Appendix: supplementary data (SD)

Section 1 provides information on the average sedimentological and geochemical analysis of the aquifer material conducted by TNO in 2018. Section 2 provides supplementary figures on the monitored infiltration period one, section 3 likewise for period two. Section 4 lists the analytical results on recharge water quality. Section 5 provides photographs taken at the ASTR site in Breezand. Section 6 presents additional micrographs on sampled points discussed in section 2.5. Section 7 provides the analytical results on the well rehabilitation samples including the sedimentological analysis and XRD analysis results. Lastly, section 8 provides additional submersible camera shots of the injection wells.

Section 1: TNO lithological site survey

Figure 1.1: Average sedimentological and geochemical analysis on the aquifer matrix in Breezand. Adopted from E. Kruisdijk.

TNO - Geological Survey of the Netherlands

B14B0993

Soort boring	: Matig diepe boring derden
Coordinaatsysteem	: Rijksdriehoeksmeting
(-coordinaat (m)	: 116969
/-coordinaat (m)	: 544722
ocatlebepaling	: Geschat, methode onbekend
Referentievlak	: Normaal Amsterdams Pell
Maalveld (cm)	:0
Datum boring	: 11-2-2019
Elgenaar	: Emiel Kruisdijk TU-Delft
/ertrouwelijkheid	: Vertrouwelijk
Sehelm tot	: 31-12-2022

Boormethode

4

Diepte (cm)	
	Omschrijving
0 - 200	Trilboring, boordiameter (mm): 40
200 - 3565	Trilboring, boordiameter (mm): 100

Lithologie

: TNO
: Nico Janssen
: Nat en droog sediment
: 11-4-2019
: NEN 5104
: Vergelijkingsmicroscoop, Binoculair

Diepte (cm)		Omschrijving		%Lu		%Za		%Os	
	Grondsoort		M63		%S		%G	·	Ca
0- 33	zand	zand, zwak slitig, matig humeus, grijs-bruin, 2.5v 5/2, Zand: matig fijn, matig kleine spreiding, matig afgerond, spoor roze korreis, spoor withe korreis, spoor zwarte korreis, spoor bont materiaal, spoor wortels, spoor houtresten, Scheipen: spoor scheipmateriaal, spoor scheipgruis, spoor hele scheipen, spoor Hydrobildae, weinig fijne detritus	170	0	1	99	0	5	2
33 - 66	zand	zand, zwak slitig, matig humeus, grijs, Sy 5/1, Zand: matig fijn, matig kleine spreiding, matig afgerond, spoor roze korrels, spoor witte korrels, spoor bont materiaal, spoor houtresten, spoor wortels, Schelpen: spoor schelpmateriaal, spoor schelpgruis, spoor gilmmer, spoor grove korrels, veel fijne detritus, houtskool	170	0	1	99	0	5	2
66 - 100	zand	zand, zwak siltig, zwak humeus, licht-grijs, 5y 6/2, Zand: matig filn, matig grote spreiding, matig argerond, weinig grijze korrels, spoor witte korrels, spoor zwarte korrels, spoor bort materiaal, spoor wortelresten, Scheiper: spoor scheipmateriaal, spoor scheipgruis, spoor heie scheipen, spoor juveniel, spoor Hydrobildae, spoor Euspira sp., spoor glimmer, spoor glauconiet, spoor zee-geistekels, spoor filne detritus, spoor insluitsels zand	180	0	1	99	0	1	2
100 - 125	zand	zand, zwak slitig, zwak humeus, licht-grijs, 5y 6/1, Zand: zeer fijn, matig kleine spreiding, matig afgerond, spoor witte korrels, weinig zwarte korrels, spoor bont materiaal, Schelpen: spoor schelpmateriaal, spoor schelpgruis, spoor glimmer, spoor glauconiet, spoor detritus, spoor detritusiagen	140	0	4	96	0	2	3
125 - 150	leem	leem, sterk zandig, grijs, 5y 6/1, Zand: matig fijn, zeer grote spreiding, matig afgerond, spoor grijze korrels, spoor witte korrels, spoor zwarte korrels, spoor bont materiaal, spoor plantenresten, Scheipen: weinig scheipmateriaal, spoor doubletten, spoor scheipgruis, spoor hele scheipen, spoor juveniel, veel Hydrobildae, spoor glimmer, spoor diauconiet, spoor detritus	150	0	60	40	0	0	3
150 - 175	zand	zand, zwak slitlig, licht-grijs, 5y 7/1, Zand: matig fijn, matig grote spreiding, matig afgerond, spoor witte korrels, weinig grijze korrels, spoor zwarte korrels, spoor bont materiaal, Schelpen: spoor scheipmateriaal, spoor scheipgruis, spoor Gastropoda, spoor glimmer, spoor glauconiet	180	0	1	99	0	0	2

B14B0993

1/10

Figure 1.2: Lithological characteristics until 175 cm below ground level (BGL).

1

TNO - Geological Survey of the Netherlands

							В	14B0	993
Diepte (cm) G	rondsoort	Omschrijving	M63	%Lu	%SI	%Za	%Gr	%Os	Ca
175 - 200	zand	zand, zwak siltig, licht-grijs, 5y 7/1, Zand: matig fijn, matig grote spreiding, matig afgerond, weinig grijze korrels, spoor witte korrels, spoor zwarte korrels, spoor bont materiaal, Schelpen: weinig schelpmateriaal, weinig schelpgruis, spoor schelpfragmenten, spoor Hydrobildae, spoor glimmer, spoor glauconiet, weinig zee-egeistekels, spoor glimmer, forami	180	0	4	96	0	0	3
200 - 217	zand	cand, zwak sittig, grijs, Sy 6/1, Zand: matig fijn, matig grote spreiding, matig afgerond, weinig grijze korrels, spoor witte korrels, spoor bont materiaal, Schelpen: spoor schelpmateriaal, spoor schelpresten, spoor glimmer, spoor zee-egelstekels, weinig inslutisels zand, basis scherp. Oom: INZ is UFZ 100mu	150	0	1	99	0	0	2
217 - 218	zand	zand, zwak siltig, donker-grijs, Sy 4/1, Zand: ulterst fijn, zeer kleine spreiding, matig afgerond, weinig grijze korrels, spoor withe korrels, spoor bont materiaal, spoor glauconiet, spoor grove korrels, weinig insluitsels kiel, basis scherp	100	0	4	96	0	0	3
218 - 233	veen	veen, mineraalarm, bruin, 10yr 2/1, Veen: matig amorf, zeggeveen, veel plantenresten, veel riet, veel zegge, veel worteiresten, basis geleidelijk		0	0	0	0	100	1
233 - 257	klei	kiel, zwak silitig, matig humeus, bruin, 2.5y 4/1, weinig plantenresten, weinig riet, weinig zegge, veel worteiresten, basis diffuus		100	0	0	0	10	1
257 - 288	klei	kiel, zwak slitig, zwak humeus, grijs, 5y 4/1, spoor plantenresten, spoor zegge, spoor wortels		100	0	0	0	4	1
288 - 316	klei	kiel, zwak siltig, zwak humeus, grijs, 5y 4/1, spoor plantenresten, spoor riet, spoor wortels, spoor glimmer, spoor detritus		96	4	0	0	4	1
316 - 348	klei	kiel, zwak siltig, zwak humeus, grijs, 5y 4/1, spoor plantenresten, spoor wortels, spoor glimmer, cm-gelaagdheid, zwak gelaagd, Opm.: GCM is Zs3		96	4	0	0	2	1
348 - 400 g 400 - 420	een monster	geen monster basis scherp, Opm.: verstoord; sediment vergelijkbaar met interval 200-218cm							
420 - 439	zand	zand, matig siltig, zwak humeus, grijs, 5y 4/1, Zand: ulterst filn, zeer kleine spreiding, matig afgerond, spoor bont materiaal, spoor plantenresten, spoor wortels, weinig glimmer, spoor detritus, cm-gelaagdheid, weinig gelaagd, weinig leemlagen, spoor kleilagen, basis diffuus, Opm.: WOS1 in toolsel	80	1	15	84	0	1	1
439 - 456	zand	zand, matig sittig, grijs-bruin, 5y 6/1, Zand: uiterst fijn, matig kleine spreiding, matig afgerond, spoor grijze korrels, spoor witte korrels, spoor bont materiaal, weinig glimmer, spoor glauconiet, spoor insluitsels detritus, spoor insluitsels klei. Oom.: verstoord?	100						1
456 - 491	zand	zand, zwak siltig, zwak humeus, donker-grijs, 5y 4/1, Zand: uiterst rijn, matig kleine spreiding, matig afgerond, spoor bort materiaal, weinig grijze korrels, spoor witte korrels, spoor zwarte korrels, weinig glimmer, spoor glauconiet, spoor detritus, spoor insluitsels zand, weinig gelaad, basis diffuus	100	0	1	99	0	1	3
491- 507	zand	zand, zwak siltig, zwak humeus, licht-grijs, 5y 6/1, Zand: ulterst filn, zeer kleine spreiding, matig afgerond, weinig grijze korrels, spoor witte korrels, spoor zwarte korrels, spoor bont materiaal, weinig glimmer, spoor grove korrels, spoor detritus, spoor insluitsels kiel, spoor insluitsels leem, basis diffuus. Omm. foram1	90	1	4	95	0	1	3
507 - 556	zand	zand, matig siltig, zwak humeus, licht-grijs, Sy 6/1, Zand: uiterst fijn, matig kielne spreiding, matig afgerond, weinig grijze korrels, spoor witte korrels, spoor zwarte korrels, spoor bont materiaal, weinig glimmer, spoor glauconiet, spoor grove korrels, spoor detritus, spoor insluitsels kiel, weinig gelaagd, spoor detrituslagen, weinig leemlagen, Opm.: licht verstoord	100	0	12	88	0	2	3
600 - 608	een monster	Opm.: verstoord; eventueel behorende bij 507-556cm							

B14B0993 2 / 10

Figure 1.3: Lithological characteristics until 608 cm BGL.

Section 2: Infiltration period One

Figure 2.1a: The head in the injection well one gravelpack piezometer and the abstraction well gravelpack piezometer (dedicated monitoring well) for infiltration period one.

Figure 2.2a: The head in the injection well two gravelpack piezometer and the abstraction well gravelpack piezometer (dedicated monitoring well) for infiltration period one.

Figure 2.2b: Ditto for infiltration period one.

12

10

Figure 2.3a: The turbidity in the standpipe at the first few days of ASTR operation. Turbidity peaks up to 500 and 1000 NTU are noticed on 30-Oct-2019 and 1-Nov-2019, respectively.

Figure 2.3b: The turbidity in the standpipe showing the remarkable turbid event reaching 900 NTU on 5-Dec-2019.

Inf. period 1 - Recharge flow

Flow (m3/h)

20

18

16

Injectant temperature

Figure 2.4a: Recharge rate (m³/h) for infiltration period one

Figure 2.4b: Recharge rate (m³/h) for infiltration period one

Figure 2.5: The dissolved oxygen in the standpipe shown over a larger time extent. The blue lines show the first infiltration period, indicating a rise in dissolved oxygen content within the stagnant water of the standpipe during standstill due to atmospheric oxygen diffusion.

Linear regression - discrete data points flow (m3/h) to impressed head at 7m distance

Figure 2.6: Linear regression of head rise to recharge flow during infiltration. The regression constant is used to derive the recharge flow during infiltration period one. N = 46.

Section 3: Infiltration Period Two

Figure 3.1: The impressed head rise and drawdown by the automated backflush system during infiltration period two for injection well one. Notice the increase in drawdown with successive backflush events suggesting resistance increase on the borehole wall.

Infiltration Period 2 - Impressed head and drawdown (Injection well 2)

Figure 3.2: The impressed head rise and drawdown by the automated backflush system during infiltration period two for injection well one.

Figure 3.3: Recharge flow (m³/h) during infiltration period two

Figure 3.4: Simultaneous turbidity reading between the drain reservoir ('drainput') and the standpipe ('opvoerbuis'). Notice the significant difference on December 10th, 2020. The drain reservoir showed turbidity readings of approximately 5 NTU while the turbidity in the standpipe reached 600 NTU.

Figure 3.5: Typical trend of turbidity in the standpipe during short injection runs.

Figure 3.6: Typical trend of dissolved oxygen in the standpipe during short injection runs.

Section 4: Infiltration Water Quality

Ionic balance (IB)

Sample Information	Unit	Range (min/max) (n=19)	Average (n=19)					
рН	-	6.98 - 8.20 (n=12)	7.25					
EC ₂₅	μS/cm	829 – 1193 (n=9)	1019					
Bicarbonate (HCO ₃ -)	mg/L	414 – 441 (n=3)	424					
Sulphate (SO ₄ ²⁻)	mg/L	117 - 351	223					
Phosphate (PO ₄ ³⁻)	mg/L	1.9 - 18.3	11.3					
Nitrate (NO ₃ -)	mg/L	6.1 - 49.9	23.7					
Nitrite (NO ₂ -)	mg/L	<0.1	<0.1					
Fluoride (F ⁻)	mg/L	0.36 - 0.47	0.42					
Bromide (Br ⁻)	mg/L	0.20 - 0.28	0.23					
Chloride (Cl ⁻)	mg/L	107 – 222	151					
Sodium (Na ⁺)	mg/L	71 - 107	91					
Calcium (Ca ²⁺)	mg/L	152 - 244	191					
Magnesium (Mg ²⁺)	mg/L	25 - 40	33					
Potassium (K ⁺)	mg/L	50 - 74	60					
Iron (Fe ²⁺)	mg/L	0.07 – 1.56	0.20					
Manganese (Mn ²⁺)	mg/L	0.28 – 0.73	0.44					
Boron (B ³⁺)	mg/L	0.20 - 0.28	0.23					
Strontium (Sr ²⁺)	mg/L	0.60 - 0.96	0.75					
	PHREEQC n	nodelled (n=3)						
Assumed temperature	°C	8.0	0					
Assumed O ₂	mg/L	5.0	0					
Ferrihydrite	-	2.83 -	2.99					
Calcite	-	0.78 -	1.17					
Hydroxyapatite	-	6.68 - 8.49						
Rhodochrosite	-	0.33 -	0.84					

-1.6 to -5.2

%

Section 5: Images shot at the ASTR site

Figure 5.1: Metallic sheen on stagnant water within the standpipe taken November 25th, 2020 after a 41-day standstill.

Figure 5.2: Metallic sheen on stagnant water within the standpipe taken November 25th, 2020 after a 41-day standstill.

Figure 5.3: Several shots of the conditions within the standpipe taken November 25th, 2020 after a 41-day standstill. A thick mat of microbial deposits covered the pipe interior and seemed to thicken with depth. The image below shows the standpipe material colour.

Figure 5.4: Images taken on top of the container, showing the top of the standpipe in contact with atmospheric oxygen and the interior (right).

Figure 5.5: Camera shot of the conditions within the main tile outlet discharging tile drainage water to the drain reservoir. A mat of microbial deposits similar to that in the standpipe (fig. 5.3) is seen.

Figure 5.6: Image taken of the disc-filters after the head is removed. The filter is covered in brown slimy material. Shot taken November 25th, 2020 after a 41-day standstill.

Figure 5.7: The automated backflush pump removed prior to the well rehabilitation on November 25th, 2020. A thin layer of brown glutenous material is discerned suggesting iron oxides.

Section 6: Micrographs (digital light microscope)

Figures 6.1 correspond to micrographs taken of disc-filtrate material (S2). Figures 6.2 correspond to micrographs taken of material removed from the standpipe (S3). Figures 6.3 correspond to the material removed during the well rehabilitation on November 25th, 2020 (S1.2). Figures 6.4 correspond to material removed during the well rehabilitation between 2nd and 4th February 2020 (S1.1).

Section 7: Well Rehabilitation Sample Analysis

Table 7.1: Analytical results on the chemical constituents of digested clogging material taken during the well rehabilitation between February 2nd and 4th, 2020.

Sam	ple Inform	ation	Material		Constituents								
		Standing well = 0.3m ³	TSS removed	CORG	S	Fe	Са	Р	Elemental Sum				
Cycle	Sample no.	Standing well fraction evacuated/well screen sample location	mg	ppm	ppm	ppm	ppm	ppm	%				
			Infilt	ration Well	1								
	1	90L	717	166,889	44,802	104,503	44,547	71,166	43				
Initial	2	450L	836	118,834	42,630	82,964	49,260	56,846	35				
backflush	3	720L	702	113,175	42,528	153,764	44,477	89,681	44				
	4	1440L	296	110,332	44,683	243,956	37,772	134,745	57				
	1	above filter	2,327	19,865	40,655	27,514	0	13,834	10				
Mechanical	2	top filter	3,688	22,629	63,283	25,153	3,223	14,154	13				
Cleaning	3	middle filter	66,948	11,383	46,075	3,429	10,060	1,913	7				
(jetting)	4	¾ filter	2,840	51,619	55,301	57,791	13,638	33,082	21				
	5	bottom filter	22,926	16,789	59,074	19,512	35,352	6,105	14				
De et he el fluch	1	300L	997	43,783	54,150	53,422	34,936	27,301	21				
Post backflush	2	1260L	0	0	0	0	0	0	0				
			Infilt	ration Well	2								
	1	90L	353	193,007	121,005	134,120	36,838	97,100	58				
Initial backflusb	2	450L	436	193,006	107,510	154,749	40,800	107,361	60				
Jackhush	3	720L	287	110,610	81,745	331,773	41,183	150,218	72				
Jetting	1	¼ filter	1,620	40,305	59,254	60,254	8,120	33,263	20				
Post backflush	1	90L	731	93,972	49,622	145,928	29,721	89,710	41				

	Pumping test (post)	Jetting		Pumping test (initial)		test (post)	Pumping		(jetting)	cleaning	Mechanical			test (initial)	Pumping		Cycle			Well Regene	
	1	1	ω	2	1	2	1	5	4	ω	2	4	4	ω	2	4	Sample no.		Sample info	ration - Sample	
ılts (anion elements) on the hydro veen February 2 nd and 4 th , 2020.	90L Dochem	1/4 filteral	1440L prope	450L Prrties	90L of sa	1260L mple	300L es tak	bottom filter eff	3/4 filtering	middle filter	top filter	above filter	1440L	720L	450L	30L	Approximate pumped volume/well screen sample location	standing well = 270 L	ormation	fluid-fraction data (anions	
	7.36	7.38	7.02	7.21	7.28	7.36	7.51	7.31	7.29	7.23	7.18	7.17	7.17	7.19	7.27	7.27	,	рH		-	
	1356	1357	1357	1498	1508	1371	1370	1391	1401	1348	1360	1353	1365	1412	1513	1489	µS/cm	EC ₂₅	Lat		
	11.6	11.8	11.8	11.8	11.6	12.1	11.7	11.5	11.8	11.8	11.6	11.9	11.4	11.4	11.5	11.6	°c	-	ooratory a		
	1.95	1.33	1.42	7.98	11.20	1.55	2.57	2.34	2.60	2.74	3.16	1.34	1.88	2.45	11.90	8.40	NTU	Turbidity	analysis		
	24.4	21.7	24.2	47.2	49.7	20.0	20.9	19.7	20.7	20.4	21.2	21.7	23.1	28.3	49.1	47.9	mg/L	DOC			
	447.05	417.79	409.83	631.40	640.44	425.78	434.05	484.74	429.82	421.76	414.64	410.35	455.14	475.95	651.03	620.41	mg/L	HCO3.			
	208.80	208.31	209.37	171.43	136.23	200.66	201.41	202.70	206.38	207.31	205.86	207.09	203.64	193.85	166.93	166.11	mg/L	SO42-			
	12.1	7.35	7.55	32.81	35.16	4.90	6.89	4.37	6.17	6.43	7.88	7.75	8.73	18.39	38.01	36.43	mg/L	PO₄ ^{₃.}			
	5.98	6.70	9.71	3.45	11.79	4.21	3.69	3.45	4.14	4.35	5.63	3.49	1.31	1.05	0.48	1.09	mg/L	NO³.	Anio		
	0.00	0.00	0.22	7.52	0.00	0.00	0.00	0.35	0.22	0.38	0.29	0.76	1.65	2.48	4.43	4.63	mg/L	NO2.	suc		
	0.39	0.38	0.36	0.41	0.42	0.39	0.42	0.41	0.38	0.38	0.38	0.38	0.37	0.38	0.43	0.42	mg/L	Ţ			
	0.33	0.33	0.32	0.32	0.37	0.32	0.32	0.32	0.32	0.32	0.32	0.32	0.33	0.33	0.37	0.37	mg/L	Br			
	120.29	120.50	120.08	120.29	120.76	121.78	122.67	122.46	120.42	121.20	121.32	121.93	121.43	121.75	122.45	122.41	mg/L	Ċ			

Pumping test (post)	Jetting		Pumping test (initial)		test (post)	Pumping		(Jetting)	cleaning	Mechanical		Pumping test (initial)			Pumping test (initial)				Well Regener
1	Ŀ	ω	2	1	2	1	5	4	ω	2	1	4	ω	2	1	Sample no.		Sample infor	ation - Sample f
90L	1/4 filter	1440L	450L	30L	1260L	300L	bottom filter	3/4 filter	middle filter	top filter	above filter	1440L	720L	450L	30L	Approximate pumped volume/well screen sample location	standing well = 270 L	mation	luid-fraction data (catior
ochei	7.38CC	7.02Pi	7.21pe	rtie:	7.30f	sām	7.3 ple:	7.290	7.23h	7.18 dari	7.17g	7.17	7.19	7.27	7.27		рH		(s)
1356	1357	1357	1498	1508	1371	1370	1391	1401	1348	1360	1353	1365	1412	1513	1489	μS/cm	EC25	Lat	
11.6	11.8	11.8	11.8	11.6	12.1	11.7	11.5	11.8	11.8	11.6	11.9	11.4	11.4	11.5	11.6	ĉ	-	boratory a	
1.95	1.33	1.42	7.98	11.20	1.55	2.57	2.34	2.60	2.74	3.16	1.34	1.88	2.45	11.90	8.40	NTU	Turbidity	analysis	
24.4	21.7	24.2	47.2	49.7	20.0	20.9	19.7	20.7	20.4	21.2	21.7	23.1	28.3	49.1	47.9	mg/L	DOC		
80.18	78.98	79.31	81.79	79.60	79.48	80.39	86.90	80.33	80.16	79.61	78.33	80.42	79.23	81.22	80.80	mg/L	Nat		
180.44	172.81	171.21	221.75	215.96	171.51	173.54	180.85	173.49	171.81	170.24	170.07	179.56	183.53	225.89	216.74	mg/L	Ca ²⁺		
4.50	2.73	2.80	14.17	15.76	1.85	2.65	1.81	2.33	2.44	2.89	2.89	3.34	6.90	16.98	15.98	mg/L	₽	Major	
95.24	94.33	91.23	82.57	64.14	90.97	92.46	103.55	93.70	96.07	91.73	90.55	94.16	88.58	75.78	76.55	mg/L	s	Cations	
29.67	29.32	29.27	29.90	29.34	29.47	29.76	32.08	29.56	29.63	29.41	29.44	29.88	29.77	30.55	30.26	mg/L	Mg ²⁺		
49.90	49.58	48.55	53.00	54.41	51.11	51.01	55.51	49.82	51.14	49.99	49.95	50.30	49.34	52.36	52.86	mg/L	r ;		
42.22	28.84	41.62	2620.47	3917.34	27.13	32.21	27.03	35.12	35.43	35.16	34.19	46.73	149.54	3588.64	3018.71	µg/L	Fe ²⁺		
311.33	211.34	385.87	244.33	664.77	485.66	468.51	511.52	452.54	514.48	447.37	465.97	473.38	441.26	356.07	546.61	μg/L	Mn ²⁺		
13.68	13.62	11.79	41.29	45.86	9.66	9.46	10.12	9.25	10.03	12.03	10.43	11.53	23.26	40.99	34.83	µg/L	As ^{3*}		
6.73	14.24	1.48	3.63	6.23	2.62	4.78	5.21	10.57	34.10	16.70	15.92	2.84	2.71	4.19	4.28	µg/L	Cu ²⁺	Minor Cati	
6.95	13.95	6.26	7.80	21.64	7.32	7.63	9.54	11.17	61.79	15.55	19.85	6.50	6.90	9.51	12.11	μg/L	Zn ²⁺	ons	
1866.32	1854.52	1862.69	1867.01	1851.34	1868.72	1888.73		1857.99	1856.58	1859.97	1870.98	1896.26	1882.85	1866.82	1876.96	µg/L	Ni ^{2*}		
673.62	635.01	672.37	1135.57	1071.46	614.57	628.79	647.20	634.18	641.39	651.86	647.45	685.22	783.51	1135.53	1079.86	μg/L	Sr ²⁺		

ytical results (cation elements) on the hydroc ation between February 2nd and 4th, 2020.

Figure 7.2: Sediment classification on regeneration samples.

div slit V12 screen 5mm L510 LL0. 19 W0.05 35 mg (Coupled TwoTheta/Theta)

Figure 7.4: XRD analysis on the second backflush sample from the first backflush procedure during the well rehabilitation between February 2^{nd} and 4^{th} , 2020.

div slit V12 screen 5mm L510 LL0.11 W0.05 90 mg (Coupled TwoTheta/Theta)

Figure 7.5: XRD analysis on the third sample taken during the mechanical cleaning procedure during the well rehabilitation between February 2nd and 4th, 2020.

Figure 7.6: Simple acidification test with 1% HNO3 to investigate the presence of metal-oxides in removed suspended material from the well rehabilitation on November 25th, 2020 (left column, top before acidification, bottom after acidification). Middle column corresponds to the material removed from the disc filters and the right column corresponds to material removed from the standpipe interior.

Section 8: Submersible camera inspection injection wells

Figure 8.1: Large biofilm depicted near the middle filter screen shot after the first clogging event from infiltration period one.

Figure 8.2: Dark material (organic) within filter slots with staining on the well interior.

Figure 8.3: Very clean filter slots and well interior after the well rehabilitation between February 2nd and 4th, 2020.

Figure 8.4.: In-well inspection on June 19th, 2020 after a standstill period of 141 days since the well rehabilitation. Images are taken at the same horizons as figure 8.3. Dark material has filled the slots during shutdown likely relating to microbial growth