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ABSTRACT

Analysing and developing turbomachinery at off-design conditions requires the usage of robust and efficient
Computational Fluid Dynamics (CFD) solvers. With the introduction of the computer, many advancements
have been made in the field of numerical methods involving these flow problems. These numerical meth-
ods are used in order to solve these complex flow structures that are formed due to the interaction between
the rotating machinery and the fluid. With the emergence of new design paradigms using computer-aided
optimisation, novel solver methods are required which are able to deal with the increase in computational
cost and the convergence difficulties following off-design conditions. One of the CFD solvers that is used for
turbomachinery design is the open-source software SU2. SU2 is currently developed partially at the Delft
University of Technology, where an increase in solver performance with respect to turbomachinery aerody-
namics is greatly desired. The current work provides a numerical study of SU2’s current performance with
respect to turbomachinery analysis, as this is currently unknown.

The current performance of SU2 is to be analysed using steady RANS turbomachinery simulations. The
research conducted by Xu et al. [1] will be used as reference data in order to validate SU2’s performance
together with data obtained from the CFD solvers CFX and Numeca. The research conducted by Xu et al.
resulted in the development of their NUTSCFD solver, which showed strong performance with respect to
turbomachinery analysis. Four test cases are set up and used in order to analyse SU2. The test cases that
are considered for the numerical study include: the NACA 0012 airfoil, the LS89 turbine cascade, the MTU
centrifugal compressor and the 1.5 stage ETH turbine. The first three test cases are validated using the results
obtained by the NUTSCFD solver, where the ETH turbine is validated using CFX and Numeca. Following these
test cases, SU2’s performance is analysed using the residual behaviour. Xu et al. dedicate their performance
increase to be the result of the Newton-Krylov method that is implemented in their NUTSCFD solver. SU2
also includes a Newton-Krylov solver, but its performance with respect to turbomachinery is also unknown.
A performance assessment with respect to SU2’s Newton-Krylov method involving turbomachinery analysis
is therefore conducted as well.

The results obtained using the NACA 0012 and LS89 test cases show a discrepancy in solver performance
involving SU2. With respect to SU2’s Newton-Krylov solver, the NACA 0012 test case shows a reduction in
non-linear iterations where this is not found for the LS89 test case. Both results showed however a large dif-
ference in performance when compared to the NUTSCFD solver, where SU2’s standard solver was also unable
to match NUTSCED. The results obtained following these test cases have led to the development of the MTU
test case, where the MTU test case was to be used in order to provide a more accurate comparison between
SU2 and NUTSCED. Instead, SU2 was unable to run the MTU test case, where the solver showed stalling be-
haviour. SU2’s performance with respect to axial turbines is tested using the ETH test case, where the test
case is validated using data obtained by the research field. This analysis provided promising results, where
SU2 was able to provide results similar to that of CFX and Numeca. A comparison was also made between the
results of the ETH test case obtained using SU2’s standard solver and the Newton-Krylov method. Although
SU2 was able to reach convergence using the standard solver, the Newton-Krylov solver showed stalling be-
haviour for the ETH test case as well.

The stalling behaviour of the MTU and ETH test cases did not allow for the analysis of the Newton-Krylov
solver in SU2. Additional research has been conducted to investigate the reason for the observed behaviour,
but this did not result in a solution. This thesis provides insight into the current strengths and weaknesses of
SU2 with respect to turbomachinery analysis. It was found that the Newton-Krylov method in SU2 currently
underperforms when compared to the NUTSCFD solver. In addition, it was also shown that SU2 provides
similar results to CFX and Numeca with respect to axial turbomachinery analysis. Many recommendations
are made with respect to the final outcome of the current work, where this thesis provides several opportuni-
ties for further research.
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INTRODUCTION

Computational Fluid Dynamics, also known as CFD, plays an important factor in the field of aerodynamics.
Fluid flows can be described using mathematical equations, but a direct solution to these equations is yet to
be found. Although obtaining a direct solution is therefore not possible, the system of equations can be solved
using iterative methods. These iterative methods estimate the solution of the system, where at every iteration
the error of this solution is assessed. Following this principle, it is therefore possible to reach the solution of
the system of equations, thus solving the flow problem up to a certain accuracy. These problems are generally
solved using a computer which is very capable of solving these iterative methods. With the introduction of the
computer, many advancements have been made in the field of numerical methods involving flow problems.
Although the computer might be capable of reaching the solution of the system of equations, it is generally
not desired due to its increased computational cost, as a more accurate solution requires additional compu-
tation iterations. It has therefore been accepted within the field of CFD that obtaining an accurate estimate
of the true solution is sufficient when analysing a flow problem [5]. Manipulating the iterative method has
therefore been a relevant topic in the field of CFD, as advancements improve the convergence behaviour of
the solver. Over the years this has led to the development of several iterative methods, which improved the
solvers’ convergence rate and stability [6]. Many different software solutions exist which make use of these
numerical methods in order to simulate flow problems. One of these solutions is the open-source software
called SU2, which recently improved its turbomachinery capabilities. This update should improve the tur-
bomachinery module within SU2, but it is currently unknown to what extent. A numerical study is therefore
required in order to assess SU2’s current performance with respect to turbomachinery flow simulations. In
addition, novel numerical methods recently studied by Xu et al. [1] showed an increase in solver performance
specifically for turbomachinery flow simulations. Xu et al. developed a CFD solver, called NUTSCFD, which
makes use of a Newton-Krylov method in order to solve the highly nonlinear system of flow equations. This
method uses Newton iterations in order to linearize the system of nonlinear equations, which are subse-
quently solved by a linear generalized minimal residual (GMRES) solver. This novel method is also available
within SU2, where it is currently unknown how the new turbomachinery module interacts with the Newton-
Krylov solver. The current work therefore provides a numerical assessment of SU2’s performance and that of
the Newton-Krylov solver within SU2, using turbomachinery flow problems. The SU2 version used for this is
version 7.5 (specifically the restuct_singlezone’ git branch).

1.1. MOTIVATION

Turbomachinery aerodynamics can be characterized by complex flow structures that are formed due to the
interaction between the rotating machinery and the fluid. This generally involves complex structures which
could include three-dimensional flows and other phenomena such as shock waves. These complex systems
require a robust solver in order to reach convergence efficiently. Although the computational power of com-
puters has increased significantly over the years, developing and researching efficient iterative methods is
still very relevant. New design paradigms have emerged which use automatic design optimization, allow-
ing the computer to change designs based on simulation results. This can improve the performance and
efficiency of a design, but may require extensive computation power as running multiple CFD simulations
is required. Inefficient and diverging simulations are therefore especially problematic, as this could have a
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significant negative effect on the final result. The turbomachinery CFD solver part of SU2 has received an
update where it is developed at the Power & Propulsion research group at the TU Delft. The updated turbo-
machinery module should improve its solver convergence and efficiency but requires a numerical study as
its current performance is unknown. The goal of the thesis is therefore to perform a thorough assessment of
the performance of the SU2 CFD software for turbomachinery flow analysis. In addition, the Newton-Krylov
solver currently implemented in SU2 is tested as well, as Xu et al. showed promising solver performance in-
volving turbomachinery. Xu et al. were able to increase the robustness of their solver, while also reducing the
number of iterations required in order to reach convergence. Xu et al. dedicate their performance increase
to be the result of the Newton-Krylov method that is implemented in their NUTSCFD solver. SU2 already
includes a Newton-Krylov solver, but its performance with respect to turbomachinery analysis is also un-
known. A performance assessment therefore has to be done in order to fully investigate the efficiency of this
method as well. The analysis of SU2’s performance with respect to turbomachinery analysis provides insight
into SU2’s current behaviour, which should identify its strengths and weaknesses. This thesis will therefore
contribute to the further development of the SU2 CFD solver that is used in order to obtain state-of-the-art
turbomachinery analysis results.

1.2. RESEARCH GOALS AND SCOPE

The objective of the research is to investigate SU2’s performance with respect to turbomachinery flow analy-
sis. This is achieved by comparing SU2’s results to that of the scientific field. SU2’s performance will be tested
by using CFD results obtained by the CFD solvers CFX, Numeca and NUTSCFD, where additional experimen-
tal data is compared as well. Following these objectives, several research questions can be formulated which
should be answered to be able to come to a comprehensive conclusion. The first research question that can
be proposed, being the primary research question, is formulated as follows:

1. To what extent can SU2 be used in order to analyse turbomachinery flow problems? The primary
research question regards to the assessment of SU2 and its turbomachinery capabilities. It is currently
unknown to what extent SU2 is able to provide accurate results with respect to turbomachinery flow
analysis. A numerical study is therefore to be conducted in order to analyse its current performance. In
order to support the primary research question, several sub-questions can be posed with respect to the
primary research question.

(a) Towhat extent does SU2 provide results that coincide with other CFD solvers involving turbo-
machinery flow simulations? SU2’s performance involving turbomachinery simulations is cur-
rently unknown. SU2 should provide results that are similar to that of other CFD solvers, but this
is to be confirmed. Verifying the accuracy of SU2 using other CFD solvers should provide valuable
insight into its current performance, allowing for the further development of SU2.

(b) To what extent does the Newton-Krylov solver change the performance of SU2 with respect to
turbomachinery flow simulations? A Newton-Krylov solver has been implemented in SU2, where
its performance involving turbomachinery flow simulations is to be analysed. This requires an
analysis of the Newton-Krylov method both involving normal and turbomachinery simulations.
Analyzing the difference in performance should provide a greater assessment of the performance
of the Newton-Krylov method in SU2. The performance of SU2 can be assessed by using the resid-
ual of the solver and the number of iterations required in order to reach convergence.

(c) Towhat extent does the performance of the Newton-Krylov solver in SU2 differ from the NUTSCFD
solver with respect to turbomachinery applications? Studies conducted by Xu et al. [1] showed a
significant increase in convergence performance, especially with respect to turbomachinery sim-
ulations. Comparing SU2 to the NUTSCFD solver should therefore provide an indication of SU2’s
current performance with respect to other research in the field.

After analysing the current performance of SU2 and the implementation of the Newton-Krylov solver,
additional research is required which should help with improving the convergence efficiency of SU2.
Another research question can therefore be defined with respect to this topic:

2. What are potential areas of the SU2 code that could be improved in order to increase the Newton-
Krylov solver performance with respect to turbomachinery applications? This research question
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involves the identification of areas of interest with respect to the SU2 codebase that are relevant for
increasing its convergence performance. The primary research question focuses on investigating SU2’s
performance using comparative analysis, where the secondary research question focuses on how this
performance might be improved.

(a) What algorithms and settings in SU2 can be identified which have a large effect on the rate of
convergence of the Newton-Krylov solver? Previous literature research conducted on Newton-
Krylov solvers should provide an overview of the areas which play a crucial role in the performance
of the solver. By comparing the current SU2 code to these relevant algorithms, areas of interest
can be identified within the SU2 codebase which might be improved.

(b) To what extent does changing the relevant algorithms and settings which affect the Newton-
Krylov solver within SU2 have an effect on the convergence rate? Investigating the difference
in convergence behaviour with respect to different solver settings can give an indication of algo-
rithms that play a crucial role in the convergence efficiency. Investigating these settings could
discover hidden performance of SU2.

Following the defined questions, the primary research question aims to determine the current perfor-
mance of SU2, while the secondary research question focuses on how this performance might be improved
using the Newton-Krylov method. The thesis will therefore set out to develop different test cases which are to
test SU2’s performance with respect to turbomachinery. These results are compared to the results following
CFX, Numeca, the NUTSCFD solver, and experimental data, where additional research is conducted with re-
spect to the solver framework of SU2. The scope of the thesis will therefore focus on the performance of SU2
with respect to turbomachinery. Both axial and radial flow machines are to be tested, where the number of
stages is limited in order to obtain results efficiently. The thesis will focus mainly on internal flows, where a
singular test case is used to test SU2’s external flow performance. The codebase of SU2 is analysed as well,
where suggestions will be made with respect to relevant algorithms that might require further research. The
relevant algorithms that influence the Newton-Krylov method are analysed and explained, but no new code
additions are made within the current work with respect to SU2. This is considered to be outside the scope of
this thesis.

1.3. THESIS OUTLINE

The theoretical background supporting the thesis can be found in chapter 2. In this chapter relevant concepts
involving SU2 and the Newton-Krylov solver are discussed. The governing equations are derived in terms of
the residual, where the linearization following Newton’s method is explained. After that, the GMRES linear
solver is described which is used in order to solve the linear system obtained from Newton’s Method. Both
SU2 and the challenges found for turbomachinery problems are discussed, where the chapter is concluded by
an evaluation of additional relevant solving methods. Chapter 3 discusses the development of the test cases
that have been set up in order to test SU2’s current performance. A detailed explanation is given following
the creation of these test cases, where the chapter also contains a discussion evaluating the validity of the
configurations. The results obtained using these test cases are shown in chapter 4, where these results are
interpreted and compared to the reference literature. The validity of these results is discussed, where the
observed data is commented upon. Based on the research conducted within this thesis, answers are provided
to the research questions in chapter 5. Finally, topics of interest that can be considered for further research
are discussed in chapter 6. These topics are obtained resulting from the conclusions found within this thesis,
where a motivation is provided with respect to their relevance to the research field.






THEORETICAL BACKGROUND

This chapter contains the theoretical background which supports the work done within this thesis. The litera-
ture review therefore provides an overview of the advancements and challenges in the field of Computational
Fluid Dynamics. The focus of the thesis is to investigate SU2’s turbomachinery performance and its Newton-
Krylov solver. SU2 is therefore compared to the solver developed by Xu et al. [1], and the CFD solvers CFX
and Numeca. Xu et al. have developed a steady computational fluid dynamics solver based on the Reynolds-
averaged Navier-Stokes equations. RANS solvers provide good accuracy of the flow at low computational
costs, but behave relatively poorly when dealing with challenging off-design conditions [7]. This is especially
relevant with respect to turbomachinery since turbomachines operating at off-design conditions create com-
plex flow structures. As mentioned before, it is therefore desirable to develop robust and efficient solvers
when analysing turbomachinery problems [8]. This thesis includes an analysis of the methods that are used
within the NUTSCFD solver, where this chapter provides the theoretical background for these methods. Sec-
tion 2.1 provides the basis on which these methods are built, explaining the derivation of the residual from the
governing flow equations. This section is followed by section 2.2 which explains how the obtained non-linear
system of equations is solved using Newton’s method. The procedure that is used in order to solve the linear
system of equations obtained from Newton’s method is explained in section 2.3. This section is followed by
section 2.4, which provides an analysis of SU2’s framework and the challenges commonly encountered when
analysing turbomachinery problems. The chapter is concluded with section 2.5 which analyses additional
relevant methods which could be considered in order to improve SU2’s performance.

2.1. FUNDAMENTALS OF CFD

The current thesis conducts solver performance analysis by simulating steady turbomachinery problems.
These turbomachinery problems are simulated by solving the flow equations that represent these problems.
The current section contains an explanation of the governing flow equations, where the residual equation is
derived as well. The residual is fundamental when simulating flow problems as it provides an indication of
the performance of the solver and the accuracy of the calculated solution. This section therefore starts with
the definition of the governing equations (section 2.1.1), followed by the derivation of the steady residual
(section 2.1.2) and is concluded with the derivation of the unsteady residual (section 2.1.3).

2.1.1. GOVERNING EQUATIONS

Within fluid mechanics the governing equations for fluid motion follow from the conservation equations.
These equations can be derived from the Navier-Stokes equations, which results in the equations for conser-
vation of mass, momentum and energy. The differential form of these equations is defined following equation
2.1.

O0W,
+V-(WV)==V-Fp+p(Fg) +Fyisc
ot
P 0 0 2 2.1)
with We=|pV|, F,=| p |, Fa=| £ |, Er=ple+—)
E; p-V g+£f-v
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Within equation 2.1 V is the vector of the flow velocities, p the pressure, f the specific net body forces, g
the rate of heat addition and e the internal energy. In addition F,;, represents the forces and rate of work
done on the fluid due to viscous effects. A more detailed derivation of the conservation equations is given
by Anderson [5], which is beyond the scope of this thesis. Equation 2.1 is a system of non linear equations
which is used in order to model and simulate flow behaviour. Solving this system of equations is therefore
essential when solving flow problems. At the time of writing no analytical solution for the nonlinear conser-
vation equations has been obtained, where generally an approximate solution is calculated instead. One way
of solving this system of equations is by making use of Computational Fluid Dynamics. The governing flow
equations are discretized, where a grid of discrete points is obtained. This results in a system of equations re-
lating the different flow field properties at each grid point to the other grid points. By solving these relations
a web of points is obtained which indicate the behaviour of the flow at each point. By increasing the number
of points, the resolution’ of the flow is increased, where a more accurate result is obtained. Increasing the
number of points to infinity would therefore result in an approximate solution which approaches the analyt-
ical solution. Increasing the resolution to infinity is however often not required nor computationally viable,
where a solution with a small error can provide sufficiently deemed results.

The principle of solving the nonlinear flow equations using discretization is the basis for CFD. Different
techniques are developed over the years where generally an iterative method is used in order to obtain the
solution. These methods calculate a solution iteratively, by refining an approximate solution. Every itera-
tion a new estimation of the final solution is done, where the accuracy of this solution is determined. If the
solution is sufficiently accurate the solver is regarded to be converged. Generally CFD problems are solved
iteratively, where an estimated guess is done with respect to the solution. This is an iterative procedure where
for every iteration the solution is assessed. In order to determine whether the solver has converged, a mea-
sure is required which is able to test the estimate solution. Within CFD this is done by calculating the residual
of the solution, which determines the error between the estimate solution and the real solution. The aver-
age of the residual over all equations of all control volumes in the computational domain is then used as
an indicator whether the iterative solver has converged for a given problem. In essence the residual is the
difference between the left and right side of the problem, also called the solution dis-balance. It should be
noted that within the current work the RANS equations are used in order to simulate the flow problems. The
Reynolds-Averaged Navier-Stokes equations use the concept of mean fluid flow variables together with fluc-
tuating components in order to model the flow behaviour. Full derivation of these equations is outside the
scope of the current work.

2.1.2. THE STEADY RESIDUAL

From section 2.1.1 it can be concluded that the governing nonlinear system of equations (equation 2.1) could
potentially be solved using an iterative method. In order to dictate whether the problem has converged to a
solution, a method is required which is able to assess the accuracy of the solution at the given iteration. This is
done using the residual. Let the nonlinear flow equations mentioned in section 2.1.1 be approximated using
equation 2.2, where equation 2.2 involves an unsteady flow problem. Within equation 2.2 F(W) is a vector
containing the governing functions, and W represents the vector containing the unknown flow variables W =
(p,pV,EpT.

oW

— +FW)=0 2.2)
ot

Solving equation 2.2 with %l;’ = 0 would therefore result in the steady solution W. In order to obtain
solution W, let W” be the computed approximation of the solution at given iteration n using an iterative
method. By comparing both W and W” an indication can be obtained of the current error of the current
approximated solution (equation 2.3).

e=W;-w" (2.3)

Since solution W is unknown, it is however not possible to compute the error e. W and W" can however
be related using the vector of the governing functions, giving the residual r (equation 2.4). By substituting
the steady formulation of equation 2.2 into equation 2.4, the steady residual can be obtained where it is
independent of solution W (equation 2.5).

r=F(Wy)-FW") (2.4)
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RW™ =0-FW" (2.5)

Since both the error e and the residual r represent the comparison between the current approximation
and final solution, the iterative method converges if r is equal to 0. This is due to the comparative nature of
both such that if r is equal to 0, e has to be equal to 0 [9]. Rewriting equation 2.5 finally results in the steady
residual at every iteration n following equation 2.6.

RW™"=-FW™" =0 (2.6)

2.1.3. THE UNSTEADY RESIDUAL

The residual mentioned in section 2.1.2 involves the derivation of the residual for a steady flow problem.
Kamenetskiy et al. [10] indicate the relevance of using an unsteady residual as opposed to a steady resid-
ual when solving for a steady-state solutions. By using the unsteady residual in combination with Newton’s
method, the nonlinear iterations are able to get around local extrema, improving the stability of the solver.
Since the steady residual is defined following equation 2.6 and since F(W) represents the steady governing
equations, the unsteady governing equations could be rewritten to the unsteady residual following equation
2.7. Within equation 2.7 R(W) represents the steady residual and ‘%’ the time derivative of the flow variables.

w
RWY = a(?_t +R(W)=0 (2.7)

Finding the steady solution for the unsteady residual using an iterative method requires the discretization
of equation 2.7. Equation 2.8 can be derived by discretizing equation 2.7 implicitly. Within equation 2.8 At is
the size of the timestep and W" is the estimate flow solution at timestep n.

Wn+l —wn
R"™=————— +RW"™ =0 (2.8)
At
In order to solve equation 2.8, the governing equation can be rewritten to a linear system of equations.
This can be done by creating a linear approximation of the nonlinear term R(W) using the first-order Taylor
polynomial (equation 2.9).

dR(W™)

e W (2.9

RW™ 1) = ROW™) +

By substituting equation 2.9 into equation 2.8, the unsteady residual can be rewritten to the standard

matrix-vector notation for a linear system of equations. By defining AW = W”*! —W" the governing equation
becomes equation 2.10, which can finally be rewritten to equation 2.11.

AW R(W"
Ru”SEE+R(Wn)+%AW:0 (210)
I ORW"
R = (A_t * —a;v" ))AW =-R(W") 2.11)

Within equation 2.11, I is the identity matrix and R(W™") is the steady residual which is the flux term.
Equation 2.11 represents the linear approximation of the temporal discretized unsteady residual. The form
of equation 2.11 is analogous to that of a linear matrix problem Ax = b, where the system could therefore be
solved using matrix inversion. Solution x = A~! b is for example calculated by obtaining the inverse of matrix
A. Solving the linear system of equations following matrix inversion is however only to be considered for small
systems, as this would otherwise be computationally unviable due to time and memory constraints. Since
typically flow simulations involve large systems of equations due to grid sizing, it is therefore not possible to
solve the system following matrix inversion. Instead iterative solvers such as GMRES are used, which solve
the linear system of equations by calculating an approximate solution.
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2.2. SOLVING THE NONLINEAR FLOW PROBLEM

Section 2.1.3 resulted in the reformulation of the governing equations into the unsteady residual of the flow
problem. Equation 2.11 can be rewritten to PAW = —R(W"), where the solution is found if the nonlinear
equations R(W) = 0. The procedure of approximating the nonlinear residual using the first-order Taylor
polynomial and solving for 0 iteratively is called the Newton-Raphson method. In order to solve the nonlin-
ear equation R(W) Newton’s method uses consecutive guesses which are calculated using iterations. Every
iteration a new guess is done based on the previous iteration, resulting in the approximate solution to the
nonlinear equations when using sufficient amount of iterations. This method does not solve the system di-
rectly, where therefore the exact solution is not found. Instead the residual of the final guess is determined
which should meet the predetermined imposed accuracy of the solution. An example of Newton’s method
can be seen in equation 2.12. In order to solve for x in f(x) = 0, f(x) is rewritten resulting in the iterative
method. An illustration of this method can be seen in figure 2.1, using an arbitrary function f(x). Within
figure 2.1 the dashed lines represent the tangent at every step n. It is shown that using a sufficient number
of iterations n would result in x being equal to x*, with x* being the root of f(x), thus being the solution to
fx)=0.

f (xn)
f/ (xn)

) =0= xp1 =%~ (2.12)

Figure 2.1: Example of Newton’s method for function f(x) [2]

Newton’s method can therefore provide a sufficiently accurate result to a nonlinear equation while not
solving the problem directly. It is often not necessary for the final solution to be equal to x*, as this level
of accuracy is often considered to be trivial. This core principle is especially relevant when using complex
nonlinear systems that are difficult to solve, such as systems involving the nonlinear flow models. In essence
equation 2.12 and equation 2.11 are the same problem. When starting the solving procedure of the nonlinear
system, an initial guess W is used which results in the linear problem PAW = —R(W?). This linear problem
is to be solved in order to determine AW and thus W'. Solving for W! results in one Newton iteration, where
for the next iteration W' is used as the initial guess. Newton’s method therefore results in a linear problem
which is to be solved in order to do a single Newton iteration. It has been shown that Newton’s method can
provide a successful strategy for solving complex nonlinear systems by creating a linear problem. Different
methods can be considered to solve the nonlinear problem, but Newton’s method has been chosen due to its
strong error-damping capability compared to other schemes [2]. The linear problem that is obtained using
Newton’s method is to be solved using a linear solver.

2.3. SOLVING THE LINEAR SYSTEM OF EQUATIONS

Following section 2.2 a linear system of equations is obtained which should be solved in order to complete
the Newton iteration. Different linear solvers are available, where within the current work the generalized
minimal residual (GMRES) solver is analysed. The combination of Newton’s method with GMRES results
in the Newton-Krylov solver, which is the main subject of interest within this thesis. Other solvers such as
BiCGSTAB use the Krylov subspace as well, but are not analysed due to the reference paper using GMRES.
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This section first starts with an explanation of the GMRES algorithm in section 2.3.1 and is followed by an
explanation of the FGMRES algorithm (section 2.3.2) which is currently available in SU2.

2.3.1. GMRES

From section 2.2 a large sparse linear system of equations is obtained which is derived from the discretized
governing equations. This linear system is to be solved in order to solve the nonlinear flow problem. Different
methods can be considered, where for the current study the generalized minimal residual is analyzed. Gen-
eralized minimal residual (GMRES) is a residual-driven method where the solver focuses on minimizing the
residual vector. GMRES is an iterative method where for the current study every (outer) nonlinear iteration
functions as the starting conditions for the linear GMRES solver. The combination of both iterative methods
therefore results in a levelled system of inner (GMRES) and outer (Newton) iterations.

GMRES [11] is a generalized version of the MINRES algorithm, which focuses on solving nonsymmetric
linear systems. By using Arnoldi’s method, the GMRES algorithm is able to construct an l;-orthogonal basis
of the Krylov subspaces. These Krylov subspaces are then used to obtain the approximate solution to the
linear system. As with the Newton iterations, it is generally accepted for the system to have a small error, thus
not requiring the direct solution to the linear system. Although it is possible to solve the linear system to a
certain extent using GMRES, an error tolerance is specified allowing the solver to converge to an approximate
solution. Converging to an approximation therefore reduces the total number of GMRES iterations, saving
computational power and time.

KRYLOV SUBSPACE

The GMRES algorithm can be explained by evaluating the requirements needed in order to reach conver-
gence. Since GMRES is an iterative method and given its convergence characteristics, an approximation of
the solution should be derived (using some variables) such that it is able to meet the GMRES convergence cri-
teria. This approximation has to be calculated for every iteration until the approximate solution is reached. A
strategy for obtaining this iterative approximation is by using the coefficient matrix and the right-hand side
vector of the linear problem Ax = b. Calculating the approximate solution vector using this iterative pro-
cedure would therefore result in a span of vectors, which combined give a vector subspace. In theory, with
enough iterations, this subspace of vectors could contain a solution vector which approaches the solution
to the linear problem. One way of obtaining this theoretical subspace is by generating the Krylov subspace
(equation 2.13), where the right-hand side vector b is multiplied with the coefficient matrix A. This subspace
is expanded by multiplying the last vector of the subspace with the coefficient matrix A. The size of the sub-
space is therefore determined by the number of matrix multiplications done in order to create the Krylov
subspace.

K;(A,b) =span{b, Ab, A°D, ... , A" "' b} (2.13)

An algorithm can be used in order to generate the Krylov subspace, where for the current study this al-
gorithm is Arnoldi’s method. Arnoldi’s method is an eigenvalue algorithm, where it is able to provide an
approximation of the eigenvalues and eigenvectors to the linear system [11]. Arnoldi’s method also provides
the orthonormal basis of the Krylov subspace. Creating the orthonormal basis of the subspace is desired as
this improves the robustness of the solver by improving the accuracy of the approximate solution. This is
achieved by projecting every newly computed Krylov vector onto each of the previously computed Krylov
vectors, subtracting the projections from the new Krylov vector. In addition to the Krylov subspace, Arnodli’s
method also provides the upper Hessenberg matrix of the linear system. This matrix has the dimensions of
r+1 by r, where r represents the number of Krylov iterations and thus the size of the Krylov subspace. The
Hessenberg matrix is computed using the Krylov products, where it is obtained by projecting the new Krylov
vector upon the Krylov subspace of the previous iterations. The Hessenberg matrix is therefore a projection
of the original coefficient matrix A upon the orthonormal Krylov subspace [12], providing the approximate
eigenvalues to the coefficient matrix. The coefficient matrix A can be related to the Hessenberg matrix fol-
lowing equation 2.14, with H being the Hessenberg matrix and V, being the orthonormal basis vector of the
Krylov subspace.

AV, =V, H, (2.14)
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LEAST SQUARES PROBLEM

As mentioned before, GMRES is a residual-driven method where a residual has to be defined in order to
determine whether the iterative algorithm has converged to a solution. Similar to section 2.1.2 the residual
for the linear problem can be derived resulting in R(x) = b— Ax. Solving R(x) results in a minimization
problem as the main goal of the solver is to find x for which the residual is the smallest. This minimization
problem becomes a least squares problem when using the Euclidean norm on the residual (equation 2.15),
as is done in order to improve stability.

R(x)=b—-Ax < |r,ll=1b- Ax, (2.15)

Instead of creating the Krylov subspace of the linear problem Ax = b, itis also possible to setup the Krylov
subspace in terms of the residual (equation 2.16). Within equation 2.16 r( represents the initial error for
ro = b — Axy where the initial guess for xy is not the zero vector.

Kn(A, o) = span{rg, Arg, A°rg, ... , A" 'ry} (2.16)

Since K, is created using the linear residual equation, it can be stated that x, € Kj,. The goal of the least
squares problem is to find x,, where x, can also be defined in terms of the orthonormal basis of the Krylov
subspace created by Arnoldi’s method. This results in the formulation of a new problem: x, = xo+V ,y,,, with
V , being the orthonormal basis of the Krylov subspace and y,, a new variable which should be determined in
order to obtain x,,. V, isdefined as [vy, vy, ..., v,], with v = ry/ |Irgll and v, being calculated using Arnoldi’s
method. Substituting this into equation 2.15 results in equation 2.17.

Irall = ||b= Ao+ Vay,)| = [ro— AVay,| = |Irol vi— AV,y,|| 2.17)

As mentioned before, the Hessenberg matrix could be used instead of the original coefficient matrix in
order to obtain an approximate solution. By defining 8 = ||r¢ll and by substituting the Hessenberg matrix H
(equation 2.14) into equation 2.17, equation 2.18 is obtained.

Irull = Bv1=Vaa Hyy,| (2.18)
Equation 2.18 can be rewritten further by making use of the standard basis vector e;. The standard basis
vector is defined as e; = [1,0, ... ,0]” where together with the orthonormal basis V;, it follows that V;,-e; = v;.

Since the norm of the orthonormal basis is equal to 1, equation 2.18 can be rewritten to equation 2.19.

Irull = |Vasr(Ber — Hyy,) | = | Ber — Huy,| (2.19)

Equation 2.19 is to be used in order to find x,,. Minimizing equation 2.19 results in a value for y,,, which
gives x,, following x; = xo + V,y,,. The derivation described within the current section allows for the residual
to be minimized using the Hessenberg matrix, as is typically done within the GMRES method due to Arnoldi’s
method being required. The resultant method is a method which is limited by the complexity of the matrix-
vector product A - v, which is much more computationally efficient compared to the direct methods used in
order to solve a linear system. The resultant GMRES iterative algorithm can be described as follows:

1. Calculate the new orthonormal vector v, using Arnoldi’s method

2. Find the value for y, by minimizing equation 2.19

3. Calculate the new approximate solution vector using x, = xo + V3,
4. Reiterate the procedure if the residual does not meet the criteria

When minimizing equation 2.19, solution x,, provides an approximate solution to the linear problem. The
solver has converged if the residual meets the solution criteria. If this is not the case, a new Krylov vector is
calculated and the subsequent residual is tested until convergence of the linear system to the approximate
solution is reached. A key advantage of GMRES is that it uses matrix-vector multiplication rather than matrix-
matrix operations. This reduces the computational cost needed for solving the linear system of equations.
Since for CFD the coefficient matrix can become large and sparse, the effect of using matrix-vector multipli-
cations can become rather significant. The efficiency of GMRES is however linked to the number of iterations,
as every iteration increases the size of the matrices and the number of vector multiplications needed in or-
der to reach convergence. The performance of the solver can be further improved by transforming the linear
system of equations by considering the usage of a preconditioner.
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2.3.2. PRECONDITIONED GMRES

Computational costs can be further reduced by influencing the sparsity of the coefficient matrix that is used
for the GMRES algorithm. A preconditioner is therefore used in combination with the GMRES algorithm in
order to improve the convergence of the linear system. A preconditioner transforms the linear problem into
an equivalent system that is easier to solve. Saad [13] showed the relevance of using a preconditioner in com-
bination with GMRES, where he developed the Flexible GMRES algorithm (FGMRES). This algorithm uses
GMRES in combination with a changing preconditioner, which reduced the number of iterations needed in
order to reach convergence. It should be noted that the NUTSCFD solver developed by Xu et al. uses an
Incomplete LU factorization (ILU) preconditioner, but instead of a variable preconditioner they used a fixed
right preconditioner based on the Jacobian matrix.

Incomplete LU factorization approximates the coefficient matrix of a linear system into two triangular
matrices such that A = LU. U and L are the upper and lower triangular matrix respectively, which are ob-
tained following LU-decomposition given by A = LU. Since LU could approximate A, it is possible to alter
these matrices such that it benefits the solver. This would prevent the solver to calculate the exact solution
to Ax = b, but it has been stated before that this is not always necessary. Xu et al. conducted several studies
which showed that using an incomplete version of the decomposition matrices L and U is a highly effective
method of preconditioning GMRES [14]. It was however shown that results may vary depending on the setup
of the solver, indicating that choosing the right ILU preconditioner is problem specific. Xu et al. showed
high performance following an incomplete LU preconditioner with a fill-in factor of 0. The fill-in factor is
used in order to manage the sparsity of the decomposition matrices. The effect of the fill-in factor on the ILU
preconditioner can be explained using figures 2.2 and 2.3.

0 5 10 15 20 0 5 10 15 20
0

(a) Sparsity pattern of matrix A (b) Sparsity pattern of matrix L (c) Sparsity pattern of matrix U

Figure 2.2: Sparsity pattern of matrices following A= LU

Let A be a sparse matrix, where figure 2.2a shows the structure of the matrix. The sparsity pattern of the
matrix is indicated by the black elements, where the grey elements represent the zeros. Since A=LU,Land U
can be decompositioned into figures 2.2b and 2.2c, where the fill-in factor will change the sparsity structure
of these matrices. A fill-in factor of 0 uses the sparsity pattern of the original coefficient matrix A and applies
it to matrices L and U, such that if entry A; ; is zero, entry L; ; and U; ; are zero. This results in figures 2.3a and
2.3b, which represent the matrices Ly and Uy. By using the fill-in factor, the preconditioner can be expressed
following A = Ag = LyUy = M. For the sake of completeness, a higher fill-in factor uses the sparsity pattern
of the product of the previous decomposition matrices Arr_1, where FF is the current fill-in factor. By using
right preconditioning, the linear system of equations can be rewritten into equation 2.20.

AM~'(Mx) =b (2.20)

Instead of using the standard formulation for a linear system of equations, the derivation involving GM-
RES (section 2.3.1) is applied on equation 2.20. Instead of using the coefficient matrix A, the preconditioned
coefficient matrix AM~! is used, influencing both the Hessenberg matrix and the orthonormal basis. It is
possible for this preconditioner to vary for every Arnoldi iteration, resulting in the FGMRES algorithm. It
should be noted that currently SU2 uses FGMRES instead of GMRES. Detailed description for the FGMRES
algorithm can be found in [13]. Advantages of FGMRES is that it could reduce the number of iterations that
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(@) Sparsity pattern of matrix Lo (b) Sparsity pattern of matrix Uy (c) Sparsity pattern of matrix Ag

Figure 2.3: Sparsity pattern of matrices Ly and Up where LoU( = Ag

are required for the iterative method to find the solution to the linear system. FGMRES does however simulta-
neously introduce a preconditioning step which could be computationally expensive if not chosen correctly.
Pueyo et al. [15] have found that a flexible preconditioner does not necessarily improve solver speed, as it
is also possible that a fixed preconditioner does not affect convergence negatively. Using the correct fixed
preconditioner can therefore reduce CPU costs, as the factorization of the preconditioner is only computed
once for the linear problem.

2.4. CFD FRAMEWORK

The sections above described how flow problems can be solved mathematically using models. These models
are used in Computation Fluid Dynamics, where the solution is obtained iteratively. The current section de-
scribes the frameworks that are used in order to realise these iterative solvers. CFD tools such as SU2 are used
to simulate flow problems, where the current thesis is focused on Turbomachinery. Section 2.4.1 therefore
contains a description of the challenges commonly found within Turbomachinery. The CFD software that is
used and analysed within the current thesis is SU2, where therefore section 2.4.2 contains an explanation of
the SU2 solver structure.

2.4.1. CFD AND TURBOMACHINERY

Solver robustness and solution accuracy are some of the major aspects that dictate the performance of a
CFD code. These aspects are generally the center of attention when it comes to further development of the
codebase. Since aerodynamic simulations can vary widely in conditions, it is often difficult to develop code
which is able to perform optimally for every simulation setup. Simulations at design conditions for industrial
applications can for example be characterized by favorable flow conditions such as largely attached flows.
The combination of explicit and implicit solvers with multigrid acceleration has shown good performance
for these types of flow conditions [2]. Challenges arise however when designing for off-design conditions,
as these conditions generally introduce less favorable flow structures. This is especially the case for turbo-
machines as these operate over a wide range of conditions. Instead of designing a turbomachine to operate
at a single design point, it is often desirable for the machine to be efficient over a wide range of conditions.
Together with the complex thee-dimensional flow structures that are often encountered for turbomachin-
ery, it can be concluded that the resultant flow structures that are formed at off-design conditions would
be less then favourable. Unfortunately it has also been shown that steady solvers lack numerical stability
for these flow regimes, resulting in convergence slowdown. It has been hypothesised by Xu et al. [1] that
this degradation in performance is commonly encountered, but generally accepted as machine-zero conver-
gence of the simulation is often deemed unnecessary. In combination with the limited group of users that
is affected by these convergence issues, studies resolving these numerical instabilities has received little at-
tention. Nonetheless turbomachinery simulations are often plagued by these numerical instabilities, as has
also been encountered within the current work. In order to improve machine design at off-design conditions,
obtaining the machine-zero solution is therefore critical for the aerodynamic analysis of turbomachinery.

As has been mentioned before, Xu et al. propose the usage of a Newton-Krylov method in order to over-
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come these numerical instabilities. Their research lead to the development of their Newton-Krylov RANS
solver, which showed improved robustness over a wide range of operating conditions. This NUTSCFD solver
features a nonlinear flow solver which combines exact Jacobian matrix forming together with straightforward
parallelization and a reliable globalization strategy. Independent of starting conditions, the solver showed re-
liable performance with respect to achieving machine-zero convergence. Xu et al. were therefore able to
obtain a substantial increase in solver performance, especially with respect to turbomachinery.

2.4.2,.50U2

SU2 is the CFD solver that is used and analysed within the current work. SU2 is an open-source compu-
tational toolbox which can be used to solve mathematical problems involving partial differential equations
(PDE) [16]. It uses numerical methods which have been developed specifically for aerospace applications.
SU2 is therefore able to solve complex multiphysics problems, where it uses unstructured mesh topologies
and is developed using a modular structure. The code is structured in an objected oriented philosophy where
it is written in C++ and Python. This allows for high code reusability, where code can be shared between
modules. This provides a powerful structure, allowing modules to be used in a cohesive manner. The main
module that is used for solving CFD problems is the SU2_CFD module. An overview of the code structure can
be seen in figure 2.4, displaying a basic flow diagram of SU2_CFD. Below the diagram are examples of classes
displayed which could be used during the simulation cycle. SU2’s code is partitioned in classes such that it

allows for standalone development of the classes.
No
Converged? 5
, Write output

Head input > Therm"phys'cal ’Gradlents/ﬂuxes > Integrate > Update
properties

CConfig CFluidModel CSolver Cintegration Clteration COutput
+ CldealGas + CEulerSolver + CMultiGridIntegration + CFluidlteration + CFlowOutput
« CPengRobinson e CNavierStokes e CSingleGridintegration « CAdjointiteration « CFlowlncOutput
. e CSpeciesSolver ¢ CNewtonIntegration + CTurbolteration .

CDataDrivenFluid

Figure 2.4: SU2_CFD flow diagram for an arbitrary flow simulation

As mentioned before, SU2’s turbomachinery capabilities are currently developed at the TU Delft. The
challenges described in section 2.4.1 have been encountered before, where SU2 also contains a Newton-
Krylov solver. This Newton-Krylov solver uses FGMRES where different kinds of preconditioners can be used.
Previous work has shown that SU2 is unlikely to match the performance of the NUTSCFD solver, where there-
fore further research is required. In order to analyse SU2’s performance with respect to the NUTSCFD solver
and the open literature, section 2.5 contains additional information with respect to relevant models which
could improve SU2’s performance.

2.5. ADDITIONAL CFD ACCELERATION TECHNIQUES

Sections 2.1, 2.2 and 2.3 describe the problems and solutions that are formulated when setting up a CFD flow
problem. The schemes and models that are used for these types of problems can be computationally costly,
which increases when increasing the complexity of the problem. This section contains an analysis of the
solver acceleration techniques that have been mentioned within literature, and that have been used by Xu et
al. in order to improve their solver performance. It has been mentioned in section 2.4.1 that multigrid can
accelerate the solver, where therefore the current section starts with an analysis of multigrid (section 2.5.1).
Increasing the accuracy of the solution increases the complexity of the system of equations, where multigrid
might be able to have an effect on the convergence behaviour. This section is followed by an examination of
how the formation of the Jacobian matrix might impact the solver’s convergence time (section 2.5.2). It was
found that the Jacobian can have a significant effect on convergence behaviour, where this forming process
can especially be computationally expensive. The current section is concluded with an explanation of the
blended Jacobian (section 2.5.3), which is used for forming the preconditioner within the NUTSCFD solver.
It has been stated in section 2.3.2 that using a different preconditioner can have a large effect on the solver
performance, where the formation of this preconditioner is therefore analysed as well.
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2.5.1. MULTIGRID

The multigrid method is an approach which alters the solving process of a computational problem. The
problem is projected upon multiple scales in order to accelerate convergence. The multigrid algorithm, also
referred to as multilevel methods, can be applied to multiple mathematical fields allowing for geometric and
algebraic manipulation. Following the resemblance to the computational problems commonly found in CFD,
only geometric multigrid is analysed and considered within this thesis.

As mention in the sections above, CFD requires an iterative method in order to converge to a solution. Es-
timates are obtained for every iteration which can become costly with the increase of the number of cells, and
thus with the increase in flow resolution. Clearly a finer high element mesh takes more computational time
compared to a coarser mesh. This core principle is the basis for the multigrid method. Multigrid uses differ-
ent mesh resolutions, where the solver is able to obtain a rough estimate of the final solution much quicker.
A solution is obtained where additional refinement is required in order to converge to the finer (more accu-
rate) final solution. Fundamentally the coarse grid allows for rapid wave propagation of flow variables which
reduces convergence time, where the finer grid ensures greater accuracy. The multigrid method therefore
switches between grid resolutions in order to solve the CFD simulation. The procedure of accelerating con-
vergence following modeling strategies is also known as relaxation. It was found that SU2 contains multigrid,
but it is currently unable to combine this with the Newton-Krylov solver.

GRID FORMATION AND INTERPOLATION

In order to solve the CFD simulation using multigrid, cells of the simulation grid are combined in order to
form a coarser mesh (figure 2.5). These new coarser cells effectively represent the combined finer cells, where
the flux balances of the finer cells are summed. By applying this technique to the whole grid, the original
mesh is converted to a coarser mesh. In general this process is reiterated depending on the requirements
of the simulation. Coarsening the mesh multiple times reduces computation effort, but can also introduce
stability issues [17].

Figure 2.5: Example of multiple mesh resolutions following the same mesh, with decreasing number of cells [3]

The newly generated coarser meshes are considered to be independent from each other, where they do
not influence each other directly. The process of reducing the number of cells to create a new coarser mesh
is called restriction. Data transfer between the different mesh scales is however still required. This is pos-
sible following interpolation. Results that are found on the coarser levels are transferred upwards following
corrections, accelerating convergence on the finer levels.

MULTIGRID FORMULATION

A formulation of the multigrid method can be given using subscripts. Different techniques are available as
multigrid has developed over time, but the essence of the method will be explained within this section using
Jamesons formulation [17]. In order to make a distinction between the different resolutions, grid levels will
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be indicated using the subscript k. Grid k-1 will then be the finer grid compared to grid k (see figure 2.5).
In order to use the coarser grid k, the solution vector w must be initialized. This is achieved using transfer
operation T j_1.

W = Th k-1 Wie-1 2.21)

Within equation 2.21, w{(o) then represent the initial solution vector on grid k. In addition to the solution
vector, a residual forcing function has to be transferred as well. This due to the solution on grid k requiring

the residual of grid k-1.

Pic = Qi k-1Ri-1 (Wi_1) — Ri(wy) (2.22)

Equation 2.22 shows the residual forcing function for grid k, containing the residual of grid k (Ry (wl((o))) as
well as the residual of grid k-1 (Rx—; (Wk_1)). Qg k-1 is another transfer operator allowing the usage of the finer
grid residual. By combining the residual forcing function together with a time stepping schema, equation 2.23
can be setup which gives the general form using the solution vector at the next time step g + 1.

w = w - g an (R + Py (2.23)

Within equation 2.23 At represents the timestep and a4+1 depends on the time stepping schema chosen.
Depending on the setup of the multigrid schema, the solution for wy could be used as the initial data for grid
k+1. If the solution wy is deemed to be sufficient, the data could also be transferred back to grid k-1 following
a correction. Let the superscript * indicate the final calculated value of the solution vector on a given grid
level, then for grid k-1 the corrected solution can be defined following equation 2.24.

wy_ = wieg + Loy g (wy —w)) (2.24)

Within equation 2.24 wy_; represents the solution vector following the timestep (equation 2.23), I;_; x the
interpolation operator, wg the initialized solution vector on grid k (equation 2.21) and wf(r the final corrected
value of the solution vector on grid k. Depending on the final number of grid levels, the grid with the least
number of cells does not require a correction as there is no level below it. The transfer operators depend
on the formulation that is used in order to represent the conservation laws on the mesh. When using a cell
centered scheme, the operator Ty ;) is defined following equation 2.25, with V being the cell area or volume
of the overlapping cells between the mesh levels. Similarly the residual follows from equation 2.26, being the
sum of the integral cells on the finer mesh level k-1. Finally the interpolation operator I_; ; represents the
bilinear or trilinear interpolation. A detailed explanation for a vertex-centered schema is given by Jameson
[17].

> Vi 1Wp—
Ty k-1Wk-1 = ALl (2.25)
Vi
Qrk-1Ri1 =) Riq (2.26)

2.5.2. JACOBIAN MATRIX FORMATION

One of the aspects that plays a large role in the convergence time of the CFD solver is the formation of the Ja-
cobian matrix. Equation 2.11 defines the governing equations in terms of the residual, where the term ‘”;(Tmfln)
represents the Jacobian matrix. The dimensions of the Jacobian matrix depend on the size of the flow prob-
lem, where the size increases significantly with the increase in mesh accuracy. The Jacobian matrix is part
of the coefficient matrix within the linear problem formulation Ax = b, where matrix inversion is therefore
unviable due to its enormous computational cost. Instead the Jacobian matrix is used for the formation of
the Hessenberg matrix with respect to the GMRES algorithm. This reduces the computational needs of the
solver, as matrix-vector multiplications is used instead. Even though matrix inversion can be disregarded, the
formation of the Jacobian matrix itself still requires significant computational power. Jalali et al. [18] showed
that the time required for calculating the Jacobian matrix scales significantly with the increase in mesh refine-
ment, where Xu et al. [1] showed that large percentages of the solver time are dedicated to the formation of
the Jacobian matrix. Different algorithms exist which accelerate the formation of the Jacobian matrix. These
algorithms include methods such as graph coloring, as has been used within the NUTSCFD solver. SU2 does
currently not use an algorithm of graph coloring for forming the Jacobian matrix, where this might be relevant
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depending on solver performance. Improving the convergence of the linear solver should however reduce the
number of iterations that require Jacobian formation (as has been found by Xu et al.). This should therefore
reduce the total number of nonlinear iterations, which has a significant effect on solver speed. It could there-
fore be considered either to accelerate the formation of the Jacobian matrix, or to improve the linear solvers
in SU2. Looking into the effectiveness of the current FGMRES algorithm within SU2 is therefore relevant, as
it influences the total number of costly Jacobian formations required during the simulation run.

2.5.3. BLENDED JACOBIAN MATRIX

It has been noted in section 2.3.2 that using an incorrect preconditioner can have a significant effect on the
performance of the linear solver. Xu et al. use incomplete LU factorization with zero fill-in in order to define
a preconditioner. Their preconditioner is based on a blended Jacobian matrix, where it is used as a right pre-
conditioner. The blended Jacobian matrix is formed by combining Jacobian matrices based on second- and
first-order-accurate spatial discretization. The assumption that a preconditioner based on the exact Jacobian
matrix would be more efficient compared to an approximation of the Jacobian has therefore been shown to be
invalid. Similar research conducted by Pueyo et al. [15] showed that using an approximation of the Jacobian
matrix with improved diagonal dominance reduces solver stability issues. Pueyo et al. therefore introduced
a variable which controls the artificial dissipation within the Jacobian matrix, where the resultant matrix is
used in order to form the preconditioner. This variable controls the amount of second difference dissipation
that is added to the first-order approximation of the Jacobian matrix, which therefore affects the formation
of the preconditioner. The value of this variable and the effectiveness of the preconditioner based on the ar-
tificially introduced dissipation depends however on the structure of the functional Jacobian matrix (that is
used in order to solve the linear system). McCracken et al. [19] showed that a preconditioner based only on
the second-order spatial discretisation gives a solution with oscillatory artifacts, where these artifacts are not
encountered when using the first-order approximation. The first-order preconditioner therefore introduces
less stability problems for the solver, but also reduces the accuracy of the approximation that the precondi-
tioner is based on. Instead, a weighted preconditioner matrix is constructed through the use of a weighting
function to approximate the Jacobian matrix (equation 2.27). Within equation 2.27, A, represents the second-
order approximation of the coefficient matrix, A; the first-order approximation and a is the weight parameter
that determines the amount of second-order dissipation added to the final approximation of A.

Ag=aAr+(1-a)Ay (2.27)

Equation 2.27 is a variation on the approach used by Pueyo et al, where equation 2.27 is also used by Xu
et al. within their Newton-Krylov solver. Langer [2] underlined the importance of the preconditioner when
using a Newton-Krylov solver, where the correct preconditioner reduces the total number of GMRES steps.
By using a weighted approximation of the Jacobian matrix the benefits of the better conditioned first-order
Jacobian matrix are combined with the better approximated second-order Jacobian matrix. This combina-
tion of matrices should improve the overall effectiveness of the preconditioner. SU2 currently allows for the
usage of the ILU(0) preconditioner, where this preconditioner is not based on a blended representation of the
first- and second-order-accurate spatial discretization of the Jacobian. Whether a blended preconditioner
has a positive effect on SU2 is however uncertain. Within the current literature study it has been stated that
the effectiveness of preconditioners can be situation specific, where SU2 currently differs to NUTSCFD on
multiple aspects.
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Chapter 2 discussed the theoretical background of this thesis. A gap has been identified with respect to SU2’s
performance, where a detailed analysis of SU2’s current behaviour is to be obtained. Chapter 2 discovered
the different algorithms that have been used by Xu et al. in order to develop their NUTSCFD solver. From
the literature study it was found that SU2 differs from NUTSCFD with respect to the implementation of the
Newton-Krylov solver. The current chapter discusses the steps that have been taken in order to conduct a nu-
merical study of SU2’s current performance, which also allowed for the analysis of its Newton-Krylov solver.

Chapter 3 discusses the development of the test cases that have been set up in order to test the perfor-
mance of SU2. These test cases are run using SU2’s RANS solver, where the results are obtained for steady
simulations. The current chapter therefore outlines the procedures that have been used in order to test the
goals of the thesis. Data obtained by the CFD solvers CFX, Numeca and NUTSCFD will be used to test SU2,
where the test cases used for obtaining this data are recreated.

SU2’s performance is tested using four different test cases. These test cases include models based on a
NACA 0012 airfoil, a LS89 turbine stage, the MTU radiver compressor and the 1.5 stage ETH turbine. Both the
development of the meshes and set up of the configuration files for these test cases are discussed within this
chapter. The current chapter starts with section 3.1 which explains the development of the NACA 0012 test
case. This test case will be used in order to test SU2’s performance with respect to external flows. It should
also be noted that this test case does not contain the turbomachinery module, thus providing a greater analy-
sis of the code. This section is followed by section 3.2, discussing the development of the LS89 test case. Both
the NACA 0012 and the LS89 test cases use 2D meshes and have been developed using a single-zone setup.
The chapter continues with the development of the MTU test case in section 3.3 and the ETH test case in sec-
tion 3.4. Both the MTU and ETH test cases are set up using the turbomachinery module and are created using
a multizone configuration. All sections contain an explanation of the motivation behind the selected setup of
the test cases, where the goal is to match the test cases to the reference literature. The chapter is concluded
with section 3.5, containing the discussion of the development process. This section evaluates the validity
of the test cases developed, where it also discusses additional changes that are made in order to obtain the
results of chapter 4.

3.1. NACA 0012 AIRFOIL

The NACA 0012 airfoil is used in order to test the computational performance of SU2 on simple external
flow problems. Different flow structures are created depending on the mesh, where the flow around a NACA
0012 airfoil differs greatly from the internal flow resulting from turbomachinery. The NACA 0012 test case is
therefore set up in order to assess the performance of the SU2 solver for a larger range of flow regimes. The
geometric data has been obtained online, where the mesh has been created using Gmsh (figure 3.1a). The
mesh has been created using a C-grid that follows the contour of the airfoil, where it has been developed such
that it contains smooth transitions in order for the C-grid to transition into the rectangular section. Vertex
boundaries are used to match the element spacing between the sections, where exponential distributions
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are used in order to refine the mesh near the boundary layer of the airfoil (figure 3.1b). In addition, it was
also made sure that the mesh does not contain any elements with negative volume. The resultant number of
grid points is matched to that of the mesh used by Xu et al. using the options of Gmsh. Xu et al. created a
mesh with 134,976 grid-points, where the developed mesh contains 134,588 points. The NACA 0012 mesh is
validated by comparing the results obtained by SU2 to the results obtained by NUTSCFD. Details involving
the analysis of the data can be found in section 4.1.

(b) Close-up view of the NACA 0012 mesh

(a) View of the NACA 0012 mesh

Figure 3.1: Images of the NACA 0012 mesh

The NACA 0012 test case is set up such that it matches the reference literature. Xu et al. have provided
data for subsonic and transonic conditions at different angles of attack. It should however be noted that Xu
et al. did not provide any mesh data. 3 meshes have been used, where the mesh with the Level_0 grid density
has been selected for the analysis of SU2. Details about the solver setup for the NACA 0012 test case can be
found in table 3.1, where additional information involving the setup conditions can be found in table 3.2.
The linear solver has been matched to the reference literature by allowing a maximum number of 500 inner
iterations. It was also tried to use a maximum tolerance of 0.1, but this causes SU2 to crash.

Table 3.1: NACA 0012 test case solver settings

Settings Type Values
Turbulence model SA Negative
Flow numerical method JST Sensor coefficients (0.5, 0.01)
. Error (1e-2)
Linear solver FGMRES max iterations (500)
Spatial gradient model Weighted least squares
— X
Fluid model Standard air 5: ?Z'O% Jkg'™K
Href = 1.716€-5 kg/m*s
Viscosity model Sutherland Trer =273.15K
Csur=1104
Conductivity model Constant Prandtl number | Cgr =0.0257
Turbulent numerical method | Scalar upwind

Table 3.2: NACA 0012 test case conditions

Parameter | Mach number [-] | Angle of attack [deg] | Reynolds number [-] | Number of grid points
Value 0.76 0 15-10° 134,976
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3.2.1L.S89 TURBINE CASCADE

The second test case that is used in order to test SU2 is based on the LS89 turbine cascade. The LS89 cascade
has been designed and tested at the von Karmdn Institute of Fluid Dynamics [20]. As opposed to the NACA
0012 airfoil test case, the LS89 test case requires the SU2 turbomachinery module where this test case is
therefore created in order to analyse SU2’s turbomachinery capabilities. The LS89 test case is analysed using
the data obtained by Xu et al. and their NUTSCFD solver. A 2D test case for the LS89 has been developed
by the SU2 community, where the mesh is available on the test case Github repo of the SU2 project. This 2D
mesh is used for the test case that is developed within the current section. Xu et al. have developed multiple
mesh levels for their LS89 test case, where the coarsest mesh has an element count of 14520 (called Level_5).
The mesh developed by the SU2 community has 15568 elements (figure 3.2), where this mesh is therefore
compared to the level_5 mesh. Xu et al. provide limited information about their mesh characteristics, where
only the first layer of the cell height is documented. The configuration file that has been developed by the SU2
community is used. This configuration file has been edited in order to match the conditions of the reference
literature.

Figure 3.2: Wireframe view of the LS89 mesh developed by the SU2 community

The test conditions numbered “MUR43” are used in order to investigate the axial stage. Specifics for
these conditions can be found in table 3.3. The test case has been setup such that it resembles the stan-
dard turbomachinery configuration used within the current work. Specifics for the solver setup can be found
within table 3.4. It should be noted that using the '"MARKER_GILES’ setting for the boundary conditions
led the solver to crash. Instead separate inlet and outlet markers are used following 'MARKER_INLET’ and
"MARKER_OUTLET". In addition the constant viscosity model also crashed the solver, where this has been
changed to the Sutherland model. It was tried to match the linear solver to the reference literature by using
a maximum number of 500 iterations. Increasing the number of iterations resulted however in a simulation
crash. The same was tried for the error tolerance of the linear solver, but this also resulted in SU2 to crash.

Table 3.3: Parameters for the MUR43 conditions for the LS89 test case

Parameters Value
Mach number 0.84
Inlet total temperature | 420 K
Inlet total pressure 143.5 kPa
Outlet static pressure 90.4 kPa
Reynolds number 1-10°
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Table 3.4: Solver setup for the LS89 test case

Settings Type Values
Turbulence model SA Negative
Flow numerical method JST Sensor coefficients (0.5, 0.03125)
Linear solver FGMRES Error' (1e—3')

max iterations (2)
Spatial gradient model Weighted least squares

_ *

Fluid model Standard air )lj: iT'OSB J/kg™K

Href = 1.716€-5 kg/m*s
Viscosity model Sutherland Trer =273.15K

Csut =1104
Conductivity model Constant Prandtl number | Cx7 =0.0257
Turbulent numerical method | Scalar upwind

3.3. MTU RADIVER COMPRESSOR

In order to assess the performance of the SU2 toolbox, a test case is developed based on the MTU compressor
impeller (figure 3.3). This test case will be used in order to validate SU2’s current performance with respect to
radial compressors. The results obtained by Xu et al. will be used in order to validate the test case. The MTU
compressor is an open test case which is provided by MTU Aero Engines [4], where it has been researched
extensively within literature providing significant data for validation. The setup that is used within the current
study is a configuration involving a vaneless diffuser. Motivation for the development of the MTU test case
follows from the NACA 0012 and LS89 test cases. The goal for the MTU test case is to provide a more accurate
assessment of SU2, where the accuracy of the analyses using the NACA 0012 and LS89 test cases is discussed
in section 3.5.

Figure 3.3: Top view showing the MTU impeller (light grey) with the outer diffuser vanes (dark grey) [4]

3.3.1. MESH GENERATION

The MTU compressor has been remodelled using the coordinate files of the blade profile. 11 blade profile
sections have been used in order to remodel the MTU compressor, where the sections cover the impeller
from hub to tip. ANSYS BladeGen is used in order to construct the complete impeller. The coordinate files
have been manipulated such that they can be imported into BladeGen using the Data Import Wizard. Sub-
sequently BladeGen creates curve files, which can be imported into Turbogrid. By orienting the coordinates
of the blade correctly during the setup of the wizard, and by finishing the BladeGen Wizard, the design of the
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MTU compressor is obtained within BladeGen (figure 3.4). Figure 3.4 contains the blade, hub and shroud
profile of the MTU impeller, being the geometric model of the compressor. BladeGen does not construct a
mesh of the impeller, where the mesh is created using Turbogrid. Relevant characteristics involving the MTU
impeller are shown within table 3.5.

Figure 3.4: BladeGen model of the MTU compressor

Table 3.5: Characteristics of the MTU impeller test case

Characteristics Value

Tip radius 135 mm
Number of blades 15

Blade backsweep angle at impeller exit | 38 deg

Shaft speed 3686.14 rad/s
Inlet total pressure 0.6 bar

Inlet total temperature 296 K

Outlet static pressure 1.013 bar
Impeller tip gap 0.7 mm

The BladeGen model is imported into Turbogrid using ANSYS Workbench. Using Turbogrid a mesh is cre-
ated using the geometric model of the MTU impeller. Since the exact mesh of the MTU mesh used by Xu et al.
is not available, a mesh of the MTU has to be created which mimics the mesh from the reference literature.
The goal of the MTU study is to compare the performance of the CFD solvers, where therefore the number
of mesh elements is matched. The resultant MTU mesh was chosen to have 858,102 elements and 907,308
nodes. The mesh developed by Xu et al. contains 905,953 grid points with a first layer viscous wall height
of 107% m satisfying y* =~ 1. A second mesh of the MTU has been created containing 181.360 elements and
197.694 nodes. During the current work a large amount of errors have been encountered, where the smaller
MTU mesh has been used in order to debug the runner. Both meshes contain no negative volume elements,
where the standard Turbogrid analysis tools have been used in order to assess the quality of the mesh. In
addition the mesh is forced to satisfy y* ~ 1 using Turbogrid.

Turbogrid does not export mesh files which are readily usable by SU2. The MTU meshes therefore have
to be modified before they can be used within SU2. SU2 allows for multizone physical problems, where the
MTU mesh was exported following 3 separate CGNS files. The configuration file of the MTU is based on a
previously developed test case. This test case, called the Eckardt test case, uses multiple zones in order to
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simulate the turbomachinery problem. Like the Eckardt test case, the MTU is divided into three zones: the
inlet, blade passage and outlet section. These zones are exported separately using Turbogrid, where they
are manually combined into a single mesh file following the SU2 multizone convention. The CGNS files
also have to be re-orientated as otherwise SU2 is unable to solve the Turbomachinery problem: orienting
the mesh incorrectly results in an error in the Turbomachinery Preprocessor, which computes a negative
number of blades. Running the simulation with this negative blade count causes SU2 to crash. At the moment
of writing the SU2 Turbomachinery Preprocessor therefore requires a specific orientation of the impeller in
order to be able to start the solver. It is therefore strongly advised in order to match the turbomachinery
mesh orientation to that of the example problems provided by the SU2 codebase. Similar issues have been
encountered with the ETH axial stage turbine, where more information is provided in section 3.4.2. Figure
3.5 shows the difference in orientation, where the model in figure 3.5a has been rotated 90° around the Z-axis
in order to obtain figure 3.5b. Despite its apparent simplicity, without the correct mesh orientation the solver
will not run. Similarly the axis of rotation has to be the Z-axis in order to prevent SU2 from crashing. The
mesh geometry has been rotated using Ansys ICEM, where it has been exported using the CGNS format.

(a) Incorrect orientation of the MTU impeller
(b) Correct orientation of the MTU impeller

Figure 3.5: MTU simulation orientation

The separate CGNS files that were exported from Turbogrid and ICEM are to be combined into one mesh
in order to create a multizone mesh. This is done by using the SU2_DEF runner in SU2, which is able to con-
vert the CGNS files into the .SU2 format. SU2_DEF is a mesh deformation tool, where it is able to interpret the
CGNS files and export a deformed mesh. Without deforming the mesh, SU2_DEF exports the three meshes in
the correct format, converting the files from CGNS to SU2. This results in three separate meshes: inlet, outlet
and blade-section, which have to be combined in order to be used for a multizone simulation. Combining
the separate sections can be done using a simple text-editor, where additional lines are required to indicate
the different zones. This is done while making sure to follow the multizone format for SU2 meshes. With the
mesh combined and converted to the SU2 format, the mesh can be used within the SU2_CFD runner.

3.3.2. NUMERICAL SETTINGS

The configuration file for the MTU test case is developed by using the old configuration file for the Eckardt
test case. Numerical settings are copied and changed such that the new configuration file is compatible with
the MTU test case. Different configurations have been used in order to test and analyse the performance of
the developed MTU mesh. Settings are changed within the configuration file depending on the goal of the
analysis. Several boundary conditions are however kept constant in order to make sure that the MTU test
cases match the setup of the open literature. Detailed information with respect to the boundary conditions
used by Xu et al. have been mentioned in table 3.5, where the total pressure and temperature are used for the
inlet, and the static pressure for the outlet conditions. These conditions are specified using the Giles marker.
The MTU mesh has been divided into three separate domains: the inlet, the blade section and the outlet
(figure 3.6). These domains are connected following the multizone setup as has been mentioned in section
3.3.1. The different domains can be manipulated separately following the multizone setup, as is required in
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order to enforce a rotation upon the blade section. Rotating the domain enforces the rotation of the hub and
blade, which following table 3.5 rotate at 3686.14 rad/s. Important to note is that an additional boundary
condition is required which fixes the shroud, as otherwise the shroud would not be stationary following the
frame rotation. For SU2 this can be done using the "MARKER_SHROUD" configuration option. When setting
up SU2 test cases it is advisable to use example configuration files of previous test cases. Although the donor
configuration file might differ in its setup, it is advisable to consult previous test cases as SU2 could behave
unexpectedly due to missing settings (as has been encountered with the mesh orientation in section 3.3.1).
Additionally, table 3.6 contains the settings for the solver of the MTU test case.
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Figure 3.6: Turbogrid view of the three separate MTU domains: inlet, blade section and outlet

Table 3.6: MTU test case solver settings

Settings Type Values
Turbulence model SA
Flow numerical method JST Sensor coefficients (0.5, 0.03125)
Linear solver FGMRES Error' (le_%)

max iterations (10)
Spatial gradient model Weighted least squares

— *

Fluid model Standard air 5: fil?.OSS Jkg™K
Viscosity model Constant Viscosity Hrer = 1.716€-5 kg/m*s
Conductivity model Constant Prandtl number | Cgxr =0.0257

Turbulent numerical method | Scalar upwind

3.4.ETH 1.5 STAGE TURBINE

In addition to the NACA 0012, LS89 and MTU test cases, the ETH 1.5 stage turbine is analysed using SU2. This
test case is developed in order to validate SU2’s performance with respect to axial turbines. Data obtained by
CFX and Numeca is used in order to validate SU2’s performance. The ETH turbine has been chosen due to its
relevance within the turbomachinery field and due to the large amount of experimental data available. The
ETH test case is based on the axial 1.5 stage turbine test rig that has been developed at the research turbine
facility 'LISA’” at the Turbomachinery Laboratory of ETH Zurich. This test rig has been developed in order to
investigate models of steam and gas turbine stage configurations at different operating conditions [21]. For
the current work the turbine test case developed for the investigation by Behr [21] is used, hereafter referred
to as the ETH 1.5 stage turbine. The ETH 1.5 stage turbine is a 3-row turbine, consisting of 2 stators and a
rotor. The turbine has been developed specifically to analyse the effects of tip leakage and secondary flows in
unshrouded high-pressure axial turbines.
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Two distinct meshes have been developed within the current work with respect to the ETH 1.5 stage tur-
bine. Section 3.4.1 describes the development of the first ETH mesh, which was initially developed in order
to compare SU2’s performance to that of the second mesh. The first mesh has been created in-house at the
university of the TU Delft, where this mesh is therefore denoted with ETH TUD. It should be noted that this
mesh does not have a tip-gap region. The second mesh has been created externally. This mesh has been cre-
ated by the Northwestern Polytechnical University in China, where their study analyses the performance of
CFX and Numeca. Both CFX and Numeca are CFD software similar to SU2, where their accuracy is evaluated
using the ETH test case. The mesh created by the Northwestern Polytechnical University is to be converted
in order to be SU2 compatible, where the conversion process is described in section 3.4.2. The configuration
of the test case for the ETH meshes is presented in section 3.4.3. The data that is obtained by Behr, CFX and
Numeca is used in order to validate SU2’s performance.

Behr used four separate measurement planes in order to collect experimental data from the ETH test
setup. These four planes are used in order to compare the experimental data to the CFD results. Figure
3.7 shows the 2D meridional flow path of the ETH turbine, where the four planes are located at the inlet,
at the outlet and in-between the stages of the 1.5 stage turbine. The experimental data is to be compared
to the data obtained following these planes using span-wise averaging. The SU2 data-points are extracted
using Paraview, where digital planes are created filtering only the relevant data-points that are positioned on
the planes (section 3.4.4). These data-points are post-processed where the area average for every span-wise
location is calculated.
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Figure 3.7: 2D meridional flow path of the ETH Turbine showing the measurement planes

The development of the TUD mesh and modification of the Northwestern Polytechnical University mesh
resulted however in many complications. These complications are discussed extensively in section 3.5.4 and
section 3.5.5. The final result is two TUD meshes, where instead of converting the Northwestern Polytechnical
University, the first TUD mesh is altered in order to mimic the mesh created by the Northwestern Polytechni-
cal University group. The final result of this section is therefore the 225k (no tip-gap) TUD mesh and the 900k
(tip-gap containing) TUD mesh. It has to be noted that the goal of the study is to compare SU2 to CFX and
Numeca, where the (first) tip-gap lacking TUD mesh is therefore redundant after creating the second TUD
mesh. Nonetheless the results of the study involving the first TUD mesh are discussed within this work as
they show SU2’s performance for a different configuration of the ETH turbine.
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3.4.1. GENERATION OF THE TUD MESH

The TUD ETH mesh is developed using the CAD geometry of the ETH 1.5 stage turbine. A 3D CAD model has
been developed, where it has been used together with 2D technical drawings in order to create the ETH test
case. Unlike the procedure used in section 3.3.1 for developing the MTU mesh, Ansys DesignModeler (figure
3.8a) is used in order to develop the ETH mesh. This procedure was chosen due to the 3D CAD model, allow-
ing for a more accurate mesh of the 3 rows. The geometry of the whole turbine has been imported, where the
flow path is remodelled using the 2D design of the meridional view (figure 3.8b). Cross sections of the blades
are created in order for Turbogrid to be able to import the blade model. An approximation of the blade is
created within Turbogrid based on the blade profiles, where a sufficient amount of cross-sections is required
in order to obtain an accurate representation of the blade. It was tried to import the whole blade volume into
Turbogrid in order to obtain an exact representation of the blades, but due to unknown reasons this was not
possible (DesignModeler giving an error). The CAD geometry of the ETH turbine contains fillets which are
speculated to be the cause of this error.

All three rows are exported separately as Turbogrid does not allow for simultaneous meshing of the whole
1.5 stage. Transferring the geometric data and the flowpaths is done using the information flow of the An-
sys Workbench. Workbench is a project platform which facilitates communication and project management
between the different design components of the Ansys toolbox. Ansys Workbench allows for data propaga-
tion between the different components, where additional accuracy of the rows is obtained if desired. It was
therefore chosen to use a minimum of 12 blade profiles for every blade in order for Turbogrid to generate
an accurate representation of the CAD model. More layers are used near the shroud and hub of the stages
in order to model the fillets correctly, where an even distribution of profiles has been created for the centre
section of the blade. Important to note is that the axis of rotation should be around the Z-axis, as otherwise
Turbogrid is unable to import the blade models and flowpaths.

(b) Geometric export of the geometry and the flowpath of the ETH
turbine

(a) Rotor geometry of the 1.5 stage ETH turbine

Figure 3.8: DesignModeler data

The geometric data for the stages and the flowpaths is imported into Turbogrid, where Turbogrid is used in
order to create the mesh (figure 3.9). Turbogrid provides tools which allow the possibility of mesh refinement
and quality assessment. Both tools are used in order to refine the mesh while also reaching quality standards,
where the default Turbogrid settings are used to analyse the mesh quality. It was made sure that all mesh
volumes are positive, where 0.5% of the cells are affected by a skewness factor that exceeds the threshold of the
default quality settings. At the moment of creation, the ETH mesh did not have a tip-gap due to complications
with the Turbogrid software. The effect of this is discussed in section 3.5.4. Following these principles, three
separate meshes for every row are created, where these have to be converted to a SU2 compatible format.
Similar to section 3.3.1 the rows are exported from Turbogrid using the CGNS format, allowing for further
processing.
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Figure 3.9: Turbogrid view of the second stator of the 1.5 stage ETH turbine

The CGNS files that are exported using Turbogrid are converted to a single multizone SU2 mesh by using
the SU2_DEF module within SU2. Similar to section 3.3.1 the CGNS files are converted to the .SU2 format,
where the rows are combined into a single mesh using the text editor and the multizone file style. No further
translations or rotations of the mesh are required as the exported default orientation for the axial turbine
is compatible with SU2. Since the ETH test case is to be compared to the experimental data by Behr, no
previous indication of the number of cell elements required is available, thus requiring a grid independence
study. Multiple meshes are created in order to ensure the cell count does not have an effect on the SU2 output.
The results of the grid independence study are discussed within the current section, as they dictate the final
element count that is chosen for the ETH TUD mesh. Different element counts have been considered, ranging
from 150k to 900k elements. All simulations involving the grid independence study have reached iteration

2000, where different measurement planes (figure 3.7) have been used in order to assess the performance of
the mesh.

Spanwise distribution of pitchwise area-averaged pressure (plane A)

Spanwise distribution of pitchwise area-averaged pressure (plane C)
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Figure 3.10: Grid independence study involving the TUD mesh with respect to the static pressure at 2000 iterations

Figures 3.10 and 3.11 show the results involving the grid independence study for the static pressure and
Mach number for the different planes. All figures show the spanwise area-averaged distribution of the re-
sults, which are compared to the experimental data of Behr [21]. It can be concluded from these figures that
the trends involving the different mesh sizes does not change drastically with respect to the number of el-
ements. This is especially true for the results involving smooth behaviour with little fluctuations in values
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(figure 3.10a), where greater deviation can be found near fluctuating conditions such as the hub and tip re-
gion (figure 3.11a). It can also be seen that the data-points differ more significantly downstream of the turbine
(figure 3.10b and 3.11b) showing greater deviation in trends, indicating that the effect of the different element
counts can have a cascading effect on the downstream results of the turbine. From the grid independence
study it has been concluded that the 225k mesh should provide sufficient accuracy in order to observe trends
involving the area-averaged results. This element count should provide a good indication of whether the re-
sults from SU2 are comparable to those of Numeca and CFX. The chosen element count could however be
insufficient if more accurate results are desired. As mentioned before, additional simulations have been run
using finer meshes. The results involving these finer meshes showed similar trends to that of figures 3.10 and
3.11 but differed slightly in values.

Spanwise distribution of pitchwise area-averaged mach number (plane B) Spanwise distribution of pitchwise area-averaged mach number (plane D)
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Figure 3.11: Grid independence study involving the TUD mesh with respect to the Mach number at 2000 iterations

3.4.2. GENERATION OF THE NPU MESH

The second mesh that is created with respect to the ETH 1.5 stage turbine has been developed at the North-
western Polytechnical University (NPU). The NPU mesh consists of approximately 5590k elements and is
used by the Northwestern Polytechnical University group in order to analyse the ETH test case with respect
to their solver performance. The NPU group uses both Numeca and CFX where a comparison is made to
the experimental data of Behr [21]. This mesh has been created using AutoGrid, where the mesh has been
exported directly to the .SU2 mesh format. The three different rows are supplied separately where these have
to be combined following the SU2 multizone setup. Several issues emerged when converting the mesh to an
SU2 turbomachinery compatible mesh. These issues involved the axis of rotation and the orientation of the
blades, where it is advised to use the same orientation as the example test cases developed by the SU2 com-
munity. Wrong configurations can lead to negative blade counts and the SU2 solver to crash. Issues with the
NPU mesh have therefore been solved by making sure that the axis of rotation is the Z-axis, and by making
sure the blades are positioned within the positive X-Y domain (figure 3.12).

Figure 3.12: Difference in compatible SU2 orientation involving the ETH mesh
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After converting the mesh to be SU2 compatible, it was however still found that SU2 was unable to run the
NPU mesh. During simulating the ETH test case SU2 exited randomly at the start of the simulation iterations.
This resulted in the NPU mesh being unusable and the development of another TUD mesh. The procedure
of the NPU mesh being deemed unusable and the subsequent development of the second (900k) TUD mesh
is discussed extensively in section 3.5.5.

3.4.3. ETH NUMERICAL SETTINGS

The ETH test case has specifically been developed to model the test rig that has been used by Behr [21]. The
research turbine facility 'LISA’ is capable of multiple configurations, where the experimental data by Behr is
to be used in order to evaluate SU2’s output. The relevant characteristics of the test rig following Behrs setup
can be found in table 3.7. The configuration of the ETH test case is analogous to that of the MTU, such that
similar boundary markers are used. Both meshes created, involving section 3.4.1 and 3.4.2, use the same test
case configuration. Similar to the MTU test case, both the pressure and temperature are used in order to set
the boundary conditions. This is achieved using the total pressure and temperature at the inlet, and the static
pressure at the outlet. The inlet and outlet sections of the rows are connected using interfaces, allowing for
data transfer between the zones. This is required as a multizone configuration is being used. The rotating
frame is used in order to rotate the rotor section at 282.74 rad/s around the Z-axis, where the shroud of the
rotor mesh is locked using the shroud marker (similar to section 3.3.2). In addition, table 3.8 shows the solver
settings that are used for the ETH test case. It should be noted that these settings are identical to the MTU
test case.

Table 3.7: Characteristics of the ETH turbine test case

Characteristics Value
Stator 1 number of blades | 36
Rotor 1 number of blades | 54
Stator 2 number of blades | 36

Shaft speed 282.74 rad/s
Inlet total pressure 1.4 bar

Inlet total Temperature 328.15K
Outlet static pressure 0.9 bar
Mass flow 11.7kg/s

Table 3.8: ETH test case solver settings

Settings Type Values
Turbulence model SA
Flow numerical method JST Sensor coefficients (0.5, 0.03125)
Linear solver FGMRES Error' (1e—4%)
max iterations (10)
Spatial gradient model Weighted least squares
R =287. *
Fluid model Standard air y= IT 058 J/kg™K
Viscosity model Constant Viscosity Hrer = 1.716€-5 kg/m*s
Conductivity model Constant Prandtl number | Cg7 =0.0257

Turbulent numerical method | Scalar upwind

3.4.4. ETH SU2 DATA POST PROCESSING

Data is being extracted from SU2 using Paraview, where Paraview can be used in order to plot the data. In
order for the SU2 data to be compared to the data obtained by CFX, Numeca and Behr, additional post-
processing is required. Paraview is used in order to visualize and post-process the results that are obtained
by SU2. Within Paraview digital planes can be created at the locations of the measurement planes in order
to extract the relevant data. These planes filter out the data points that are located on these planes. Figure
3.13 shows the measurement planes A, B, C and D in white, where the rotor stage is visible as well. Using
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these planes, CSV data is filtered and extracted where additional post-processing is done using Python. The
results that have been obtained by CFX, Numeca and Behr are area-averaged where a spanwise distribution
is created using the averaged data. The CSV results extracted using Paraview are therefore averaged in order
to allow for a valid comparison. Python code has been written in order to calculate the spanwise distribution
using the radius location of the data points, where Python has also been used in order to plot the data.

Figure 3.13: Measurement planes shown in white within Paraview

3.5. CASE STUDIES SUMMARY

This section provides an overview of the test cases that have been developed, where it also evaluates the
validity of these test cases. Many issues emerged during the analysis of these test cases, which had an effect on
the final outcome of the work. The current section therefore also discusses the adjustments that were made
to the test cases following these issues. This section starts with a discussion of the NACA 0012 (section 3.5.1)
and LS89 test cases (section 3.5.2). These sections are followed by a discussion on the validity of the MTU
mesh (section 3.5.3) and the ETH TUD mesh (section 3.5.4). The current section is concluded by section 3.5.5
which discusses the further development of the NPU mesh in order to obtain a valid test case. This section
outlines the creation process of the 900k TUD mesh, which will be used as a substitute to the NPU mesh,
as the NPU mesh was found to be unusable. The 900k mesh is not to be confused with the original TUD
mesh created in section 3.4.1. Due to complications with the NPU mesh, both TUD meshes will be used in
order to study the ETH test case. The difference between these meshes is the element count and the tip-gap.
For sake of clarity the original TUD mesh is called the 225k ETH mesh, where the new TUD mesh is called
the 900k ETH mesh. The reason for the absence of a tip-gap in the 225k mesh can be attributed to the lack
of experience with Turbogrid for tip-gap creation during the development of the original 225k test case. The
900k test case has been developed at a later period compared to the 225k test case. The absence of the tip-gap
involving the 225k test case is discussed in section 3.5.4 as well.

3.5.1. NACA 0012 TEST CASE

The results obtained by the NUTSCFD solver will be used as reference data in order to analyse the perfor-
mance of SU2 with respect to the NACA 0012 airfoil test case. This data will be used in order to verify whether
the currently developed test case gives correct results, while also using the data in order to assess the con-
vergence behaviour of SU2. Little information is provided with respect to the mesh used by Xu et al. where
therefore it is not possible to do an exact comparison between the literature and the obtained results. Efforts
are however being made to make sure both meshes contain the same number of elements. The mesh devel-
oped for SU2 was created using Gmsh, where Gmsh does not have specific options handling y*. It is therefore
currently unsure whether the new mesh meets the condition of y* < 1, where the reference mesh does. Due
to these limitations, the results that could be obtained following this analysis are limited. Instead the results
from the NACA 0012 test case will be used to give a broader indication of the current performance of SU2,
where it also provides an indication of solver performance with respect to external flow conditions. In addi-
tion, these results will be used in order to compare SU2’s performance to that of a turbomachinery test case.
The NACA 0012 test case therefore provides a broader analysis of SU2 as it does not use the turbomachinery
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module. The results for the NACA 0012 test cases therefore also serve as a basis for a comparison between dif-
ferent SU2 test cases, especially in combination with the LS89 turbine cascade. A direct comparison involving
SU2 is however not possible, as the mesh does not match the reference literature.

3.5.2. LS89 TEST CASE

The LS89 turbine test case has been developed using the mesh created by the SU2 community. Like the NACA
0012 test case it is therefore likely that the mesh differs from the reference literature. Xu et al. have developed
multiple mesh levels for the LS89 test case, where the mesh level closest to the current LS89 element count is
chosen. As the mesh used for the SU2 LS89 test case has been created by the SU2 community, it is currently
unsure whether the current mesh meets the conditions set by the reference literature. Xu et al. state that the
first layer of cell height is 1.7 - 10~° m, where this is unknown for the SU2 mesh. It is likely for this difference
in mesh geometry to have an effect on the accuracy of the solver analysis, but the outcome will also be used
in order to compare SU2’s performance to that of the NACA 0012 test case. Despite these discrepancies the
outcome of the LS89 test case is therefore still relevant to the current work.

3.5.3. MTU TEST CASE

An MTU test case has been developed based on the MTU radiver compressor. This model of the MTU impeller
has been created using BladeGen, where a more efficient technique of creating the impeller model might
be achieved by using Ansys DesignModeler. Small anomalies are created when using the BladeGen Wizard
(figure 3.14), which deviates the digital model from the geometric data. Figure 3.14 shows the exact profile
of the blade using the pink line, where the interpreted model is created using the grey line (mimicking the
blade profile). This import step is required by BladeGen in order to obtain correct leading- and trailing-edge
behaviour. It is possible to match the leading- and trailing-edge of the profile, but due to its parabolic nature
of the geometric approximation, changing the approximation results in a deviation in blade profile near the
centre of the blade.

Figure 3.14: Deviation in leading-edge tip geometry showing the blade geometry (pink line) and the BladeGen approximation
(grey/green line)

Given this deviation in interpretation, it might be proposed to model the impeller using the procedure
mentioned in section 3.4.1. This procedure uses Ansys DesignModeler instead of BladeGen. Although this
has not been considered in the current study, the data required for Turbogrid has been summarized in figure
3.8b, showing the blade profiles and the flowpath of the ETH turbine stage. Data for both the blade profiles
and flowpath of the MTU impeller have been obtained (figure 3.15), where importing the MTU into Turbogrid
using DesignModeler is expected to be achievable. The mesh used in the current study is however based on
the model created using BladeGen. In the current work, a significant number of errors have been encountered
with respect to the MTU test case. It is unlikely for the currently chosen meshing procedure to have an effect
on the solver, as the developed SU2 mesh is also used within the CFD solver CFX. The results following CFX
are not discussed within this thesis, as it is not part of the current work done, but this does indicate the validity
of the developed mesh since CFX is able to converge using this mesh.
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Figure 3.15: Geometric data of the MTU impeller, showing the blade sections (green), shroud (red) and the hub (blue)

It should be noted that the currently developed mesh of the MTU contains the problematic tip-gap in-
terfaces ’'SHROUD_TIP_GGI_SIDE_1’ and 2. It was found during the development of the ETH test case that
these interfaces should not be exported from Turbogrid. Detailed explanation for this, and the handling of
these interfaces can be found in section 3.5.4. The problematic nature of these tip-gap interfaces was only
realised during the development of the ETH test case, meaning that the results obtained for the MTU impeller
(section 4.3) are obtained using these interfaces. It should however be noted that section 4.3.1 also contains
results following an MTU test case that does not have a tip-gap region. The tip-gap interfaces are not created
if the tip-gap region is excluded, therefore allowing for analysis of the effect of the tip-gap interfaces on the
solver performance.

Several notes have to be made with respect to the reference file on which the MTU test case is based.
The Eckardt reference configuration file has been altered in order for it to be usable for the MTU test case.
It was found during development that the mixingplane caused issues, where this has been replaced by a
combination of the ' MARKER_ZONE_INTERFACE’ and the '"MARKER_FLUID_INTERFACE' Similar findings
have been found with respect to the ETH test case, where this is discussed in section 3.5.4. In addition, it
should be noted that the settings of the linear solver were not matched to that of the NUTSCFD solver. This
was not done as convergence of the MTU test case was prioritised, where the default settings of the Eckardt
file have been used instead.

3.5.4. 225K ETH TUD TEST CASE

The first ETH mesh that has been developed in-house at the TU Delft does not have a tip-gap. The goal of
the ETH study is to develop a mesh that is comparable to the mesh developed by the Northwestern Poly-
technical University group. The absence of the tip-gap region therefore provides a large difference in perfor-
mance, where it is likely for the simulation results to differ from the reference case. Nonetheless the results
are presented, as the initial TUD mesh provides insight into the performance of SU2 at different operating
conditions. From the results (section 4.4.1) it was however later concluded that the absence of the tip-gap
region provides inaccurate results with respect to the reference test case, which led to the development of the
NPU mesh (section 3.4.2) and subsequently the second (900k) TUD mesh. Following new Turbogrid features
previously unknown to the author, it was possible to create a mesh which contains the tip-gap region. This
knowledge has been used in order to create the second (900k) TUD mesh, which is discussed in section 3.5.5.
A distinction is therefore made between the first (225k) and second (900k) TUD mesh, where the first TUD
mesh has not been changed involving the tip-gap region. The first TUD mesh is therefore not sufficient in
order to do a direct comparison to the results obtained by the Northwestern Polytechnical University group.

3.5.5. 900K ETH TUD TEST CASE

This section provides a summary of the work that has been done in order to obtain the 900k ETH TUD test
case. This test case is created by modifying the 225k TUD mesh such that it includes a tip-gap region. The
900k TUD mesh has been developed due to the NPU mesh being too fine for SU2. The assessment of the NPU
is discussed within the current section as well.
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TURBOGRID TIP-GAP PROCESSING

Due to its relevance to the final result of the ETH study, the Turbogrid procedure that was used in order to cre-
ate the valid tip-gap region is discussed here. It should be noted that this procedure was not used for creating
the 225k test case. Turbogrid allows for the creation of the tip-gap region by specifying the blade length. When
using the default Turbogrid settings, creating a tip-gap region results in the creation of 2 surfaces in-between
the shroud and blade (figure 3.16). Figure 3.16 shows several interfaces that are created when exporting the
ETH mesh using Turbogrid. These interfaces are to be assigned the correct boundary conditions in order to
make sure the simulation provides accurate results. Figure 3.16 also shows the formation of the two inter-
faces 'SHROUD_TIP_GGI_SIDE_1’ and 2, which are indicated with the purple surfaces. These interfaces are
created in-between the blade and the shroud, where these are internal interfaces. At the moment of writing,
SU2 is currently unable to assign the correct boundary conditions to these internal interfaces (SU2 version
7.5). The tip-gap interfaces therefore have to be altered in order for SU2 to be able to simulate a test case
using a tip-gap region.

Figure 3.16: View of several mesh interfaces that are created when exporting the rotor ETH mesh

Turbogrid has been used in order to prevent the creation of the SHROUD_TIP_GGI_SIDE interfaces when
exporting the mesh. At the moment of writing this has been achieved by using the Conformal Tip set-
ting that is available in Turbogrid. This setting can be enabled when using the 'Beta Features. Enabling
these settings allows Turbogrid to use a mixture of structured hexahedra elements at the leading and trailing
edge of the blade, where it uses wedge elements in-between (figure 3.17). This prevents the creation of the
SHROUD_TIP_GGI_SIDE interfaces while maintaining the tip-gap region. Since this mesh does not contain
the internal interfaces, the exported mesh is SU2 compatible.

Figure 3.17: Turbogrid meshing at the blade tip when using the Conformal Tip setting
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During the development of the ETH mesh it was made sure that the y™ number is below 1. This was done
in order to make sure that the near-wall resolution of the mesh is accurate enough such that near-wall flow
phenomena can be modelled accurately. This y* condition has been enforced by using Turbogrid, where
this has been met with respect to the mesh of rotor 1 and stator 2. It was however not possible to achieve
this same resolution with respect to the mesh of stator 1. Reducing the y* number to below 1 involving the
mesh of stator 1 resulted in the formation of negative volume elements. Since maintaining positive volume
elements is considered to be of greater significance, the condition of y* < 1 is not reached. Instead the y*
number of the mesh of stator 1 is approximately 4.5. It was however found that by changing the inlet channel
length of stator 1, Turbogrid allowed both conditions to be met. By manipulating the initial flow path it might
therefore be possible to create a mesh that meets both conditions, providing a more accurate representation
of the turbine. This was however not considered within the current work as this outcome is uncertain. The
mesh that has been obtained by the Northwestern Polytechnical University group has a y* of approximately
3, where since the condition of y* < 1 is met regarding rotor 1 and stator 2, the in-house developed ETH mesh
is deemed sufficient. It should be noted that these same conclusions involving the y* number have been
reached for the 900k TUD mesh that is discussed in section 3.5.5.

Finally, it should be noted that the setup of the ETH configuration differs from the reference test case
involving the mixingplane. It was found that the mixingplane marker caused SU2 to diverge. Similar to the
MTU test case, the mixingplane markers have been replaced by a combination of the fluid and zone markers.
It should be noted that '"MARKER_GILES’ should also be altered, where the mixout and mixin planes are
omitted. The default settings for the linear solver have been used as well, since the ETH test case is not used
in order to test the NUTSCFD solver.

NPU MESH ASSESSMENT

The mesh that has been supplied by the faculty of Northwestern Polytechnical University (NPU) was unusable
in combination with SU2. The mesh that has been provided contains 5590k elements, where different setups
have been tested in order to investigate the issue. An overview of the different scenarios can be found in table
3.9. Table 3.9 shows different combinations of the mesh, where the configuration file has been kept constant
(excluding the setup of the boundary conditions since these depend on the mesh).

Table 3.9: SU2 solver result for different configurations following the ETH test case created using the NPU mesh

Setup SU2 Outcome

Row1+2+3 Simulation killed

Row 1 or Row 2 or Row 3 Runs normally

Row 1 + Row 3 Runs normally, crash at exit
Row 1 + Row 2 or Row 2 + Row 3 | Simulation killed

Since SU2 does not provide an error output involving these configurations, several topics have been in-
vestigated in order to find the cause of the simulation crashes. These topics involve the configuration file,
the tip-gap region, the mixing plane and the rotor mesh. It was first made sure that the configuration file is
correct, by using the mesh created in section 3.4.1. This setup was able to converge to a solution, where the
issue is therefore unlikely to be due to the configuration file. The tip-gap region was considered due to its
significant effect on the test case, and due to prior issues involving the MTU mesh. A new ETH NPU mesh
was therefore created excluding the blade tip-gap. Removing the tip-gap did not have an effect on the solver,
where the same result was obtained following table 3.9. Different mixing plane settings have been considered
as issues emerged when combining the different rows (table 3.9). It was found that this also did not have
an effect on the final result. Finally, different meshes have been combined in order to investigate the issue.
Table 3.10 shows different setups involving the mesh created by the faculty of Northwestern Polytechnical
University (NPU) and the mesh created in section 3.4.1 at the university of Delft (TUD). This table shows the
combination of different rows in order to further investigate the cause of the simulation crashes.

Table 3.10 indicates that there might be a problem with the NPU mesh itself. Due to time constrains it
was therefore considered to alter the TUD mesh such that it could mimic the performance of the NPU mesh.
When modifying the TUD mesh it was however observed that SU2 was unable to run the altered TUD mesh.
Similar errors were obtained where SU2 did not provide an error message. Reducing the element count of
the TUD mesh would eventually result in a successful SU2 simulation, where it is therefore expected that the
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Table 3.10: SU2 solver result for different mesh configurations following the ETH test case created using the NPU mesh and the TUD
mesh

Setup SU2 Outcome
Row 1 (NPU) + Row 2 (NPU) + Row 3 (NPU) | Simulation killed
Row 1 (NPU) + Row 2 (TUD) + Row 3 (NPU) | Simulation killed

Row 1 (NPU) + Row 2 (TUD) Simulation killed

Row 2 (TUD) + Row 3 (NPU) Simulation killed

Row 1 (TUD) + Row 3 (NPU) Runs normally

Row 1 (NPU) + Row 3 (TUD) Runs normally

Row 1 (NPU) + Row 3 (NPU) Runs normally, crash at exit

large size of the NPU mesh is the issue that is causing SU2 to crash. It might be possible for SU2 to be able
to handle large size meshes, where the issue could be raised by the Turbomachinery module. It was therefore
not possible to test the performance of SU2 with respect to the supplied NPU mesh, where instead the modi-
fied TUD mesh is used.

Different mesh sizes have been considered for the modified TUD mesh, where the NPU group has used
meshes with 5590k, 3340k and 1930k elements. All three meshes have been recreated, where only the 1930k
mesh did not result in the SU2 solver to crash. The 1930k TUD mesh was therefore initially chosen as a substi-
tute for the NPU mesh. Since only the recreated 1930k TUD mesh is able to run using SU2, it is therefore also
expected that the reason for the NPU mesh to crash is due to its element count and not the setup of the test
case (as has been hypothesized above). Following figure 3.18 the 1930k TUD mesh showed however stalling
behaviour, where it was not feasible to run the mesh indefinitely due to time and performance constraints.
The peaks in figure 3.18 are the result of the simulation restarting, which therefore can be ignored. A new
mesh of 900k elements has been created instead and is used as the substitute for the NPU mesh. It has been
shown before following the grid independence study that a mesh of 225k elements should be sufficient when
simulating the ETH test case (section 3.4.1). The grid independence study showed small deviations in trends,
where a 900k element mesh had been considered as well. Although the results for this finer mesh following the
grid independence study showed similar results, the mesh documented within the current section is chosen
to have 900k elements. This was done so since the goal of this section was to mimic the NPU mesh, where the
900k element mesh was the first coarser setting that prevented SU2 from crashing. It is therefore likely for this
mesh to have an inefficient element count. Reaching convergence with this new mesh did however require
approximately a day of running on the current hardware, where this was therefore deemed acceptable.
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Figure 3.18: Residual behaviour of the ETH 1930k TUD mesh for 10000 iterations
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Although the 900k mesh mimics the NPU mesh, it is possible for the simulation results to differ from
the results obtained by the NPU group. Alghouth both meshes have a tip-gap (unlike the mesh created in
section 3.4.1), the 900k mesh differs in the number of elements used. It is however unlikely for the difference
in element count to impact the final results significantly. This is concluded following the results of the grid
independence study done in section 3.4.1. This grid independence study was however conducted using the
mesh without the tip-gap region. It should also be noted that there is a slight deviation in geometry compared
to the CAD model following the meshing procedure mentioned in section 3.4.1. Instead of using the exact
CAD model, the geometric export uses sections which results in a different blade profile. These effects should
affect the final simulation results, but their significance is expected to be minimal.






RESULTS

The previous chapter covered the development of the test cases. These test cases are used in order to assess
the performance of SU2. It was explained how these models have been set up, where the validity of these
models has been discussed. The current chapter contains the SU2 results following these test cases, where
the performance of the solver is analysed using the residual and simulation results. The residual is used to
give an indication of the error of the approximate solution, where plotting the whole residual over the span
of the simulation gives an idea of the solver’s performance.

The current chapter is divided into sections which discuss the results that have been obtained. This chap-
ter starts with the analysis of the single zone test cases using the NACA 0012 airfoil (section 4.1) and the LS89
turbine stage (section 4.2). Both test cases are used in order to compare the current result obtained by SU2 to
that of Xu et al. [1] and their NUTSCFD solver. The NACA 0012 test case serves as a basis for which the perfor-
mance of SU2 can be compared with respect to external flow. These flow scenarios involve relatively simple
flow structures with respect to turbomachinery. The solver performance involving a single zone turbine stage
will be tested using the LS89 test case. This scenario results in more complex flow structures, where the test
case is more representative of the subject of interest. Both test cases are also used in order to test the per-
formance of the Newton-Krylov solver in SU2. The chapter continues with the results for the MTU test case
in section 4.3. It was found that the MTU test case is unable to reach convergence, where a detailed analysis
is conducted in order to identify potential problems created by the test case. This section is followed by the
analyses of the results obtained by the ETH test case (section 4.4). The development of the ETH test case has
resulted in two ETH meshes, where a distinction is made between the 225k and 900k TUD meshes. Section
4.4 starts with the validation of the results obtained by the ETH test case by comparing the data to that of
other solvers. These results are initially obtained using the standard solver, where this section continues with
the performance analysis of the ETH test case with respect to the Newton-Krylov solver. Finally, the current
chapter is concluded with the discussion of the results, which can be found in section 4.5.

4,1. NACA 0012 RESULTS

The NACA 0012 test case is validated using the Mach data obtained from the literature. The results obtained
by Xu et al. also allow for the convergence assessment of SU2. Figure 4.1 shows both the Mach contours
obtained by the NUTSCFD solver (figure 4.1a) and SU2 (figure 4.1b). Both figures show identical results with
respect to the Mach contour, where it is concluded that the NACA 0012 test case has been set up properly.
The convergence behaviour of the test case is analysed using the nonlinear steps of the solvers. The maxi-
mum number of iterations allowed for the linear solver is set to 500, similar to that of the NUTSCFD solver.
A comparison is made in figure 4.2, where both the results for SU2 and NUTSCFD are plotted. Following
figure 4.2a, the convergence behaviour of 'd’ is to be compared to that of SU2. The other results have been
obtained for different angles of attack, which are not analysed within the current work. Figure 4.2b shows the
convergence behaviour of SU2. Figure 4.2b contains two results, where the convergence of a normal setup
is compared to that of the Newton-Krylov solver using SU2. From the figure it can be seen that the Newton-
Krylov solver shows better performance compared to the normal setup, where the Newton-Krylov solver is
able to approach convergence at approximately 930 iterations. The NUTSCFD results show however that the

37



38 4. RESULTS

Newton-Krylov solver is able to reach convergence at approximately 200 iterations, performing better than
SU2. It is clear from figure 4.2b that the Newton-Krylov solver within SU2 is able to have a positive effect on
the number of non-linear iterations that are required in order to reach convergence, but 4.2a shows that there
is still room for improvement. The difference between the standard and Newton-Krylov solver is that only the
NEWTON_KRYLOV option is turned off for the former.

(a) NUTSCFD result following the NACA 0012 test case [1] (b) SU2 result following the NACA 0012 test case

Figure 4.1: NACA 0012 Mach contour
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Figure 4.2: NACA 0012 convergence behaviour

4.2.1.5S89 RESULTS

This section contains the analysis results of the LS89 test case. Figure 4.3 shows the results obtained for the
LS89 turbine. It was found that SU2 provides the same Mach range as the NUTSCFD solver as both figures
4.3a and 4.3b show a maximum Mach number of 0.92 Mach. Similar contours have been found and plotted,
where occasionally differences in contour locations can be seen. The results are deemed to be sufficiently
similar, where the residual behaviour of SU2 is analysed and compared to that of the NUTSCFD solver.

Figures 4.4 and 4.5 show the residual behaviour of both SU2 and NUTSCFD. Figure 4.4 shows both the
residual involving a normal setup, and by making use of the Newton-Krylov solver. In contrast to the results
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(b) SU2 convergence result following the LS89 test case

(a) NUTSCFD convergence result following the LS89 test case [1]

Figure 4.3: LS89 Mach contour
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found in section 4.1, the LS89 test case requires more iterations when using the Newton-Krylov solver. When
comparing the results obtained by Xu et al. to that of SU2, a notable difference in convergence behaviour
can be found. The data obtained by the NUTSCFD solver is generally plotted using non-linear steps, where
the number of linear steps is not documented. Xu et al. do however document the total number of work
units, which is defined as "the CPU time required for a single residual evaluation" [1]. Both the non-linear
steps and the work units are visible in figure 4.5, where level 5 represents the relevant convergence data. SU2
does currently not provide an option in order to measure the CPU time required in order to obtain a single
residual evaluation. It is therefore not possible to make a comparison based on this aspect. The iterations
that have been visualized in figure 4.4 represent the SU2 ’inner iterations’ as the LS89 test case does not use
a multizone configuration. It is however expected that these inner iterations do not account for the separate
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Figure 4.4: Convergence behaviour of the residual of the LS89 test case following SU2 using the density residual
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Figure 4.5: Convergence behaviour of the residual of the LS89 test case following NUTSCFD [1]

In order to analyse whether the number of linear solver iterations has an effect on the total number of SU2
Newton-Krylov 'inner iterations’, a new simulation has been run where the max number of linear solver iter-
ations has been set to 1. It was found that test case LS89 diverges if the maximum number of linear iterations
is set at 3 or higher. It was tried to set the maximum number of iterations at 500, as this is the case for the
NUTSCEFD solver, but this resulted in a crash at iteration number 23. Figure 4.6 shows the results following
a maximum of 1 linear iteration. It can be seen that the standard solver matches the number of iterations
required for the Newton-Krylov solver to reach convergence. This suggests that the Newton-Krylov solver is
unable to calculate multiple linear iterations, as limiting the maximum number of linear iterations to 1 re-
sults in the same convergence behaviour. When comparing the results obtained for the NACA 0012 airfoil
(section 4.1), it can be seen that the Newton-Krylov solver seems to perform worse for the LS89 test case.
Both LS89 simulations converge at approximately 108000 iterations, which is close to the maximum number
of possible NUTSCEFD iterations (if limited to 1 linear iteration). If the NUTSCFD solver would require all
linear 500 FGMRES iterations, a theoretical maximum of approximately 90000 iterations would be required.
It is however unclear whether the NUTSCFD solver uses more iterative techniques which could influence its
final performance. A difference in performance is to be expected due to the difference in meshes used, but it
is also currently unclear whether an accurate comparison can be made involving the LS89 test case. Section
4.5.2 discusses these conclusions, where solutions to these problems are proposed.
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Figure 4.6: SU2 convergence behaviour of the residual of the LS89 test case with limited (1) number of linear iterations using the density
residual
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From the results of the NACA 0012 and LS89 test case and the discussion in section 4.5.2 it has been concluded
that a new test case is required in order to accurately analyse SU2. The previous test cases are unable to
provide a reliable analysis, where the MTU test case has been developed to solve these issues. This section
contains the results for this test case, where the development of the test case has been documented in section
3.3. The results have been divided into different sections, where section 4.3.1 presents the initial findings for
the MTU test case. The performance of the test cases is tested by plotting the average Block-Gauss Seidel
residual. It was found that the test case stalls, where this section therefore also contains the initial analysis of
this behaviour. Section 4.3.2 investigates whether potential problematic regions can be identified by plotting
the residual on the mesh, where finally the different Newton-Krylov setups are investigated in section 4.3.3.
The results found within section 4.3 are discussed in section 4.5.3.

4.3.1. MTU PERFORMANCE ANALYSIS

This section contains the initial results for the MTU test case. The creation of this test case has been docu-
mented in section 3.3, where the results have been analysed extensively due to poor performance. It should
be noted that the results within this section are obtained using the standard solver. The Newton-Krylov solver
is analysed in section 4.3.3. Different solver setups have been used in order to identify the cause of the poor
behaviour. The 200k element mesh of the MTU test case has been used for these simulations, as the accu-
racy of the mesh is of less importance due to the solver not converging to a solution. Currently the MTU
shows stalling behaviour, where the test case does not reach convergence. Applying a rotation rate to the
rotating frame of the impeller blade passage resulted in SU2 to crash at low solver iterations, where therefore
the frozen rotor setup has been analysed first. Figure 4.7 shows the convergence result for the MTU test case
where the configuration has been set up using a frozen rotor. Figure 4.7 shows the residual versus the itera-
tions of the SU2 solver. The 3 zones of the MTU multizone simulation have been plotted, where the residual
for the inlet, blade passage and outlet are visualized using black, red and blue respectively. The plot shows
oscillating behaviour for both the inlet and outlet residual, where the simulation stalls and does not improve
any further past iteration 2000.

— avg(gs)()
a2 — avglbgs)(l)
—— avglbgs)(2)

-02

04

06

08

avg(bgs)

600 1000 1800 2000 2500 3000 3500 4000 4500 5000
Iterations

Figure 4.7: Convergence behaviour of the residual of the MTU test case following the frozen rotor setup

Following these results, the boundary conditions of the simulation have been analysed first. This was
done by running the frozen rotor simulation for one iteration, making sure the inlet boundary conditions are
correct. Figure 4.8 shows the pressure contours of the inlet and outlet boundary surfaces. Using Paraview
static pressure measurements have been done, where the measurement location is visualized using a small
purple dot. From these points it was found that the inlet value is 0.86 bar and the outlet 1.025 bar. The inlet
and outlet conditions have been set following the conditions mentioned in table 3.5, setting the inlet total
pressure at 0.6 bar and the outlet static pressure at 1.013 bar. The measured static pressure at the inlet is
relatively high compared to the set boundary condition, but from the configuration file there is no indication
that the test case has not been setup properly.
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Figure 4.8: Static pressure distributions for the MTU test case at 1 iteration

The observed behaviour of the MTU has lead to the analysis of the test case on which the MTU test case
has been based. The MTU test case has been created by making use of the Eckardt test case which has been
developed at the TU Delft. Figure 4.9 shows the residual behaviour of the solver involving the Eckardt test
case. Figure 4.9 clearly shows stalling behaviour where all residuals for the three zones oscillate. The setup
that was chosen for this test case was the default setup (provided by the TU Delft), where the default mesh was
used. It was expected for this simulation to reach convergence, but this is clearly not the case. This test case
has been used in prior studies, where it is likely for the SU2 code base to have changed such that the Eckardt
test case does no longer converge. During the current work it was initially not expected for the default Eckardt
test case to stall. Realizing this fact has therefore been a time-consuming process, as the MTU test case was
analyzed first, thus initially overlooking the possibility of a greater underlying issue causing this behaviour.
The result of the Eckardt analysis is therefore discussed first.
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Figure 4.9: Convergence behaviour of the residual of the Eckardt test case following the default setup

Research has been done with respect to the performance of the Eckardt test case. Different setups have
been tested, where the results are visible in table 4.1. The default Eckardt test case uses the JST numerical
scheme in combination with the BCGSTAB linear solver. Different schemes and setups are tested in order to
identify the issue currently causing the stalling behaviour. The default test case is altered, where an overview
of the change in simulation setup can be seen in table 4.1.
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FLUID INTERFACE + ZONE INTERFACE SETUP

The first changes that were made to the default Eckardt setup involve the boundary conditions and thus the
markers in the configuration file. Different fluid interfaces have been tried, which alters the behaviour of the
data that is transferred between the zones. Changes were made to the fluid interface and the marker zone
interface, as the default test case made use of the mixing plane interface. This setup initially showed better
performance (figure 4.10a) compared to the default test case (figure 4.9), but again showed stalling behaviour
after approximately 400 iterations.

Table 4.1: Different Eckardt test case setups that have been analysed with the solver result

Simulation type Eckardt Result

Default (JST and BCGSTAB) setup Oscillating residual
Fluid interface + zone interface setup | Oscillating residual
Frozen rotor setup Oscillating residual
Massflow setup Oscillating residual
FGMRES setup Simulation crash
ROE numerical setup Normal behaviour

FROZEN ROTOR SETUP

A setup was tested which made use of the frozen rotor setup. The default configuration was used, where the
rotating frame of the impeller was fixed. Fixing the rotor should provide a more stable simulation, but this
did not improve the convergence of the Eckardt test case.

MASSFLOW SETUP

Another setup has been tested by changing the boundary conditions with respect to the massflow. The mass-
flow setup used instead of the exit static pressure the massflow at the outlet in order to close the system of
equations. This is a relatively new exit boundary condition within SU2, where this did not improve the solver
convergence.

FGMRES SETUP

In addition to boundary condition changes, solver changes have been done as well where the FGMRES linear
solver was tested. This setup was achieved by changing the default configuration, which uses the BCGSTAB
linear solver, into the FGMRES solver. This did however worsen the convergence behaviour as this resulted
in the simulation to crash at iteration number 409.

ROE NUMERICAL SETUP

Finally the numerical scheme was changed in order to test the convergence behaviour of the Eckardt test
case. The default configuration was altered by changing the JST scheme into the Roe scheme. Changing the
numerical scheme improved the convergence behaviour of the solver, where the Roe setup results in normal
solver performance. The residual for the Roe setup can be seen in figure 4.10b.

The boundary conditions of the Eckardt test case are analysed similarly to the MTU. Figure 4.11 shows the
inlet and outlet static pressure after one iteration of the Eckardt test case. The inlet and outlet static pressure
are measured at 1.01 and 1.21 bar respectively. The inlet total pressure was set at 1.01 bar, where the outlet
static pressure was set at 1.51 bar. A difference in measured pressures was therefore found, where these mea-
surements were done using the default Eckardt configuration. Both figures 4.11a and 4.11b differ from figures
4.8a and 4.8b showing different pressure distributions, where this is expected to be caused by the difference
in scale. Since the Roe setup is able to show normal solver behaviour (figure 4.10b), it is unlikely that the
current setup for the boundary conditions is causing the oscillating residual behaviour for the other setups.

Currently the only setup that is able to converge is the setup involving the ROE numerical scheme. Due
to the sake of completion the MTU has been simulated using the ROE scheme, which resulted in a diverged
simulation. Further analysis has been conducted for the MTU test case, showing a similar outcome to that
of the Eckardt setup analysis (table 4.1). It was found from the setup analysis that no MTU test case was able
to reach convergence. Additional tests have been conducted by investigating the local Mach number on the
mesh. Since Paraview is unable to plot the Mach distribution along the meridional view of the impeller, slices
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Figure 4.10: Convergence behaviour of the residual of the Eckardt test case for two setups following table 4.1
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Figure 4.11: Static pressure distributions for the Eckardt test case at 1 iteration

of the Mach distribution have been inspected instead. Although not ideal, these slices did not show unusual
Mach behaviour of the impeller except for high Mach numbers being present at the tip-gap of the blade. The
Mach results that have been inspected involve the stalling results obtained for the default MTU test case at
iteration 2000. The CFL number has also been inspected in order to test whether this had an effect on the
magnitude of the oscillating residual. The result of this analysis can be found in figure 4.12. Comparing fig-
ures 4.12a and 4.12b shows that reducing the CFL number resulted in less oscillatory behaviour. The solver
has been configured such that the CFL number is non-adaptive.

Finally an analysis has been done with respect to a no tip-gap setup. The default Eckardt mesh does not
contain a tip-gap region, and due to the analysis of the Mach contours, it was decided to investigate the be-
haviour of the MTU without a tip-gap region. The mesh has been altered in Turbogrid, where the default MTU
setup has been used. Results of the analysis can be seen in figure 4.13. Due to the sake of completion the ROE
setup has been tested as well. Figure 4.13a shows the residuals with respect to the default test case, where
again the MTU shows stalling behaviour. Figure 4.13b shows the residual plot with respect to the ROE setup.
Unlike figure 4.10b, combining the MTU test case with the ROE scheme results in the simulation stalling. It
was expected for the MTU to show similar behaviour to that of the Eckardt compressor, but this is not the
case. Instead the MTU simulation stalls at approximately iteration 100.
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Figure 4.12: Analysis of the residual with respect to the CFL number
(using the fluid interface + zone interface setup with a frozen rotor)
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Figure 4.13: Analysis of the residual for the no tip-gap MTU test case

Within the current work it is concluded that the test case developed for the MTU impeller provides stalling
results. Analysing the results provided insight into the fact that the reference test case of the Eckardt compres-
sor, on which the MTU test case is based, also provides stalling results. Research has been conducted on both
test cases, where an explanation for the current behaviour was not found. This outcome has therefore com-
promised the ability of the current study to analyse the performance of the Newton Krylov solver in SU2. The
only centrifugal test case that was able to reach converges is the Eckardt test case following the Roe setup
(figure 4.10b), where the results of the test case can be seen in figure 4.14. Paraview has been used in order
to post-process the data, where Paraview is currently unable to plot the meridional view of the impeller. Fig-
ure 4.14a shows the Mach contour, where figure 4.14b shows the velocity field of the test case. The scale of
the arrows is proportional to the momentum of the flow, where the colour of the arrows indicates the Mach
number. Additional studies have been conducted with respect to the mesh quality of the MTU. The results
of these studies can be found in section 4.3.2. In addition, the results found within the current section are
discussed in section 4.5.3.
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Figure 4.14: Eckardt results following the Roe setup

4.3.2. ANALYSIS OF THE MTU RESIDUAL ON THE GRID

A grid analysis has been done with respect to the MTU test case in order to determine why the MTU test
case did not reach full convergence. This section contains the results for this analysis where the study has
been conducted using the residual of the results. This section is divided into 4 sections which discuss the
residual with respect to the density, energy, momentum and nu tilde. The results have been plotted on the
mesh (figure 4.15), visualizing the top 100 highest residual locations. In addition the residual distribution of
the mesh is evaluated, where the largest deviating values are analyzed. This has been done in order to better
identify problematic zones, providing a broader view of the performance of the mesh. All results have been
obtained at iteration 2000 since the MTU test case is unable to reach convergence (figure 4.7). The study has
been conducted using the frozen rotor setup.

Figure 4.15: Top 100 points with the highest density residual

DENSITY RESIDUAL

Figure 4.15 shows the top 100 points with the highest density residual for the MTU test case. The gridpoints
have been visualized in white, where the top 100 points are indicated using purple. The results range from
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-6.36e”" to —4.20e~’, where the points are mostly located near the left periodic boundary condition of the
mesh. Figure 4.16 shows the results for the residual distribution analysis. Figure 4.16a visualizes the most
extreme residual values, where the residual distribution versus the number of points has been plotted in
figure 4.16b. From the residual distribution (figure 4.16b) it can be seen that a relatively low number of points
is located at the edges of the distribution, where the two columns deviating the most have been visualized in
figure 4.16a. It can be seen that the location of these deviating values matches the locations in figure 4.15. It
should be noted that the residual distribution (figure 4.16b) ranges only up to 500 points. This was done for
the sake of clarity, where most of the points are located around 0. The bar graphs around 0 therefore extend
past the maximum value of 500.
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(a) Location of the most extreme density residuals (b) Distribution of the density residual

Figure 4.16: Results for the density residual distribution analysis for the MTU test case

MOMENTUM RESIDUAL

The top 100 points with the largest momentum residual have been plotted in figure 4.17. The top 100 points
range from 1.47¢73 to 0.57e—3, where they have been located at the surface of the mesh (at the shroud). The
error of these points is significantly greater compared to that of the density residual but differs in location.

Figure 4.17: Top 100 points with the highest momentum residual

The residual distributions have been plotted in figure 4.18. From these distributions it can be seen that
the X momentum provides the largest deviating residual. Although the number of points that deviate from 0
is relatively low, the scale of these distributions is significantly greater compared to the distribution of the
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density residual (figure 4.16b). The effect of the momentum residual is therefore likely to affect the SU2
simulation more greatly.
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Figure 4.18: Results for the X, Y, Z and magnitude momentum residual distribution analysis for the MTU test case

ENERGY RESIDUAL

Figure 4.19 shows the top 100 points with the largest energy residual. These points range from 0.11 to 0.05,
indicatingrelatively large error values compared to that of the density and the momentum. The top 100 points
for the energy residual are more spread out compared to that of the density, where it is similar to that of the
momentum, being positioned at the top surface of the grid. Figure 4.20 shows the results for the residual
distribution. Figure 4.20b shows a low number of points that deviate from the value of 0. It should be noted
that these values differ more significantly due to the increase in scale, compared to the previously plotted
residual distributions. The strongest outliers following this distribution have been plotted in figure 4.20a.

NU TILDE RESIDUAL

The final residual that is analysed involves the Nu tilde. The top 100 points involving the nu tilde residual have
been plotted in figure 4.21. The figure shows the points being positioned at the shroud near the trailing edge
of the blade. This location differs significantly compared to the previous results that have been plotted for the
density, momentum and energy residual. Figure 4.22 shows the results involving the residual distribution.
Figure 4.22b shows little deviating residual values, where the largest deviating points are located at a similar
location to that of the top 100 points (figure 4.22a).
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Figure 4.19: Top 100 points with the highest energy residual
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Figure 4.20: Results for the energy residual distribution analysis for the MTU test case

Figure 4.21: Top 100 points with the highest nu tilde residual
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Figure 4.22: Results for the nu tilde residual distribution analysis for the MTU test case

Overall it can be concluded that the largest deviating residuals can be found for the energy residual. This
residual is orders of magnitude higher compared to the other residuals. The analysis does however not pro-
vide a clear indication of a problematic zone. The top 100 points for the energy residual are spread out, where
the other residuals do not provide a clear matching region. Although the location of the highest momentum
residual points is similar to that of the energy residual, for there to be a problematic region it would be ex-
pected for these points to be more concentrated. It would also be expected that the other density and nu tilde
residuals would provide similar results for there to be a problematic region. Following these results, a clear
reason for the current stalling behaviour of the MTU was therefore not identified.

4.3.3. MTU NEWTON-KRYLOV PERFORMANCE STUDY

It was found in section 4.3.1 that the MTU test case is unable to reach convergence following the standard
solver setup. The results showed that the MTU test case stalls, which complicates the analysis of SU2. Follow-
ing these results it is therefore not possible to compare SU2 to NUTSCFD using the MTU test case. Nonethe-
less the current section provides an analysis of the Newton-Krylov solver with respect to different solver se-
tups. Following the theoretical background (chapter 2) it was found that the Newton-Krylov method is im-
pacted by the preconditioner and the formation of the Jacobian matrix. The current section therefore pro-
vides an analysis of SU2’s performance using different preconditioners, and different solver settings affecting
the Jacobian matrix. It should be noted that the results within the current section are obtained using the
Newton-Krylov solver, which was not the case for the preceding MTU sections. The setup that was chosen for
the current section involves the default MTU configuration (table 3.6). This configuration makes use of the
zone + fluid interface.

PRECONDITIONER STUDY

This section contains the results for the preconditioner study for the MTU test case. Following the literature
study (section 2.3.2) it was determined that the preconditioner can have a significant effect on the perfor-
mance of the Newton-Krylov solver. Different preconditioners have therefore been analysed, where the re-
sults of this study are presented within this section. SU2 allows for the selection of different preconditioners,
where the different types of preconditioners are described in table 4.2. The MTU test case has been used
with the Newton-Krylov solver being activated, where the results within the current section are obtained at
iteration 2000. This was chosen as previous simulations showed the MTU test case to stall.

Table 4.2: Different preconditioner options in SU2 and their description

Preconditioner type | Description

JACOBI Block Jacobi preconditioner
LU_SGS Lower-Upper Symmetric Gauss-Seidel
ILU Incomplete Lower Upper factorization with connectivity-based sparse pattern

LINELET Line-implicit Jacobi preconditioner
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Figure 4.23 shows the convergence behaviour of the SU2 Newton-Krylov solver when using a LUSGS and
Jacobi-based preconditioner. Within these figures the residuals of the inlet, passage and outlet section of the
multizone simulations are visualised using black, red and blue respectively. Both simulations show a sudden
sharp increase in residual error for both the inlet and passage section. From the figures it is concluded that the
Jacobi-based preconditioner (figure 4.23b) performed slightly better compared to the LUSGS preconditioner
(figure 4.23a), where both simulations stall. Figure 4.24 shows the performance of SU2 using the Linelet
preconditioner. This figure shows better performance for the blade passage section, with a sharp increase
in residual error for the inlet section at iteration 400. It can also be seen that the outlet section performed
similar to that of the Jacobi preconditioner.
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Figure 4.23: MTU convergence behaviour of the Newton-Krylov solver using a LUSGS and Jacobi preconditioner
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Figure 4.24: MTU convergence behaviour of the Newton-Krylov solver using a Linelet preconditioner

Figure 4.25 shows the performance of the SU2 Newton-Krylov solver when using the ILU preconditioners.
Both ILU preconditioners show better performance compared to the results of the LUSGS, Jacobi and Linelet
preconditioners. It should be noted that Xu et al. [1] also used an ILU preconditioner for their Newton-Krylov
solver (section 2.3.2). Both figures 4.25a and 4.25b show no sudden increases in residual error, unlike seen in
figures 4.23 and 4.24. The ILU(0) preconditioner seems to cause less fluctuations in residual error involving
the inlet zone compared to the ILU(1) preconditioner. In contrast an oscillation can be seen for the passage
section, which is not present for the ILU(1) result. The residual for the exit zone behaves similar for both ILU
preconditioners. From the preconditioner study it has been found that both ILU preconditioners provide the
best result in combination with the Newton-Krylov solver. It should be noted that all simulations stall, where
the selection of the preconditioner did not have an effect on the final stalling result. The ILU preconditioners
showed a significant difference in performance, where the LUSGS, Jacobi and Linelet preconditioners showed
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large sudden increases in residual error. For the current test case it would therefore be recommended to use
the ILU preconditioner when using the Newton-Krylov solver in SU2.
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Figure 4.25: MTU convergence behaviour of the Newton-Krylov solver using a ILU(0) and ILU(1) preconditioner

JACOBIAN MATRIX SETTINGS ANALYSIS

SU2 provides additional settings which might affect the performance of the Newton Krylov solver. The ef-
fect of these settings on the residual with respect to the MTU test case is presented within the current sec-
tion. The settings are related to the Jacobian matrix, which plays an important role within the Newton-Krylov
solver (section 2.5.2). Xu et al. use a graph coloring algorithm, which is not present in SU2. Instead the effect
of the settings 'USE_ACCURATE_FLUX JACOBIANS' and 'CENTRAL_JACOBIAN_FIX_FACTOR’ are analysed.
The setting USE_ACCURATE_FLUX JACOBIANS affects the AUSM+up(2) and SLAU(2) convective schemes
that can be used in order to calculate the Jacobian matrix. Analysing the residual resulted in a plot which did
not differ from the original setup. The setup case for the ILU(0) analysis has been used as the original setup
(figure 4.25a), where the setting of the USE_ACCURATE_FLUX JACOBIANS had no effect on the behaviour of
the solver. The default setting is 'NO’, where 'YES’ was used in order to activate this component for the current
analysis.

The Jacobian fix factor affects the numerical properties (diagonal dominance) of the global Jacobian ma-
trix. It has been stated that the optimum is from 3 to 4 (central schemes), where for the current analysis 2, 3, 4
and 5 are considered. Figure 4.26 shows the results for the different fix factors. Figure 4.26a shows the poorest
performance, where the residual of the passage section of the impeller does not improve over time. In con-
trast figure 4.26b shows a decreasing passage residual, but a sudden increase in error at approximately 600
iterations. It should however be noticed that this passage residual does not show any oscillatory behaviour,
where this is commonly found for the other figures plotted within the current section. Figure 4.26c shows the
convergence behaviour of the solver for a fix factor of 4. This result is identical to that of the result found for
the ILU(0) analysis (figure 4.25a). Figure 4.26d shows the result for the fix factor of 5. It shows initially bet-
ter performance with respect to the inlet section, where the residual increases at approximately 800 iterations.

From the fix factor analysis is can be concluded that the fix factor has very little effect on the outlet section
of the MTU test case. All figures show nearly identical behaviour following this outlet section. The fix factor
mainly affects the inlet and passage sections of the mesh, where the fix factor of 4 is able to provide the best
result. It should be noted that 4 is also the default value for the fix factor in SU2, where all previous results
documented within the current work are obtained using this fix factor. The passage section of the test case is
strongest influenced by the fix factor, where lower factors result in poorer solver performance. The opposite
is true for the inlet section, where a lower fix factor obtains better results with respect to the inlet residual. All
results obtained show stalling behaviour, where the fix factor did not improve the oscillatory behaviour of the
solver.



4.4. ETH 1.5 STAGE TURBINE RESULTS 53

— ovg(bgs)(®) — ovg(bgs)(0)
— avglbgal(l) 02 — avglbgs)(1)
—— ovg(bgs)(2) —— avg(bgs)(2)

WWWWMMMWWM OZ

o

&

&
o

&
&

&

-1
2 3
o - o -
8" kS
o, [
: H
e :
1.8
2
22
24
26
28
B0 @ wo s oo @0 iao o o oo Do @0 wo s w0 @0 @0 o wo zbo
lterations Iterations
(a) Residual behaviour with the fix factor at 2 (b) Residual behaviour with the fix factor at 3
— avglegs)(0) — avg(bgs)(@)
02 —avglbgsi() 5 —avglbgsi(l)
—ovglbgs)(2) ——avg(bgs)(2)
0 02
02 04
0.4
=06
0.6
08
0.8
-1
-1
= P
6.2 &
e e -14
D14 D
>
H 3.
-1

S

200 abo 600 800 1000 1200 1400 1600 1800 2000 200 abo ) 00 1000 1200 1400 1600 1800 2000
Iterations lterations

(c) Residual behaviour with the fix factor at 4 (d) Residual behaviour with the fix factor at 5

Figure 4.26: MTU convergence behaviour of the Newton-Krylov solver with respect to a Jacobian fix factor of 2, 3, 4 and 5

4,4, ETH 1.5 STAGE TURBINE RESULTS

This section contains the results for the ETH 1.5 stage turbine test case described in section 3.4. The results
obtained involve both the 225k and 900k TUD meshes that have been the result of the test case development
process. It was not possible to use the NPU mesh, where the 900k TUD mesh was created instead. The 225k
and 900k TUD meshes differ in the number of elements used and the presence of the tip-gap. It should be
noted that the 225k TUD mesh does not contain the tip-gap, where the 900k TUD mesh does.

The section starts with the analysis of the 225k TUD test case using the standard SU2 solver (section 4.4.1).
The results are obtained using SU2, where the exported values are area-averaged using the span-wise location
of the data points. All data is compared to the experimental results obtained by Behr [21]. This section is
therefore used in order to validate SU2’s output, analysing whether the test case has been set up properly. This
section is followed by section 4.4.2 showing the results for the 900k TUD mesh. Similar to section 4.4.1 the
results are compared to the experimental data, where additional data has been obtained following research
conducted by the Northwestern Polytechnical University. Both data sets allow for the comparison of SU2 to
that of CFX, Numeca and the open literature, where again the test case is validated using the standard solver.
The section concludes with section 4.4.3 which analyses the ETH test case using the Newton-Krylov solver.
The convergence behaviour of the test case is shown, where additional tests are conducted using different
preconditioners. Similar to section 4.3.3, the effect of the Jacobian configuration is evaluated as well. The
results found within this section are discussed in sections 4.5.4.
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4.4.1. 225K TUD MESH RESULTS

The results that have been obtained using the 225k TUD mesh are presented within this section. Results
have been obtained for both the static pressure and the Mach number at the measurement plane locations
(figure 3.7). The obtained results are compared to the experimental data obtained by Behr in order to verify
the results obtained by SU2. Figure 4.27 shows the performance of the 225k mesh with respect to the static
pressure for all 4 measurement planes. All figures show a strong deviation with respect to the experimental
data. Only figures 4.27b and 4.27c show similar trends to that of the open literature, but differ in magnitude.
SU2 was able to reach convergence, where the results are obtained following a residual smaller than 1078,
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Figure 4.27: SU2 static pressure results for the 225k TUD test case for Plane A, B, C and D

Figure 4.28 shows the Mach distributions of the results for all 4 measurement planes. Unlike the static
pressure, the Mach number shows more similarities with respect to the magnitude of the data. The values of
the Mach number deviate however from the experimental data with respect to all figures. Figure 4.28c shows a
strong deviation in trends near the shroud region. This strong difference in trend is expected to be the result
of the missing tip-gap region. All results obtained within this section show little similarities to that of the
experimental data obtained by Behr. It was expected for the data to show similar trends, where instead strong
deviations are found. Interesting to notice is the difference with respect to the data involving measurement
plane A (especially figure 4.27a). The SU2 results show different behaviour where these trends are unlikely to
be caused by the missing tip-gap. From the results it can be concluded that the created mesh is not accurate
enough in order to compare the ETH performance, especially with respect to the experimental data. The
strongest indication for this is the result obtained involving the Mach number at plane C (figure 4.28c). This
plot shows a slightly similar trend with respect to the spanwise distribution, where a strong deviation is seen
near the shroud of the turbine. This is likely to be the result of the deviating tip-gap region, where the effect
of this is travelling downstream of the rotor section. The results obtained within the current section strongly
suggest the creation of a new test case which has a tip-gap. This has therefore led to the development of the
second (900k) ETH mesh. The procedure of which is described and discussed within section 3.5.5.
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Figure 4.28: SU2 Mach results for the 225k TUD test case for Plane A, B, Cand D

4.4.2.900Kk TUD MESH RESULTS

This section contains the ETH results that are obtained using the 900k TUD mesh. From section 4.4.1 it has
been concluded that a mesh without the tip-gap region is not sufficient in order to study the ETH test case.
The 900k TUD mesh has therefore been generated in order to obtain more accurate results. This section
shows all results for the 900k mesh with respect to the total pressure, static pressure, the Mach number and
the relative flow velocity. All values have been area-averaged and distributed along the span of the blade,
where the results are compared to the results obtained by CFX, Numeca and the experimental data by Behr.

No convergence data was provided with respect to residual behaviour, where the convergence behaviour of
SU2 is therefore not analysed within the current section.

PLANE A

The results obtained for measurement plane A are plotted in figure 4.29. All plots show strong similarities
between the CFD data. Both SU2, CFX and Numeca show similar trends, where SU2 matches the results
obtained by CFX. Interesting to notice is the significant difference in performance with respect to the exper-
imental data. Although figures 4.29a, 4.29c and 4.29d show similar trends, the plots show a difference in the

exact value. Figure 4.29b shows an even larger difference in values, where the trend of the experimental data
differs greatly from the CFD results.

PLANE B

Figures 4.30 and 4.31 show the results that have been obtained for measurement plane B. With respect to the
results obtained for plane A, the SU2 results differ more significantly from the CFX data. From figures 4.31a
and 4.31b it can be found that again SU2 is able to show similar trends with respect to the data obtained by
CFX, where figure 4.31b shows a small anomaly near the radius of 385 mm. This bump is however also seen in
the experimental data near a 385 mm radius. Figure 4.30a shows a strong loss in total pressure, but a similar
trend with respect to the other results. A slight drop in total pressure over stator 1 is to be expected when
compared to figure 4.29a, but the pressure drop shown in figure 4.30a for SU2 is rather significant. Figure

4.30b shows SU2 outputting similar results to that of CFX, where a stronger static pressure loss is found near
the tip of the blade compared to CFX.
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Spanwise distribution of pitchwise area-averaged total pressure (plane A)
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Figure 4.29: SU2 pressure, Mach number and velocity results for the 900k TUD test case for Plane A
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Figure 4.30: SU2 pressure results for the 900k TUD test case for Plane B
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All plots involving measurement Plane B show again deviating results with respect to the experimental
data. Only the results following the total pressure show similar values compared to CFX and Numeca. The
other figures show similar trends when compared to the experimental data, but differ in exact values. It

should be noted that these trends for measurement plane B follow the experimental data more closely, where
this was not the case for plane A.
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Figure 4.31: SU2 Mach number and velocity results for the 900k TUD test case for Plane B
PLANE C

Figures 4.32 and 4.33 show the results obtained for measurement Plane C. Measurement plane C is located at
the exit of the rotor section, where these results are therefore strongly influenced by the performance of the
rotor. Figures 4.32a, 4.32b and 4.33a show large fluctuations in SU2 behaviour compared to the other results.
It can be seen that SU2 follows the trends of the experimental data slightly, as an increase in experimental
values also translates roughly to an increase in SU2 (local) overall value. SU2 also shows however large fluctu-
ations which is neither found in the experimental data nor the CFX and Numeca results. Figure 4.33b shows
more similarities between SU2 and the other results. Similar trends are for example found near the hub and
shroud of the turbine following SU2, CFX, Numeca and the experimental data. It is currently unknown why
SU2 provides such different data compared to the other data sets, especially when looking at the results found
for measurement plane D. SU2 does however provide similar results in the sense that the values are within

range of the other data sets. Interesting to notice is that also for Plane C, the CFD results do not match the
experimental data.
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Figures 4.34 and 4.35 show the spanwise distribution results obtained for Plane D. Similar to the results found
for plane B, figures 4.34a, 4.34b and 4.35a show that SU2 obtained similar results to that of CFX and Numeca,
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Figure 4.32: SU2 pressure results for the 900k TUD test case for Plane C
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Figure 4.33: SU2 Mach number and velocity results for the 900k TUD test case for Plane C

again showing a greater total pressure loss. In contrast, the results obtained for Plane D show a greater devi-
ation in trends and a lower Mach number (figure 4.35a). Figure 4.35b shows large fluctuations in data, where
this is also shown by Numeca. Overall SU2 shows similar results to that of CFX and Numeca, where local de-
viations in trends can be found. Following the results for Plane D, SU2 over-predicts the fluid dynamic losses,
showing a greater total pressure loss compared to the other data. It has also been found that the large devi-
ation in results following Plane C does not affect the results found at Plane D significantly, as the data found

by SU2 nears the data obtained by CFX and Numeca.
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Figure 4.34: SU2 pressure results for the 900k TUD test case for Plane D

Overall it can be concluded that SU2 provides data that is reasonably comparable to that of CFX and

Numeca. SU2 provides similar trends and results, where these can differ more significantly depending on
the measurement plane and the flow variable. Especially for plane A and B SU2 provides results that match
the other CFD data more closely. A greater deviation is found at plane C, where the deviating effects seem to
have been reduced at plane D. Following all planes it has been noticed that nearly no CFD results match the
experimental data. The pressure distribution of the converged ETH test case can be seen in figure 4.36.
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Figure 4.35: SU2 Mach number and velocity results for the 900k TUD test case for Plane D
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Figure 4.36: Pressure distribution of the ETH test case at midplane in [Pa]

4.4.3. ETH NEWTON-KRYLOV PERFORMANCE STUDY

The Newton-Krylov solver in SU2 is also tested using the ETH test case. It was chosen to use the 900k TUD
mesh for this analysis. Different results are expected as the ETH test case is an axial turbine, where the
MTU test case is a radial compressor. Different flow phenomena could therefore have different effects on
the Newton-Krylov solver, but this is to be tested within the current section. Identical to section 4.3.3, the
performance of the Newton-Krylov solver following the ETH test case is tested by investigating the effect of
the preconditioner and by varying the configurations of the solver. The convergence behaviour of the ETH
test case is however to be investigated first, as this has not been done prior to the current section. The ETH
test case is therefore re-run using a Newton-Krylov setup, where the results are compared to the standard
solver (figure 4.37).

Figure 4.37 shows a comparison between the convergence behaviour of the normal solver and the Newton-
Krylov solver. Following the standard setup, SU2 is able to reach convergence after approximately 10500 itera-
tions. Both figures show spikes at 5000 and 10000 iterations, which are the result of the solver being restarted.
Due to alack of computing power, the test case was simulated in a segregated manner, where the solution was
restarted after 5000 and 10000 iterations. The simulations have been run using a single CPU core, where every
5000 iterations took approximately 20 hours of computing time. In addition, it was unclear at what iteration
the test case would converge, where restarting the simulation after 5000 iterations would therefore prevent
the possibility of redoing the whole simulation upon a computer or solver crash. These small spikes at 5000
and 10000 iterations in residual values can therefore be ignored. The simulations have been set up such that
the solver converges if one of the zones is able to reach a residual of 108, Following figure 4.37a this is the
case for the inlet section, where the residual for the passage and outlet are approximately 107°° and 1076



60 4. RESULTS

2 2.
— avglbgs@ — avglbgs)(@)
N —— avglbgsi(l) — avglbgs)(l)
— avglbgs)(2) 14 — avglbgs)(2)
0
ol
214
2 -1
-~ -
[ ()
D -3 o
s Q 3
) )
-4 N,
> >
o o N
5 -3
—
% 4l
7]
-84
-84 S~
2000 4000 6000 8000 10000 12000 2000 4000 6000 8000 10000 12000 14000 16000
lterations Iterations
(a) Residual behaviour following the standard setup (b) Residual behaviour following the Newton-Krylov setup

Figure 4.37: Residual behaviour of the ETH test case for both the standard and the Newton-Krylov setup

respectively. It is likely for these sections to reach a residual of 1072 as well, as no stalling behaviour is ob-
served. Figure 4.37b shows the residual for the Newton-Krylov setup. It is clear that the solver does not reach
the convergence value of 1078, where an oscillating residual for the blade section can be seen. Restarting
the simulation shows to have a negative effect on the solver, where this should not affect the residual perfor-
mance significantly. The oscillatory residual behaviour can be seen in all three (5000 iteration) sections. It
should be noted that a longer test case has been run, where the solver restarted after 7500 iterations. This
Newton-Krylov test case did however show similar behaviour to that of figure 4.37b. Due to the oscillatory
behaviour of the residual being observed at approximately 1500 iterations (figure 4.37b), the subsequent test
cases involving the preconditioner study are run using 2000 iterations.

PRECONDITIONER STUDY

The preconditioner study has been done using the 900k ETH mesh in combination with a Newton-Krylov
solver configuration. The importance of using the correct preconditioner has been stated before, where the
effect of different preconditioners on the ETH Newton-Krylov configuration is analysed within the current
section. Similar to section 4.3.3 all different preconditioner options within SU2 (table 4.2) are analysed, where
their effect on the solver is to be observed. Figure 4.38 shows the result for both the LUSGS and Jacobi-based
preconditioners. The residuals for the different multizone sections have been visualised using black, red
and blue which represent the inlet, blade passage and outlet section respectively. Both figures show a sharp
increase in passage section residual at approximately 1500 iterations.
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Figure 4.38: ETH convergence behaviour of the Newton-Krylov solver using a LUSGS and Jacobi preconditioner
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When comparing figures 4.38a and 4.38b it can be found that the Jacobi preconditioner performs better
compared to the LUSGS preconditioner, where the LUSGS preconditioner shows large fluctuations in resid-
ual behaviour involving the blade passage section. The residual behaviour of the solver following a Linelet
preconditioner can be seen in figure 4.39. Different from figure 4.38, figure 4.39 shows normal behaviour in-
volving the passage section where instead a significant increase in residual involving the inlet section can be
seen.
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Figure 4.39: ETH convergence behaviour of the Newton-Krylov solver using a Linelet preconditioner

Figure 4.40 shows the performance of the SU2 Newton-Krylov solver when using the ILU-based precon-
ditioners. Similar to the MTU test case, both ILU preconditioners show better performance compared to the
results of the LUSGS, Jacobi and Linelet preconditioners. Interesting to notice is that following figure 4.40b
the ILU(1) preconditioner seems to perform slightly better compared to the ILU(0) preconditioner. The os-
cillating residual found after 1500 iterations is more stable for the ILU(1) preconditioner compared to that of
the ILU(0) preconditioner. Both preconditioners show however similar behaviour, where the residual of the
passage section starts showing unusual performance at approximately 1500 iterations. Interesting to notice
is that all residuals following figures 4.38, 4.39 and 4.40 show near identical performance following the first
1200 iterations. The solvers start to deviate either at 1300 or 1500 iterations, where sudden spikes in resid-
ual values can be found. Due to the resemblance in residual behaviour, it might be possible that a common
cause is currently causing the simulations to diverge. The residual performance following a preconditioner
based on Incomplete LU factorization showed the best result, where the residual was able to show more sta-
ble behaviour. Since the ILU(1) preconditioner provides the best results following the preconditioner study;,
the ILU(1) preconditioner is used in order to evaluate the effect of the flux Jacobian and the fix factor settings
in the following section.
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Figure 4.40: ETH convergence behaviour of the Newton-Krylov solver using a ILU(0) and ILU(1) preconditoner
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JACOBIAN MATRIX SETTINGS ANALYSIS

Similar to section 4.3.3, the settings affecting the Jacobian matrix are investigated using the ETH test case.
This involves the USE_ACCURATE_FLUX_JACOBIANS and CENTRAL_JACOBIAN_FIX_FACTOR settings, where
their effect on the Newton-Krylov solver is investigated. The default configuration that has been used for this
analysis is the IL(1) ETH test case, where the results following figure 4.40b are used in order to assess the be-
haviour of the different configurations. Following the USE_ACCURATE_FLUX_JACOBIANS setting analysis it

was again found that the residual is not affected by this setting. This is concluded as the result obtained is
identical to that of figure 4.40b.

The Jacobian fix factors have been analysed using the values 2, 3, 4 and 5. Figure 4.41 shows the results
following the fix factor study. Interesting to notice is that nearly all results show similar performance, unlike
the results found in section 4.3.3 for the MTU test case. Small differences in oscillatory behaviour can be
observed, where the fix factor of 2 provides the smallest oscillations. Changing the fix factor did however not
change the overall stalling performance of the ETH test case when using the Newton-Krylov solver. It was
concluded in section 4.3.3 that the default fix factor of 4 provides the best result. Within the current section
it has been concluded that this is not the case. The observed behaviour of the solver is however very similar,
where using a fix factor of 4 for the ETH test case should provide sufficient results.
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Figure 4.41: MTU convergence behaviour of the Newton-Krylov solver with respect to a Jacobian fix factor of 2, 3, 4 and 5

4.5, RESULTS SUMMARY

This section provides a summary of the results that have been obtained within this chapter. It discusses
the results, providing additional commentary and reasoning. The current section has been divided into the
discussion of the NACA 0012 test case (section 4.5.1), the LS89 test case (section 4.5.2), the MTU test case
(section 4.5.3) and the ETH test case (section 4.5.4).
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4.5.1. NACA 0012 ANALYSIS

Section 4.1 showed that the NUTSCFD solver is able to reach convergence for the NACA 0012 test case using
less nonlinear iterations compared to SU2. Several possible reasons for this are discussed within the current
section. SU2 showed for the NACA 0012 test case that the current Newton-Krylov solver can have a positive
effect on the number of iterations it takes for the solver to reach convergence. It should however be noted
that this does not mean that the Newton-Krylov setup is always quicker compared to the regular solver. It is
still possible for the linear solver to require more iterations, where (re-)calculating the vector-matrix product
can be a time-consuming process. Since both solvers use a maximum of 500 linear iterations it could how-
ever be concluded that the solver by Xu et al. provides better performance, as it required significantly fewer
non-linear iterations.

Section 4.1 showed that the NUTSCFD solver by Xu et al. required approximately 800 non-linear iterations
less in order to reach convergence. It is however unlikely for the SU2 mesh to be the same to that of the refer-
ence paper. Xu et al. give little information about the mesh, where only information is given about the farfield
and y*. It has only been stated that the condition of y* < 1 is being met. The currently used and developed
NACA 0012 test case has been meshed using Gmsh, where currently Gmsh is unable to set specific values for
y*. In combination with the limited information for the farfield, it is possible for the developed NACA 0012
mesh to be more accurate compared to the reference data. A more accurate mesh generally requires more
iterations for the solver to reach convergence, which could be the reason for the current result. It is therefore
unclear whether the current analysis provides an accurate comparison between SU2 and NUTSCFD. The re-
sults from section 4.1 do however provide insight into the current performance of the Newton-Krylov solver
in SU2 for external flow situations.

4.5.2. LS89 ANALYSIS

From the results it is clear that there is a very large difference in solver performance. Xu et al. are able to reach
convergence with approximately 180 non-linear iterations, where this is not the case for SU2. With respect
to SU2’s Newton-Krylov solver, it was found that SU2 is unable to reach large numbers of linear iterations
where the maximum has to be set at 2 iterations. Allowing more maximum linear iterations currently causes
the FGMRES solver to diverge, thus limiting the number of maximum linear iterations allowed per non-linear
iteration. It was found for the NACA 0012 test case that the maximum number of iterations could be set at
500, therefore indicating the FGMRES solver might have an issue with either the turbomachinery module or
the LS89 test case. It is known for the LS89 test case to be challenging, as generally poorer solver performance
is found due to the highly loaded design [1].

Instead of using the nonlinear steps in order to compare SU2 to the NUTSCFD solver, it might be con-
sidered to use the number of CPU work units. Xu et al. define the work units as the time it takes for the
CPU to evaluate a single residual iteration. Currently SU2 does not provide timing mechanisms in the code
which provides an indication of the time it takes in order for the CPU to evaluate a single residual iteration.
Timing mechanisms are however typically not very complex code, where implementation of this could be
relatively straightforward. Calculating the work units could provide valuable insight into the performance of
the solvers, as comparing both solvers using only the non-linear steps is likely to provide a poor comparison.
Xu et al. do not provide clear data on the total number of linear iterations next to the work units, unlike other
similar CFD performance research conducted by Jalali et al. [18] (using airfoils). It is therefore currently not
possible to use the work units or the non-linear steps in order to do an accurate analysis of the performance
of SU2 to that of the NUTSCED solver involving the LS89 test case. A more viable comparison could however
be made between SU2 and NUTSCFD if the maximum number of 500 linear iterations is possible.

It was found that, with respect to the LS89 test case, SU2 is unable to reach higher levels of linear iterations.
It is currently expected that the Newton-Krylov solver only does single iterations of the linear solver (when
comparing figure 4.4 and 4.6), but this result is to be verified. The reason for this is currently unknown. It
might be possible that the solver is able to reach the tolerance value, although this would not explain why
FGMRES diverges when allowing for a higher maximum number of linear iterations. Next to the deviation in
FGMRES performance, it is also expected that the mesh design has an effect on the results found in section
4.2. The LS89 mesh used is the default mesh created by the SU2 community, where no modifications are
made. Xu et al. indicate that their first layer of cell height is 1.7 - 10> m, where this is not known for the SU2
mesh. It is currently therefore unsure whether both LS89 meshes are similar enough, such that an accurate
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comparison can be made. It is therefore recommended to set up a new turbomachinery test case which
matches the setup of the reference data in order to do an accurate analysis of the Newton-Krylov solver. This
has led to the development of the MTU test case.

4.5.3. MTU ANALYSIS

This section contains a discussion of the MTU results. It has been divided into different subsections which
discuss the different studies of the MTU test case. The MTU test case was unable to reach convergences which
complicated the overall performance analysis of SU2.

MTU PERFORMANCE ANALYSIS

Section 4.3.1 showed stalling results for both the MTU and the Eckardt test case. Within the current work it
was not possible to reach convergence for the MTU impeller, which complicated the analysis of SU2’s perfor-
mance. The analysis of section 4.3.1 was unable to identify the reason for the stalling behaviour of the MTU,
where these results are therefore discussed within the current section. Several aspects of the test case are
evaluated in order to assess their effect on the current performance of the MTU impeller. It should be noted
that the current section discusses the results that are obtained using the standard solver setup.

The MTU test case has been developed using the Ansys toolbox (section 3.3) where the mesh has been
created in Turbogrid. The MTU test case has been developed for two studies, where next to the current work,
it is used in order to model the slip effect in high-speed centrifugal compressors. This second research uses
the MTU mesh in combination with CFX, where CFX is able to use the MTU mesh successfully. The chance of
the MTU mesh causing the current stalling behaviour in combination with SU2 is therefore slim, as is also in-
dicated by the stalling Eckardt test case. The MTU test case has been created by making use of the Eckardt test
case. The setup configuration for the Eckardt impeller has been re-used and altered in order to comply with
the conditions of the MTU. Changes are therefore only made to the boundary conditions of the configuration
file. The Eckardt test case has been developed prior to the current thesis, where it had been assumed that this
test case is able to reach convergence. Within the current work it was however found that this is not the case.
Since the Eckardt test case has been used in prior work, and since the MTU mesh is compatible with CFX, it is
likely that the root cause of the stalling behaviour is present within SU2. The default Eckardt test case showed
a stalling residual, thus indicating that the code of SU2 has changed causing the Eckardt test case to no longer
converge. The current work has been conducted using the turbo branch (specifically the 'restuct_singlezone’
git branch) of SU2, which focuses on the development of the turbomachinery module part of SU2. Since the
turbo branch is a separate Github branch, it is possible that the code base has changed as it is not part of the
stable main release of SU2. Unfortunately no clear other reason for the stalling behaviour has been identified
or provided by SU2. In addition since the ETH test case is able to reach convergence, an error being present
in the configuration file of the MTU is also expected to be slim.

In retrospect it was expected for the tip-gap lacking MTU test case to perform better compared to the
standard MTU test case. The MTU test case has been developed and researched prior to the ETH test case,
where during the development of the ETH test case the problems involving the tip-gap interfaces were iden-
tified (section 3.5.4). The result of this is that the tip-gap interfaces of the MTU (SHROUDTIPGGISIDE1 and
2) are configured as internal markers, which is incorrect (see section 3.5.4). Results from the tip-gap lacking
MTU and the Eckardt test case showed however no difference in behaviour with respect to stall performance.
Future MTU test cases which have a tip-gap region should however be developed similar to that of the ETH
turbine, such that the SHROUDTIPGGISIDE]1 and 2 internal interfaces are not created.

Recently it has been stated in the SU2 developers group that the turbomachinery module contains a bug
regarding the mixing plane. It was found that the mixing plane works well with a certain number of CPUs,
where it performed poorly for other numbers. This resulted in discrepancies in mass flow rate and disconti-
nuities in the flow field. A fix has been proposed, but this fix has not yet been implemented in the currently
used 'restuct_singlezone’ SU2 branch. Since the ETH test case is able to converge, the behaviour of the mixing
plane is not necessarily expected to be the cause of the current stalling behaviour. The Eckardt test case using
the fluid interface setup (table 4.1) did not provide better results (figure 4.10a), suggesting that the mixing
plane might not be the root cause of the issue. The mixing plane performance might however be taken into
consideration for future research.
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Due to the MTU test case not converging, it is difficult to compare the performance of SU2 to that of the
NUTSCEFD solver. No comparison has therefore been made between the data obtained by SU2 and to that of
Xu et al. [1] with respect to the MTU. Comparing the current data would result in an invalid analysis of SU2,
where it is currently recommended to reach convergence before further research can be conducted involving
the solver performance.

RESIDUAL ON GRID

Following the results of section 4.3.1 involving the analysis of the Mach contours, it was expected that the
problematic residual zones would be near the tip-gap region. During the development of the ETH test case it
was found that a mistake was made during the setup of the MTU test case. The MTU contains a tip-gap region,
where the test case contains the SHROUDTIPGGISIDE] and 2 markers. The effect of these markers has been
discussed in section 3.5.5, where the creation of these markers should be avoided in order for SU2 to be able to
simulate the test case correctly. In combination with the Mach plot observation it was therefore expected for
section 4.3.2 to provide more results related to the tip-gap region, but this result was not obtained. Following
section 4.3.2 no clear problematic zone was found, where plotting the residuals on the grid therefore did not
provide a clear indication of why the MTU test case is currently stalling.

NEWTON-KRYLOV CONFIGURATION ANALYSIS

The results and conclusions that have been obtained in section 4.3.3 are with respect to the developed MTU
test case in combination with the Newton-Krylov solver. Within section 2.3.2 it has been stated that the ef-
fectiveness of a preconditioner can be situation-specific. Changing the MTU test case in order to make sure
the simulation converges could therefore behave differently compared to the current stalling MTU test case.
Although it is likely for the ILU preconditioner to outperform the other preconditioners when using a new
Newton-Krylov SU2 MTU test case, a new analysis has to be done in order to fully verify this result. Nonethe-
less it is recommended to use the ILU preconditioner when using the Newton-Krylov solver in SU2 due to the
results found in section 4.3.3 and the fact that the NUTSCFD solver also uses an ILU preconditioner.

4.5.4. E'TH ANALYSIS

This section contains the discussion of the ETH results. It has been divided into different subsections which
discuss the different studies of the ETH test case. The ETH test case has been analysed, which showed to have
similar results to that of CFX and Numeca. The residual performance of the ETH test case was not evaluated
as no data with respect to convergence behaviour was available involving CFX and Numeca.

225K MESH PERFORMANCE ANALYSIS

The results obtained in section 4.4.1 show large differences in results when compared to the experimental
data by Behr. The same results have been found in section 4.4.2 for CFX and Numeca, where no CFD solver
was able to match the experimental data. No conclusion was therefore made with respect to the solver per-
formance in section 4.4.1. It was stated that the 225k TUD mesh was not sufficient when simulating the ETH
test case due to the lacking tip-gap region, especially following figure 4.28c. When comparing the 225k mesh
results to that of the 900k mesh, it can be concluded that the 900k mesh results match CFX and Numeca more
closely. The decision made in section 4.4.1 to develop a mesh containing a tip-gap region was therefore the
correct conclusion.

900K MESH PERFORMANCE ANALYSIS

From section 4.4.2 it has been concluded that SU2 provides similar results to that of CFX and Numeca. SU2
provides data with trends showing similar behaviour and values, where these results deviate more strongly
for plane C and D. The reason for the deviation in results is discussed within this section, where different
topics are discussed. The first reason for the deviation in results might be due to SU2. SU2 showed near iden-
tical performance to CFX and Numeca for plane A, where the results deviate more strongly when travelling
downstream. This could be due to SU2 over-predicting fluid dynamic losses, or the usage of different models
which influence the final result. SU2, CFX and Numeca all use the SA-turbulence model, where no additional
information with respect to the solver setup was provided for the reference data.

Another reason that could influence the final results of SU2 could be related to the mesh. It has been men-
tioned in section 3.5.5 that the TUD mesh is likely to differ in blade geometry compared to the NPU mesh. It
has been tried to recreate the NPU mesh as accurate as possible, where it was not possible to use the exact
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CAD geometry. It has been stated that the effect of this deviation in blade geometry is expected to be of little
influence on the final result. Nonetheless this slight difference in geometry should be noted. In addition, the
mesh element count is also not likely to have a significant effect on the SU2 results. From section 3.4.1 it has
been concluded that a mesh count of 225k elements should be sufficient when simulating the ETH turbine
test case. This section contains the grid independence study for the 225k TUD mesh, which does not have a
tip-gap. It is therefore expected that 225k elements are not enough for the TUD mesh when it does contain a
tip-gap. This section does however provide results for the ETH test case for different element counts, show-
ing no large differences in fluctuating data when increasing the element count of the mesh. It is therefore
unlikely for the element count of the mesh to be the reason behind the large fluctuating data found for plane
Cin section 4.4.2, but this is to be verified.

The final reason that is identified that might have an effect on the SU2 results is potential errors in the
post-processing setup. From all spanwise results obtained in section 4.4 it has been tried to match the mea-
surement planes to that of the open literature, where this is therefore not expected to be of influence. The
results obtained in section 4.4.2 showed more deviations in trends and values when plotting stronger fluc-
tuating results (for example with respect to the results found at plane C). It might therefore be possible that
an error has been made in the averaging process, since the results for the low-fluctuating results (plane A
and B) showed more similarities to the data from CFX and Numeca. It could therefore be considered to use
mass-averaging, where these results could be compared to the mass-averaged data obtained by Behr.

NEWTON-KRYLOV CONFIGURATION ANALYSIS

The previous sections discussed the ETH test case involving the standard SU2 setup. The current section dis-
cusses SU2’s performance with respect to the Newton-Krylov solver. It was found that the ETH test case was
unable to reach convergence using the Newton-Krylov solver, where this is not the case for the standard setup.
The simulation shows stalling behaviour, where the reason for this is unclear. The LS89 test case showed that
SU2 should be able to reach convergences using the Newton-Krylov solver (figure 4.6) when simulating an
axial turbine. It should however be noted that the LS89 test case is a single zone simulation, where no frame
rotation is enforced.

Following the results of section 4.4.3 it was found that for the 2000 first iterations the ILU(1) precondi-
tioner provides the most stable residual behaviour. This therefore validates the fact that the preconditioner
can be test case specific, as has been mentioned in section 4.5.3. It was again found that the Incomplete LU
factorization based preconditioners provide the best result, where the recommendation of using an ILU pre-
conditioner when using the Newton-Krylov solver holds. In addition it was found in section 4.4.3 that using a
fix factor of 2 might be more optimal over the default value of 4. It should however be noted that the default
value provided similar results, indicating that a fix factor of 2 is not required.



CONCLUSION

The goal of this thesis was to analyse the solver performance of SU2 using turbomachinery analysis. Test
cases have been developed which are used to analyse the residual behaviour of the solver and the simulation
results. These test cases analyse the SU2 solver following different conditions, including axial and radial tur-
bomachinery designs. A numerical study has been conducted in order to provide insight into SU2’s current
performance, which helps further development of its turbomachinery capabilities. Following the analysis
conducted within the current work it has been found that the performance of the turbomachinery module
within SU2 is inconsistent, and therefore requires improvement.

This thesis set-out to test SU2 by comparing its performance to that of the open literature. For this, the
CFED solvers NUTSCFD, CFX and Numeca were to be used. SU2 was initially analysed using two test cases
that have also been analysed using the NUTSCFD solver. These test cases include the analysis of a NACA 0012
airfoil and an LS89 turbine stage. The initial SU2 results showed that the NUTSCFD solver, developed by Xu et
al. [1], was able to reach convergence with lower numbers of non-linear iterations. Following these results it
was concluded that a test case had to be developed which could be used in order to provide a more accurate
comparison between SU2 and NUTSCED. This has led to the development of the MTU radiver compressor
test case, which is based on the open MTU test case provided by MTU Aero Engines [4]. In addition to the
MTU test case, a complementary 3D test case has been developed resulting in the creation of the ETH test
case. The ETH test case is based on the axial 1.5 stage turbine developed at ETH Zurich. The ETH turbine has
been investigated by Behr [21], where his experimental data was used in order to test SU2. During the thesis
it was quickly realised that the MTU test case stalls when simulated using SU2. Many attempts have been
made in order to identify the problem that causes the stalling behaviour, but this was ultimately not found.
Nonetheless studies have been conducted with respect to different configuration settings, where their effect
on the residual has been analysed. The ETH test case has also been used in order to verify SU2’s performance
to that of CFX and Numeca, where additional research has been conducted in combination with the Newton-
Krylov solver. The ETH test case showed similar performance to that of CFX and Numeca, where it was unable
to converge when using the Newton-Krylov solver. Interesting to notice is that the MTU test case did not
converge when using the standard solver, where this is the case for the ETH turbine. The work that has been
done for the current thesis provides answers to the research questions formulated in section 1.2. The answers
to these questions are formulated below, where a summary is provided of the completed work that led to these
answers.

1. To what extent can SU2 be used in order to analyse turbomachinery flow problems?

(a) Towhat extent does SU2 provide results that coincide with other CFD solvers involving turbo-
machinery flow simulations?
The results from the ETH test case showed that SU2 is able to obtain results similar to that of CFX
and Numeca. SU2 showed similar trends, where a slight deviation in final value was found. From
the current work it is therefore concluded that SU2 is able to produce relatively accurate results
when simulating multistage axial turbines. Similarly SU2 was able to provide results that match
the reference literature with respect to the NACA 0012 and LS89 test case. It was however noted
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that SU2 was unable to match the residual of the NUTSCFED solver, where Xu et al. were able to
obtain a converged simulation for less non-linear iterations. With respect to radial compressors,
SU2 was unable to reach convergence following the MTU and Eckardt test cases. Both the MTU
and Eckardt test case showed stalling behaviour. The stalling behaviour of the Eckardt test case
indicates a greater problem within SU2, as the Eckardt test case has been used in prior research.
From these results it has therefore been concluded that SU2 is currently unable to provide accu-
rate results involving the analysis of radial compressors.

(b) To what extent does the Newton-Krylov solver change the performance of SU2 with respect to
turbomachinery flow simulations?

SU2 has been analysed using test cases which involve both the standard turbomachinery solver
and the Newton-Krylov solver. When comparing the results between the NACA 0012 airfoil and
LS89 turbine stage it was found that the Newton-Krylov solver improved convergence with re-
spect to the NACA 0012 test case. In contrast, the LS89 test case showed a decrease in conver-
gence behaviour, where the Newton-Krylov solver increased the number of iterations required in
order to reach convergence. A similar result was found for the ETH test case, which showed that
the Newton-Krylov solver causes the simulation to stall, which was not the case for the normal
solver. From the NACA 0012 result it is therefore clear that it is possible to increase the solver
performance, where these benefits are currently unobtainable for turbomachinery simulations.
The main difference between these problems is the turbomachinery module which is used for the
turbomachinery test cases. Further research is therefore required in order to assess whether the
turbomachinery module is the main cause of the reduced solver performance.

(c) Towhat extent does the performance of the Newton-Krylov solver in SU2 differ from the NUTSCFD
solver with respect to turbomachinery applications?

The current work set out to answer this question using the MTU test case. It was found during
the thesis that deviations in mesh designs provide a skewed representation of SU2’s performance
with respect to that of the NUTSCFD solver. Xu et al. provided limited information with respect
to the NACA 0012 test case, where the LS89 mesh used within the current work could not be al-
tered in order to meet the boundary layer cell dimensions. The MTU mesh was therefore to be
developed where it should provide a more accurate comparison between SU2 and the reference
data. Unfortunately the MTU compressor showed stalling behaviour, where it was not possible
to reach convergence using SU2. An analysis was done with respect to the quality of the mesh
using the residual, but this did not result in a solution for the currently observed behaviour. It
was also found that the configuration file on which the MTU test case is based also did not con-
verge (the Eckardt test case), which significantly reduced the chance of convergence for the MTU
impeller. When comparing the MTU test case to the setup of the converging ETH test case, it is
unlikely that a mistake was made in the configuration file, thus indicating that SU2 might be the
problem. In order to assess SU2’s performance it is therefore advisable to first make sure a valid
radial turbomachinery test case is able to reach convergence before the Newton-Krylov solver can
be analysed. This thesis was therefore unable to provide an answer to the research question in-
volving the comparison between SU2 and NUTSCFD with respect to the Newton-Krylov solver.

2. What are potential areas of the SU2 code that could be improved in order to increase the Newton-
Krylov solver performance with respect to turbomachinery applications?

(a) What algorithms and settings in SU2 can be identified which have a large effect on the rate of
convergence of the Newton-Krylov solver?

Following the literature study it was found that both GMRES and the preconditioner are likely to
have a significant effect on the convergence behaviour of the Newton-Krylov method. It should be
noted that the ILU(0) preconditioner used by Xu et al. is based on a blended approximate Jacobian
matrix which is created by combining first- and second-order-accurate spatial discretization. In
contrast SU2 does not use a blended approximation of the Jacobian matrix when using an ILU(0)
preconditioner. SU2 currently also uses FGMRES where Xu et al. use right preconditioned GM-
RES. If desired, it is expected that the implementation of right preconditioned GMRES is more
straightforward compared to the implementation of the blended ILU(0) preconditioner. Future
research could therefore be conducted with respect to SU2’s current code structure, assessing the
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possibility of implementing these changes. In addition, Xu et al. also use different Jacobian forma-
tion tools compared to SU2. It is possible that the current Jacobian forming procedure of SU2 is
limiting the performance of the Newton-Krylov method, but this is not expected as the NACA 0012
test case is able to reach convergence more efficiently compared to the standard solver. Instead it
is proposed to investigate why the LS89 test case is unable to reach more than 2 linear FGMRES
iterations when using the Newton-Krylov solver, as this is more likely to give an indication of the
limiting factor currently influencing the rate of convergence.

(b) To what extent does changing the relevant algorithms and settings which affect the Newton-
Krylov solver within SU2 have an effect on the convergence rate?

The effect of different preconditioners on SU2’s Newton-Krylov method has been analysed in sec-
tions 4.3.3 and 4.4.3, showing a difference in the performance of the solver when using different
preconditioners. It has been concluded that the ILU preconditioners provide the best results,
where Xu et al. chose to use an ILU(0) preconditioner. Other settings have been evaluated in-
volving the "USE_ACCURATE_FLUX JACOBIANS’ and 'CENTRAL_JACOBIAN_FIX_FACTOR’ set-
tings, where only the fix factor influenced the convergence behaviour of the solvers. It was found
that the correct fix factor can be test case specific, where for both the MTU and ETH test cases
the default value of 4 provided good results. SU2 did not provide other options which affect the
Newton-Krylov method following the example configuration template on GitHub.

The current work has provided a numerical assessment of SU2’s performance involving turbomachinery
flow simulations. It was found that SU2 provides similar results to that of CFX and Numeca, but also showed
many issues involving its Newton-Krylov solver. Due to the stalling behaviour of the MTU test case it was not
possible to compare SU2’s Newton-Krylov performance to that of NUTSCFD accurately. The current thesis
has analysed SU2 using different test cases, where the data obtained using these test cases has been evaluated
and compared. This thesis therefore provides insight into the current strengths and weaknesses of SU2. Re-
search has shown that SU2 is currently unable to simulate the radial compressors test cases, but does provide
relatively accurate results with respect to the axial turbines. It was also found that the Newton-Krylov solver
currently underperforms when it is used for turbomachinery analysis, where the standard solver is often able
to obtain better results. Improving SU2’s Newton-Krylov method therefore requires further research, where
suggestions resulting from the current thesis are summarized in chapter 6.






RECOMMENDATIONS

Many suggestions for future research can be done based on this thesis. This section contains a summary of
the recommendations that can be made with respect to the problems encountered during the current work.
Many issues have been encountered involving stalling simulations, where the reason for this behaviour is
currently unknown. The analysis of the SU2 solver has also led to several new questions, which should help
further analyse SU2’s current behaviour. Topics that could be considered for further research are given below,
accompanied by a motivation of why this might be considered.

* Investigate why the LS89 test case is limited to 2 linear iterations

The LS89 test case currently crashes when increasing the maximum number of allowed linear iterations.
Xu et al. were able to increase their maximum number of linear iterations to 500, where this is expected
to have a significant effect on the final number of non-linear iterations required in order to reach con-
vergence. It was found that the standard SU2 solver matches the Newton-Krylov solver in performance
when limited to 1 linear iteration. It is therefore currently hypothesised that the Newton-Krylov solver
limits the linear iterations significantly, which hampers the effectiveness of the method. Finding out
why the linear iterations are limited might give a good indication of why the current Newton-Krylov
solver behaves poorly when analysing turbomachinery.

* Investigate why the Eckardt test case is not converging

The MTU test case is based on the Eckardt test case. During the thesis it was found that the default
Eckardt configuration causes the solver to stall. It is therefore recommended to first run the reference
test case using SU2, before using the configuration file for a newly developed test case. It was initially
assumed that the Eckardt test case was able to reach convergence, but it was later discovered that this
was not the case. It is therefore advisable to first make sure the old test case is able to run before a new
test case can be developed.

* Investigate the implementation of GMRES and/or the blended Jacobian preconditioner

The solver developed by Xu et al. uses a combination of GMRES with a blended Jacobian precondi-
tioner. Since SU2 does not have either of those it might be considered to conduct further research into
the implementation of these models. SU2 uses FGMRES, where in contrast to NUTSCFD, this precon-
ditioner is flexible. It should be noted that Xu et al. use a preconditioner, but this preconditioner is
fixed for every inner linear iteration. The implementation of this right preconditioned GMRES into SU2
might therefore be straightforward, such that FGMRES is altered where it does not update the precon-
ditioner for every inner iteration. Whether this is the case is however to be determined. Implementing
the blended Jacobian is less trivial, as it uses both Jacobian matrices approximated following first- and
second-order-accurate spatial discretization in order to form the preconditioner.

* Investigate into the implementation of CPU work units into SU2

Xu et al. provide convergence data using the non-linear iterations of the solver and the work units of the
CPU. It has been discussed within this thesis that only comparing the non-linear iterations might not
give an accurate representation of the solver’s performance. Comparing only the non-linear iterations

71



72 6. RECOMMENDATIONS

involving SU2 would therefore provide a skewed analysis. This comparison might only be valid if SU2 is
able to reach the maximum number of 500 iterations for the linear solver, while also using the Newton-
Krylov solver. This comparison would therefore not be fair if the standard SU2 solver is used. It should
be noted that less non-linear iterations does not automatically mean faster convergence. It was found
during the current work that generally the Newton-Krylov solver requires more time in order to calcu-
late a single non-linear iteration. Since SU2 currently does not output the CPU work units, it might be
valuable to implement code which allows for the calculation of these units. This should provide a more
accurate representation of the time required in order for the solvers to converge.

¢ Investigate the effect of running multi-core simulations on the Newton-Krylov solver

All results obtained within the current work have been run using a single CPU core. It was found that the
mixing plane within the Turbomachinery module might provide different results based on the number
of cores used in order to solve the problem. A fix for this problem has been proposed during the timeline
of the thesis, where it is possible that this fix was not yet implemented in the solver used within the
current work. Additional research might therefore be needed in order to assess whether this issue has
had an effect on the results found within this thesis.

* Investigate the effect of the Krylov methods within SU2

SU2 contains multiple Krylov methods which can be used in order to solve the linear system of equa-
tions obtained from Newton’s method. The current thesis does not consider the different linear solvers
within SU2, where the FGMRES solver is chosen due to Xu et al. using the GMRES algorithm. The
BCGSTAB algorithm has been considered in section 4.3.1, but this is not in combination with Newton’s
method thus not forming a Newton-Krylov solver (since BCGSTAB is also a Krylov method). It is un-
likely for these linear solvers to provide different results compared to FGMRES, as the MTU test case
was unable to reach converges using BCGSTAB. Nonetheless these solvers might be considered to be of
interest as the combination of these solvers and Newton’s method also form a Newton-Krylov solver.

* Investigate whether the turbomachinery module influences the Newton-Krylov solver

Due to the Newton-Krylov solver diverging for the ETH test case it is possible that the turbomachinery
module is causing some of the issues. It should however be noted that SU2 is able to run the LS89 test
case, while using the Newton-Krylov method, thus indicating that the turbomachinery module might
not be the root cause. It might however still be valuable to investigate whether the turbomachinery
module is causing complications when being used in combination with the Newton-Krylov solver. A
suggestion is therefore made to set up a test case which can be run both with and without the turbo-
machinery module. This test case should use the Newton-Krylov solver, where analysing the residual
should provide insight into whether the turbomachinery module is currently causing the problems.
The question of whether the turbomachinery module is interfering is raised due to the fact that the
Newton-Krylov method works efficiently for the NACA 0012 airfoil, where this is not the case for the
LS89 turbine stage. The efficiency of the method might however also be affected by the LS89 test case
being challenging [1], where using a different test case would provide greater insight.

In addition several remarks can be made with respect to the development of new SU2 test cases. These
remarks could be considered as good practices for future work where they should prevent problems when
setting up a new test case:

* When developing a new test case it is advisable to match the mesh orientation to that of the reference
case. Both the MTU and ETH test cases have shown to have preferred mesh orientation and location.
Using the wrong orientation results in a negative blade count in the Turbomachinery Preprocessor.

* When getting the ’killed’ error it is possible for SU2 to lack computational power. It was sometimes
found that running multiple SU2 simulations at the same time resulted in some of the solvers being
’killed. The same error was given for the fine ETH mesh (using 5.5 million elements), where a coarser
mesh was able to run. This issue might be solvable by running simulations using multiple cores, or by
using more memory.

e It is advised to match the reference test case closely when creating a new test case. It is also advisable
to make sure that the reference test case is able to converge before developing/analysing the new test
case.
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