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Abstract—A smeared-crack model is proposed in which the stress after cracking is not only a
function of the crack strain (softening function), but also of the crack strain rate. This rate
dependence is shown to introduce an internal length scale into initial value problems. As a result,
solutions of initial value problems that involve smeared cracking remain well posed. The width of
the localization zone, where high strain rates are present, is proven to be independent of the finite
element discretization. Convergence upon mesh refinement is also obtained for the consumption of
energy in a cracked bar and the extent of wave reflection on a cracked zone. This is because in a
rate-dependent medjum, waves are dispersive and propagate with a real wave speed. Numerical
results have been obtained for onc-dimensional localization problems to substantiate these analytical
findings.

1. INTRODUCTION

To carry out failure analyses of concrete structures, which are subjected to transient loading
conditions, it is important to properly mode! cracking, In a structural concrete member
micro-cracking leads to a local reduction in the effective cross-sectional area that transmits
tensile forces. This phenomenon is commonly called softening and is accompanied by the
formation of narrow bands of intense straining (localization of deformation). This softening
behaviour is measured in experiments and the mapping of thus obtained load—displacement
data onto stress—strain relations leads to a negative slope in the stress—strain curve.

Analytical solutions of transient problems that involve softening (BaZant and
Belytschko, 1985) show localization zones of zero thickness with infinite strains (line cracks)
which develop in a period of time that approaches zero. Numerical simulations of a softening
solid exhibit the same features upon mesh refinement (Sluys, 1989). The finite clement
solution tries to capture the line crack and, as a result, strain localization occurs in the
smallest possible zone that is allowed by the discretization. For one-dimensional constant
strain elements the smallest possible zone is one element wide. Upon mesh refinement the
element size goes to zero and the analytical solution is therefore approached in an asymptotic
sense. Furthermore, the energy dissipation in the fracture zone tends to zero upon mesh
refinement and the extent of wave reflection on cracks depends on the discretization of a
structure, Finally, the direction of crack propagation is influenced by the orientation of the
mesh lines and does not comply with the direction predicted analytically by linear stability
analyses in the sense of Rudnicki and Rice (1975). This observation is closely related to the
issue of mesh refinement versus mesh alighment. Indeed, numerical studies (Sluys, 1992)
show that, even if the energy dissipation is kept constant, e.g. by using a crack band model
(BaZant and Oh, 1983), there remains a mesh dependence with respect to the direction of
propagation.
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Three types of methods have been suggested in the literature to correct the above-
mentioned deficiencies. These so-called regularization methods are based on the intro-
duction of additional terms in the continuum description, The first class of methods consists
of non-local models (Pijaudier-Cabot and BaZant, 1987) and gradient models (de Borst and
Miihlhaus, 1991a,b; Lasry and Belytschko, 1988 ; Miihlhaus and Aifantis, 1991 ; Schreyer
and Chen, 1986, Sluys et al., 1991) in which higher-order displacement gradients are
introduced in the material equations. A second approach is the micro-polar (Cosserat)
theory which allows mesh-objective analyses to be carried out under mode-II and mixed-
mode conditions. This holds true for static (de Borst, 1990 ; de Borst and Miihthaus, 1991a;
Miihlhaus et al., 1991) as well as dynamic loading conditions (de Borst and Sluys, 1991).
The third solution strategy, followed in this article, is based on the inclusion of the strain
rate in the constitutive equations (Needleman, 1988 ; Sluys and de Borst, 1991 ; Wu and
Freund, 1984). The models have in common, firstly, that an internal length scale is incor-
porated and, secondly, that under transient loading conditions wave propagation is
dispersive.

Rate dependence is introduced to prevent the character of the set of equations that
describes the dynamic motion of the softening solid from becoming elliptic. In dynamics
equations should possess real characteristics in the x—¢ plane which is only possible if the
initial value problem is not elliptic. Then, well-posedness of the initial value problem is
preserved and meaningful results can be obtained for localized zones of intense straining,
Because failure modes are usually accompanied by high strain rates the inclusion of the
strain rate in the constitutive equations seems natural. It is essential for the solution of the
mesh-sensitivity problem that rate dependence naturally introduces an internal length scale
into the initial value problem, although the constitutive equations do not explicitly contain
a parameter with the dimension of length.

This paper will start by extending the crack model of de Borst and Nauta (1985) to
include rate effects. Next, the algorithmic aspects are discussed that are necessary for
numerical applications, The existence of the length scale is proven from an analysis of
dispersive waves and the model is compared with other rate-dependent models (Loret
and Prevost, 1990; Needleman, 1988 ; Perzyna, 1966 ; Simo et al,, 1988). Finally numer-
ical analyses are included to assess the performance of the model with respect to mesh
refinement,

The prime aim of this study is not the exact simulation of the experimentally measured
response, rather it is the purpose to model the softening solid properly in a mathematical
sense. The rate-dependent crack model is still in a developing stage and tuning of the
results to experimental data has been done but not extensively. An example is the simulation
of an impact tensile test on a double-notched specimen, in which similarity between exper-
imental and numerical results has been obtained (Sluys and de Borst, 1992). In non-
classical formulations of the strain-softening solid the additional parameters are not directly
derivable from experiments and therefore the semi-inverse approach for the determination
of the internal length scale parameter is followed in the latter contribution. In fact, a direct
determination of the material parameters is not possible when softening models are used
within the classical continuum approach. This has been demonstrated by Rots and de Borst
(1989) when analysing the behaviour of a statically loaded, double-notched specimen with
the aid of a classical, rate-independent smeared-crack model.

2. FORMULATION OF A RATE-DEPENDENT CRACK MODEL

A crack model that exhibits both softening and strain rate dependence is chosen
according to

g = f(acr) "I"mécr: (1)

where o and e, denote stress and crack strain respectively, a superimposed dot denotes
differentiation with respect to time, f (¢.) is a softening function and m is the rate-sensitivity



Wave propagation and localization 2947

parameter. Note that rate dependence is chosen as a function of the crack strain &, and not
of the total strain. When a linear softening function is utilized as in this study

S () = fi+ hey, (2)

eqn (1) becomes

o= fi+he,+mé,. 3)

In eqns (2) and (3) f is the initial tensile strength under static loading conditions and 4 is
a constant softening modulus. For unloading a secant modulus without rate dependence is
used. In the reference calculations the parameters have been chosen as: Young’s modulus
E=20000 Nmm ° h= —5000 N mm~* m=0.2 N s mm~? (which corresponds to a
relaxation time 4 = 110 *s) and f; = 2.0 N mm "2

[n Fig. | the computed stress-strain curves are shown for various imposed strain rates.
The curves show an increase of the tensile strength (o/,) under dynamic loading, which is
also observed in several experiments (Kdrmeling, 1986 ; Zielinski, 1982). In these exper-
iments the increase of tensile strength is measured as a function of a constant strain rate.
However, these test series and the numerical simulations described in the subsequent section
show that the strain rate not only varies in time but also displays large gradients along the
localization zone. [tis therefore difficult to derive the material rate sensitivity parameter m
from experimental data and semi-inverse modelling techniques are necessary. As regards
the increase of fracture energy per unit area and the ultimate strain less experimental
support currently exists, although Kérmeling (1986) observed the same tendencies in soften-
ing behaviour under high strain rates,

The rate-dependent crack model has been implemented within the framework of the
fixed smeared crack concept (de Borst and Nauta, 1985; Rots, 1988). In this concept a
cracked zone is conceived to be a continuum which permits a description in terms of stress—
strain relations. We apply a decomposition of total strain rate into the elastic strain rate g,
and the crack strain rate g,

§= 8+ &,. @
The stress strain relation can be written in a rate form as
a" = Dc(é“é”), (5)

where the matrix D, contains the instantaneous moduli of the concrete. After a gener-
alization of eqn (3) to two dimensions we obtain

{a)
olf,
15 (o) : T
1.0 f; f L—I,n Egr
(¢)
¢
0.5 - 1.0 i
0.5 -
0.0 3 -t
0.0 0.001 0.002 0.005 0.010

Fig. 1. Rate-dependent crack model. (a) Stress-strain curves for different imposed strain rates.
(b) Schematic representation of the model. (c) Imposed strain rates.
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g = Dcrécr + MEcrs (6)

in which D, = diag [k, 0] and M = diag[m, 0], so that only mode-I effects are considered.
Combination of eqns (5) and (6) yields

8y = (D, +D,,) "~ '[Dé—MEi,]. (N

This equation can be substituted into eqn (5), which gives the global constitutive equation:
¢ = D [I—(D.+D.,)” 'D.]é+D.[D, + D]~ 'M&,. 8)

For the sake of simplicity only one crack has been considered in this derivation and the
axes of the crack plane are assumed to be aligned with the global element axes. For a

general treatment of the rate-dependent smeared-crack model see Sluys and de Borst (1992)
and Sluys (1992).

3. ALGORITHMIC ASPECTS

Using the rate equations for the rate-dependent crack model we can develop an
algorithm that determines the stress increment in a finite time step At. Therefore we consider
the stress—strain eqn (5) in its incremental form

Ao = Dc (As—Aﬂcr): (9)
in which we define Ao, Ag and Ae, as the increments in a time interval ¢ < 1 < 1+ At
Denoting the crack strain rate at the beginning of the time step by &, and at the end of the
time step by &%/, the incremental crack strain is chosen according to

Az, = ((1—O@)é + O )AL, (10)
where © is an interpolation parameter, 0 < ® < 1, For ® = 0 we obtain the fully explicit
Euler scheme. On the other hand @ = 1 gives a scheme that is fully implicit and the case

in which @ = } represents an implicit scheme according to the trapezoidal rule. At the
beginning of the time interval the crack strain rate reads

é::r = [M]—l(d'—dér), (11)

in which ¢, = D,&.,. The crack strain rate at the end of the time interval is expressed in a
limited Taylor series expansion as

08, \ 0é,, \ [ 0o \
A gt e cr cr
8cr - 8(:r + ( ao_ > AG+ <aacr> (583,> Alqcrs (12)

which can be rewritten as

égm = E::r + [M] - (Aa_ DcrAﬁcr)- (13)

By combination of eqns (9), (10) and (13) we obtain an explicit relation for the incremental
crack strain:

Aty = (D, + D, + (1/(@ANYM) ™' [D,Ae+ (1/@)MEL]. (14)

This equation can be substituted into eqn (9) to obtain the incremental constitutive relation
at time ¢+ Atz:
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Ao = Dy, As—Aq, (15)
where
Dy = D[I— (D, +D,, + (1/(®A))M)~'D,] (16)
and
Aq = (1/@)D,[D,+ D+ (1/(®A))M]~ 'M4,. (17

Matrix Dy, is determined not only by material parameters since the time integration
parameters Af and © also enter the expression, The vector Aq can be considered as a
pseudo-load and a pseudo-nodal force vector can be deduced according to

Afy = J BTAqdV, (18)
14

in which B" is the strain-nodal displacement matrix. The pseudo-nodal force vector is
included in the discretized equations of motion. For the solution of the non-linear set of
algebraic equations we use the iterative Newton-~Raphson method.

4. WAVE PROPAGATION IN A RATE-DEPENDENT BAR

We investigate wave propagation by considering the set of equations for a one-dimen-
sional bar. The constitutive equation is given in (3) and the equation of motion and the
kinematic equation read

do 0%u
and
ou
&= i’ (20)

with p densily and ¢ denoting time. Combining eqns (3), (19) and (20) with eqn (4) and
taking g, = o/E with E the Young’s modulus, we obtain the third-order differential equation
(1 u  0u ) E+ho*n 0% 0 51
Mo TaxTar)T E o T axt T 2D
By considering the third-order terms in eqn (21) the wave equation for the rate-dependent,
strain-softening bar has real characteristics, which are equal to the linear elastic wave
velocity icc(=\/ E/p). This means that the wave equation remains hyperbolic and the
initial value problem is well posed. However, the characteristics no longer equal the physical
wave speed in the rate-dependent bar. This is only the case if the second-order terms in eqn
(21) are absent (m — oo) and the wave speed exactly equals the elastic wave velocity ¢,. So,
the suggestions in literature (Loret and Prevost, 1990; Needleman, 1988) that in a rate-
dependent continuum disturbances due to inelastic effects travel with the elastic wave speed
are correct for the limiting case. The last two terms in eqn (21) are the same as in the rate-
independent problem (;m = 0). In the latter case, i.e. in a conventional continuum, the wave
speed ¢ can be expressed as

h 1/2
¢ = Cc(m> . (22)

It is obvious that the wave speed becomes imaginary and consequently provides physically
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meaningless results as soon as softening occurs (h < 0). An imaginary wave speed cor-
responds to a standing wave which does not have the ability to extend the localization zone.

Now, the dispersive character of wave propagation in our rate-dependent, softening
continuum will be investigated. To this end a general solution for a single linear harmonic
wave propagating through the bar is assumed to be of the form

u(x, t) = A eltr-o0 (23)

in which o is the angular frequency and k is the wave number counting the number of wave
lengths L in the bar over 27

k== (24)

The waves are called dispersive if the phase velocity ¢; = w/k is a function of k, while the
waves are non-dispersive if ¢; is independent of &, which is the case for a rate-independent
continuum. In a dispersive medium a distinction may exist between the phase velocity ¢; of
the single harmonic wave and the group velocity ¢, = dw/dk which is the velocity at which
the energy travels. The dispersion relation in a non-explicit notation can be obtained by
substitution of eqn (23) into eqn (21)

(pmaw® —mEk*w)i—p(E+h)w* +hEk* = 0. (25)
If we consider w and k to be real no solution is possible. Equation (25) can only be satisfied
if k is complex and therefore k is set to be equal to k.+oi. This complex value for k£ means

that the harmonic wave is attenuated exponentially as it proceeds through the solid and the
expression for u(x, ) may now be written as

u(x, ) = A e glth=un, (26)

If we equate real and imaginary parts of eqn (25) we obtain, respectively,

,  po? [ —(m*e*+h*+Eh)+ ((m*w?+h*+ Eh)’ + (mEw)?)'?

k=% P @n
and

,  po?(+(mPw?+h*+ER)+ (m*w®+h*+ Eh)’+ (mEw)?) '/

*=92F miw? 4+ h? ' (28)

In Fig. 2 the results for the dispersive wave propagation are plotted for the reference
parameter set. In the upper figure the dispersion relation w = f(k,) shows that waves
in a rate-dependent softening continuum behave similarly to waves in a linear elastic
continuum. If k. approaches zero, i.e. for waves of a very low frequency (i.e. a static
response), the slope of the dispersion curve becomes infinite for softening (4 < 0) whereas
it vanishes for hardening and perfect plasticity (4= 0). In the centre graph of Fig. 2
the phase velocity ¢; = w/k, is plotted. In the rate-dependent, strain-softening bar wave
propagation is dispersive because the phase velocity is a function of k, and w. The dispersion
property implies that the rate-dependent strain-softening continuum is able to transform
the shape of travelling waves because the harmonic components have mutually different
phase velocities. In localization analyses this has the advantageous effect that arbitrarily
shaped waves can be transformed in the localization zone. The group velocity ¢, = dw/dk,,
also plotted in the centre graph of Fig. 2, becomes infinite for &» — 0. In this case the damper
element plays no role any more and a non-physical situation arises in which the energy
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Fig. 2. Wave propagation behaviour for a rate-dependent bar. (a) Dispersion relation. (b) Phase
and group velocity as a function of w. (¢) Damping coefficient « as a function of w.

travels with an infinite velocity. Thus for very low frequencies, i.e. a static response, the
regularization effect by the viscous terms vanishes. For higher frequencies a positive wave
speed is obtained which approaches the linear elastic velocity c.. For the consideration of
localization problems this positiveness of the wave speed is essential. In the bottom
curve of Fig. 2 the damping coefficient « is plotted as a function of w according to eqn
(28). The limit of & with respect to w reads

2
Jim a(w) =17, with 1= ";fe. (29)

The parameter / is the internal length scale of this rate-dependent crack model. High
frequencies are attenuated exponentially in the space domain to an extent which is deter-

mined by the length scale /. The implicit presence of an internal length scale is therefore
essential.
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A complete analytical solution of a softening rate-dependent bar is not known and the
analytical treatment here is limited to the derivation of the dispersion relationships for a
single mode. For the total solution of a one-dimensional bar problem we have to rely
entirely on numerical techniques.

5. RELATION TQ OTHER RATE-DEPENDENT MODELS

Rate effects not only play an important role during fracture processes but also during
plastic deformation. Hence in the visco-plasticity theory rate dependence is also included in
the material description. For the visco-plastic modelling two main approaches are available,
namely the Perzyna theory and the Duvaut-Lions theory. In the theory proposed by
Perzyna (1966) the plastic strain rate §, is defined as

0
b =1L, 30

in which v is a fluidity parameter depending on the viscosity of the material, ¢(f) is an
arbitrary function of the flow function and df/de represents the direction of the plastic flow.
The notation {(¢(f)> implies that {¢(f)> = 0if f < 0 and that {(¢(f)) = ¢(f) iff > 0.

A different approach, which in its elaboration closer connects to the rate-dependent
plasticity theory, has been proposed by Duvaut and Lions and is described by Simo et al.
(1988) and Loret and Prevost (1990). The theory is based on the difference in response
between the rate-independent material and the visco-plastic material. The visco-plastic
strain rate &, and the hardening rate x are defined as

1
& =;1-[Dc]"(6—a,,) 31)

and
. 1
K= — E(IC-—KP), (32)

respectively. The vector o, is the projection of the current stress on the yield surface and «,
is determined by the rate-independent plastic strain history. The viscosity parameter z
represents the relaxation time of the material. Equations (31) and (32) are valid if (6, k) > 0
and if this condition is not met &, and & are both equal to zero.

A comparison can be made between the two softening visco-plastic models and the
rate-dependent crack model. For the one-dimensional case and a linear softening model
the yield function reduces to

S(0,8y) = a—(Go+hey), (33)

in which &, is the initial yield strength of the material. Substitution of ¢(f) = f/d, in the
Perzyna visco-plastic model yields

by = (0 —Go—hey). (34)
ay
The Duvaut—Lions model for the one-dimensional case reads
. 1 _
apl = W_E'(G—O.O-hgpl). (35)

If we compare eqn (3) with (34) and (35) it is obvious that, for continued loading in a
material point, the three models coincide for the one-dimensional case if
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m=— =nk. (36)

Another type of rate dependence is used in a model formulated by Needleman (1988)
and Asaro (1983). In the one-dimensional formulation of the model the plastic strain rate
is chosen according to a power law function

éu = a(olg)", (37)

where a is a material parameter of dimension 1/s and g is a hardness parameter which
depends on the plastic strain. The parameter n depends on the strain rate sensitivity of the
material. The distinction between this model and the rate-dependent crack model is that
the strain rate is a function of the total stress (¢) and not of a part of the stress (¢ —oa,).
Instead of a parallel softening-damper element (see Fig. 1) we now only have a non-linear
damper element with a power law characteristic (see Fig. 3). Needleman has used the power
law formulation in a plasticity model for the investigation of shear band formation in
structural metals. Here, we use it within the framework of a principal stress criterion model
for the description of fracture zones in brittle materials. For the parameter g a bilinear
diagram is used with an evolution law according to

{H 16 for ey < gy (38)

Hyé, for &y > €ym

* with g(0) = &, and Exim the transition strain between hardening (e < €um) and softening
(&p > €um). In Fig. 3 computed stress—strain curves are plotted for different strain rates.
Additional to the parameters of the previous model we have chosen: a = 4.0 s™}, n = 50,
Epm = 360/E, H; =2500 N mm~? and H, = —250 N mm~2. The implicit length scale
parameter / is defined by (Needleman, 1988)

I==, (39)

which can be considered as the distance an elastic wave travels in a characteristic time 1/a.
If we take n = | and consider the case of softening (H, < 0) the wave equation for the
Needleman model reads

g1 % 3 *u _ H, By (0%u l_‘?i”)
5<EE a7 " axto) TPEE T T o \ax ckarr)’ (40)

The same third-order terms as in the wave equation for the rate-dependent bar feqn (21)]
appear, multiplied with a softening term g/a. These third-order terms, which determine the
well-posedness of the solution, gradually vanish when strain softening occurs (g(g,) — 0).

1,55/

E €,
1.0+ ffI Ig/a €
0.5 .

M é=3001/s
@é= 301/s

0.0 € i= 31/
0.0 0.001 ot Ot S

Fig. 3. Needleman’s rate-dependent model for different strain rates.
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Therefore, the initial value problem quickly becomes ill-posed for steep softening branches
as in concrete. This means that proper results can only be obtained for ductile strain-
softening models. It is furthermore noted that in this model the width of the localization
zone is a decreasing function of the plastic strain.

6. NUMERICAL EXAMPLES

To investigate the performance of the rate-dependent crack model and the Needleman
model numerical simulations have been carried out for a bar in uniaxial tension. The
problem of mesh-sensitivity and the solution thereof can be demonstrated clearly by means
of this one-dimensional problem. Attention was focused on the influence of mesh spacing on
strain localization in the bar, the wave reflection on cracked zones and the consumption of
energy in the cracked bar. The problem is sketched in Fig. 4: the magnitude of the impact
load is taken as 75% of the maximum tensile load in the static case, whilst the loading rate
is determined by time span #,. The bar has a length of 100 mm and is divided into 10, 20,
40 and 80 elements respectively. Use has been made of eight-noded elements with a nine-
point Gauss integration scheme. The longitudinal linear elastic wave speed ¢, = 1000 m
s~ ', If not specifically stated otherwise the material parameters are as given in Fig. 1 for
the rate-dependent crack model or as given in Fig. 3 for Needleman’s model. The response
of the bar is linearly elastic until the loading wave reaches the left boundary where reflection
of the wave causes crack initiation. The material enters the softening regime and a local-
ization zone of intense straining emerges. The time integration of the field equations has
been done with an unconditionally stable Newmark scheme (8 = 1,y = 3) (Hughes, 1987).

6.1. Rate-independent crack model

Firstly, however, analyses with a rate-independent solid have been carried out to
demonstrate the mesh dependence of strain localization, wave reflection and energy dis-
sipation. To make the analyses more instructive and avoid an almost instant failure of the
bar the softening modulus is taken as # = — 1000 N mm ™2 We consider a block wave with
a vertical stress front which corresponds to 73 = 0. In Fig. 5 the results for the different
meshes are plotted at a time upon which the wave returns at the point of loading. Mesh
sensitivity is obvious from the strain plots: strain localization occurs at only one integration
point which is the smallest possible zone. The results for the discretizations with 40 and 80
elements have not been plotted because at t = 0.2-1073 s the bar has already failed. The
stress plots show that the amount of wave reflection depends on the mesh: the more
elements present, the larger the reduction in stress of the reflected wave. Moreover the
development of the internal energy E,, in the bar depends on the number of elements in
the mesh as can be seen from Fig. 5. In the limiting case failure can occur at  =0.1-10"*s
without any further energy consumption of the bar.

6.2. Rate-dependent crack model

Rate-dependence is applied according to the constitutive equations (15)-(17). It
appears that the choice § = J for the interpolation parameter in combination with a time
step At = 5+ 10~ 7 s gives stable and accurate results. Use of the reference material parameter
set results in a length scale parameter / = 20 mm. The same loading pulse with ¢, = 0 is
applied. For the rate-dependent solid a localization zone emerges that converges to a finite,
constant band width upon mesh refinement. In Fig, 6 the strain localization is plotted for
different meshes to demonstrate the uniqueness of the solution. The exponential decrease
in strain after reflection as derived in the analytical consideration in Section 4 comes out

F
a - 2
FE-model A=1mm F 0‘75f"AI
e 100 mm - !
ta

Fig, 4. Finite element model (40 elements) and time~load diagram,
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Fig. 5. Rate-independent model with ¢ = 0 s. (a) Strain localization along the bar at ¢ =0.2-10"? .
(b) Stress profiles along the bar at £ = 0.2 107 % s, (¢) Energy consumption in the bar.
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Fig. 6. Rate-dependent model with 7, = 0 s, (a) Strain localization along the bar at ¢ = 0.2- 1077 s.
(b) Development of the localization band (80 elements). (c) Stress profiles along the bar at
£=0.2+10""s. (d) Energy consumption in the bar,
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Fig. 7. Rate-dependent model with f4= 50+10"° s. (a) Strain localization along the bar at
t = 0,25+ 1073 s, (b) Development of the localization band (80 elements).

nicely. The coarse mesh (10 elements) still deviates somewhat but the fine meshes give
identical results, not only in the sense that the band width is constant but also that the
energy dissipation is constant during computation and the wave reflection pattern is mesh
objective as can be seen from the stress profiles (Fig. 6).

A second analysis has been carried out for a different loading pulse. In the time-load
diagram the time span f4 is chosen as 50-107° s. So, the loading pulse firstly increases
linearly in time before it becomes constant. Again the effect of the inclusion of the length
scale can be observed from the strain localization plots in Fig. 7. Convergence to a unique
solution with a finite localization zone characterizes the mesh independence. It is noted that
the strain distribution in the localization zone has a different shape for this loading case.
In the previous analysis a sharp peak in the strain occurs at the left boundary, whereas in
this analysis the strain profile is more uniformly distributed and has a lower peak value.
This is due to the strain rate profiles in the bar at the moment of cracking, In the previous
analysis cracking is initiated at one point on the left boundary from which the exponential
decay started. In this analysis the static tensile strength is exceeded over a zone with
a certain length (exact length = 16.7 mm). Now, at the edge of this zone (x = 16.7 mm)
the damping starts exponentially and at this point a bending point in the strain occurs (see
Fig. 7).

Finally, the localization band width has been analysed. Firstly, the influence of the
length scale parameter on the observed localization width was investigated in an analysis
with ¢4 = 0 by using three different values for /, namely 15, 20 and 25 mm. From the left-
hand plot of Fig. 8 it appears that the width of the localized zone is a function of the length
scale parameter. These results agree with the fact that the localization zone vanishes when
the length scale parameter approaches zero. A comparison of the results shown in Figs 6
and 7 had already made it clear that the shape of the loading wave influences the strain rate
distribution in the localization zone and therefore also the localization band width, This
effect is shown in the right-hand plot of Fig. 8 by taking three different values for the time
span #, in which the load is increased from zero to its maximum value,

(a) (b)
6[X1O_3] e[x1079]
o.e_& S
0.8 o5 mm 4,=0.0s
R L = mm . v

\ =20 mm 04 _\K 14=2610" 5
0.4 -\\‘& l=25mm . .. 0.2 : 1 = 501 08 s
0.0 . . . (50_0 .

0'0 Sxfmm] 100 00 100

Fig. 8. (a) Variation of the length scale parameter (£ = 0.2+ 10~* 5). (b) Variation of the loading
rate (/ = 0.2+ 107 ¥s).
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Fig. 9. Needleman’s rate-dependent model with f, = 50+ [0~ ¢ s. (a) Strain localization along the
bar at £ = 0.25* 107 * s, (b) Development of the localization band (40 elements).

6.3. Needleman’s rate-dependent model

We have also used the bar problem for a mesh-sensitivity analysis of Needleman’s
mode! (1988). Mesh independence has been obtained only for an analysis with a rather
small negative slope (H, = —250 N mm™?) and a small loading rate corresponding to a
time span z; = 50+ 107 % 5. In Fig, 9 it is shown that the localization zone is more or less
constant, independent of the discretization of the bar. It appeared, however, that at a
higher strain level, when the stabilizing viscous effect gradually disappears [see eqn (40)],
localization again becomes mesh-dependent. This type of behaviour becomes worse when
a strain-softening model with a steeper branch (more brittle) is used or when the loading
rate is increased. From the right-hand plot of Fig. 9 we observe that the localization zone
increases in thickness in the course of time due to the small hardening region in the model.

7. CONCLUDING REMARKS

A smeared-crack model has been proposed that includes a dependence on the strain
rate. The essential features of the rate-dependent model are the implicit presence of an
internal length scale and the dispersive character of wave propagation. Hence we arrive at
a proper mathematical description of the softening material and we are able to simulate
the localization process properly. Numerical analyses have proved the mesh objectivity of
the mode! with respect to the width of the localization zone, the dissipation of energy and
the wave reflection on the cracked zone. The width of the localization zone depends on the
length scale parameter and the loading rate. The model proposed by Needleman (1988)
also gives mesh-independent results but not unconditionally.
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