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Abstract

Side-channel attacks (SCA) focus on vulnerabilities caused by insecure implementations
and exploit them to deduce useful information about the data being processed or the data
itself through leakages obtained from the device. There have been many studies exploiting
these side-channel leakages, and most of the state-of-the-art attacks have been shown to
work on systems implementing AES. The methodology is usually based on exploiting leak-
ages for the outer rounds, i.e., the first and the last round. In some cases, due to partial
countermeasures or the nature of the device itself, it might not be possible to attack the
outer round leakages. In this case, the attacker has to resort to attacking the inner rounds.

This work provides a generalization for inner round side-channel attacks on AES and
PRESENT, and experimentally validates the same for AES with non-profiled and profiled
attacks. We formulate the computation of the hypothesis values of any byte in the interme-
diate rounds of both AES and PRESENT. The more inner the round is, the higher is the
attack complexity in terms of the number of bits to be guessed for the hypothesis. We
discuss the main limitations for obtaining predictions in inner rounds and, in particular,
we compare the performance of Correlation Power Analysis (CPA) against deep learning-
based profiled side-channel attacks (DL-SCA). We demonstrate that because trained deep
learning models require fewer traces in the attack phase, they also have fewer complexity
limitations to attack inner AES rounds than non-profiled attacks such as CPA.
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1
Introduction

Block ciphers constitute a building block for almost every cryptosystem being used today.
From TLS connections to smart cards, various standards such as FIPS [32] have been set
as guidelines for using these cryptosystems in such a way that provides optimum security
as per the application. It is therefore imperative to make sure that these ciphers are imple-
mented in the most secure way possible so that none of the sensitive information it protects
falls into the wrong hands. Through history we have seen vulnerabilities that arise not due
to weakness of the cryptosystem itself, rather because of an insecure implementation. Such
a weak implementation causes the system to leak information that an attacker can guess/d-
educe through proper observation and analysis. For example, attacks such as BEAST [40]
realises a vulnerability in the way in which SSL-3.0/TLS-1.0 implements the AES-CBC ci-
pher that lets the attacker reveal(guess) encrypted content, while the construction of the
cipher itself is not the problem.

Attacks where unintended leakage caused by improper implementation is exploited to
gather sensitive information are called Side-channel Attacks. Side-channel attacks have es-
pecially proven effective in terms of security of embedded systems which use ciphers such
as AES or even lightweight ciphers such as PRESENT. AES is a symmetric cipher based on
Substitution-Permutation Network (SPN) that has been standardised by NIST [31] in 2001
and adopted as an ISO [14] international standard in 2005. It has gone through rigorous
tests and has proven to be one of the most secure ciphers and is thus widely used, from
TLS/SSL in the TCP/IP network stack to secure storage systems such as Hardware Security
Modules (HSM). PRESENT [3] is also a symmetric cipher, also based on SPN, but designed
specifically as a lightweight cipher for embedded devices and devices that need to work in
resource constrained environments such as RFID tags and sensor networks. Fulfilling the
requirement of a lightweight cipher, PRESENT computes over less amount of data with a 64
bit block size and a key size of 80/128 bits, has a smaller algorithm size and the capability
to run purely on hardware making them fast and efficient.

As mentioned, side-channel attacks are realised through unintended information leak-
ages that can be observed and measured by a malicious actor. The type of leakages range
from power consumption [23] and electromagnetic emissions to even light emissions light-
emissions. We focus on power-based leakages for the purpose of this work, which is the
information that can be extracted based on the power consumed by the device while per-
forming an encryption/decryption operation. The observation of the leakages is usually

1



2 1. Introduction

done through localized power measurements of the processor or microcontroller. For in-
stance, a shunt resistor is placed between the voltage supply and the device in question,
and the voltage across the resistor can be measured by an oscilloscope. This voltage would
then be proportional to the current drawn by the device while performing the required
computation. These measurements obtained from the oscilloscope are then be converted
to power traces on which further analysis takes place. Measuring the electromagnetic field
around the device can also serve as a source for obtaining power traces, as the intensity of
the field would also be proportional to the power consumption of the device. Tool kits such
as ChipWhisperer’s [12] also provide ready-made boards that can be used to record power
traces from target devices.

The power traces measured are then analysed to gather more information about the in-
put that might have been used. In the case of devices performing encryption/decryption
operations using AES/PRESENT, side-channel attacks focus on extracting the key used by
the device. Many methods have been introduced for the same, such as Differential Power
Analysis (DPA) [23], Correlation Power Analysis (CPA) [5] and Template attacks [9]. The
analysis performed by these methods is based on the differences in the power traces shown
by the device corresponding to different inputs. These difference are realised with the help
of leakage models, such as Hamming Distance, Hamming Weight or Identity leakage mod-
els. These leakage models help to predict the behaviour of the circuit depending on hy-
pothesis or a guess of the input value, following the idea that a transition of each bit in an
output register is correlated with the observed power traces. The methods then compute
their best hypothesis/guess to reveal the most probable key used by the device.

While methods such as CPA and DPA are stochastic-based approaches and are catego-
rized as Non-profiled attacks, methods such as Template attacks are categorized as a Pro-
filed attack. As the name suggests, Profiled attacks assumes that the attacker has a device
similar to the target device and can "profile" its behaviour thereby having a better chance
to crack the target with less number of traces during attack, while Non-profiled attacks has
no "training" step and is directly launched on the target. The success of these methods has
attracted much research in the area focusing on breaking a targeted implementation and
its consequences in the real world. Deep-learning models, such as Convolutional Neural
Networks (CNN), that come under the category of Profiled attacks have also been shown to
be very effective in breaking implementation of these cryptosystems [28].

AES and PRESENT, being SPN based ciphers, have multiple rounds. One can see (even
intuitively) that it would be easier to attack on the first and the last rounds where the data
being worked on is closer to the input/output that the attacker might already have the
knowledge of. For example, the output of the S-box in the first round of AES would de-
pend on only 1 plaintext byte and 1 key byte making the hypothesis easier to calculate.
In this work, we propose to take a deeper look into side-channel attacks on AES and also
consider PRESENT [3]. While a variety of methods have been introduced to attack differ-
ent implementations of AES and PRESENT, the attack points/vectors have almost been the
same, that is the first and last rounds of these ciphers. These approaches work using the fol-
lowing data: (1) the power traces corresponding to the first/last rounds of the encryption
operation, (2) the hypothesis that is computed to correlate to the traces based on the S-
box output of the first/last round. However, computation of the hypothesis becomes more
complex in the inner rounds as more key bytes start affecting the input as is the property of
SPN ciphers. There can be instances where the traces for the first round are not available
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or cannot be processed for mounting an attack. We therefore, study the attack on the inner
rounds of AES and PRESENT and attempt to determine the feasibility of these attacks and
the increased attack complexity thereof. Our hypothesis is then formulated around gener-
alizing such attacks and checking the possibility of using existent DL-SCA methodologies to
execute the same. We would also like to compare the performance of DL-SCA with classical
methods such as CPA and analyse their capabilities of handling the increased complexity
of attacking the inner rounds.

The rest of the document is structured as follows: Chapter 2 gives the background re-
quired for the performed attacks and methodologies. Chapter 3 discusses the previous
studies related to our work wherein we also describe our hypothesis in detail. Chapter 4
dives deep for attacking the inner rounds of AES and then extends the same for PRESENT.
Chapter 5 explains the experimental results based on our hypothesis using Deep Learning
models and its comparison with CPA. Chapter 6 discusses future work and concludes the
report.





2
Background

An attack exploiting any unintended leakage from the device to deduce information is cat-
egorized as a side-channel attack, as already seen in Chapter 1. We can categorize them
into Non-profiled side-channel attacks as CPA and DPA, and Profiled side-channel attacks
such as Template attacks and Deep-learning based attacks. As this work focuses on Power-
based Side-channel Attacks on AES and PRESENT, we shall first start by briefly discussing
the working of these cryptosystems in Section 2.1. We will particularly be focusing on the
AES-128 and PRESENT-80 variants in this work. Section 2.2 then goes through the basics of
Power-based side-channel attacks, briefly discussing power consumption in circuits, and
how observing this power consumption can help us retrieve information about the inputs
to the device. We then explain various power-based analysis methods used for the duration
of this work in Section 2.3 and Section 2.4.

2.1. Cryptosystem Basics
This section briefly explains the working of AES-128 and PRESENT-80. The notation used
throughout this work is also consistent with the notation used for these cryptosystems in
the following sections.

2.1.1. AES
We use AES-128[32] in this work which encrypts 128-bit plaintext blocks and has 10 rounds.
The confusion layer of AES is taken care of by the Byte Substitution layer or S-box. The dif-
fusion is done with the help of Shift Rows and the Mix-columns operations. All the mathe-
matical operations in AES is done in GF (28). Since this work makes use of AES-128 only in
the encryption mode, we cover only the process of encryption here.

AES works on bytes, that is, the 128-bit plaintext is split into 16 bytes and put into a 4×4
array which we call the state matrix. Every element in the state matrix can be referenced
by the notation ((0,0), (0,1), ...., (3,3)) where the (i , j )th element is for the i th row and j th
column. Every byte goes through the following in each round.

1. Substitute bytes - S-box is applied to every byte of the input 4×4 array.

2. Shift rows - The output of the S-box is given to Shift rows where each row of the array
is shifted by i bytes where i is the index of the row.

5



6 2. Background

3. Mix-columns - The Mix-columns operation multiplies each column of the state ma-
trix with a fixed matrix to give the resultant columns of the new state matrix.

4. Add round key - The resultant state is not XOR’d with the round key.

The Mix-columns operation is omitted in last round. The algorithm covering all the AES
rounds is given in Algorithm 1. Here, the initial state matrix is termed as X0, S represents
S-box on the state matrix, SR represents Shift Rows and MC represents Mix-columns. K0 is
the initial key and Ki is the round key for each of the i subsequent rounds. The diagram-
matic representation of the round operations as given in [33] is shown in Figure 2.1.

Algorithm 1: The AES algorithm through all the 10 rounds

Result: Ciphertext C
Plaintext P : State Matrix X0;
X ←− X0 ⊕K0;
for rounds i: 1 to 9 do

X ←− S[X ];
X ←− SR[X ];
X ←− MC [X ];
X ←− X ⊕Ki ;

end
X ←− S[X ]; X ←− SR[X ]; C ←− X ⊕K10;

2.1.2. PRESENT
The working of PRESENT [3] is similar to that of AES because of its SPN structure. There are
primarily 2 variants introduced by the authors, the 80-bit variant and the 128-bit variant.
While the former deals with 80-bit keys and the latter with 128-bit keys, both work on 64-bit
data blocks. We will be discussing the 80-bit variant in this report.

The plaintext block length is 64 bits and the operations is done on chunks of 4-bits
each, that is, unlike AES, PRESENT deals with nibbles instead of bytes. The confusion layer
is implemented using 4-bit S-boxes and the diffusion layer is implemented with the help of
a bitwise permutation operation on the input state called the pLayer. The algorithm for all
the 31 rounds is given in Algorithm 2. Here too, the initial state matrix is represented by X0,
the round key for each round i by Ki , the S-box operation by S and the pLayer operation by
pLayer . A diagrammatic representation of 2 rounds of PRESENT as given in [3] is shown
in Figure 2.2.

2.2. Power Side-channels
Power-based attacks analyses the power traces recorded from the target device. To give an
example how such an attack can look like in a real life setup, let us consider the following
example. Let us consider a POS device performing an encryption of the pin entered by the
user before sending it over the network and an attacker eavesdropping on the network and
intercepting the encrypted pins. A typical encryption operation is CPU intensive, that is,
the device would consume more power than normal while encrypting the pin. The attacker
here turns to observing the power being consumed by the device at various time intervals
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Figure 2.1: AES round structure for rounds 1-9 in AES-128 [33].

Algorithm 2: The PRESENT algorithm through all the 31 rounds

Result: Ciphertext C
GenerateRoundKeys(): (K0, ..,K31);
Plaintext P : State Matrix X0;
for rounds i: 1 to 31 do

X ←− X ⊕Ki ;
X ←− S[X ];
X ←− pLayer [X ];

end
C ←− X ⊕K32;

which can be done by various means such as measuring the electromagnetic waves being
emitted from the device or the heat being generated. This attacker can then extract such
time frames wherein the power being consumed is higher that the usual stay-alive mea-
surements. Using any of the various aforementioned analysis methods, it is possible to de-
duce the key being used for encryption by the POS system from the recorded traces. Once
in hold of the key, the attacker can use it to decrypt the intercepted pins and compromise
the targeted users.

Depending on the computation that a CPU performs and also on the input it takes, it
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Figure 2.2: Two rounds of PRESENT [3].

consumes different amounts of power. This depends on the parts of the circuit that are
being activated for a particular calculation and a particular input. On a hardware level, any
computation is done using logic gates which are in turn realized using CMOS transistors.
For example, a CMOS NOT gate is shown in Figure 2.3.

Figure 2.3: A CMOS NOT gate

Here, when the input Vi n = 0, The PMOS gate is closed and output voltage Vout is con-
nected to the supply voltage VDD . When the input is high, the NMOS now connects the
output voltage to the ground and the PMOS disconnects it from the supply voltage. In such
circuits, there is always a difference in voltage levels and such a CMOS transistor will always
drain voltage losing energy in the form of static power consumption.

There is also some loss of energy when switching states leading to a dynamic power
consumption. When Vi n switches from 1 to 0, the switch is not entirely perfect and there is
a moment when both PMOS and NMOS form a closed circuit. In this case, a small amount
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of supply voltage leaks to the ground. There is also a change in the voltage levels and a small
amount of this energy is stored by the conductor itself in the form of load capacitance.
When there is transition of Vi n from 0 to 1, the PMOS opens the circuit and the NMOS
short circuits. The energy stored in the form of load capacitance then drains to the ground
through the short circuit. Therefore, we can observe a dynamic power consumption in any
logical circuit depending on transitions that it goes through which in turn depend on the
input being processed. Table 2.1 shows the power consumptions related to each type of
transition for a NOT gate implemented with a CMOS transistor.

Transition of Input Signal Leakage Energy Consumption
0 −→ 0 Static leakage Low

0 −→ 1
Static leakage + Short circuit +
Charge dissipation

High

1 −→ 0 Static leakage + Short circuit Medium
1 −→ 1 Static leakage Low

Table 2.1: Charge consumption depending on input transitions in a CMOS NOT gate

Considering the leakage models, the Hamming Distance (HD) model correlates the
power traces to the number of bits that were transitioned from 1 to 0 and vice-versa in a
state register. The Hamming Weight (HW) model on the other hand considers only 0 to 1
transitions, thereby giving it more significance. As seen in Table 2.1, this transition has a
higher energy consumption than others and therefore, the Hamming Weight model would
be more effective for analysing the power traces.

2.3. Direct/Non-Profiled Side-channel Attacks
Non-Profiled techniques or Direct Attacks are directly used on the traces gathered from
the target device. Any statistical methods for determining the keys would come under this
category. A general structure for statistical SCA models is shown in Figure 2.4. We shall go
through SPA, DPA and CPA in this section.

2.3.1. Simple Power Analysis (SPA)
SPA [22] is based on visual inspection of the power and helps to observe simple patterns
in the power consumption which can give an insight into the type of computation being
done by the device. In the case of symmetric ciphers, SPA does not help in directly finding
the key, but is used by the attacker to gain other information about the device such as the
cipher being used or the length of the key. For example, Figure 2.5 shows a raw power
trace gathered from a target device. An SPA on this trace clearly shows 10 peaks / patterns
indicating that the device could be computing the AES-128 cipher containing 10 rounds.

In some cases, such as those involving asymmetric ciphers such as RSA implemented
with Square and Multiply algorithm, SPA can be used to find the private key for the corre-
sponding power trace.

2.3.2. Differential Power Analysis (DPA)
DPA [23] is a more advanced form of power analysis and has the capability to find the key
bytes being used through statistical methods. As mentioned previously, the main concept
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Figure 2.4: General representation of the statistical approach to SCA

Figure 2.5: Power trace captured from one of the target devices

behind this method is that there is a correlation between the power consumption and the
key byte being processed by the device. Considering one bit, say the least significant bit
(LSB), of the data being processed, 2 power traces at a particular point in time will be similar
if the transition occurring in the circuit is similar, that is either 0 −→ 1 indicating a higher
power consumption or 1 −→ 0 which would comparatively have a lower power consumption.

The attacker then does the following steps. They perform encryption/ decryption of n
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plaintexts, obtain those many power traces. For each of the power trace, a hypothesis key
byte is chosen from the 256 possibilities, that is, adopting a divide and conquer approach,
the guessing and hypothesis construction is done for 1 key byte at a time. A hypothesis of
the leaked LSB is then obtained using a leakage model such as Hamming Weight or Ham-
ming Distance. The average of power traces with the leaked bit being 1 is then obtained
and is then subtracted against the average of power traces that have a leaked bit of 0. In
general, if the i th target bit (in this case, the LSB) corresponding to the i th trace is di and
the voltage measured for the i th encryption at time t is pi ,t , then for 1 hypothesis key byte,
the difference of averages can be represented as,

∆pt =

n∑
i=1

di . pi ,t

n∑
i=1

di

−

n∑
i=1

(1−di ) . pi ,t

n∑
i=1

(1−di )
. (2.1)

This difference ∆pt between the 2 averages is computed for all the 256 possibilities/hy-
potheses and for the entire time interval of the power trace. The key byte having the highest
difference of averages is most probable to be the correct key byte. This follows the idea that
the correct key byte would give the correct hypothesis thereby indicating the correct power
transition and therefore leading to the maximum difference of averages.

2.3.3. Correlation Power Analysis (CPA)
CPA [5] is also a statistical method that is used to correlate the power traces with the ob-
served leakage. Similar to the methodology followed in DPA, an attacker has to perform
numerous encryptions/decryptions and collect the power traces. Using a leakage model,
a hypothesis for each key guess can then be obtained. Unlike DPA that uses difference of
averages for differentiating between the modeled and the actual power traces, CPA uses
Pearson Correlation. Pearson Correlation between 2 datasets X ,Y can be defined as fol-
lows:

ρX ,Y = cov(X ,Y )

σxσy
= E [(X −µX )(Y −µY )]√

E [(X −µX )2]E [(Y −µY )])2]
. (2.2)

Pearson Correlation increases towards +1 in case X and Y are directly correlated, and
towards −1 in case they are inversely correlated. In the case that they are independent of
each other, the value is closer to 0. Adopting a similar divide and conquer approach as
done in the case of DPA, we take 1 key byte and its corresponding hypothesis at a time.
So considering n traces, T data points where t corresponds to 1 data point in time, pi ,t

would be the voltage measurement or the data point at the i th trace and t time. We use the
leakage model to derive a hypothesis power consumption, hi ,k denoting the hypothesis for
i th trace and for key guess k. The correlation between the hypothesis and the measured
traces is then computed as follows:

rk,t =

n∑
i=1

[(hi ,k − h̄k )(pi ,t − p̄t )]√
n∑

i=1
(hi ,k − h̄k )2

n∑
i=1

(pi ,t − p̄t )2

. (2.3)
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Here rk,t would give the correlation value for one key guess and for a 1 data point in
time. The same is done for all the selected data points (the number of which would depend
on the captured leakage and the attack point) for each key guess. The maximum absolute of
these correlations computed for all data points is then used as the actual correlation value
for that key guess. The key guess having the highest absolute correlation value is most
probable to be the actual key byte.

2.4. Profiled Side-channel Attacks
Profiled side-channel attacks take into consideration that the attacker has a copy of the tar-
get device. The attack is then split into 2 phases: the profile phase and the attack phase. In
the Profile phase, the attacker profiles or trains his attack on the copy of the target device
in his position. This can also be done with the help of Machine Learning and Deep Learn-
ing algorithms. The output of the profile phase is a classification model (usually based on
probability distribution of different key guesses) which is then used in the attack phase on
the actual target device to extract the secret key.

2.4.1. Template attacks
Template attacks introduced in [9], is based on classification of the power traces into classes
defined by the leakage model. This classification is done by computing probability distri-
bution of each of the classes using Bayes’ theorem. For example, in the case of Hamming
Weight, there will be 9 classes, 0−8. In the profiling phase, a template is then built by de-
riving this probability distribution for the defined classes using traces from a copy of the
device and known keys. During the attack phase, the traces from the target device is then
compared against the template and the key guess and its corresponding hypothesis is then
categorized as per the computed distributions. The probabilities for each key guess is then
summed over all the traces captured during the attack phase and key guess with the high-
est probability is determined to be the actual key. In order to have a successful attack the
template needs to have enough samples for each of the defined classes. This would also de-
termine the effective number of traces that would be required in the profile phase to make
the attack successful.

2.4.2. Deep Learning Methodologies
Deep Learning based SCA (DL-SCA) provides an improvement over Template attacks in
terms of efforts during pre-processing of traces and effectiveness of the attack. Deep Learn-
ing methodologies take the traces along with their labels in the profiling phase across the
selected data points in time, runs it through the defined model, and determines the weights
according to the defined criteria such as high accuracy and minimal loss. The labels here
depend on the leakage function and the key hypotheses. The input layer of the DL model
contains the voltage measurements of the traces across the data points in time and the out-
put layer contains output nodes for each of the classes defined by the leakage model. These
trained weights are then used in the attack phase to determine the probabilities of each of
the classes given by the intermediate value corresponding to each key guess. The key guess
having the highest probability values would indicate the the most probable actual key. Con-
volutional Neural Network (CNN) and Multi-Layer Perceptron (MLP) models have proven
effective for side-channel attacks [24, 47] and more efficient than non-profiling SCA [28].
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Neural Network In general, a layer of the neural network consists of neurons which are
defined by its weight w and bias b. The output of this neuron depends on the activation
function, σ, applied to it and can be written as

y =σ(
n∑

i=1
wi xi +b), (2.4)

where xi , i ∈ [1,n] are all the input values to the neuron and wi corresponds to the
weight assigned to each of these inputs. wi is then adjusted for each neuron depending
on the desired result (which is defined with labels) and other criteria such as loss in which
cases algorithms such as gradient descent is then applied. The activation function σ is
a non-linear function applied on the output of the transformation done with the weights.
Rectified Linear Unit (ReLU) or Softmax are common examples of such activation functions
and are also used for this work. These can be formalized as follows:

σReLU(z) = max(0, z),

σsoftmax(z) j = ez j

K∑
k=1

ezk

, for j = 1, ...,K and z = (z1, ..., zK ) ∈RK , (2.5)

where σsoftmax : RK −→ [0,1]K with K being the dimensionality of the output layer. In
the case of CNN, each trace and its data points form the input layer forms a 1-dimensional
input signal which is fed to a series of the aforementioned layers to classify the traces using
probability of the defined classes. We use CNN with VGG-like architecture in our work as it
is the most prominent model used for SCA to the best of our knowledge. The original model
was developed for the purpose of image classification where the input signal has multiple
input dimensions starting from 2. But as SCA has only 1 spatial dimension considering
its data points in time, the main difference that VGG-like architectures introduce is the
way in which it handles 1-dimension input signal on each of its convolution and pooling
operations. A CNN is a model which is a combination of convolutional layers, pooling
layers and fully-connected layers. The convolutional operation involves a filter bank being
applied on the input signal across time t (time steps in the case of SCA owing to the 1-
dimensional property of the power traces), which as shown in [21], can be represented as,

(φ∗x)(t ) =
∞∑

a=−∞
x(a)φ(t −a), (2.6)

where φ ∈ Ri×o×s is a filter with i input channels, o output channels and s filter length.
A pooling layer is a non-linear layer that applies down-sampling over the given input on a
particular axis using techniques such as average or maximum of multiple values. This is
done so as to reduce the spatial size of the channels thereby limiting the number of neu-
rons. Fully-connected layers are layers where every input signal can be mapped to a output
signal of that layer, that is, every neuron is connected with all the neurons in the neighbor-
hood layer. This is usually done by taking a dot product between the weight matrix and the
input vector. This VGG-like CNN cnn, is represented in [21] as follows,

cnn= fcθ,softmax ◦
P∏

p=1
fcθP ,ReLU ◦

Q∏
q=1

(pool ◦
Rq∏

r=1
convφr ,ReLU), (2.7)
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where P,Q represents number of fully connected layers, fc, and convolutional layer
blocks respectively. The latter themselves are a combination of pooling layers and indi-
vidual convolutional layers conv, wherein Rq represents the number of convolutional lay-
ers conv in the qth convolutional block. convφ,σ and fcθ,σ are convolutional and fully-
connected layers respectively and are defined as follows [21],

convφ,σ(X ) =σ(φ∗X ),

fcθ,σ(x) =σ(θT x),
(2.8)

where X ∈ Ri×d is the input with i channels and d length and x ∈ R f is the input vec-
tor for the fully connected layers with f dimensions. θ ∈ R f ×h is a projection matrix that
applies the weight matrix transforming the f dimensional input to h dimensional output
(the bias term has been omitted for simplicity). It is also worth noticing that the definition
of fc here is equivalent to the definition of the output neuron given in Eq. (2.4). σ is an
activation function which can either be ReLU or softmax as shown in Eq. (2.5). As seen in
Eq. (2.7), ReLU is usually used for hidden layers and softmax is used for the final output
layer which represents the probabilities of each of the defined classes. An example of this
CNN structure can also be pictorially represented as given in Figure 2.6, as adopted from
[34].

Figure 2.6: An example of CNN architecture used in DL-SCA [34].

Training the Neural Network and tuning its Hyper-parameters The training phase itera-
tively applies the Gradient Descent algorithm in order to minimize the loss which is defined
by quantifying the classification error encountered while classifying over the training/pro-
filing set. This loss is computed with the help of a loss function such as cross-entropy loss,
a classical loss function which is generally used for classification problems[16] such as the
one we are trying to solve as well. Cross-entropy loss being smooth and decomposable
adjusts well while optimizing standard gradient-based methods and is therefore a default
choice for many of the DL-SCA models[2]. The parameters that define the architecture
and subsequently the training of the model are called Hyper-parameters. These Hyper-
parameters generally consist of Batch size, Epochs, Optimizers and Learning rates. We dis-
cuss these Hyper-parameters as follows.

• Batch size - Batch size defines the number of inputs that are processed at once by the
model during training. Mini-batch learning is usually preferred[16] where a small
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batch of inputs is used at a time to learn the model. Several efficiency/accuracy fac-
tors such as parallelization using GPUs, stability of the model, etc. are used to deter-
mine the size of the mini-batch used during the training phase[16].

• Epochs - When the training algorithm such as a Stochastic Gradient Descent goes
through the entire dataset at least once, it is called an epoch. While less number of
epochs (iterations) can lead to under-fitting (the model is not able to capture the re-
quired trends in the training data), more iterations can cause over-fitting (the model
is too specific to the training data and does not generalize its results). The number of
epochs is therefore an important parameter to tune while training the model.

• Optimizers and Learning rates - Several extensions and variants of the Stochastic
Gradient Descent have been proposed in the context of deep learning. There are
variants of the Stochastic Gradient Descent model that have been proposed in the
context of Deep Learning and these are called Optimizers. They aim to adapt the
learning rate, otherwise known as the step size, of the Gradient Descent during the
training phase.

These Hyper-parameters are tuned by performing ad-hoc tests wherein factors such as
accuracy and efficiency of the model while training are taken into consideration. That is,
a base model with its Hyper-parameters is chosen. Then the impact of each of the Hyper-
parameters is studied and modified in a way such that the resultant model gives the best
results during training and validation, for example, in terms of accuracy.

2.5. Evaluation Methodology
The most commonly used metric for evaluating the performance of a side-channel attack
is key rank. We use the same for evaluating the performance of the attacks carried out in
this work. An average key rank (denoted guessing entropy) represents the average number
of keys the attacker needs to go through during the attack to reveal the actual key success-
fully [44]. As seen in the above sections, we obtain a posterior distribution of probabilities
for each of our defined classes as the output of the attacks. The key guess contributing the
most to the highest probable predicted class across the attack traces is predicted to be the
key byte being used. Consequently, the output vector that is obtained during the attack is
of the form k = [k0,k1,k2, ...,k|K |−1], where |K | is the size of the keyspace. These key guesses
contained in the vector k are then ordered in the decreasing order of probability, that is, k0

is the most probable key guess, also known as the best guess, and k|K |−1 is the least probable
key guess. We then check the position at which the actual key byte resides in this ordered
list, and this position of the actual key byte is termed as the key rank.





3
Related Work

This chapter discusses the previous work that has been done in the area with respect to this
thesis. Section 3.1 goes through the problem that we aim to solve by discussing the most
prominent SCA methodologies and their attack surfaces as given in literature. Keeping in
mind other relevant work, Section 3.2 then repostulates our hypothesis about the problem
statement and how our contributions help to solve it.

3.1. SCA on Outer Rounds
In this section we first discuss the most prominent attack surface for SCA attacks for both
software and hardware implementations. The focus would primarily be on AES and the
same can be extended for PRESENT as well. We then go through the countermeasures
recommended in the literature that would render these attack surfaces useless while using
typical off-the-shelf SCA methodologies.

3.1.1. Attack surface
The variations of a known data, such as plaintext or ciphertext fed to the target device, form
the basis of attacks based on statistical analysis. In order to reveal the secret, which in most
cases is the key, the attacker chooses a leakage model depending on the architecture of the
device/implementation in question. Hamming Weight and Hamming Distance are most
commonly considered leakage models where the value of either of them would correlate
to some measurable quantity such as power traces. The correlation can then be used by
the attacker to perform guesses with plausible candidate keys (or key bytes). Each guessed
key byte is then ranked on the basis of its confidence defined using metrics such as absolute
difference (DPA) correlation (CPA), or even probability in case of Template attacks as shown
in [42].

For software implementations, each operation such as SubBytes, AddRoundKey etc. is
implemented in one entire clock cycle. Here, the SubBytes (S-box) operation, being the
first non-linear operation encountered during encryption, becomes an obvious choice for
an attack surface in terms of leakage model correlating with the power traces. For example,
the hamming weight of the S-box applied on the byte guesses in the first round can be
correlated with the power traces and consequently the guessed byte having the maximum
correlation value turns out to be the correct key byte if the process is done right.

17
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As for the hardware implementations, it is possible to combine multiple operations in
a single clock cycle. For example, an FPGA can perform an entire cipher round (encryption
and decryption) in one clock cycle [30]. This gives us 2 venues of attack for considera-
tion. If an intermediate state (the state after every round) and the ciphertext is stored in
the same register [10], then the guesses can be done for the last round wherein the model
is implemented over inverse of the S-box. The difference between the ciphertext and the
state just before the last round determines the power traces and consequently the corre-
lations. This might not work in every situation since it is possible that the ciphertext and
the previous-to-last state are not stored in the same register rendering the leakage model
useless [11]. However, in such cases the device would be storing the intermediate states
in the same register after each clock cycle/round and a leakage model using the value of
this state register would provide a potential attack vector. That is, a leakage over just the
S-box would not be sufficient and our model would have to include the Mix-columns com-
putations as well in order to take into account the computation of an entire round. This
can be observed in microcontrollers such as STM32F4, STM32L4, etc. The works shown in
[11, 29, 30] demonstrate a single-bit CPA/DPA using the Hamming distance model over the
state register carrying out the side-channel attack successfully on AES-128 and AES-256.

3.1.2. Preliminary countermeasures and their drawbacks
In the light of the above attacks, a variety of countermeasures were introduced for AES pri-
marily based on techniques such as Masking and Hiding. Masking follows the principle of
adding random masks to the intermediate values thereby affecting the correlation between
the power traces (or the measurable quantity) and the data being processed [1, 8]. While
Hiding involves blinding the correlations by adding randomised noise into it with tech-
niques such as Software balancing, Power consumption randomisation, etc. [13]. Achiev-
ing these countermeasures successfully, however, has been a challenge in terms of cost.
Masking through all the rounds of AES adds significant cost over memory and execution
[7, 17, 45]. A similar conclusion can also be drawn for Hiding countermeasure which would
need expensive circuits to be implemented in hardware. Therefore, a security/performance
trade-off is required in order to implement a relatively secure system which is efficient at
the same time.

As can be seen from Section 3.1.1, the first and last rounds of operation are primary
targets to statistical attacks. These rounds are more vulnerable as any intermediate value
from these rounds depend on a relatively small fraction of the key. As we go into the inner
rounds, every intermediate byte would depend on an increasing number of key bytes due to
the diffusion properties of AES, thereby increasing the data complexity of the attack. The
trade-off, therefore, focuses on protecting the first and the last rounds and leaving other
intermediate rounds unprotected or with very simple countermeasures [17, 45].

In some cases of hardware implementation, it is also possible that multiple rounds are
executed within 1 clock cycle. This would result in the inner rounds being exposed, that
is, it would then be possible to capture traces corresponding to the inner rounds. In such
cases, the hypothesis built for the first round would not correlate to the captured traces
and the attack would not work. Such cases, along with the hindrance caused by the partial
countermeasures raise the need to look into attacks on unprotected or even partially pro-
tected inner rounds and understand the resources that the attacker would need to launch
such attacks.
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While Jaffe et al. already described a DPA attack after the SubBytes of round 2 [23], Lu
et al. answered an important question about how many rounds of an AES implementation
should be protected for it to be secure against power analysis attacks [26]. To this end,
they show that it is possible to attack the inner rounds of AES at the cost of increasing the
data complexity of the attack. They define the feasibility of an attack by the number of bits
required to launch the DPA/CPA and set this threshold at 32 bits. Consequently, any attack
requiring a DPA on more than 32 bits is considered infeasible and, as such, not investigated
by them.

3.1.3. Deep Learning
Many approaches have been developed in the field of SCA, from statistical methods such
as CPA/DPA to template attacks, ML-SCA and DL-SCA. While the former ones have been
studied extensively, attacks based on profiling involving machine learning and deep learn-
ing are still developing. Already studies have shown that machine learning could be used
to mount successful side-channel attacks that are also more effective than template at-
tacks [18, 19]. Machine learning methods such as SVM has also been used to counter
masked implementations as shown by Lerman et al. [25]. Extending on the same, Gilmore
et al. show that neural nets can also be used to tackle the masking countermeasure and are
more effective and efficient at it than the Machine learning-based approaches [15]. This
emphasizes on the power of neural networks to correctly identify the masking applied to
the rounds of AES and effectively removing their effect, thereby allowing the attacker to
successfully proceed with an approach that would work even for unmasked implementa-
tions. However, these implementations depend on one crucial assumption that the ran-
dom masks are available to the attacker during the profile phase, which as mentioned by
[15] is an impractical assumption. As mentioned before, most of the practical and effi-
cient countermeasure implementations involve only the outer rounds [17, 45]. Therefore,
we can bypass these countermeasures if we attack the inner rounds directly which would
also not require us to be in the possession of the random masks being used by the target
implementation.

We can extend the neural network implementations to profile the intermediate bytes in
the inner rounds thereby executing a DL-SCA on the inner rounds. Deep Learning (more
precisely, Convolutional Neural Networks (CNN) and Multi Layer Perceptrons (MLP)) has
indeed been successfully used to attack AES implementations as first shown by Maghrebi
et al. [28]. Next, Cagli et al. showed that convolutional neural networks could break imple-
mentations protected with the jitter countermeasure, especially if the attack is augmented
with synthetic data obtained from data augmentation techniques [6]. Kim et al. discussed
the VGG-like architecture that showed good attack performance for several datasets, where
some were using masking or hiding countermeasures [20]. Benadjila et al. introduced the
ASCAD dataset, which is a dataset used in most of the SCA studies today, and also inves-
tigated the hyperparameter tuning to find architectures leading to successful attacks [2].
Picek et al. showed that metrics commonly indicating the performance of machine learn-
ing algorithms are not appropriate to assess the SCA performance [36]. Zaid et al. pro-
posed a methodology to design convolutional neural network architectures that have a
small number of trainable parameters and that result in efficient attacks [49]. Wouters et
al. further discussed the methodology perspective, providing even smaller neural network
architectures that perform well [48]. Perin et al. explored how deep learning-based SCA
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generalizes to previously unseen examples and showed that ensembles of random neural
networks could outperform even state-of-the-art neural network architectures [35]. Rijs-
dijk et al. introduced the reinforcement learning approach for designing neural networks
that perform well and are as small as possible [39]. These studies represent only a frac-
tion of works exploring machine learning-based side-channel attacks, but to the best of
our knowledge, none of those works consider attacking inner rounds of AES.

3.2. SCA on Inner Rounds: Our Hypothesis and Contributions
We would like to determine to what extent can we attack the inner rounds of AES and
PRESENT and the factors affecting such attacks, and also the most efficient attack method-
ology for the inner rounds. Our initial hypothesis here was based on just the feasibility of
attacking the inner rounds. As this has already been shown by Jiqiang Lu et al. [26], we
are now interested to know if it is possible to generalize the attacks on inner rounds in or-
der to understand the data complexity and the techniques that would be needed to attack
an intermediate byte at any round. We would then like to check if a similar attack and its
generalisation can be done for the inner rounds of PRESENT as well. We note here, to the
best of our knowledge, that an attack on the inner rounds of PRESENT has not been per-
formed yet. The generalisation would give the designers a comprehensive understanding
of the complexity of the attack at each round and the threat profile that the attacker needs
to have to make a successful attack. As mentioned in Section 3.1.3, Deep Learning provides
us with an interesting prospective for a successful attack and we would like to showcase
these Deep Learning-based approaches would be an improvement over methodologies us-
ing DPA/CPA. To this end, our two-fold hypothesis can be summarised as follows,

1. Is it possible to perform side-channel attacks on the inner rounds of AES and PRESENT?

(a) If possible, how can the hypothesis be computed for these inner rounds?
(b) What would be the factors determining the feasibility of such an attack?
(c) Would it be possible to generalise such an attack and its determining factors for

any of the inner rounds if these ciphers?

2. If the above attack is possible, can Deep Learning methods be used to attack these
inner rounds and extract the key? How effective would these attacks be as compared
to the classical approaches such as CPA.

This work assumes that inner rounds are not protected by specific countermeasures
(e.g., first-order masking or multiple rounds within a single clock cycle) but only by inher-
ent noise and misalignment. Afterward, we run both non-profiled attacks (CPA) and pro-
filed attacks (deep learning-based SCA) and show that deep learning-based SCA reaches
significantly better attack performance and succeeds in scenarios where CPA does not indi-
cate a successful key recovery. We therefore attempt to answer the above questions through
the following contributions:

1. We first generalize the computation of hypothesis for any byte in the intermediate
rounds for AES-128 in the encryption mode with some predefined conditions in mind
and use the same to determine the relative difficulty of such attacks. Due to the non-
linear substitutions in each round, targeting any intermediate byte after n S-boxes
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requires an attack complexity of 8 ×n bits. The attack complexity in terms of the
number of bits represents the bit-length of guessed hypothesis. This introduces sig-
nificant time and memory overheads to mount such a high complexity attack.

2. A similar generalization is done for PRESENT-80 as well, in the encryption mode.
Similar to what was observed in the case of AES, targeting any intermediate byte after
n S-boxes requires an attack complexity of 4× (n +1) in this case.

3. We experimentally validate the generalization for AES with non-profiled and profiled
attacks. To make our analysis more realistic, we introduce potential countermea-
sures (such as Gaussian noise and misalignment) to power traces collected from an
unprotected AES.

4. The training phase of a deep learning-based profiled attack on inner rounds is not
affected by the increased attack complexity. Consequently, we show that the attack
phase from the deep learning-based approach is a considerable improvement over
limitations faced by non-profiled CPA due to the added countermeasures, especially
when the attack complexity is higher than 16 bits. In this case, the attacker faces
strong time and memory limitations in terms of processed attack traces.

5. In scenarios when CPA cannot succeed due to implicit countermeasures (which is
a practical case shown in this paper on encryption round 3), a convolutional neu-
ral network-based profiled attack can easily recover the key even with a very limited
number of attack traces.

6. As we specify in this work, the variability in target intermediate values of profiling
traces is only limited by the number of possible plaintexts and key combinations.
However, repeating some plaintext-key combinations does not negatively impact the
profiling phase.

We shall see that it is possible to generalize the computation of any intermediate byte
in AES-128 and PRESENT-80 and that the complexity of the attack increases with the depth
of the round when attacking from input during encryption. We shall also see that apart
from being more effective, Deep Learning also handles the increasing data complexity of
the attacks in a much better way that the classical CPA approach.
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Attacking the Inner Rounds

In this chapter, we dig into the method for finding the value of a byte in any of the inter-
mediate rounds of AES-128 and PRESENT-80. We shall first explore the process and the
methodology of doing so in the context of AES-128 in Section 4.1, building upon which we
formulate the attack on the inner rounds of PRESENT-80 in Section 4.2.

4.1. Attacking the Inner Rounds of AES-128
Lu et al. [26] give five general principles for attacking bytes in the inner rounds of AES using
first and second-order DPA. These principles consider the attack to be feasible as long as
the attack is on less than 32 bits. However, since our aim is to generalize the attack on any
intermediate byte and observe the complexity of such an attack, the feasibility of the attack
itself is not a factor that we consider here. We focus on the following two principles listed
by [26] that are based on the first-order DPA:

1. Attacking from input: any intermediate byte before the MixColumns operation of
round 3 can be exploited by conducting a first-order DPA attack and will depend on
the part of the plaintext bytes being fixed.

2. Attacking from the output: any intermediate byte resulting from the AddRoundKey
operation of round 7 can be exploited to conduct a first-order DPA attack and will
depend on some of the ciphertext bytes being fixed. Note: Although Lu et al. [26]
consider any byte after the AddRoundKey operation of round 7, we noticed that it
was also possible to attack from output before the AddRoundKey of round 7 while
considering single bit DPA attacks.

We now extend over the principle above and start by first attacking in the encryption
mode from input at rounds 2, 3, and 4. Next, we attack a byte from the output at round
7. We base these attacks on chosen-plaintext and adaptive chosen-ciphertext attacks and
adopt the computation of a byte at rounds 2 and 3 from the work of Lu et al. [26]. Observ-
ing the attack on rounds 2 and 3 and then consequently analyzing the same for round 4
helped us to figure out a pattern for generalizing the attack in any intermediate round dur-
ing encryption. We, therefore, calculate the required number of fixed plaintext bytes and
consequently the attack complexity in terms of the number of bits to be guessed while at-
tacking from both input and output for AES encryption mode. Details on how to generalize
the attack on any intermediate byte in the inner rounds are provided in Section 4.1.6. We
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also observed that while attacks on rounds 2 and 3 were practically feasible using a chosen-
plaintexts approach, it was not possible to attack rounds beyond round 4 using this same
principle successfully.

4.1.1. Notations
Before moving onto attacking the inner round bytes, we present the notations used in the
following sections.

• Plaintext bytes are denoted by pi , where i is the index of the byte. Similarly, ciphertext
bytes are denoted by ci .

• The output bytes of an S-box in any round is denoted by vn
i , where i is the index of

the byte and n indicates the round. For example, v1
0 is the first byte obtained after the

S-box in round 1. Similarly, bytes after the MixColumns operation are denoted using
un

i , while the output bytes of a round, i.e., bytes after the AddRoundKey are denoted
by w n

i .
• The key bytes are denoted by kn

i and the round key they belong to is denoted by Kn .
The initial key would then be {k0

0 ,k0
1 , ...,k0

15} ∈ K0, while the last round key would be
{k10

0 ,k10
1 , ...,k10

15} ∈ K10

• S-box in round n is denoted as Sn and we denote its application on an input byte u
as Sn(u). The inverse of the S-box is denoted as S−1

n .
• Terms such as γ,δ,θ are used to denote 8-bit constants.

4.1.2. Attacking a Byte After the S-box at Round 2
In this attack, the goal is to recover K0, i.e., the first round key in the AES encryption process.
To simplify the attack understanding, we start by predicting the first byte immediately after
the S-box in round 2. Let this byte be v2

0 , i.e., the first byte in the AES state after S2. Let the
input to S2 be w 1

0 , a resultant byte from the AddRoundKey operation from round 1. This
AddRoundKey operation involves XORing a key byte from K1 (round key from round i = 1),
say k1

0 , with the first byte u1
0 obtained after MixColumns of round 1. This can be written as:

v2
0 = S2(w 1

0),

w 1
0 = u1

0 ⊕k1
0 .

(4.1)

The process is illustrated in Figure 4.1. As mentioned above, u1
0 is the first byte after the

MixColumns operation is applied on 4 bytes of round 1, specifically after ShiftRows. Let the
bytes after S1 be represented as v1

i , i ∈ {0, ..,15}, in which case the value of u1
0 can then be

written as:
u1

0 = 02∗ v1
0 ⊕03∗ v1

5 ⊕01∗ v1
10 ⊕01∗ v1

15, (4.2)

where ∗ represents the field multiplication operation in GF (28). Here, we can see that the
bytes (v1

5 , v1
10, v1

15) have been used as a consequence of the shuffling caused by ShiftRows.
Substituting the value of u1

0 (and subsequently w 1
0) in Eq. (4.1) from Eq. (4.2), we have:

v2
0 = S2(02∗ v1

0 ⊕03∗ v1
5 ⊕01∗ v1

10 ⊕01∗ v1
15 ⊕k1

0). (4.3)

Let us denote γ= 03∗v1
5 ⊕01∗v1

10⊕01∗v1
15⊕k1

0 be a 8-bit constant byte. This constant
results from fixing 3 plaintext bytes (p5, p10, and p15, as shown in Figure 4.1) across all
side-channel measurements. By inserting γ in Eq. (4.3) we obtain:

v2
0 = S2(02∗ v1

0 ⊕γ). (4.4)
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The byte v1
0 can be written as the result of S1: v1

0 = S1(p0 ⊕k0
0). Then Eq. (4.4) can be

rewritten as:

v2
0 = S2(02∗S1(p0 ⊕k0

0)⊕γ). (4.5)

Having γ as constant, we then need to guess only 16 bits of data, which is (k0
0 ,γ) in

order to find the key byte k0
0 . This attack on v2

0 has been diagrammatically represented
in Figure 4.1. Similarly, we can target k4 by having p9, p14, and p3 as constant bytes, and
so on. We also note here that if we approach this attack without using chosen plaintexts,
we would have to attack/brute force 4 bytes of the key directly instead due to the effect of
MixColumns.

Figure 4.1: Attacking k0
0 by targeting first byte (v2

0) after S2.

4.1.3. Attacking a Byte After the S-box at Round 3
A similar approach to the one seen for round 2 can be applied for attacking a byte after S-
box in round 3 (S3) as well. Here too, let us take the first byte after S3 as an example and let
this byte be v3

0 . Then the first byte of the input to S3 is w 2
0 , and u2

0 is the first byte obtained
after the MixColumns of round 2. Then we have:

v3
0 = S3(w 2

0) = S3(u2
0 ⊕k2

0). (4.6)

We follow the approach from Section 4.1.2, u2
0 depends on 4 bytes which are input to

the MixColumns operation at round 2. So if v2
i , i ∈ {0, ..,15} represent the bytes after S2, we
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can write the MixColumns operation following the ShiftRows, resulting in u2
0 as:

u2
0 = 02∗ v2

0 ⊕03∗ v2
5 ⊕01∗ v2

10 ⊕01∗ v2
15. (4.7)

Substituting the value of u2
0 in Eq. (4.6) from Eq. (4.7), we obtain:

v3
0 = S3(02∗ v2

0 ⊕03∗ v2
5 ⊕01∗ v2

10 ⊕01∗ v2
15 ⊕k2

0). (4.8)

Let us consider γ= 03∗ v2
5 ⊕01∗ v2

10 ⊕01∗ v2
15 ⊕k2

0 and substitute this in Eq. (4.8):

v3
0 = S3(02∗ v2

0 ⊕γ). (4.9)

The bytes u1
i , i ∈ {0, ..,15} are the bytes obtained after the MixColumns operation of

round 1, then we have:

v2
0 = S2(u1

0 ⊕k1
1), v2

5 = S2(u1
5 ⊕k1

5),

v2
10 = S2(u1

10 ⊕k1
10), v2

15 = S2(u1
15 ⊕k1

15).
(4.10)

Expanding on u1
0, we observe an equation similar to Eq. (4.7), where it depends on 4

bytes (v1
0 , v1

5 , v1
10, v1

15) obtained from the output of S1:

u1
0 = 02∗ v1

0 ⊕03∗ v1
5 ⊕01∗ v1

10 ⊕01∗ v1
15. (4.11)

Expanding on this further, each of v1
i can be written as a result of S-box on plaintext

bytes XORed with the round key bytes of round 0, which can be written as:

v1
0 = S1(p0 ⊕k0

0), v1
5 = S1(p5 ⊕k0

5),

v1
10 = S1(p10 ⊕k0

10), v1
15 = S1(p15 ⊕k0

15).
(4.12)

From the above, we can conclude that u1
0 depends on 4 plaintext bytes, meaning that

each of (v2
0 , v2

5 , v2
10, v2

15) also depend on 4 plaintext bytes. Similar conclusions can be made
for (u1

5,u1
10,u1

15) as well. Considering 03∗ v1
5 ⊕01∗ v1

10 ⊕01∗ v1
15 ⊕k1

0 = δ and reformulating
Eq. (4.9), we obtain:

v3
0 = S3(02∗S2(u0 ⊕k1

0)⊕γ) =⇒ v = S3(02∗S2(02∗ v1
0 ⊕δ)⊕γ), (4.13)

which can then be rewritten as:

v3
0 = S3(02∗S2(02∗S1(p0 ⊕k0

0)⊕δ)⊕γ). (4.14)

Here, γ depends on 12 plaintext bytes, and δ depends on three plaintext bytes. In order to
keep the values of γ and δ constant, we need to keep 15 plaintext bytes constant. We then
have to guess the entire set (k0

0 ,δ,γ) in order to find the key byte k0
0 , giving us a data complex-

ity of 24 bits for attacking one key byte. This attack has been diagrammatically represented
in Figure 4.2. Keeping only a single byte variable gives us 256 plaintexts. Since in practice,
a first-order DPA can break an AES S-box implementation with 30 to 100 traces [26], this
attack is consequently a feasible venture that can be undertaken in some scenarios.
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Figure 4.2: Attacking k0
0 by targeting first byte (v3

0) after S3.

4.1.4. On the Attack Feasibility After the S-box at Round 4
Here, we consider attacking a byte immediately after the S-box in round 4 (S4). Let this be
the first byte v4

0 . Similar to Eq. (4.6), w 3
0 is a byte obtained after round 3 and u3

0 is a byte
after the MixColumns of round 3. Then with k3

0 ∈ K3, we have:

v4
0 = S4(w 3

0),

w 3
0 = u3

0 ⊕k3
0 .

(4.15)

The byte u3
0 results from MixColumns in round 3 and can be written as:

u3
0 = 02∗ v3

0 ⊕03∗ v3
5 ⊕01∗ v3

10 ⊕01∗ v3
15, (4.16)

where (v3
0 , v3

5 , v3
10, v3

15) are bytes resulting from the S-box operation of this same round 3.
Consider θ = 03∗ v3

5 ⊕01∗ v3
10 ⊕01∗ v3

15 ⊕k3
0 . Now, using Eq. (4.16) and deriving the value
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of v3
0 from Eq. (4.14), the byte v4

0 can then be written as:

v4
0 = S4(02∗S3(02∗S2(02∗S1(p0 ⊕k0

0)⊕δ)⊕γ)⊕θ), (4.17)

Here, θ depends on (v3
5 , v3

10, v3
15). From Eq. (4.14), it can be observed that each of these

bytes depend on the set (δ,γ, pi ), where pi is some plaintext byte not included in either
δ or γ. Combining the plaintext bytes that this set depends on, it can be concluded that
(v3

5 , v3
10, v3

15) depend on 16 bytes of plaintext each. Thus, θ effectively depends on all 16
plaintext bytes. This way, implementing an attack to recover k0

0 by predicting v4
0 requires

fixing the 16 plaintexts for each side-channel measurement. Also, we would have to guess
the variables of the set (k0

0 ,δ,γ,θ) in this case, that is, the attack would have to guess 32 bits
in order to find one key byte. Therefore, this turns this statistical DPA attack infeasible in
practice. On the other hand, a profiled attack can still vary k0

0 (and keeping all remaining
key bytes from K0 fixed), which allows collecting profiling traces with at most 256 different
intermediate values for v4

0 . Although the profiling phase allows larger variability, the attack
phase is still restricted to a single plaintext-key combination.

4.1.5. Attacking a Byte Before AddRoundKey at Round 7
In this case, we formulate an attack on round 7 from the output in encryption mode, which
would require an adaptive chosen-ciphertext attack. The process is similar to that noticed
in the case of encryption. Attacking the byte u7

0 we have:

u7
0 = k7

0 ⊕S−1
8 (v8

0), (4.18)

where v8
0 is a byte from after S8 and k7

0 ∈ K7. The byte v8
0 affects 4 bytes of the resultant state

after the MixColumns of round 8.
The value v8

0 can be expressed as follows:

v8
0 = 0e∗u8

0 ⊕0b∗u8
1 ⊕0d∗u8

2 ⊕09∗u8
3, (4.19)

where (u8
0,u8

1,u8
2,u8

3) are bytes from the state after the MixColumns operation of round 8.
These 4 bytes can then be written in terms of another 4 bytes from after S9. That is, for
(v9

0 , v9
1 , v9

2 , v9
3) being bytes after S9 and k8

0 ,k8
1 ,k8

2 ,k8
3 being bytes of K8, we have:

u8
0 = S−1

9 (v9
0)⊕k8

0 ,

u8
1 = S−1

9 (v9
1)⊕k8

1 ,

u8
2 = S−1

9 (v9
2)⊕k8

2 ,

u8
3 = S−1

9 (v9
3)⊕k8

3 .

(4.20)

Consider 0b∗u8
1 ⊕0d∗u8

2 ⊕09∗u8
3 ⊕k8

0 = γ. Plugging the value of u8
0 into Eq. (4.19), and

subsequently, the value of v8
0 into Eq. (4.18), we obtain:

u7
0 = k7

0 ⊕S−1
8 (0e∗S−1

9 (v9
0)⊕γ). (4.21)

Expanding v9
0 , which affects 4 bytes after MixColumns of round 9, we get:

v9
0 = 0e∗u9

0 ⊕0b∗u9
1 ⊕0d∗u9

2 ⊕09∗u9
3, (4.22)
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where u9
0,u9

1,u9
2,u9

3 are the first 4 bytes from after the MixColumns operation of round 9.
Each of these bytes go through the S-box and ShiftRows of round 10 and the last AddRound-
Key before giving out ciphertext bytes. Therefore, u9

i can be represented as:

u9
0 = S−1

10 (c0 ⊕k10
0 )⊕k9

0 , u9
1 = S−1

10 (c13 ⊕k10
13)⊕k9

1 ,

u9
2 = S−1

10 (c10 ⊕k10
10)⊕k9

2 , u9
3 = S−1

10 (c7 ⊕k10
7 )⊕k9

3 ,
(4.23)

where (c0,c7,c10,c13) are ciphertext bytes. Considering 0b∗u9
1 ⊕0d∗u9

2 ⊕09∗u9
3 ⊕k9

0 = δ,
we can rewrite Eq. (4.21) as:

u7
0 = k7

0 ⊕S−1
8 (0e∗S−1

9 (0e∗S−1
10 (c0 ⊕k10

0 )⊕δ)⊕γ). (4.24)

The term δ depends on the bytes u9
1,u9

2,u9
3, which in turn depend on one ciphertext byte

each, as seen above. γ depends on (u8
1,u8

2,u8
3) which in turn depend on (v9

1 , v9
2 , v9

3) that are
similar to v9

0 . We can observe from Eq. (4.22) that v9
0 would be affected by four ciphertext

bytes, which would actually be the case with v9
1 , v9

2 , and v9
3 as well. We can thus conclude

that γ would depend on 12 ciphertext bytes.
A statistical attack on the S-box in this case, such as DPA, would therefore include an

attack on 32 bits of the set (k7
0 ,k10

0 ,δ,γ) and requiring 15 ciphertext bytes to be constant.
An improvement can be achieved here by performing a bitwise attack such as a single-bit
DPA as indicated in [26]. Here, k7

0 , being XORed, would not affect the magnitude of the
difference but would only affect the sign. Performing a single-bit DPA attack and taking
the absolute of the difference would therefore cancel out the influence of k7

0 . A similar
observation can be made for CPA attacks as well. This would bring the attack complexity
down to 24 bits as then we would have to attack only (k10

0 ,δ,γ).

4.1.6. Generalization of the Attack on the Inner Rounds
We can use the individual attacks on the inner rounds in the previous section to derive a
generalized view of the attack complexity and requirements while attacking any interme-
diate byte.

Generalizing for Attacks from Input in the Encryption Mode Taking into consideration

Eq. (4.14) and Eq. (4.17), we can generalize any byte i after S-box in round j , v j
i into the

form:

v j
i = S j (m1 ∗S j−1(m2 ∗ ... ∗S2(m j−1 ∗S1(pn ⊕k0

n)⊕θ1)⊕θ2)...⊕θ j−1), (4.25)

where pn is a plaintext byte that directly affects v j
i and k0

n ∈ K0 is the initial key byte that
is XORed with it. Every θ j requires 3×4 j−1 bytes of plaintext to be constant. We then have
to attack the set (k0

i ,θ1, ...,θ j−1), which results in attacking or guessing 8 j bits in order to
obtain 1 key byte, k0

i . Table 4.1 gives the number of constant plaintext bytes required for
the largest θ in an equation, which is θ j−1 for round j and the number of bits to attack for
finding 1 byte of the key. This table also provide the maximum amount of plaintext-key
options for the attack on round i . Note that when attacking, e.g., round 4 and 5, an attacker
would have to target a single plaintext-key combination, transforming the attack process
into a simple power analysis (SPA).
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Round i

No. of fixed plaintext
bytes (effectively) to

attack k0
0 and

to predict Si (w i−1
0 )

No. of bits to be
guessed in order
to attack k0

0 and
to predict Si (w i−1

0 )

Plaintext × Key options
to attack k0

0 and
to predict Si (w i−1

0 )
(p=Profile, a=Attack)

1 0 8 p=2128 ×28, a=2128 ×1
2 3 16 p=2104 ×28, a=2104 ×1
3 15 24 p=28 ×28, a=28 ×1
4 48 (16) 32 p=1×28, a=1×1
5 192 (16) 40 p=1×28, a=1×1

Table 4.1: Number of constant plaintext bytes required and number of bits to attack for 1 key byte for first 5
rounds of AES-128. This table also shows the maximum amount of different combinations of plaintext and

key for profile and attack phases in each target round.

Generalizing for Attacks from Output in the Encryption Mode Similar to the attack from
input, we can generalize the attack from output from the one given in Eq. (4.24). Attacking

a byte before the AddRoundKey of (10− j )th round, v10− j
i , we have:

v (10− j )
i = k(10− j )

m ⊕S−1
(10− j )+1(m′

1 ∗S−1
(10− j )+2(m′

2 ∗ ...

∗S−1
9 (m′

j−1 ∗S−1
10 (cn ⊕k10

n )⊕θ1)⊕θ2)...⊕θ j−1),
(4.26)

where k(10− j )
m ∈ K(10− j ). cn is a ciphertext byte and k10

n ∈ K10. Every θ j requires 3× 4 j−1

constant ciphertext bytes. As mentioned in Section 4.1.5, if we carry out the attack in a
bitwise manner, the attack set would consist of (k0,θ1,θ2, ...,θ j−1) giving us 8i bits to attack
in order to obtain the key byte k0. Key generation being invertible, we can work our way
upwards to obtain the original key bytes K0 from K10.

4.2. Attacking the Inner Rounds of PRESENT-80
As PRESENT works on 4-bit S-boxes, we would target nibbles in the attack. The key chunk
to attack would also be represented as nibbles instead of bytes. Being designed for resource
constrained environments, PRESENT is usually implemented as encryption-only for appli-
cations that demand the most efficient use of space. As it is possible to compute the en-
cryption sub-keys on-the-fly, implementing PRESENT as encryption-only will result in an
ultra-lightweight solution [3]. Due to this preferred design choice by the authors of [3] for
implementing PRESENT as encryption-only, we focus on attacking only the encryption op-
eration of PRESENT.

We first introduce the notations that are used in the following sections in Section 4.2.1,
followed by some preliminaries required for the attack in Section 4.2.2. We then study the
attack after the computation of S-box in round 2,3 and 4 in Sections 4.2.3, 4.2.4, and 4.2.5
respectively, and finally derive the generalization of the attack for a byte in any intermediate
round of PRESENT in Section 4.2.7.

4.2.1. Notations and Preliminaries
As done for AES, we first introduce the notations that would be used in this section.

• Plaintext nibbles are denoted by pi , where i is the index of the nibble.
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• A nibble after the AddRoundKey operation is denoted by w n
i , where i is the index

of the nibble and n indicates the round, while the output nibble of an S-box in any
round is denoted by vn

i . For example, v1
0 is the first nibble obtained after the S-box

in round 1. Similarly, nibbles after the pLayer operation are denoted using un
i which

are also the input to the next round.
• The key nibbles are denoted by kn

i and the round key they belong to is denoted by Kn .
The first round key would then be {k1

0 ,k1
1 , ...,k1

15} ∈ K1, while the last round key would
be {k31

0 ,k31
1 , ...,k31

15} ∈ K31

• S-box in round n is denoted as Sn and we denote its application on an input nibble u
as Sn(u).

• Terms such as γ,δ,θ are used to denote 4-bit constants.

4.2.2. Preliminaries
Before diving into the actual attack, we go through some preliminary computations that
would be required during the attack on the inner rounds.

Mathematical representation of pLayer and its inverse pLayer can be computed in the
form of a linear equation.

P (i ) = b i

4
c+ (16× (i mod 4)), (4.27)

where i is the index of the target bit, such that, i ∈ [0,63]. Similarly, the inverse operation
of pLayer can also be represented as a linear equation.

P−1(i ) = b i

16
c+ (4× (i mod 16)), (4.28)

where i is the index of the target bit and i ∈ [0,63].

Computing pLayer output from candidate source nibbles In PRESENT, pLayer works in
a way that it permutes and rearranges the bits from different nibbles into one nibble in the
resultant layer. For example, in every round of PRESENT, the first 4 nibbles, n0,n1,n2,n3,
are taken and the first bit from each of them is extracted that are then combined together
to make first nibble of the following round. This is represented in a diagrammatic manner
in Figure 4.3.

In practice, this is implemented as any regular bit permutation in hardware [3]. We
therefore need to simulate the permutation operation so as to compute the resultant value
of a particular nibble. We take the example shown in the Figure 4.3. The first bit from each
nibble can be extracted by multiplying each nibble with 0x8, that is, a logical AND between
the nibble and 23.

b0 = n0 ∧23, b1 = n1 ∧23,

b2 = n2 ∧23, b3 = n3 ∧23.
(4.29)

The required bits are positioned in the MSB of the nibbles b0,b1,b2,b3. We now have to
shift these required bits to positions such that they then correspond to the same positions
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Figure 4.3: Combining the bits from 4 nibbles into 1 resultant nibble

in the target nibble as well. That is, we right shift b0 by 0 bits, b1 by 1 bit, b2 by 2 bits and b3

by 3 bits. This can be represented as,

b0 = b0 À 0 = (n0 ∧23) À 0,

b1 = b1 À 1 = (n1 ∧23) À 1,

b2 = b2 À 2 = (n2 ∧23) À 2,

b3 = b3 À 3 = (n3 ∧23) À 3.

(4.30)

The resultant nibble v can then be written as,

v = b0 ⊕b1 ⊕b2 ⊕b3

= ((n0 ∧23) À 0)⊕ ((n1 ∧23) À 1)⊕ ((n2 ∧23) À 2)⊕ ((n3 ∧23) À 3).
(4.31)

The logical AND operation used here can be termed as multiplication operation in
GF (2). Depending on the index of the bit to be extracted from the source nibble, this mul-
tiplication can be done with any element in the set (23,22,21,20). The right shift can also
be expressed as a division operation, that is, a right shift in the range (0,1,2,3) would cor-
respond to division by (20,21,22,23). We combine these 2 operations under the notation •
and an appropriate operand mi depending on the location of the nibble being attacked. In
this case, if we have a nibble n, we can write the above operations as,

n •m0 = (n ∧23) À 0, n •m1 = (n ∧23) À 1,

n •m2 = (n ∧23) À 2, n •m3 = (n ∧23) À 3,
(4.32)

So the Eq. (4.31) can be reformulated as,

v = (n0 •m0)⊕ (n1 •m1)⊕ (n2 •m2)⊕ (n3 •m3). (4.33)
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Computing the source nibbles Each nibble at the beginning of each round depends on
4 source nibbles that are input to the pLayer of the previous round. In order to compute
the value of a resultant nibble after a pLayer, we first have to find the index of these source
nibbles. For example, the first nibble in every round input is extracted from the bits of
the first 4 nibbles after the S-box of the previous round. If j is the index of the nibble in
question, then the index of the source nibbles i0, i1, i2, i3 can be computed as,

i0 = (P−1( j ∗4+0)/4),

i1 = (P−1( j ∗4+1)/4),

i2 = (P−1( j ∗4+2)/4),

i3 = (P−1( j ∗4+3)/4),

(4.34)

where P−1 is the linear function given in Eq. (4.28).

4.2.3. Attacking a Nibble After S-box at Round 2
Let the target nibble be the 0th nibble after the S-box of round 2, v2

0 ,

v2
0 = S2(w 2

0) = S2(u1
0 ⊕k2

0), (4.35)

where the value u1
0 is the input nibble to round 2 and k2

0 ∈ K2. u1
0 is derived from 4

nibbles resulting from the S-box of the previous round, the index of which can be computed
using Eq. (4.34). For the 0th nibble, we have j = 0, in which case the index of the source
nibbles will be,

i0 = (P−1( j ∗4+0)/4) =⇒ (P−1(0)/4) = 0,

i1 = (P−1( j ∗4+1)/4) =⇒ (P−1(1)/4) = 1,

i2 = (P−1( j ∗4+2)/4) =⇒ (P−1(2)/4) = 2,

i3 = (P−1( j ∗4+3)/4) =⇒ (P−1(3)/4) = 3.

(4.36)

The value u1
0 is then derived from the first four nibbles after S-box at round 1. These

four nibbles are,

v1
0 = S1(p0 ⊕k1

0), v1
1 = S1(p1 ⊕k1

1),

v1
2 = S1(p2 ⊕k1

2), v1
3 = S1(p3 ⊕k1

3),
(4.37)

where p0, p1, p2, p3 are the first four plaintext nibbles We then can write u1
0 = b0 ⊕b1 ⊕

b2 ⊕b3 such that,

b0 = (v1
0 ∧23) À 0, b1 = (v1

1 ∧23) À 1,

b2 = (v1
2 ∧23) À 2, b3 = (v1

3 ∧23) À 3.
(4.38)

Combining this with Eq. (4.31) and Eq. (4.33), we can write,
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u1
0 = (S1(p0 ⊕k1

0)∧23 À 0)⊕ (S1(p1 ⊕k1
1)∧23 À 1)

⊕ (S1(p2 ⊕k1
2)∧23 À 2)⊕ (S1(p3 ⊕k1

3)∧23 À 3),
(4.39)

which can then be rewritten as,

u1
0 = (S1(p0 ⊕k1

0)•m0)⊕ (S1(p1 ⊕k1
1)•m1)⊕ (S1(p2 ⊕k1

2)•m2)⊕ (S1(p3 ⊕k1
3)•m3). (4.40)

Plugging this value of u1
0 into Eq. (4.35) we obtain,

v2
0 = S2((S1(p0 ⊕k1

0)•m0)⊕ (S1(p1 ⊕k1
1)•m1)⊕ (S1(p2 ⊕k1

2)•m2)

⊕ (S1(p3 ⊕k1
3)•m3)⊕k2

0).
(4.41)

Now we use the same method as was used in the case of AES. Depending on how many
key bits we want to extract, we have to keep some plaintext nibbles constant during the
attack. Let’s say that we are interested in extracting 1 byte of key, which here could be k1

0
and k1

1 . In which case, we consider [(S(p2⊕k1
2)•m2)⊕(S(p3⊕k1

3)•m3)⊕k2
0] = γ and we can

write v2
0 as,

v2
0 = S2((S1(p0 ⊕k1

0)•m0)⊕ (S1(p1 ⊕k1
1)•m1)⊕γ). (4.42)

Keeping γ constant, we can perform an SCA on the set of 12 bits, (k1
0 ,k1

1 ,γ) thereby
giving us a byte of the key (or 2 key nibbles) comprising k1

0 and k1
1 . γ here clearly depends

on 2 plaintext nibbles p2 and p3 which need to be kept constant for a successful attack. In
order to reach the generalised form for computing the hypothesis in more inner rounds, we
expand further on the above.

4.2.4. Attacking a Nibble After S-box at Round 3
Let’s start with a similar assumption of attacking the 0th nibble at round 3, represented by
v3

0 .

v3
0 = S3(w 3

0) = S3(u2
0 ⊕k3

0), (4.43)

where u2
0 is the input nibble to round 3 and k3

0 ∈ K3. The value u2
0 can then be repre-

sented using 4 nibbles which were input to the previous round, that is, round 2. This can
be written as,

u2
0 = (S2(u1

0 ⊕k2
0)•m0)⊕ (S2(u1

1 ⊕k2
1)•m1)

⊕ (S2(u1
2 ⊕k2

2)m2)⊕ (S2(u1
3 ⊕k2

3)•m3),
(4.44)

where u1
0,u1

1,u1
2,u1

3 are the first 4 input nibbles at round 2 and (k2
0 ,k2

1 ,k2
2 ,k2

3) ∈ K2. Con-
sidering [(S(u1

1⊕k2
1)•m1)⊕(S(u1

2⊕k2
2)•m2)⊕(S(u1

3⊕k2
3)•m3)⊕k0] = θ and substituting the

value of u2
0 in Eq. (4.43),

v3
0 = S3((S2(u1

0 ⊕k2
0)•m0)⊕θ), (4.45)
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the value u1
0 being an input nibble to round 2 can be derived from equation 4.40. The

above equation can then be written as,

v3
0 = S3((S2((S1(p0 ⊕k1

0)•m0)⊕ (S1(p1 ⊕k1
1)•m1)

⊕ (S1(p2 ⊕k1
2)•m2)⊕ (S1(p3 ⊕k1

3)•m3)⊕k2
0)•m0)⊕θ),

(4.46)

where p0, p1, p2, p3 are plaintext nibbles and (k1
0 ,k1

1 ,k1
2 ,k1

3) ∈ K1. Similar to what we did
in round 2, we can pick 2 key nibbles to attack thereby requiring the other 2 corresponding
plaintext nibbles to be constant. So, if we consider [(S(p2⊕k1

2)•m2)⊕(S(p3⊕k1
3)•m3)⊕k2

0] =
γ, we have,

v3
0 = S3((S2((S1(p0 ⊕k1

0)•m0)⊕ (S1(p1 ⊕k1
1)•m1)⊕γ)•m0)⊕θ), (4.47)

where γ depends on 2 plaintext nibbles, while θ depends on u1
1,u1

2,u1
3. As seen from

Eq. (4.40), any u1
i will depend on 4 plaintext nibbles. Therefore, θ depends on a total of

12 plaintext nibbles. In order to attack v3
0 so as to retrieve 1 key byte from (k1

0 ,k1
1 ,γ,θ), we

need to have 15 plaintext nibbles as constants. Statistical attacks on the S-box here such
as DPA thus might not be successful since this would only give us a leeway of only 4 bits
or 16 possible plaintext for obtaining the traces. However, it would be possible perform a
profiled attack with a good success rate in this case. For example, with enough samples
for each of the Hamming Weight classes, it is possible to train an efficient CNN model and
perform the attack successfully for guessing all the 16 target bits.

At this point, it is possible to increase the number of bits to attack while reducing the
number of plaintext bits to keep constant. If we consider (S(p3 ⊕k1

3) •m7)⊕k2
0 = γ, then

we have to attack 20 bits, that is, (k1
0 ,k1

1 ,k1
2 ,γ,θ) but this time with 14 plaintext nibbles

constant. This immediately gives us 8 bits to vary during the attack wherein we have 256
possible plaintexts for obtaining traces, which would increase the success rate of attacks
giving us more samples to work with, as opposed to the success rate one would have while
attacking only 16 possible plaintexts. This would even improve the efficiency of statistical
methods such as DPA to a significant extent.

4.2.5. On the Attack Feasibility After S-box at Round 4
Let’s consider v4

0 is the nibble to be attacked which as given in the previous sections, can be
written as,

v4
0 = S4(u3

0 ⊕k4
0), (4.48)

where u3
0 is the input nibble to round 4. u3

0 can in turn be represented using the input
nibbles to round 3, as shown in the previous section.

u3
0 = (S3(u2

0 ⊕k3
0)•m0)⊕ (S3(u2

1 ⊕k3
1)•m1)

⊕ (S3(u2
2 ⊕k3

2)•m2)⊕ (S3(u2
3 ⊕k3

3)•m3).
(4.49)

Using a similar expansion as the ones given in Eq. (4.45), we have,
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θ2 = (S3(u2
1 ⊕k3

1)•m1)⊕ (S3(u2
2 ⊕k3

2)

•m2)⊕ (S3(u2
3 ⊕k3

3)•m3)⊕k4
0 ,

(4.50)

θ1 = (S2(u1
1 ⊕k2

1)•m1)⊕ (S2(u1
2 ⊕k2

2)

•m2)⊕ (S2(u2
3 ⊕k2

3)•m3)⊕k3
0 ,

(4.51)

where u1
0,u1

1,u2
2,u3

3 are the input nibbles to round 2 which affect the first nibble of round
3 u2

0. Retracing this to the plaintext nibbles, similar to Eq. (4.46), we have,

v4
0 = S4((S3((S2((S1(p0 ⊕k1

0))⊕ (S1(p1 ⊕k1
1)•m1)⊕ (S1(p2 ⊕k1

2)•m2)

⊕ (S1(p3 ⊕k1
3)•m3)⊕k2

0)•m0)⊕θ1)•m0)⊕θ2).
(4.52)

As before, while attacking a key byte, we consider (S(p2 ⊕k1
2)•m2)⊕ (S(p3 ⊕k1

3)•m3)⊕
k2

0) = γ, and we can rewrite the above as,

v4
0 = S4((S3((S2((S1(p0 ⊕k1

0)•m0)⊕ (S1(p1 ⊕k1
1)•m1)⊕γ)

•m0)⊕θ1)•m0)⊕θ2).
(4.53)

The values γ and θ1 as seen in the attack on round 2 and round 3 S-box would depend
on 2 plaintext nibbles and 12 plaintext nibbles, respectively. θ2 depends on u2

1,u2
2,u2

3 which
are nibbles at the input of round 3. From Eq. (4.47) we can say that a nibble at round 3 would
depend on a set of bits determined by the 2 plaintext nibbles and the 2 constants which in
turn depend on 15 plaintext nibbles in total. We can thus infer that any nibble at round 3
input would depend on all the 16 plaintext nibbles. Therefore, θ2 depends on a total of 48
plaintext nibbles, which effectively is the entire plaintext.

A DPA attack on the round 4 S-box here would pertain to attacking a set of 20 bits, that
is, (k1

0 ,k1
1 ,γ,θ1,θ2). But such an attack would not be feasible as these bits depend on all of

the plaintext. In this case, we even cannot decrease the number of constant bits by agreeing
to attack more bits, as was done while attacking the nibble at round 3.

4.2.6. Finding the Remaining Key Bits
The above methodologies can be used to extract the first 64 bits of the first round key, which
would be the most significant 64 bits of the actual key. In order to find the remaining 16 bits
of the key we would have to leverage the obtained first round key while attacking the nib-
bles in the inner rounds, particularly the second round. As per the key schedule, the second
round key would be computed from the first round key and the key register is updated as
follows,

1. [k79k78..k1k0] = [k18k17..k20k19]
2. [k79k78k77k76] = S[k79k78k77k76]
3. [k19k18k17k16k15] = [k19k18k17k16k15]⊕round_counter,
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where k79 is the most significant key bit, while k0 is the least significant. We already have
the most significant 64 bits of the key from the first round key nibbles [k1

0 , ...,k1
15], which in

terms of bits in the key register is represented as [k79k78..k17k16]. These key bits can then
be used to find the output nibbles of the first round, which we denote using u1

i .
We need to target the remaining key bits [k15k14..k1k0], which in the second round

would correspond to the bits [k76k75..k62k61] in the key register. These bits can be obtained
by guessing the key nibbles [k2

1 ,k2
2 ,k2

3 ,k2
4] of the second round key. We can then hypothe-

size the S-box output of the second round, for instance as follows,

v2
0 = S2(u1

0 ⊕k2
0), (4.54)

where v2
0 is the first nibble obtained after S2. Since we already have u1

i , this attack
then becomes similar to attacking the first round and the target hypothesis then depends
on only the second round key wherein the data complexity of the attack remains 28. In
this way, we can then guess the aforementioned targeted nibbles of the second round key,
revert the key schedule operation and find their corresponding input key bits thereby giving
us the remaining 16 bits of the user input key.

4.2.7. Generalization of the Attack on the Inner Rounds
In the above attacks, we use m0 for representing (∧23 À 0), m1 for representing (∧23 À 1),
and so on. However, these notations can be considered generic and we can represent mi

with continuously incrementing index, but with its value belonging to a finite set defined
by the position of the target nibble itself.

On the basis of the above equations such as Eq. (4.47) and Eq. (4.53), we can generalise

computing the value of the nibble v j
i as the i th nibble obtained after S-box at round j as,

v j
i = S j (S j−1(S j−2(...S2(S1(pn ⊕k1

n)•m1 ⊕S1(pn+1 ⊕k1
n+1)•m2 ⊕γ)

•m3 ⊕θ1)•m4 ⊕θ2)...•m j ⊕θ j−2),
(4.55)

where pn , pn+1 are consecutive plaintext nibbles and k1
n ,k1

n+1 are corresponding key

nibbles belonging to 1st round key. j itself depends on which plaintext nibbles affect v j
i

which can be derived from the function P−1. γ depends on 2 plaintext nibbles, and any
θ j depends on 3×4 j plaintext nibbles. The number of bits to attack in order to find 1 key
byte would be 4( j +1). Table 4.2 gives the number of constant plaintext bytes required for
the largest θ in an equation, which is θ j−2 for round j and the number of bits to attack for
finding 1 byte of the key.

4.3. On the Complexity of Attacking the Inner Rounds
Due to the diffusion of an SPN structure, attacking a byte in the inner rounds is more dif-
ficult to attack in the case of both AES and PRESENT. We confirm the same in our work as
seen in Sections 4.1.6 and 4.2.7, with respect to the effort that needs to be put in by the
attacker. As per Table 4.1, round 2 requires 3 plaintext bytes to be fixed in order to derive 1
key byte, while round 3 requires 15 plaintext bytes to be fixed to extract the same amount of
data. Attacks on round 2, requiring only 3 plaintext bytes need to be fixed per key byte, can
be combined by grouping the constant bytes in order to attack multiple key bytes at one
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Round i

No. of fixed plaintext
nibbles (effectively) to

attack k1
0 , k1

1
and predict Si (w i

0)

No. of bits to be
guessed in order
to attack k1

0 , k1
1

and predict Si (w i
0)

Plaintext × Key options
to attack k1

0 , k1
1 and

to predict Si (w1
0)

(p=Profile, a=Attack)
1 0 8 p=264 ×28, a=264 ×1
2 2 12 p=260 ×28, a=260 ×1
3 14 16 p=28 ×28, a=28 ×1
4 48 (16) 20 p=1×28, a=1×1
5 192 (16) 24 p=1×28, a=1×1

Table 4.2: Number of constant plaintext nibbles required and number of bits to attack for 1 key byte for first
5 rounds of PRESENT-80. Attacking the S-box at the first round need not have any nibble fixed while round 2

is influenced by γ (and not by any θ j ), which needs 2 plaintext nibbles fixed.

go. For example, in order to attack key byte 0, we need to have bytes 5, 10, 15 fixed in the
plaintext, for key byte 4, bytes 3, 9, 14 need to be constant, and so on. As long as the bytes
that need to be constant form a disjoint set, we can combine the constant plaintext bytes
to target multiple key bytes using a single acquisition of traces. Such an attack in round 2 is
summarised in Table 4.3.

Target Key Bytes Plaintext bytes that need to be fixed
(0, 4, 8, 12) (1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15)
(1, 5, 9, 13) (0, 2, 3, 4, 6, 7, 8, 10, 11, 12, 14, 15)

(2, 6, 10, 14) (0, 1, 3, 4, 5, 7, 8, 9, 11, 12, 13, 15)
(3, 7, 11, 15) (0, 1, 2, 4, 5, 6, 8, 9, 10, 12, 13, 14)

Table 4.3: Grouping of acquisitions while targeting multiple key bytes after round 2 Sbox.

We can therefore, conclude that if attacking round 1 needs x traces to extract all 16
key bytes, attacking round 2 would require 4x traces owing to multiple acquisitions. This
exponentially increases as we progress through the rounds as round 3 requires 15 plaintext
bytes fixed. That is, it is possible to have only 1 plaintext byte as a variable in order to extract
1 key byte, which in turn means that the attacker needs to perform separate acquisitions for
each key byte. Therefore, extracting all the key bytes while attacking round 3 would involve
the acquisition of 16x traces, an exponentially higher effort for the attacker.

The same can be observed in the case of PRESENT as well. While round 2 requires a
byte of plaintext to be fixed to determine 1 key byte, round 3 requires 7 bytes of plaintext
to be fixed leaving only 1 byte to be allowed to vary. Similar to that of AES, it is possible
to group the acquisitions for round 2 of PRESENT but not for round 3. That is, if while
attacking round 1, an attacker needs x traces, round 2 would require 4x traces and round
3 would require 8x traces because of the multiple chosen-plaintext based acquisition of
power traces.
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Experimental Results

In this chapter, we discuss our experimental results where we provide results for attacks on
AES-128 from input only. We plan to address attacks from the output in encryption mode
in future works. Section 5.1 describes the setup we use to acquire the power traces, while
Section 5.3 gives an insight into the deep learning architecture that we use to perform the
attacks. Sections 5.4 and 5.5 exhibit the attacks where we compare the performance of
deep learning against CPA on the acquired traces, both before and after introducing coun-
termeasures such as (Gaussian) noise and misalignment. More specifically, we observe the
effect of Gaussian noise for the attack on round 2 while using both misalignment and Gaus-
sian noise for round 3 traces.

5.1. Setup
We use a general setup for capturing the power traces for all of our experiments. The traces
contain power measurements collected from a Pinata development board 1 based on a 32-
bit STM32F4 microcontroller with an ARM-based architecture, running at the clock fre-
quency of 168 MHz. We acquired power traces from a standard unprotected AES-128 look-
up table implementation running on the target device. The setup consisted of a Riscure
current probe2, a Lecroy Waverunner 610Zi oscilloscope, and a computer to communi-
cate with the equipment and store the acquired traces. The power traces were measured
at a sampling frequency of 1GS/sec and consisted of 220 000 samples. We perform power
acquisitions specifically for rounds 2 and 3 and use the chosen plaintext strategy for the
attacks as was discussed in Section 4.1 and Table 4.1.

For round 2, we need four acquisitions to attack all the key bytes since it is possible
to attack 4 bytes at once. We collect 10 000 traces per acquisition, with 20% of the traces
having a fixed key which is also the target key. We use Gaussian noise as a test against
countermeasure while attacking both rounds 2 and 3. The mean and the standard deviation
of the original traces dataset have been used to generate the Gaussian noise that is added
to each trace. That is, the new traces with the noise were computed as follows,

X ∗ = X +N (µx ,σ2
x), (5.1)

1Pinata Board: https://www.riscure.com/product/pinata-training-target/
2Current probe: https://www.riscure.com/product/current-probe
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where N (µx ,σ2
x) is the Gaussian distribution formed using the mean µx and the variance

σ2
x of the original traces X itself.

For round 3, we have to perform 16 acquisitions for attacking all key bytes since only
one key byte can be attacked at a time. We collect 3 000 traces per acquisition for round 3,
with all the traces having the fixed target key. The traces collected were misaligned during
the time of acquisition, and we use this misalignment for an additional countermeasure
test in this case. That is, we first align the traces and perform the attacks, followed by at-
tacking the original dataset to compare the results in the presence of misalignment. We
employ a standard pattern-based approach to do the alignment wherein we select a part of
the first trace as the reference and computed the Pearson correlation for each offset within
a chosen range for each following trace. We then shifted each trace by the respective off-
set that maximizes the correlation. Appendix B shows three consecutive traces from our
dataset before and after alignment. Since the misalignment might not be very significant
and is not used as a common countermeasure, we also test the effectiveness of the attacks
on traces with both Gaussian noise and misalignment.

5.2. Power Traces
The next step would be to extract the Points of Interest (PoI) from the given set of traces. For
example, while attacking round 3 S-box, we need to select the points in time which roughly
correspond to the times when the particular computation of the byte after round 3 S-box
would take place for all the traces. If the traces are misaligned, the selected PoIs would only
be a rough estimate and not the exact starting and ending points for the computation of
the target byte. The first power trace in the set is given in Figure 5.1.

Figure 5.1: The first trace of the dataset

The 10 patterns indicating the the 10 rounds of AES-128 can be clearly seen, with rounds
2,3 and 4 being highlighted. With a simple SPA analysis, and zooming into the power trace,
we can approximately extract the PoI required for attacking the S-box of the inner rounds.
Figure 5.2 shows a close-up of the above traces focusing on the third round. We can pick
the first few points as the Sbox is the first process to be performed in any round of AES. We,
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therefore, consider the points 58 000-60 960 as our PoI for attacks using DL-SCA. A similar
extraction is done in the case of round 2 and round 4. While the points 37 000-39 500 are
used to attack round 2 S-box, the points 77 500-80 000 are used to attack round 4 S-box.

Figure 5.2: Zooming into the 3rd round of AES power trace. 58000-60960 were chosen as the potential PoIs
for the purpose of DL-SCA on the 3rd round Sbox.

We shall now have a look at the Deep Learning model’s architecture used during the
attack, the results of the attack and subsequently compare these results with those obtained
from CPA.

5.3. The Deep Learning Model Architecture
CNN architectures analogous to VGG [43] have been shown to give good results in the field
of DL-SCA [2, 20] and is, therefore, one of the widely adopted models. We particularly use
the benchmarked model architecture CNNbest, which has been proven to outperform other
models such as VGG-16 and MLPbest as shown by Benadjila et al. [2].

The architecture CNNbest contains five convolutional blocks, to begin with, where each
block is made up of 1 convolutional layer and one average pooling layer. Each convolu-
tional layer has filters for each block as (64, 128, 256, 512, 512), the kernel size as 11 (ef-
fectively indicating same padding), and uses ReLU as the activation function. The con-
volutional blocks are followed by two fully connected layers, each containing 4 096 units.
Finally, the output layer uses Softmax and gives the probabilities for all the classes, which in
our case would be the probabilities for each of the 9 Hamming Weight classes. The model
uses categorical cross-entropy as the loss function, which is the most prominent of the loss
function used in such case scenarios as has been mentioned in Section ??.

For hyperparameter tuning, CNNbest works with the RMSprop backpropagation opti-
mizer, a learning rate of 10−5, and trains for 75 or 100 epochs for a batch size of 200. While
we do not change the optimizer and the learning rate, Benadjila et al. [2] also showed
CNNbest has an equally good performance with 50 epochs as well. We observed that while
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Hyperparameters Benchmarked Choice Our Setup
Training Hyperparameters

Epochs up to 100 50 (R3)/100(R2)
Batch size 200 64

Architecture Hyperparameters
Blocks 5 5

CONV layers 1 1
Filters 64 64

Kernel size 11 11
FC layers 2 2

ACT function ReLU ReLU
Pooling layer Average Average

Padding With zeros With zeros

Table 5.1: Summary of the benchmarked values of the hyperparameters and the values used in our work.

50 epochs give better results for round 3, 100 epochs worked better while attacking a byte
at round 2. Further, we also noticed better performance in the attack phase (w.r.t. the num-
ber of traces taken to guess the correct key byte) when using a smaller batch size, which is
then fixed to be 64 in our experiments. Accordingly, the input layer for round 3 for example,
then has the shape of (2960×64) where 2 960 is the number of PoIs (or features) selected.
This CNN architecture is shown in Figure 5.3, while its tensorflow summary is given in
Appendix-A. Table 5.1 shows the benchmarked values used for CNNbest and the values that
we consider for this work.

Figure 5.3: Pictorial representation of the CNNbest architecture

While we use the above architecture for our proof-of-concept results, we also test our
hypothesis with randomized CNN architectures. We observed that most of these random
architectures also showed good results in breaking the inner rounds and discuss them in
Section 5.8.
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5.4. Attacking a Byte After S-box at Round 2
To attack a byte after the S-box of round 2, each target byte needs three plaintext bytes to be
fixed in the target dataset, thereby allowing us to target four key bytes with each acquisition
of power traces. For example, in order to target key bytes (0, 4, 8, 12), we need to have the
other 12 plaintext bytes fixed. Therefore, trace set acquisition is made accordingly, where
these 4 bytes of the plaintext are randomly defined, and the others remain fixed. An attack
to find all the 16 key bytes would therefore require four such acquisitions in total.

We chose to attack the 0th key byte for showcasing our results. Using Eq. (4.25), we
compute the hypothesis for attacking key byte 0 as follows,

hy p = HW [S(02∗S(p0 ⊕k0)⊕δ)], (5.2)

where δ= 03∗S(p5 ⊕k5)⊕01∗S(p10 ⊕k10)⊕01∗S(p15 ⊕k15)⊕k1
0 . As can be seen here, we

need to keep the plaintext bytes (5, 10, 15) fixed in order to make the attack possible, and the
hypothesis hy p itself depends on only p0 and k0 of the input trace. For DL-SCA, we label
the traces during the profiling phase using the hypothesis and then guess the bytes (k0,δ)
during the attack phase. We set the hyperparameters as discussed in Section 5.3. Training
and validation are done for 7 500 and 500 traces, respectively, and on variable keys that
do not consist of the target key bytes while having the constant plaintext bytes as 0x00 for
simplicity. The attack is performed on a set of 2 000 traces with a fixed key. In the case of DL-
SCA, we observe that the attack yields the key after 238 traces, as shown in Figure 5.4 when
the rank becomes 0. We generalize the term to rank here since we are guessing another
byte apart from the key byte itself, and therefore, it is of the order 104 denoting roughly the
65 536 possibilities while guessing 16 bits (216 possibilities). We can then deduce that the
attack takes 238 traces to start recognizing the correct trend from profiling, thereby leading
to correct guesses thereafter, which we can see from the drop of the rank to 0.

We then launch CPA on a set of 2 000 traces with a fixed key derived from the same
dataset used above. We first compute the hypothesis for all the 216 guesses and as given in
Eq. (5.2). The correlation is then computed for all the guesses per trace, and the guess with
the highest value is chosen to be the most likely guess as in any CPA attack. This experiment
is then repeated 100 times for each batch of shuffled traces, and the highest correlation
value is then averaged out, resulting in an average rank for each batch. The results of this
attack are shown in Figure 5.4. The average rank achieved by CPA is six after 2 000 traces.
As we notice a decreasing trend in the average ranks, we believe that CPA would eventually
find the key if given more traces during the attack.

We now add noise to the power traces as described in Section 5.1 and observe the per-
formance of both scenarios again. With added Gaussian noise, DL-SCA still finds the key
after 139 traces as seen in Figure 5.5, while CPA does not find the key even after 2 000 traces
despite the downward trend that we see in Figure 5.5. The average rank given by CPA, in
this case, is 352 after 2 000 traces while it attempts to guess 16 bits of information.

5.5. Attacking a Byte After S-box at Round 3
Round 3 requires the attacker to get a separate trace set acquisition process per target key
byte. In this work, we specifically target the first key byte k0. We then compute the hypoth-
esis as follows,
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Figure 5.4: DL-SCA and CPA for key byte 0 after S-box on encryption round 2.

Figure 5.5: DL-SCA and CPA after adding Gaussian Noise for key byte 0 after S-box on encryption round 2.

hy p = HW [S(02∗S(02∗S(p0 ⊕k0)⊕δ)⊕γ)], (5.3)

where hy p is the 8-bit hypothesis computed for one input trace while p0 and k0 are the first
bytes of plaintext and key for that input trace, respectively. Since this depends on p0, we
gather the acquisition set with the first byte as variable and the rest of the bytes as constant,
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which we set as 0x00 for simplicity. As discussed in Section 5.1, we first perform the attacks
on aligned traces followed by attacks on the misaligned ones. For DL-SCA on the aligned set
of traces, since we have only 3 000 traces collected per acquisition in our dataset, we use the
first 2 000 traces for the profiling phase, the following 500 for validation and attack the next
500 traces. The model used is as described in Section 5.3. As done for round 2, the label for
each trace is computed using Eq. (5.3) for profiling, where (δ, γ) can be set to any constant
including 0x00. During the attack we attempt to guess 3 bytes (k0,δ,γ). On performing the
attack in this case, we successfully attain the key byte k0 along with the correct values of δ
and γ after 11 traces. The result is shown in Figure 5.6 (here too, we generalize the term to
rank since we are guessing 3 bytes in total). Similar to the result seen for round 2, the rank
is of the order 106, indicating the 224 possible guesses (16 million possibilities) for 24 bits of
data. The attack takes just 11 traces to start recognizing the trend and guessing the correct
key.

For CPA, we compute the hypothesis and subsequently the correlation for all the 224

guesses, similar to what was done for round 2. The result of this attack is then shown in
Figure 5.6. The correct key converges towards the highest correlation value as expected
from a successful CPA attack, and the correct key is obtained after 50 traces and again at
110 traces. Here, we restrict the computation of key ranks to only 1 experiment instead of
100 as done in the case of round 2. Therefore, the results for CPA on round 3 are given as
a proof-of-concept for the attack. This is because of the CPU-intensive operations done
while brute-forcing 24 bits on a standard personal computer. The experiments were done
using Intel Core i9 8-core processor and 16GB RAM. Computation of hypothesis for 500
traces takes approximately 27 minutes, followed by an average of 9 minutes for computing
the key rank for each batch of traces. With an increment of 10 traces per batch, completing
1 experiment for all the batches ranging from 10 to 500 traces (50 batches) takes approx-
imately 7.35 hours. Multi-processing can be used to speed the experiments, but storing
of 224 possibilities for each trace is memory intensive, thereby making the use of multiple
processes more expensive (in terms of speed-memory trade-off) for a standard personal
computer.

We now use the misaligned traces to compare the performance of DL-SCA and CPA in
the presence of such an (implicit) countermeasure. We use the same DL model along with
the hyperparameters and the samples of the traces to perform DL-SCA on the misaligned
traces. The attack reveals the key after ten traces. We realize intuitively that a CPA attack
will be difficult to perform on misaligned traces. This is indeed proven by the results as well,
which can be seen from its erratic nature. The results for DL-SCA and CPA on misaligned
traces are shown in Figure 5.7.

We further compare the performance of DL-SCA with CPA by adding Gaussian noise to
the misaligned traces. The results can be seen in Figure 5.8. While DL-SCA finds the key
after 34 traces, CPA is unable to do so even after going through our entire attack set of 500
traces.

While DL-SCA successfully finds the key in all the above cases, CPA is successful only in
the case when the traces are aligned. The effectiveness of DL-SCA is further proven when
attacking misaligned traces where it succeeds with as few as ten traces, a case where CPA
was unsuccessful. We can therefore conclude that DL-SCA certainly outperforms CPA by a
tremendous margin when attacking the inner rounds.
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Figure 5.6: DL-SCA and CPA on aligned traces for key byte 0 after S-box on encryption round 3.

Figure 5.7: DL-SCA and CPA on misaligned traces for key byte 0 after S-box on encryption round 3.



5.6. Attacking a Byte After S-box at Round 4 47

Figure 5.8: DL-SCA and CPA on misaligned traces after adding Gaussian noise for key byte 0 after S-box on
encryption round 3.

5.6. Attacking a Byte After S-box at Round 4
To attack the byte after the round 4 S-box, we need to guess 32 bits comprising the set of
(k0,δ,γ,θ), as can also be seen from Eq. (4.17) and Table 4.1. Although attacking 32 bits is
still feasible, the usage of the aforementioned three constants implies that all the 16 bytes of
plaintext and the key need to be fixed for this particular attack to work. However, profiling
using the same plaintexts and the same key would result in the same labels and conse-
quently would result in the overfitting of the model.

Another case scenario would involve profiling using different plaintext but a constant
key. This would mean calculating the exact values of δ,γ, and θ, which in turn leads to
a properly trained model. However, the assumption in the attack phase while computing
the four target bytes is that these 4 bytes are constant during the profiling as well and, by
extension, should ideally have different Hamming Weights as labels than what was com-
puted. As an example, two plaintexts having the same first byte should have the same label
and, therefore, similar traces. However, since we are using different plaintexts for each trace
during profiling, the training factor that the constants bring in is totally eliminated. This ef-
fectively means that the training phase and the attacking phase are carried out on data that
are completely different from each other, thereby rendering the attack unsuccessful. The
results for the same are shown in Figure 5.9, and it can be observed that the rank never con-
verges to a correct guess and does not show a decreasing trend either. A similar result was
also seen while using the same plaintext but different keys. This is because the values of
δ,γ, and θ not only depend on the plaintext but also on the keys and the subsequent round
keys. As of now, we conclude that an attack on any byte after the round 4 S-box is infeasible
within the boundaries considered by our work.
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Figure 5.9: DL-SCA on round 4 S-box with different plaintexts being used while training and constant
plaintext used for attack. A fixed key was used both for profiling and for attack.

5.7. Sanity checks for DL-SCA Results
At this point, since we are effectively working only on 1 byte and only 1 fixed key during the
profiling phase as well, we need to make sure our model is not biased in any way. That is,
we need to make sure it is not over-fitting to the key we have provided and will therefore be
able to generalize it in case of the use of a different key. We demonstrate this with the help
of the following “sanity check” use-cases by taking the round 3 hypothesis as an example.
We note here that when the constants are set right, and the hypothesis is computed as per
the equations, we obtain a training accuracy of 99% and a validation accuracy of 91%.

1. Profiling and validation with random key bytes, but attacking with the correct ones
- In order to check a bias towards a particular key byte, we profile and validate with a
random set of key bytes instead of using the correct ones. Since we are training with
the wrong key bytes, the subsequent attack should ideally be unsuccessful. Apart
from observing a reduced validation accuracy of 22.8% while the training accuracy
was 71.78%. we also observe an unsuccessful attack as shown in Figure 5.10.

2. Profiling on a random window of samples, but attacking on the correct window - As
aforementioned, round 3 Sbox occurs in the window (58000-60960). In order to check
if the window of samples (PoIs) indeed does affect the model’s training, we train the
model in a randomly selected window of samples, say, (50 000-52 960). The valida-
tion and attack is done on the actual window of (58 000-60 960). Here, we observe a
high training accuracy of almost 95% but a low validation accuracy of 24%. Since the
profiling is done on an entirely different looking set of samples, the attack should not
be successful. Accordingly we get the attack results as shown in Figure 5.11, which do
not converge to the actual key byte used.
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Figure 5.10: Results of profiling and validation with random keys, but attacking with the correct ones.

Figure 5.11: Results of profiling on random samples but attacking on the correct ones

3. Attacking on a random window of samples, but profiling and validating using the
correct one - Here we profile using the right window (58000-60960) but attack using
a random window of samples (50 000-52 960). The attack is again not successful, as
one would expect, since the traces used for the attack phase are entirely different.
The results are shown in Figure 5.12.
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Figure 5.12: Results of attacking on random samples but using the correct samples for profiling and
validation.

The above results clearly indicate that the DL model is indeed learning correctly from
the traces and is performing as expected during the attack phase without a bias for 1 fixed
key.

5.8. Attacks on Rounds 2 and 3 with Randomized CNN Archi-
tectures

As mentioned, we would also like to test how randomly generated models fare when per-
forming the above attacks. These architectures have up to 4 convolutional layers each hav-
ing the kernel size ranging from 10 to 20 and a stride of either 5 or 10, followed by 3 dense
layers each having up to 1 000 neurons and a layer weight initializer randomly picked from
(random_uniform, glorot_uniform, he_uniform). The activation function for all layers
was randomly selected from (relu, selu, elu, and tanh).

As the execution of the attacks on round 3 take a significant amount of time (approx.
45 minutes for the configuration described in Section 5.5, we check the results for 10 ran-
domized models for both rounds 2 and 3. For round 2, 8 out of 10 models were successful
while attacking aligned traces, out of which 5 of them performed better than CNNbest in
terms of the number of traces required to obtain a constant key rank of 0 for all subsequent
traces. Similarly, for traces with the Gaussian noise added, 7 out of the 10 random mod-
els succeeded in finding the key but only 1 of these performed better than CNNbest. These
results have been shown in Appendix C.

We also analyse the performance of random models on round 3, in which case we take
into consideration misalignment and Gaussian noise as well. We observed that all the ran-
dom models were successful when attacking the aligned traces. Although all these models
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manage to find the key within 30 traces, only one of them finds the correct key with 10
traces thereby performing marginally better than CNNbest. As for the misaligned traces and
for the ones with Gaussian noise, all the models succeed in the attack but none of them
find the key with lesser number of traces than CNNbest. The results for attacks using these
random CNN architectures have been shown in Appendix C.

As we can observe here that while most of the random models are able to succeed in
the attack, few of them are even better than our reference model, CNNbest. In order to
find the model that works the best for a particular target round, a detailed tuning of the
hyperparameters is required such that the attack phase takes the least number of traces to
guess the key. An attack on each round therefore needs an appropriately tuned model such
that we can achieve the best possible performance while attacking that particular round on
the target device.





6
Conclusion

In this chapter, we summarise the work we have done in the duration of this thesis. We
first reflect over our hypothesis questions while also addressing our contributions when
answering them. We then go through some limitations posed by our work and discuss the
prospective future work that can be undertaken in this area to further improve our un-
derstanding and effectiveness of side-channel attacks on the inner rounds of AES-128 and
PRESENT-80 ciphers.

6.1. On Research Questions and our Contributions
We use this section to answer each of our hypothesis questions as derived from this work.

1. Is it possible to perform side-channel attacks on the inner rounds of AES-128 and
PRESENT-80?

We show in Chapter 4 and Chapter 5 that it is indeed possible to attack any byte of
the inner rounds in both AES-128 and PRESENT-80. While Maghrebi et al. [28] do
make us aware of the possibility of attacking inner round bytes using chosen plain-
texts. We extend on this methodology in order to generalize the computation of any
intermediate byte for AES-128 from both input and output in encryption mode. We
then extend the same technique to PRESENT-80 where we analyse its structure and
formulate its round computation in such a way that we can compute the value of any
nibble in any of its inner rounds as well. We include these generalizations while com-
puting the leakage hypothesis for any byte in the inner rounds, which in our case is
the Hamming Weight of the byte. We would like to note here that, to the best of our
knowledge, such a formulation of PRESENT has not been done before wherein it is
possible to compute a nibble in any of its intermediate rounds.

Since our attack works in chosen plaintext scenarios, its feasibility will not only be
determined by the number of bits one needs to guess but also on the practicality of
traces acquired from such a dataset containing chosen plaintexts. We demonstrate
this in Section 5.6, where we attempt to attack round 4 S-box which, as per our at-
tack design, should have all constant plaintext bytes. Since no byte in the plaintext
is allowed to vary, CPA as well as DL-SCA were unsuccessful. The number of fixed
plaintext bytes also determine the number of acquisitions that would be needed in
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order to recover the entire key. More the number of acquisitions required, more the
effort that needs to be put in for a successful attack. For example, as seen in Table 4.1,
while round 2 would require only 3 bytes to be fixed for retrieving 1 key byte, round 3
requires 15 plaintext bytes to be fixed. This means that while round 2 would require
4 acquisitions with 3 plaintext bytes fixed, attacking round 3 would require 16 acqui-
sitions in order to find all the 16 bytes of key. This makes attacking round 3 more
difficult in terms of the effort required to be put in to extract the key.

2. If the above attack is possible, can Deep Learning methods be used to attack these
inner rounds and extract the key?

We use Deep Learning to attack the S-box after rounds 2 and 3 successfully in Sec-
tions 5.4, 5.5. This proves the validity of the chosen plaintext strategy used to com-
pute the leakage hypothesis for the inner rounds. Profiled and non-profiled side-
channel attacks on inner AES rounds face several limitations. In this work, we pro-
posed general formulations to attack any intermediate byte in AES encryption mode.
Results indicated that attacks on rounds 2 and 3 are practical besides the increased
complexity in the hypothesis guessing (16 and 24 bits, respectively). We demon-
strated in practice that because profiled attacks are less restricted from fixed plain-
text limitations in the profiling phase, DL-SCA can easily succeed in recovering the
key in scenarios without or with (noise and misalignment) countermeasures. On the
other hand, non-profiled attacks, such as CPA, becomes highly constrained by time
and memory limitations as a consequence of increased complexity to guess interme-
diates from inner rounds. As mentioned by several related works, for several targets,
DL-SCA shows easier key recovery in comparison to non-profiled attacks if the profil-
ing phase is done appropriately. Therefore, as shown in this work, DL-SCA becomes
a strong candidate to attack (not properly protected) inner rounds from AES.

6.2. Limitations
We take a chosen plaintext approach (in the case of encryption) to attack the inner rounds.
This strategy reveals a clear limitation in terms of the availability of the such plaintexts
when attacking the inner rounds which can be seen when trying to attack after the fourth
round in Section 5.6. In this case, we are dependant on the plaintext and makes the attack
more difficult even in scenarios when the attack is possible. For example, we see that in
order to attack round 3, we need 3 times more number of acquisitions than is required to
attack round 2.

Our work provides a good starting point for attacking the inner rounds for both AES and
PRESENT. For AES, we were successfully able to run attacks on the inner rounds. Although
the attacks were also tested on traces with Gaussian noise and misalignment, they did not
have an explicit countermeasure implemented on the outer rounds. Our work still proves
to be valid since we target the inner rounds which are assumed to be unprotected. We also
realise that we have only been able to run tests on AES for which we were able to check the
effectiveness of DL-SCA and its advantage over CPA. Therefore, another limitation of our
work is the absence of traces for PRESENT, which would also give us a good idea about the
performance of DL-SCA on the inner rounds of lightweight ciphers.
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6.3. Future Work
As we have seen, the presented approach fails at attacking further than round 3. Therefore,
the most interesting open question is whether it is possible to attack rounds between 4 and
6, in the case of AES-128. We believe that this goal should be achievable using Deep Learn-
ing. The first, more straightforward approach would be to attack both S-box input and out-
put using multi-label Deep Learning [27]. In this approach, attacking the Hamming Weight
of both intermediates would be the most efficient wherein targeting these two intermedi-
ate states at once, the attack would be able to recover the key in a similar way to [4, 41, 46].
Note that this method can be applied without requiring access to input and output for AES.
Similar results might be achievable using template attacks as well, but our choice is Deep
Learning as it has been shown to outperform template attacks multiple times.

The second approach would be to attack a combination of S-box input and output. For
example, we believe that it might be sufficient to use an XOR of S-box input and output as
a label. The traces might not be directly leaking that XOR value, but the neural network
should be able to combine S-box input and output leakages and classify the XORed value
correctly, in a similar way in which neural networks can combine leakages in the case of
masked AES traces [25].

Another approach with respect to overcoming the limitation caused by the chosen plain-
text attacks can be algebraic attacks. Renauld et al. [37] introduce algebraic side-channel
attacks which works in an unknown plaintext/ciphertext setting and makes use of informa-
tion leakages that can be derived from the intermediate rounds. Although this attack differs
from the classical approach we take in the sense that there is not one particular round to
attack, it would be interesting to compare the performance of DL-SCA on the inner rounds
and algebraic attacks using templates introduced in by Renauld et al. in [38].

As we have noted before, there is a dearth of studies on attacking the inner rounds of
PRESENT using the classical approach of SCA. While we introduce the theoretical aspects of
computing the leakage from any intermediate byte, further study also needs to be done on
the performance of DL-SCA on the inner rounds of PRESENT. We leave further investigat-
ing of the aforementioned ideas, as well as practical experiments for attacks in decryption
mode, as future works.
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A
Deep Learning Model used for Round 3

Sbox

Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv1d (Conv1D) (None , 2960, 64) 768
_________________________________________________________________
average_pooling1d (AveragePo (None , 1480, 64) 0
_________________________________________________________________
conv1d_1 (Conv1D) (None , 1480, 128) 90240
_________________________________________________________________
average_pooling1d_1 (Average (None , 740, 128) 0
_________________________________________________________________
conv1d_2 (Conv1D) (None , 740, 256) 360704
_________________________________________________________________
average_pooling1d_2 (Average (None , 370, 256) 0
_________________________________________________________________
conv1d_3 (Conv1D) (None , 370, 512) 1442304
_________________________________________________________________
average_pooling1d_3 (Average (None , 185, 512) 0
_________________________________________________________________
conv1d_4 (Conv1D) (None , 185, 512) 2884096
_________________________________________________________________
average_pooling1d_4 (Average (None , 92, 512) 0
_________________________________________________________________
flatten (Flatten) (None , 47104) 0
_________________________________________________________________
dense (Dense) (None , 4096) 192942080
_________________________________________________________________
dense_1 (Dense) (None , 4096) 16781312
_________________________________________________________________
dense_2 (Dense) (None , 9) 36873
=================================================================
Total params: 214 ,538 ,377
Trainable params: 214 ,538 ,377
Non -trainable params: 0
_________________________________________________________________
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B
Alignment of Traces

The Figure B.1 shows three consecutive traces from our dataset. The Misaligned traces
are the measurements captured by default and the Aligned traces are the measurements
obtained after the alignment operation. The window of samples shown are the ones used
while attacking a byte after round 3 S-box.

Figure B.1: An example of three consecutive traces from our dataset before and after alignment.
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C
DL-SCA Results using Random Models

Figure C.1 shows results with 10 randomly chosen Deep Learning architectures while at-
tacking round 2 with aligned traces. Figure C.2 shows results of another 10 randomly gen-
erated models while attacking round 2 with added Gaussian noise.

Figure C.3 show the attack results of 10 random models on aligned traces by target-
ing a byte after round 3 S-box. Figure C.4 shows the result of attacking round 3 S-box on
misaligned traces while Figure C.5 shows the result of attacking the same but with both
Gaussian noise and misalignment.
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68 C. DL-SCA Results using Random Models

Figure C.1: DL-SCA using random models on aligned traces for round 2.
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Figure C.2: DL-SCA using random models on traces with gaussian noise for round 2.



70 C. DL-SCA Results using Random Models

Figure C.3: DL-SCA using random models on aligned traces for round 3.
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Figure C.4: DL-SCA using random models on misaligned traces for round 3.



72 C. DL-SCA Results using Random Models

Figure C.5: DL-SCA using random models on misaligned traces with Gaussian noise for round 3.
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