupled from voltage regulator
loops with certain level of abstractions can be sufficiently
accurate especially for analytical analysis [5], [13]. However,
as mentioned in Section I, the challenge is, regardless of the
choice of the abstract model (2), there would always exist
model mismatch between (1) and (2).

Remark 1 (Model Mismatch Sources): The sources of
model mismatch between (1) and (2) emerge from various
aspects. For instance, we notice that the assumption of oper-
ating point can be violated due to switches and disturbances.

Some nonlinear parts like saturation, sinusoidal terms are not
considered in (2), resulting another part of model reduction
“error”. Various types of inputs, such as processing and
measurement noises, parameter variations, bad data, along
with the exogenous ones of load changes and cyber attacks
particularly noted in (1) and (2), could also contribute to the
model mismatch.

B. Anomalies: Univariate or Multivariate FDI Attacks

We continue to present the anomaly scenario of our moti-
vating case study. In the AGC of a multi-area system, the
AGC controller collects the information of grid frequency and
power exchange on the tie-line (e.g., L1-2 in Figure 1) that
connects areas to form the area control error (ACE) to be
minimized. Then the power settings are computed for the gen-
eration allocation logic of the generators participating in AGC.
In practice, the data to form the ACE signal are usually trans-
mitted through unprotected channels [33], [34]. Thus in this
article, we mainly consider an anomaly scenario where FDI
attacks are corrupting the frequencies and power exchanges
as parts of the ACE signal (and hence the AGC controller
dynamics). In particular, we take the instance of stationary
FDI attack, i.e., the attack occurs as a constant bias injection
f during system operations at a specific time instance and it
remains unchanged since then.

An advanced attack attends to pursue a desired impact on
the system dynamics and also achieve undetectability from
some possible data quality checking programs.2 Thus, an
adversary would try to inject “smart” false data. The next
definition opts to formalize this class of attack.

Definition 1 (Disruptive Univariate or Multivariate FDI
Attack): Consider a stationary FDI attack with f ∈ R

nf . In
the scenario of univariate attack (nf = 1, only one signal
channel is corrupted), we call an FDI attack f ∈ F disrup-
tive attack if F is a set of {f ∈ R

nf =1: f min ≤ f ≤ f max}
where f min, f max ∈ R

nf =1 are non-zero variables. We call the
set F plausible as it reflects the disruptive attack’s targets on
attack impact and undetectability. Similarly, in the scenario
of multivariate attack (nf > 1, multiple signal channels are
corrupted), we introduce the plausible set as

F =
{

f ∈ R
nf : f = F�

b α, α ∈ A
}

where Fb := [f 1, f 2, . . . , f d] represents a finite basis for the
set of multivariate attacks, and f i ∈ R

nf for i ∈ {1, . . . , d},
and α := [α1, α2, . . . , αd]� ∈ R

d contains the coefficients.
A := {α ∈ R

d | Aα ≥ b} with A ∈ R
nb×d and b ∈ R

nb is
polytopic to reflect attack targets on attack impact and unde-
tectability. We emphasize that F can be adjusted according to
different anomaly scenarios where the convexity of the set is
particularly desired from a computational perspective in the
subsequent analysis.

The disruptive univariate and multivariate attacks to be
detected are modeled and implemented in the PowerFactory
simulator. In the Appendix, we present the modeling of

2For instance, to avoid triggering data quality alarms, generally the
calculated ACE in an area should not exceed a permitted value [35], [36].
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Fig. 2. Configuration of the proposed solution.

univariate and multivariate FDI attacks against AGC func-
tions in PowerFactory. Further details of system modeling in
PowerFactory and an instance of the abstract model (2), for
the part of Section II-A, are also given.

C. Mathematical Framework of the Proposed Solution

To alleviate the impact of model mismatch, we propose
our solution outlined in Figure 2. We denote the system out-
put from the simulation results of the high-fidelity simulator
(PowerFactory in this case) as yp. Our proposed solution builds
on a new perspective that the diagnosis filter utilizes not only
the abstract model-based information for a scalable design
but also the simulation data to “train” the filter to achieve
performance robustness with respect to model mismatch. Note
that model mismatch is reflected through the difference of
yp from the high-fidelity simulator and y from the abstract
model (2); such mismatch signature is characterized by ε in
Figure 2.

Let us start with the first approach that builds on the model-
based information. In a realistic framework, the output data are
applied to the diagnosis filter in discrete-time samples. Thus
firstly, we would like to express the discrete-time version of (2)
as a more compact linear DAE (here it refers to difference
algebraic equation) formulation,

H(q)x̄[k] + L(q)y[k] + F(q)f [k] = 0, ∀k ∈ N, (3)

where q is a time-shift operator such that qx̃[k] → x̃[k + 1].
The augmented vector x̄ := [x̃� d�]� consists of both the
state variables and the load disturbances. We denote nr as the
number of rows in (3). Then H, L, F are polynomial matrices
in terms of the operator q with nr rows and nx, ny, nf columns,
respectively, by defining,

H(q) :=
[−qI + Ax Bd

C 0

]
, L(q) :=

[
0

−I

]
, F(q) :=

[
Bf

Df

]
,

where Ax, Bd and Bf are from a zero-order hold (ZOH) dis-
cretization of (2) for a given sampling time Ts [37, p 314].
Here we clarify that Ts is chosen based on the timescales of
interest. In our motivating case study, we consider the AGC
process that performs as the secondary frequency control of
a multi-area system and has relatively slow dynamics (the
timescale of secondary frequency response is in the range
of seconds) [31]. We note that Ts differs from the simula-
tion time step set in the high-fidelity simulator whose time
step resolution can be very high for power system dynamics
simulation. Thus in the following, the simulation results from

PowerFactory initially with a very small time step also need
to be “sampled” first according to Ts.

Next, we further explain the setting of our proposed solu-
tion. For the filter design in Figure 2, yp from the simulation
results of PowerFactory is available as the input to the diag-
nosis filter. In this article, we propose a diagnosis filter as a
type of residual generator having a linear transfer operation,

r[k] := Rε(q)yp[k], (4)

ε[k] = yp[k] − y[k], (5)

where r is the residual signal (generally a one-dimension signal
for the sake of diagnosis) in Figure 2, Rε(q) with a predefined
degree is the design variable of the diagnosis filter, which
will depend on the information of the abstract model in the
preceding subsection and also the simulation data through the
mismatch signature ε introduced in (5).

III. OPTIMIZATION-BASED CHARACTERIZATION

OF THE DIAGNOSIS FILTER

A. Robust Diagnosis Filter

Considering the model-based information in the compact
formulation of (3) from (2), the residual generator can be
represented through polynomial matrix equations. Thus for
Rε(q) in (4), we introduce Rε(q) := a(q)−1N(q)L(q), where
N(q) :=∑dN

i=1 Niqi in which Ni ∈ R
1×nr (note that the dimen-

sion of the residual signal is 1) for i ∈ {1, . . . , dN} and dN is
the predefined degree. Now N(q) becomes the filter design
variable, if the scalar polynomial a(q) with sufficient order
to make Rε(q) physically realizable is determined. Note that
dN is adjustable to be much less than the order of system
dynamics in (2). From (3) to (5), we can further have

r[k] = a(q)−1N(q)L(q)yp[k]

= a(q)−1N(q)L(q)(y[k] + ε[k])

= − a(q)−1N(q)H(q)x̄[k]︸ ︷︷ ︸
(I)

− a(q)−1N(q)F(q)f [k]︸ ︷︷ ︸
(II)

+ a(q)−1N(q)L(q)ε[k]︸ ︷︷ ︸
(III)

(6)

where term (II) is the only desired contribution from the
anomaly f . Ideally, we would like to let the residual keep
robust against the unknowns of term (I) and (III). For that
purpose, first we need to quantify the effect of model mis-
match (reflected through the mismatch signature ε) on the filter
residual. For all k ∈ N, let us define

rε[k] := a(q)−1N(q)L(q)ε[k]. (7)

Next, let us further denote the space of a discrete-time signal
taking values in R

n over the horizon of T (i.e., k ∈ {1, . . . , T})
by Wn

T . We equip this space with an inner product and a
corresponding norm as

‖v‖2
L2

:= 〈v, v
〉
,
〈
v, w

〉
:=

T∑
k=1

v�[k]w[k], (8)

where v, w are some elements in the space Wn
T .
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The main objective of applying a diagnosis filter in the high-
fidelity simulator for anomaly detection is to make the filter
residual r as sensitive to anomaly f as possible and simultane-
ously as robust as possible against other unknowns in term (I)
and (III). To achieve that, we introduce a scalable and robust
diagnosis filter characterized by a class of residual generator
that has the following features.

Definition 2 (Robust Diagnosis Filter): Consider the resid-
ual generator represented via a polynomial vector N(q) for a
given a(q) in (6). This residual generator is robust with respect
to model mismatch and can detect all the plausible disruptive
attacks, if N(q) is the optimal solution from

min
N(q)

‖rε‖2
L2

s.t. N(q)H(q) = 0 (9)

N(q)F(q)f 
= 0, ∀ f ∈ F .

The first constraint in (9) ensures rejection of the unknown of
term (I) in the filter residual; the second constraint guarantees
the filter sensitivity to all the admissible disruptive FDI attacks
in the plausible set F of Definition 1; the objective function
seeks to reduce the impact of model mismatch on the filter
residual (term (III)).

B. Tractable Optimization-Based Characterization Under
Univariate Attack

In light of (9) in Definition 2 for the robust diagnosis fil-
ter design, let us first consider the univariate attack scenario
(nf = 1). Note that when there is no attack, the system output
yp from the PowerFactory simulations and y from the abstract
model (2) only depend on the input of load disturbances d.
Thus for one instance of load disturbances, di, one can have
a specific mismatch signature εi according to (5). For each
εi ∈ Wny

T , a matrix Ei ∈ R
ny×T can be introduced,

Ei := [εi[1], εi[2], . . . , εi[T]]. (10)

Recall that the operator q acts as a time-shift operator:
q εi[k] → εi[k+1]. This operator is linear, and it can be trans-
lated as a matrix left-shift operator for matrix Ei: q Ei = EiD
where D is a square matrix of order T . Following the definition
of the residual rε in (7), we have

a(q)rε = N(q)L(q)Ei = N̄L̄

⎡
⎢⎢⎢⎣

I
qI
...

qdN I

⎤
⎥⎥⎥⎦Ei = N̄L̄Di (11)

where the matrices are defined as N̄ := [N0, N1, . . . , NdN ],
L̄ := diag[L, L, . . . , L] and L = L(q), and Di :=
[ET

i , (EiD)T , . . . , (EiDdN )T ]T . Given a particular disturbance
pattern di, then the L2-norm of the residual signal as defined
in (8) can be reformulated as a quadratic function,

‖rεi‖2
L2

= N̄QiN̄
�
, Qi = (L̄Di)G

(
L̄Di

)�
, (12)

where G is a positive semi-definite matrix with a dimen-
sion of T such that G(i, j) = 〈a(q)−1ui, a(q)−1uj〉 in which
ui, uj ∈ W1

T are the discrete-time unit impulses. It can be

observed from (12) that the matrix Qi is also positive semi-
definite since Qi is symmetric and for all non-zero row vector
N̄, we can have N̄QiN̄

� = ‖rεi‖2
L2

≥ 0. We call Qi the
mismatch signature matrix resulting from a specific mismatch
signature under a particular load disturbance instance.

Remark 2 (Training With Multiple Model Mismatch
Signatures): In order to robustify the diagnosis filter, it can be
“trained” by utilizing the information of multiple instances
of load disturbances, i.e., {di}m

i=1, under normal system
operations (without attacks). For each disturbance signature
di, the mismatch signature εi and also the mismatch signature
matrices Qi can be computed from (10) to (12). Next,
according to (9) in Definition 2, the robust diagnosis filter has
an optimization-based characterization where the objective
function can be formulated to minimize N̄((1/m)

∑m
i=1 Qi)N̄

�

(average-cost viewpoint) or maxi≤m(N̄QiN̄
�
) (worst-case

viewpoint). We note that from computational perspective the
average-cost is much more preferred. It is worthy mentioning
here that the training number m may have a significant impact
on the diagnosis performance of the proposed filter. As a
general rule, the smaller the training number m, the worse
the proposed filter may behave in detecting anomalies by
performing more misdiagnoses.

Theorem 1 (Tractable Quadratic Programming
Characterization): Consider the polynomial matrices
H(q) = H0 +q H1 and F(q) = F where H0, H1 ∈ R

nr×nx̃ and
F ∈ R

nr×nf are constant matrices. The robust diagnosis filter
introduced in (9) of Definition 2 for the univariate attack can
be obtained by solving the optimization program,

min
N̄

N̄

(
1

m

m∑
i=1

Qi

)
N̄

�

s.t. N̄H̄ = 0 (13)∥∥N̄F̄
∥∥∞ ≥ 1

where ‖ · ‖∞ denotes the infinite vector norm, and

H̄ :=

⎡
⎢⎢⎢⎢⎣

H0 H1 0 · · · 0

0 H0 H1 0
...

... 0
. . .

. . . 0
0 · · · 0 H0 H1

⎤
⎥⎥⎥⎥⎦

.

Similar to the matrix L̄ in (12), F̄ in (13) is defined as F̄ :=
diag[F, F, . . . , F]. Besides, a robust diagnosis filter from the
program (13) but simply adding the following linear constraint
can have non-zero steady-state residual that could approximate
the attack value of f ,

− a(1)−1
dN∑
i=0

NiF = 1. (14)

Proof: The key step is to observe that in (9) we can rewrite,

N(q)H(q) = N̄H̄
[
I, qI, . . . , qdN+1I

]�
,

N(q)F(q) = N̄F̄
[
I, qI, . . . , qdN I

]�
. (15)

In the scenario of univariate attack (nf = 1), the last con-
straint of (9) can be translated into N(q)F(q) 
= 0 to ensure
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a nonzero transfer function from the univariate attack to the
residual signal (i.e., a non-zero response when the univari-
ate attack occurs). Then looking at the linear structure of
N(q)F(q) 
= 0, from (15), one can scale this inequality to
arrive at the one of ‖N̄F̄‖∞ ≥ 1 in (13). Next, the constraint
N(q)H(q) = 0 in (9) can be recast as N̄H̄ = 0 in (13), fol-
lowing (15). Then, when N̄H̄ = 0 satisfies, the diagnosis filter
becomes r[k] = −a(q)−1N(q)F(q)f [k]+a(q)−1N(q)L(q)ε[k].
If there is no model mismatch (ε ≡ 0), as a discrete-time
signal, the steady-state value of the filter residual under the
univariate attack would be −a(q)−1N(q)F(q)f |q=1. Note that
N(1)F(1) = ∑dN

i=0 NiF. Thus when there exists model mis-
match, with the linear constraint of (14), the residual in its
steady-state value could approximate f .

For the last constraint of (13), as indicated by
[17, Lemma 4.3], ‖N̄F̄‖∞ ≥ 1 if and only if there
exists a coordinate j that N̄F̄vj ≥ 1 or N̄F̄vj ≤ −1. Here
vj = [0, . . . , 1, . . . , 0]T

(dN+1) in which the only non-zero
element of the vector is the j-th element. Thus, one can
view (13) as a family of dN + 1 standard QPs with linear
constraints that for each QP the last constraint becomes
N̄F̄vj ≥ 1 (or N̄F̄vj ≤ −1 since the set for the solutions of
N̄ in (13) is symmetric). In addition, recall that the matrix
Qi in the objective function is positive semi-definite, which
implies that the resulted standard QPs are also convex, and
hence tractable.

Remark 3 (Computational Complexity): For the family of
dN + 1 convex QPs, each of them contains 2 constraints and
nr(dN + 1) decision variables (recall the dimension of N̄).
Here nr, as the number of rows in the compact model (3),
depends on the number of state variables and system outputs
of the picked abstract model (2) (i.e., nr = nx̃ + ny). In our
motivating case study of Section II, such number is indeed
determined by the abstract model of the studied power system
(e.g., the number of areas, transmission lines called tie-lines
that connect areas, and generators participating in AGC). But,
notably, another parameter dN , as the degree of the diagnosis
filter, also affects the number of resulted QPs and decision
variables. The value of dN is adjustable and can be much less
then the dimension of system dynamics. That is to say, our
optimization-based characterization for the proposed diagnosis
filter results in highly scalable optimization programs. Besides,
a convex QP can be solved in polynomial time and there are
very efficient toolboxes (e.g., CPLEX, MOSEK) for that pur-
pose [38]. Thus, considering that the training phase of our
approach is a matter of matrix computation and the QPs are
convex, we would say that our approach is not computational
expensive especially comparing with many machine-learning
type methods, but scalable for different studied systems.

For a better illustration, Algorithm 1 concludes the diagnosis
filter construction and validation process for an implementa-
tion in PowerFactory to detect the univariate attack.

C. Extension to Multivariate Attack Scenarios

Inspired by the techniques developed in [5], we further
extend the preceding design of the robust diagnosis filter to
the scenario of multivariate attacks.

Algorithm 1 Diagnosis Filter Validation for Univariate Attack
(i) Training phase

Input: yp, y under normal operations, dN , a(q)

Output: N̄, Rε(q)

1 For each di, from yp and y, compute the mismatch
signature matrix Qi according to (10) - (12).

2 For a number of m instances of di, perform the first
step to get m signature matrices.

3 Solve the family of convex QPs from (13) with the
derived Qi. Build Rε(q) based on the solution N̄
from solving QPs and also dN , a(q).

(ii) Testing phase:
Input: yp under univariate attacks, Rε(q)

Output: r for anomaly detection
1 Let yp be the input of the diagnosis filter with

Rε(q). Check the residual r for anomaly detection.

Corollary 1 (Robust Diagnosis Filter Under Multivariate
Attacks): Consider the diagnosis filter in Definition 2 where the
set of multivariate attacks is defined as F = {f ∈ R

nf : f =
F�

b α, α ∈ A} in which A = {α ∈ R
d | Aα ≥ b} (see

Definition 2 for the denotation of these variables). Given
j ∈ {1, . . . , 2dN + 2}, for each j, consider a family of the
following quadratic programs,

min
N̄,λ

N̄

(
1

m

m∑
i=1

Qi

)
N̄

�

s.t. b�λ ≥ γj, (QPj)

(−1)jN�j/2�FFb = λ�A

N̄H̄ = 0, λ ≥ 0

where �·� is the ceiling function that maps the argument to
the least integer. Then, the best solution of the quadratic pro-
grams (QPj) among j ∈ {1, . . . , 2dN+2} solve the problem (9)
in Definition 2 of robust diagnosis filter for the scenario of
multivariate attacks.

Proof: In the scenario of multivariate attacks, the two con-
straints in (9) can be characterized by the maximin program,

γ � := max
N̄∈N

min
α∈A

{J (N̄,α)
}
, (16)

where the set N := {N̄ ∈ R
(dN+1)nr | N̄H̄ = 0}. The source

of the cost function J (N̄,α) is referred to [5, Sec. IV.B].
Then, according to [5, Th. IV.3], we know that the maximin
program (16) can be reformulated and relaxed to a set of linear
programs (LPs),

γ �
j := max

N̄,λ
b�λ

s.t. (−1)jN�j/2�FFb = λ�A, (LPj)

N̄H̄ = 0, λ ≥ 0

Namely, the solution to the program (LPj) is a feasible solution
to the maximin program (16), and max{j≤2dN+2} γ �

j ≤ γ �. Then
it is easy to obtain the finite (QPj) for the multivariate attack
scenario. We conclude the proof by noting that if there is a γ �

j
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Algorithm 2 Diagnosis Filter Validation for Multivariate
Attack

(i) Pre-training
Input: A, b, Fb
Output: γ �

j
1 Solve (LPj) for each j ∈ {1, . . . , 2dN + 2}. Check

if there exists γ �
j > 0 and find the maximum.

(i) Training phase
Input: yp, y under normal operations, dN , a(q)

Output: N̄, Rε(q)

1 For each di, from yp and y, compute the mismatch
signature matrix Qi according to (10) - (12).

2 For a number of m instances of di, perform the first
step to get m signature matrices.

3 Set the initial value of γj to be max{j≤2dN+2} γ �
j

from pre-training. Solve (QPj) with the derived Qi.
4 Tune the value of γj until it reaches maximum.

Build Rε(q) based on the solution N̄ and dN , a(q).
(ii) Testing phase:

Input: yp under multivariate attacks, Rε(q)

Output: r for anomaly detection
1 Let yp be the input of the diagnosis filter with

Rε(q). Check the residual r for anomaly detection.

being positive,3 then a resulted filter from (LPj) could detect
all the multivariate attacks in the set F .

From Corollary 1, we can see that for any
j ∈ {1, . . . , 2dN + 2}, if one can find a γj > 0 that (QPj) is
still feasible, then the solution to QPj offers a robust diagnosis
filter in the type of Definition 2 for multivariate attacks. It is
worth mentioning that the obtained (QPj) in Corollary 1 is
also a standard convex QP. Along the same lines as Remark 3,
each program of (QPj) (j ∈ {1, . . . , 2dN + 2}) in Corollary 1
has nr(dN + 1) + nb decision variables and can be solved
in polynomial time. Thus it can be observed that for the
scenario of multivariate attacks, our proposed approach can
also achieve high scalability.

Algorithm 2 concludes the filter construction and validation
process of our proposed solution in the scenario of multivari-
ate attacks. In the “pre-training”, one needs to solve (LPj)
for each j to see if there exists γ �

j > 0. If yes, next in
the “training phase”, similar to the process in Algorithm 1,
the mismatch signature matrices can be computed according
to (10) - (12). Then the program (QPj) needs to be solved
and the resulted robust diagnosis filter can be “tested” in
PowerFactory. We would like to highlight that, the robust diag-
nosis filter from (QPj) does not necessarily enforce a non-zero
steady-state residual under multivariate attacks. Regarding its
steady-state behavior, the program (16) can be modified into
μ� := max{N̄∈N } min{α∈A} |N̄F̄α| which has an exact con-
vex reformulation. Then a similar treatment as the one in
Corollary 1 can be deployed.

3To remark, as noted in Definition 1, the parameter b, A and Fb are
scenario-specific. There is no need that the elements of b are fully positive;
however, if all of them are negative, there may not exist a positive γ �

j .

TABLE I
A SUMMARY OF FILTER FEATURES IN DIFFERENT SCENARIOS

In the end, we summarize the filter features under univariate
or multivariate attacks and in the pure model-based or our
proposed data-assisted model-based methods, in Table I.

IV. NUMERICAL RESULTS

A. Test System and Robust Filter Description

To validate the effectiveness of our data-assisted model-
based diagnosis filter, it has been implemented in the high-
fidelity simulator of DIgSILENT PowerFactory to detect FDI
attacks on the ACE signal of AGC in the three-area 39-
bus system. The system parameters of the abstract model
are referred to [39], and the specifications of the model in
PowerFactory are available at [40]. Following Algorithms 1
and 2, to obtain model mismatch signatures, we run the sim-
ulations to obtain yp and y with the same input d of load
disturbances in normal operations. The adjustable degree of
the residual generator is set to dN = 3 which is much less than
the order of the abstract model (it is a 19-order model of (2));
we set the scalar polynomial a(q) = (q−p)dN /(1 − p)dN where
p is a user-defined variable acting as the pole of Rε(q), and it
is normalized in steady-state value for all feasible poles. The
simulation time step is set to 0.01 s in the RMS simulation
tool of PowerFactory. We let Ts = 0.5 s such that the simu-
lation results from PowerFactory initially with the very small
time step are also “sampled”, and thus for a simulation time
ts = 10 s, T = 20 in (10). We also perform a comparison study
for the two methods: our data-assisted model-based filter and
the pure model-based one in [5].

B. Main Simulation Results

The first simulation considers the univariate attack where an
attacker has manipulated the power exchange between Area 1
and Area 2 from t = 30 s in the horizon of 60 s. To chal-
lenge the filter, the disturbances are modeled as stochastic
load patterns: load variation of Load 4 in Area 1 is a ran-
dom zero-mean Gaussian signal. A number of m = 100 load
disturbance instances are generated for the “training phase”
where for each disturbance instance di, a simulation with
ts = 10 s is conducted to obtain mismatch signatures εi.
Following Algorithm 1, the design variable N̄ of our diagnosis
filter is derived. To compare, a pure model-based filter is also
obtained by letting Qi = 0 in Theorem 1 (see Table I), which
can be transformed into finite LPs. The simulation results
are referred to Figure 3 and Figure 4. We can see that our
data-assisted model-based filter has significant improvements
in the regards of mitigating the effect from model mismatch on
the residual, comparing with the pure model-based approach.
Besides, from Figure 4(c), it can track attack value through its
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Fig. 3. Pure model-based filter in [5] under univariate attack. It is derived
by letting Qi = 0 in Theorem 1, which can be transformed into finite LPs.

steady-state residual. The pure model-based filter fails by trig-
gering false alarms, when applied directly to the PowerFactory
simulator. This can be expected since it utilizes the abstract
model-based information only and suits for the given model
of (2). Figures 3(d) and 4(d) provide the residual results under
10 different realizations of load disturbances in the “testing
phase”. They depict the “energy” of the residual signals for the
last 10s under 10 load disturbance instances, namely ‖r‖L2 [ ·].
Note that in Figure 4(d) the threshold is set to τ � + 0.025,
where the square of τ � equals to the maximum value of N̄QiN̄
in the 100 training instances (i ∈ {1, . . . , 100}); recall (12)
that ‖rεi‖2

L2
= N̄QiN̄

�
. The added value is to avoid possible

false alarms according to [41]. Then a univariate FDI attack
is said to be detected when the value of ‖r‖L2 [ · ] is beyond
the threshold; we see successful detections by our proposed
method in Figure 4(d), while the pure model-based one fails
in Figure 3(d). To conclude, our proposed diagnosis filter
implemented in the high-fidelity simulator (PowerFactory in
our case study) can successfully generate residual “alerts” for
the occurrence of FDI attacks, and keep the impact of model
mismatch minimized.

In the second simulation, we move to the scenario of mul-
tivariate attacks. There are 5 power exchanges between areas

Fig. 4. Data-assisted model-based filter. It is derived by solving (13) in
Theorem 1 where Qi is from (12), and in the end it is a family of convex
QPs.

that are attacked, and correspondingly there exist 3 basis vec-
tors in the spanning set F : f 1 = [0.1 0 0.1 0 0]T ,
f 2 = [0.1 0.15 0.25 0 0]T , f 3 = [0 0 0 0.1 0.1]T

(all in p.u.). Besides, for the set of disruptive multivariate
attacks, the parameters are set to A = 1� and b = [1.5]�
in A. We refer to [5, Sec. V] for the specification of these
values. Following Algorithm 2, the program (LPj) is solved
first. The optimal value achieves maximum for j = 2 that
γ �

2 = 300, which implies that a diagnosis filter of our approach
could be obtained. Next, in the “training phase”, a number
of m = 100 load disturbance instances are randomly gener-
ated. The program (QPj) in Corollary 1 is solved for the filter
design. For the derived optimal solution N̄, the multivariate
attack coordinate vector α is obtained by solving the inner
minimization of the program (16). In the “test phase”, simula-
tions in PowerFactory are conducted that several realizations
of load disturbances have been implemented and the multivari-
ate attacks with α have been launched. The performance of
the two filters (the filter of our approach and the pure model-
based filter from [5]) is validated with two sets of outputs: one
from the abstract model (2) (i.e., without model mismatch,
ε ≡ 0) and another one from the PowerFactory simulations
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Fig. 5. Pure model-based filter in [5]. It is derived by letting Qi = 0 in
Corollary 1, and it is essentially a set of LPs.

(i.e., with model mismatch, ε 
= 0). Figures 5 and 6 show
the simulation results of both diagnosis filters. We can see
that both filters succeed for the case ε ≡ 0. However, from
Figures 5(c) and 6(c), when there exists model mismatch, our
data-assisted model-based filter still works effectively, while
the pure model-based filter in [5] totally fails by trigger-
ing false alarms. Besides, similar to Figures 3(d) and 4(d),
Figures 5(d) and 6(d) depict the “energy” of the residual sig-
nals for the last 10s under 10 load disturbance instances. In
Figure 6(d), the threshold is set to τ �+0.1 where the square of
τ � equals to the maximum value of N̄QiN̄ in the 100 training
instances (i ∈ {1, . . . , 100}), and the added value is to avoid
possible false alarms. Then a multivariate attack is said to be
detected when the value of ‖r‖L2 [ · ] is beyond this thresh-
old; we see successful detections by our proposed method in
Figure 6(d), while the pure model-based one totally fails in
Figure 5(d). From Figure 6(d) and Figure 4(d), one can observe
that the energy of residual varies slightly for the 10 differ-
ent instances by our proposed diagnosis filter, compared with
the one by the pure model-based method in [5]. The major
difference between these two approaches is that we have uti-
lized another important piece of information, the simulation

Fig. 6. Data-assisted model-based filter. It is derived by solving (QPj) in
Corollary 1 where Qi is from (12).

data from PowerFactory to reveal the model mismatch sig-
natures, in addition to the abstract model-based knowledge.
On one hand, this phenomenon highlights the importance of
considering possible model mismatches when applying model-
based diagnosis tool in practice; on the other hand, the results
prove the effectiveness of our proposed solution for tackling
with that. In the end, note that when looking into the steady-
state behavior of the filter, it turns out that μ� = 0, which
indicates that the optimal multivariate attack in this case is
a stealthy attack in the long-term horizon, with or without
considering the model mismatch impact. However, one can
still detect such attacks with a non-zero transient residual, as
shown in Figure 6(d). In conclusion, these simulation results
have validated the effectiveness of our proposed solution.

C. Additional Simulation Results and Discussions

1) Robustness of the Diagnosis Filter to Parameter
Variations in the Abstract Model and Measurement Noises:
As highlighted in Remark 1, various sources may contribute
to the model mismatch between (1) and (2). Thus the fol-
lowing question comes: can the effectiveness of our proposed
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Fig. 7. Data-assisted model-based filter. Variations on parameters (equivalent inertia constants, damping coefficients, droop coefficients) of ±20% and ±40%
are made on the abstract model.

Fig. 8. Data-assisted model-based filter. Measurement noises are considered in the measurements (outputs of simulation results from PowerFactory) in the
filter design.

solution on the robustification scheme against model mismatch
be still ensured in the cases of other model mismatch sources
in addition to load disturbances and cyber attacks? To explore
that, we have conducted the following simulations.

First, we would like to explore how the parameter variations
in the abstract model could affect the diagnosis performance,
which is also a big concern when one needs to chose the
abstract model for model-based information in the filter design.
Figure 7 shows the energy of residuals under univariate or
multivariate attacks, while different levels (±20%, ±40%) of
parameter variations on equivalent inertia constants, damping
coefficients and droop coefficients of the three areas are con-
sidered. We can observe that the proposed diagnosis filter still
detects the univariate and multivariate attacks effectively with-
out triggering false alarms when there is no attack (in the
period of 0 to 30s in Figure 7), even with parameter variation
of ±40% on the abstract model.

The second simulation considers possible measurement
noises which are also among the sources contributing to the
model mismatch. Here the zero-mean Gaussian noise term
added to the measurements (outputs of simulation results from
PowerFactory, all in p.u.) follows that the covariance of the
frequency measurement is 0.009 and the covariance of other
measurements’ noise is 0.03 [13]. Then Figure 8 provides
the results for both scenarios of univariate and multivariate
attacks, when the measurement noises are considered. It can

be seen that measurement noises do affect the diagnosis signal;
however, we still see a successful detection by our proposed
diagnosis filter. But we notice that if the covariance in the
noise term becomes much larger (which may be not the case
in reality since in general we can have accurate measurements
with the development of sensing technology), there may exist
the case that our diagnosis filter generates false alarms when
there is no attack. This is due to the fact that too much “uncer-
tainty” in the model mismatch may make our robustification
scheme fail to capture the “true pattern” of model mismatch
signatures. To conclude in this end, Figure 8 and Figure 7
still illustrate the effectiveness of our robustification scheme
for possible model mismatches caused by parameter variations
and measurement noises.

2) The Impact of Training Number on the Diagnosis
Performance: In Remark 2, we have mentioned that the train-
ing number may affect the diagnosis performance of our
proposed filter. Here we decide to provide more numerical
results in order to illustrate how the training number impact the
filter residual. To recall first, we have seen that in Section IV-B
our diagnosis filter achieves successful detections for both sce-
narios of univariate and multivariate attacks when the training
number is set to 100. In Figure 9, we have conducted sim-
ulations under different training numbers in the scenario of
multivariate attacks. The results in Figure 9 generally fol-
low the rule noted in Remark 2, i.e., the smaller the training
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Fig. 9. Data-assisted model-based filter. The training number varies from m = 5 to m = 65.

number m, the worse the proposed filter may behave in detect-
ing anomalies by performing more misdiagnoses. In particular,
from Figure 9 we see that the diagnosis filter can perform
much better when m reaches 35 (Figure 9(c)), though there still
exist misdiagnoses that false alarms may be triggered. When
m reaches 65, the diagnosis filter can perform all successful
detections in the test set.

3) Detection of Other Types of Cyber Attacks: In this arti-
cle, the motivating case study comes from the cyber security
concerns of the multi-area power system under AGC oper-
ations. The FDI attacks on AGC power flow or frequency
measurements are essentially acting as exogenous inputs to
the system (see f in (2)). There are other types of attacks,
e.g., missing data attack (Denial-of-service attack), data repe-
tition attack (replay attack), fault-resembling injection attack,
parameter manipulation attack, can be also modeled as the
exogenous inputs to the system. Here we introduce two types
of them in brief:

• Denial-of-service (DoS) attack: A type of missing data
attack where the attacker aims to prevent some specific
data from being delivered to the respective destinations.

• Replay attack: A type of data repetition attack that there
exist two stages where the attacker gathers a sequence
of data packets at stage 1, and then replays the recorded
data afterwards at stage 2.

From a detection point of view, DoS attacks are triv-
ially detectable without any sophisticated mechanisms as the
absence of data is not stealthy. In the typical DoS attack
modeling, the missing data is typically replaced with the
last received ones [42]. In such a mechanism, the DoS
can be treated as an “injection” attack. We investigate the
performance of our filter in the presence of this type of attacks
in Figure 10. Numerical results confirm that our proposed fil-
ter can successfully detect the DoS attacks. In regard with
the replay attack, the articles [43], [44] offer sufficient con-
ditions under which plausible attacks may remain stealthy
irrespective of the detection mechanism providing that the
attacker has access all the necessary data channels and excite

Fig. 10. Data-assisted model-based filter in detecting DoS attacks which are
launched at 30s, under multiple load disturbance instances.

attack of stage 2 at a suitable time. For instance, if the
attacker has obtained all the system outputs under one load
disturbance instance and excite stage-2 attack, our proposed
diagnosis filter may fail to distinguish the replay attack from
load disturbances.

4) Applicability of the Proposed Solution: It can be
extended to other systems and anomaly scenarios if the anoma-
lies are still acting as exogenous inputs. Another instance can
be the small-signal dynamics model of power systems under
anomalies such as cyber attacks or bad data on the measure-
ments (e.g., terminal voltage/current phasor of each generator).
The mathematical description of the model can be a linear
one considering a small perturbation over an operating point,
resulting an abstract model [12, Sec. 3]. We see the effective-
ness of our proposed solution with the PowerFactory simulator
in our case study, however, we need to clarify that the effi-
cacy of our method is in fact independent on a particular
high-fidelity simulator.
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Fig. 11. The diagram of the three-area 39-bus system [5].

5) Comparison With Other Pure Model-Based or Data-
Driven Detectors: As illustrated in simulation results, it can
be expected that model mismatch would affect the diagno-
sis of other pure model-based detectors like observers when
applied to the high-fidelity simulator. Regarding data-driven
approaches, we admit that they may also be able to detect
the anomalies of this article, while the data training stage
may require a high computational cost, comparing with our
proposed tractable convex optimization-based characterization.

V. CONCLUSION

We have proposed a feasible solution to the problem that
arises from applying scalable model-based anomaly detectors
in practice: there always exist mismatches between the output
from the picked abstract model and the one from the simula-
tor (or the real electric power system). In our final tractable
reformulation, the abstract model-based information intro-
duces feasible sets, and the simulation data forms the objective
function to minimize the model mismatch effects, which could
bridge the model-based and data-driven approaches.

APPENDIX

A. Parameters of the Abstract Model

An instance of the abstract model (2) is given as follows.
Figure 11 depicts the schematic diagram of the three-area
39-bus system used in the abstract model (2) in Section II.
Please also note the connection between Figure 11 and
Figure 1. For AGC analysis, we are interested in collective
performance of all generators, and thus we can rely on certain
levels of abstraction that simplify some elements of the ini-
tial model in (1) and utilize the possible decoupling between
control loops. Then the mathematical description of an AGC
system in Area i can be presented in the linear formulation
where each area of a power system is represented by a model

with equivalent governors, turbines and generators,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

�ω̇i = 1
2Hi

(
�Pmi − �Ptiei − �Pdi − Di�ωi

)
,

�Pmi =∑Gi
g=1 �Pmig , �Ptiei =∑j∈Mi

�Ptieij,

�Ṗmig = − 1
Tchig

(
�Pmig + 1

Sig
�ωi − φig�Pagci

)
,

�Ṗtieij = Tij
(
�ωi − �ωj

)
,

ACEi = βi�ωi +∑j∈Mi
�Ptieij ,

�Ṗagci = −KIi ACEi,

(17)

where Hi is the equivalent inertia constant of Area i, Di is the
damping coefficient, �Pmi and �Ptiei are the total generated
power in Area i and the total tie-line power exchanges from
Area i, and �Pdi denotes load disturbance. The term Gi is
the number of participated generators in Area i, and Mi is
the set of areas that connect to Area i. Tchig is the governor-
turbine’s time constant, Sig is the droop coefficient, and Tij is
the synchronizing parameter between Area i and j.

In the AGC loop, note that �Pagci in (17) is the signal
from the AGC controller for the participated generators to
track the load changes, and φi,g is the participating factor,
i.e.,

∑Gi
g=1 φi,g = 1. After receiving the frequency and tie-line

power measurements, the ACE signal is computed for an inte-
gral action where βi is the frequency bias and KIi represents
the integral gain. Based on the equations in (17), the linear
model of Area i can be presented as

˙̃xi(t) = Ac,iix̃i(t) + Bd,idi(t) +
∑

j∈Mi

Ac,ijx̃j(t), (18a)

yi(t) = Cix̃i(t), (18b)

where x̃i := [{�Ptieij}j∈Mi ,�ωi, {�Pmig}1:Gi ,�Pagci]
� is the

state vector that consists of area frequency, generator output,
tie-line power exchange and AGC control signal of the close-
loop system; di := [�Pdi]

� denotes load disturbances. Ac,ii is
the system matrix of Area i, Ac,ij is a matrix whose only non-
zero element is −Tij in row 1 or 2 and column 3, Bd,i is the
matrix for load disturbances. We can take an output model with
high redundancy that the measurements of frequency, tie-line
power exchanges, generator outputs, and AGC control signals
are all measured. Then yi is the output of Area i and Ci is the
output matrix with full column rank. As noted earlier, vulnera-
bilities within the communication channels for frequencies and
power exchanges as parts of the ACE signal may allow FDI
attacks. For instance, if an attack manipulates one of tie-line
power exchanges from Area i, say ftiei , then the ACE signal
in (17) would be corrupted into

ACEi = βi�ωi +
⎛
⎝∑

j∈Mi

�Ptieij + ftiei

⎞
⎠, (19)

which implies that FDI corruptions would affect the dynamics
of controllers and consequently the involved physical system.
In the end, using the state/output equation of each area, the
continuous-time model of a multi-area AGC system under FDI
attacks can be described in the form of (2).
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Fig. 12. The block definition of AGC in PowerFactory.

B. AGC System and FDI Attack Modeling in PowerFactory

In a high-fidelity simulator like PowerFactory, a detailed
simulation of power system dynamics can be carried out
that all the details of generators (e.g., synchronous machine,
exciter, voltage regulator, turbine-governor unit), electric
network and also controllers such as AGC can be included.
Figure 1 depicts the three-area IEEE 39-bus system with AGC
functions in the PowerFactory simulator. In the simulations,
the dynamic generator model can consist of a synchronous
machine, along with voltage regulator for the excitation system
in the type of IEEE Type 1, and turbine-governor model in the
type of IEEE Type G1 (steam turbine) or IEEE Type G3 (hydro
turbine).

The generators in red diagrams of Figure 1 are also partici-
pating AGC control. The AGC control loop can be developed
by PowerFactory’s own modeling language - DIgSILENT
Simulation Language (DSL). For instance, Figure 12 illustrates
the block definition of AGC in Area 1, which has several sub-
blocks that collect frequencies and power exchanges between
areas as the control inputs and perform AGC function to cal-
culate signals for power settings of the participated generators
in Area 1. Moreover, we build another block definition for
the FDI attack model on the parts of the ACE signal. We
have built the high-fidelity simulation model in the simula-
tor PowerFactory for the 39-bus system equipped with AGC
functions. The composite frame of AGC builds the connections
between the inputs and outputs of the AGC model elements.
Then the AGC block definitions for all areas can be created.
For Figure 12 of block definition of AGC in Area 1, the four
sub-blocks consist of

• frequency deviations block where the frequency devia-
tions in p.u. multiplied by a bias factor are calculated;

• tie-line power flows deviations block which computes the
tie-line power flow deviations (normalized in p.u.) on the
side of Area 1 for the power part of ACE;

• AGC controller block which performs the ACE calcula-
tion and the integral action to generate the tuning signal
(�Pagci) for power settings of participated generators.
The saturation effects are considered that the limits of
Pmin

agc and Pmax
agc are added for the tuning signal;

• AGC output signals block where the tuning signals for the
participated generators in Area 1 for AGC are calculated
based on each generator’s participating factor.

The above block definitions are modeled using the Standard
Macros of PowerFactory’s global Library. Moreover, in
Figure 12, another block definition (in red diagram) cor-
responds to the FDI attack model for the study of this
article,

• FDI attacks block where the FDI attack is implemented.
Each block captures the feature of the stationary FDI
attack, i.e., the attack occurs as a constant bias injec-
tion (f [k] = f ) on measurements at a specific time step,
and it remains unchanged since then. This block can add
an “false” injection into the existing signal. One can spec-
ify the occurrence time and the attack values. This block
definition is achieved by using the digexfun interface.
With digexfun, we can define a specific DSL function (in
C++) and create a dynamic link library digexfun_*.dll
that PowerFactory can load.
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