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The Reynolds number scaling of flow topology in the eigenframe of the strain-rate
tensor is investigated for wall-bounded flows, which is motivated by earlier works
showing that such topologies appear to be qualitatively universal across turbulent
flows. The databases used in the current study are from direct numerical simulations
(DNS) of fully developed turbulent channel flow (TCF) up to friction Reynolds
number Re; ~ 1500, and a spatially developing, zero-pressure-gradient turbulent
boundary layer (TBL) up to Rey =~ 4300 (Re,; =~ 1400). It is found that for TCF and
TBL at different Reynolds numbers, the averaged flow patterns in the local strain-rate
eigenframe appear the same consisting of a pair of co-rotating vortices embedded in
a finite-size shear layer. It is found that the core of the shear layer associated with
the intense vorticity region scales on the Kolmogorov length scale, while the overall
height of the shear layer and the distance between the vortices scale well with the
Taylor micro scale. Moreover, the Taylor micro scale collapses the height of the shear
layer in the direction of the vorticity stretching. The outer region of the averaged
flow patterns approximately scales with the macro scale, which indicates that the
flow patterns outside of the shear layer mainly are determined by large scales. The
strength of the shear layer in terms of the peak tangential velocity appears to scale
with a mixture of the Kolmogorov velocity and root-mean-square of the streamwise
velocity scaling. A quantitative universality in the reported shear layers is observed
across both wall-bounded flows for locations above the buffer region. © 2014 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4868364]

. INTRODUCTION

Turbulent flows are usually characterized by a broad range of scales; the higher the Reynolds
number, the broader the range of scales. Large scales are flow dependent, but small scales show
universal characteristics in general. This universality has led to the development of turbulence
modeling approaches like large-eddy simulation (LES). The study of small-scale turbulence is of
great theoretical and practical importance. It may contribute to a proper theory of turbulence, vortex
dynamics, combustion/turbulence mixing, turbulence modeling, and propagation of light and sound
waves.! The aim of the present work is to investigate the universal structures of small-scale turbulence
motions and their Reynolds-number scaling for different types of wall-bounded turbulent flows.
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Many studies have been done to discover and understand the universal features of small-scale
turbulent motions. Kerr? studied high-order derivative correlations and alignment of small-scale
structures in direct numerical simulation (DNS) of isotropic turbulence. Simulations were conducted
on up to 128° grid points with periodic boundary conditions to achieve Reynolds numbers up to 82.9
based on Taylor micro scale. It was concluded that the vorticity is concentrated in tubes (see also
She et al.®) with regions of intense strain nearby. The largest principal rate of strain was negative or
compressive because the velocity-derivative skewness was negative. Both the largest compressing
and stretching components of the rate of strain were oriented perpendicular to the tube, while the
weak stretching component (the intermediate eigenvector of the strain rate tensor) was aligned along
the tube, that is, there was a preferential alignment of the vorticity vector with the intermediate
strain direction. This alignment was further investigated by Ashurst et al.* using the DNS data of
isotropic turbulence’ and homogeneous shear flow.” They confirmed the alignment and argued that
it was a consequence of angular momentum conservation. Jiménez® offered another explanation
for the alignment using a kinematic model and attributed it to purely kinematic effects. There have
been many more studies about the vorticity alignment,””'* considering various flows like isotropic
turbulence, turbulent channel flow (TCF), turbulent boundary layer (TBL), atmospheric turbulence,
and magnetohydrodynamic turbulence.

Vorticity and strain-rate eigenvectors are linked to turbulence structures. Many researchers
have investigated the shape and alignment of various type of turbulence structures using differ-
ent methods.*'*'” Some observed a 10°-20° inclination angle of the turbulence structures with
the wall/streamwise direction in shear flow using space-time streamwise velocity correlations and
wall shear stress, conditionally averaged isocontours of the normalized disturbance streamwise
velocity,'*1%1° while some others observed 45° inclination angle by means of vorticity, smoke
lines, and temperature fronts.'>!”-'8 It appears that different quantities may exhibit different kinds
of structures. Ashurst et al.* explained that not all tube-like concentrated vorticity adopted the 45°
hairpin shape, e.g., for flows driven by irrotational strain, vortex tubes were also aligned with the
positive strain direction, but the hairpin shape would not appear without the mean shear.

Besides the alignment of vorticity and structures, flow topology was another focus of small-
scale turbulence studies. Chong et al.>° proposed a topology classification for three-dimensional flow
fields using tensor invariants P, Q, R, in which four different regions were categorized in the O-R
space (P = 0 for incompressible flow). Blackburn et al.?! studied these fine-scale motions in TCF
and showed that the joint probability-density function (pdf) of O-R has a teardrop shape further away
from the wall, and confirmed the alignment of the vorticity vector and the intermediate eigenvector
of the strain-rate tensor. In addition to the kinematics of the flow, the dynamics of turbulence flow
topology was also studied. Elsinga and Marusic?? experimentally investigated the dynamics of flow
topology in the outer layer of a TBL. It was found that both the instantaneous joint pdf of Q-R and
their average temporal behavior was in agreement with the local flow topology in DNS of isotropic
turbulence, as in Ooi et al.?® The lifetime of the energy-containing eddies was determined by the
period of the orbit in the Q-R phase plane, where the topology evolutions described spiraling orbits
and tended to converge to the origin, which could be translated into a cyclical variation of the flow
topology. Elsinga and Marusic'? proposed a method to extract average flow patterns around a point
in a local frame of reference defined by the eigenvectors of the strain rate tensor and applied the
method to three turbulent flow cases: a TBL, a TCF, and homogeneous isotropic turbulence. The
statistics were mainly collected in the regions around 0.24 away from the wall (% is the boundary
layer thickness/half channel width) for TBL and TCF. It was found that for all three cases the average
pattern showed a shear layer structure separating two larger-scale, relatively uniform regions. The
vorticity alignment and the tear-drop shape of the pdf of the velocity gradient invariants Q-R were
further analyzed.

Indeed, instantaneous structures of that kind have also been observed. Meinhart and Adrian®*
have shown the existence of (nearly) uniform momentum zones in a boundary layer, which are
bounded by thin layers containing vortical motions. These layers can be regarded as shear layers
due to the velocity difference across them. These observations have been detailed further in Adrian
etal.® Additionally, Del Alamo et al.?6 have estimated the fractal dimension of vortex clusters in the
logarithmic region to be 2, which suggests again an organization of vortices on surfaces or sheets.
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The Reynolds number has a great effect on turbulence motions, especially the size of the
smallest scales. Turbulent flows with a broad range of Reynolds numbers are needed for a further
study of the universality of small-scale turbulence motions. The current work uses the averaging
scheme proposed by Elsinga and Marusic'? (with slightly different local coordinate systems) in the
strain-rate eigenframe to investigate the universality and scaling phenomenology for TBL and TCF
at different Reynolds numbers and different distances to the wall. One important difference between
TBL and TCF is that the former exhibits a large degree of intermittency in the outer region.?” This
study is focused on the turbulence-dominated regions.

Il. METHODOLOGY

The current study aims at investigating the universality among statistically steady flows (TCF
and TBL) at different Reynolds numbers and wall normal locations. The focus is its kinematics
instead of dynamics which is beyond the scope of the current study. Therefore, the flow field is
evaluated statistically, by using the principal strain-rate eigenframe of reference. The main reason is
that this frame of reference is associated with some universal features of small-scale turbulence like
the preferential alignment between the vorticity vector @ and the intermediate principal straining
direction, and in addition, the invariants of the velocity gradient tensor (Q, R) are also linked, in part,
to principal straining.'?

The strain-rate tensor, S;; = 0.5 % (dv;/dx; + dv;/dx;), where v; is the ith velocity component,
can be diagonalized. This diagonalized tensor has three eigenvalues (A; > A, > A3) and respective
three eigenvectors (A, A, and A3), which are orthogonal due to the symmetry of §;;. For incom-
pressible flows A; > 0 and A3 < O since the sum of the eigenvalues is zero. A; and A3 represent
the most stretching and compressing directions, respectively. The direction of @ at different points
in a flow field is different, but it is often aligned with A,, as shown by many studies.*® 22! If the
flow field around each point is mapped along the local A, A,, A3 directions, a local flow field is
obtained as it is viewed from an observer aligned with the local eigenframe. We may expect to see
some common features associated with the local strain field and it is interesting to investigate their
statistical structures both qualitatively and quantitatively.

The method to collect point-wise statistics in the local strain-rate eigenframe applied in this
study consists of the following steps (see Figure 1 for a 2D illustration): (1) Choose a specified
subdomain (G) in the turbulent region of the flow field. (2) Compute A;, A,, and A3 of §;; at one
point, e.g., A. The A3 direction is adjusted to maintain a right-handed system, after A, and A, are
fixed (Note that the principal straining axes do not have positive directions defined. Therefore one
may define positive directions, for instance, based on the vorticity vector @ and the streamwise

A3
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G

FIG. 1. For simplicity, a 2D illustration of the local grid (A1, X3) at the point A (black lines), and the global grid (gray lines)
within a selected subdomain G (e.g., a small fraction of the flow field). Note that a global grid beyond G may be used when
the points near the edge of G are considered. G can be seen as the collection of all points A over which the averaging is
performed. For TCF, G is just a single x-z plane. For TBL, G extends between 0.22 and 0.383.
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x-direction). A, is chosen so that the angle between A, and w is positive, the same as Elsinga and
Marusic.!? The difference is that here A; is aligned with the positive x direction (the dot product of
A1 and x is positive) since it seems appropriate to see the stretching of vortices in the streamwise
direction for wall-bounded flows. This specific choice of alignment will be most importantly close to
the wall where the turbulence is strongly anisotropic. Conversely, negligible effects were seen in the
near-isotropic regions further away from the wall. (3) Create a uniform grid in the local coordinate
system originated at A with three principal directions along A, A,, and A3. This local mesh extends
at least 0.5 4 in all directions (where £ is the half channel width for TCF and the boundary layer
thickness 6 for TBL). (4) Map the global fluctuating velocity field around A onto the local uniform
grid to get the local velocity field. (5) Apply steps 2—4 to all points in the subdomain (G) and average
the obtained local velocity fields over the local grid to get the averaged three-dimensional flow
patterns.

lll. RESULTS AND ANALYSIS

The databases used in the current study are from DNS of fully developed TCF with friction
Reynolds numbers up to Re,; =~ 1500, and a spatially developing, zero-pressure-gradient TBL with
the Reynolds number up to Rey ~ 4300 (Re, =~ 1400), based on the momentum thickness 6 and
free-stream velocity.?®2° For comparison and scaling purpose, the Reynolds numbers considered for
the current cases are Re, ~ 550, 1000, 1500 and 550, 1000, 1350 for TCF and TBL, respectively,
and the specified subdomain considered for both type of flows is around 0.34, well in the outer
region, more specifically, 0.3/ for TCF, and 0.22-0.385 for TBL, where turbulence dominates and
boundary layer intermittency is negligible. Some related results will be discussed in Sec. III B. In
addition, different regions in the wall-normal direction (viscous sublayer, buffer layer, log layer)
are also considered for two channel flow cases to examine the application range of the universality,
which will be presented in Sec. III C.

A. Local coordinate and flow topology

The creation of the local coordinate based on the strain-rate eigenvector in this study in-
volves the alignment of A, with ® and the alignment of A; with the positive streamwise di-
rection x in order to make the local coordinate unique. First, it is interesting to know how
the local coordinates are oriented in different regions of the flow. Figure 2 presents the pdf of
the cosine of the angle 6 between A, and w, and between A; and the wall-normal y direction,
for TCF at Re; =~ 550 in four different regions: viscous sublayer, buffer layer, log layer, and
wake region. It can be seen that the profiles for the alignment between A, and ®, shown in
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FIG. 2. pdf of the angle between A, and w (a), and between A1 and y (b) for TCF at Re; = 550. The various lines correspond
to y* = 4 (solid line), 16 (dashed line), 153 (dashed-dotted line), 534 (dotted line), corresponding to the viscous sublayer,
buffer layer, log layer, and wake region, respectively.
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Figure 2(a), peak at 6 = O for all regions. The closer to the wall, the better the alignment. Similar
results are found for other Reynolds numbers and boundary layers (not shown here), and these results
are in good agreement with the findings of Blackburn et al.?! In the viscous sublayer A, and w are
almost perfectly aligned as for a shear layer. The alignment between @ and the spanwise direction
(z), and between A, and z very near the wall was confirmed by previous work'® and the current one
(not shown here), respectively.

The alignment of strain-rate eigenvectors with the global coordinates (e.g., y shown in
Figure 2(b)) shares some common features: strong alignments are seen in the viscous sublayer
and buffer layer, but no preferable alignment in the log layer and wake region. It is also observed
that in the viscous sublayer and buffer layer, both A; and A3 (not shown here) have an angle of
45° inclined with y direction and point away from the wall, but the difference is that A; is pointing
downstream while A3 is pointing upstream. These orientations correspond to the A and A3 directions
of a pure shear layer. The same orientations are seen for the other cases.

Now the local coordinate system, defined by A, A, and A3, is employed to compute the
averaged flow patterns as explained in Sec. II. Like the alignment, the averaged flow patterns in the
local strain-rate eigenframe are similar for all cases. For simplicity, only the results of TCF at Re,
~ 550 and TBL at Re, =~ 1000 are shown here. Figure 3 presents the averaged fluctuating velocity
vector field in three different cross planes. Coordinates are normalized using the Kolmogorov scale.
Two vortical regions with the same sense of rotation embedded in a shear layer can be seen in the
vector field plot on the plane where A, = 0 (A;-A3 plane), as shown in Figure 3(a). The scaling of
this structure will be discussed later in this section. Figures 3(c) and 3(e) present the vector plots
at .3 = 0 and 1| = O planes, respectively. The stretching in the A; direction and compression in
the A3 direction are obvious. The vectors also indicate a weak stretching in the A, direction. The
shear layer and in particular the two vortices weakly stretched in the A, direction are more clearly
seen in a visualization of the three-dimensional streamlines of the averaged flow pattern shown in
Figure 4. As already discussed in the Introduction, this averaged flow has a strong resemblance to
instantaneous structures observed in wall-bounded shear flows.>*2 For a more extensive discussion
of a connection to instantaneous flow we refer to Elsinga and Marusic.'? Figures 3(b), 3(d) and 3(f)
show flow patterns for TBL at Re,; = 1000 , which are similar to the ones in Figures 3(a), 3(c), and
3(e), especially close to the origin. The slight difference in magnitude between the two cases further
away from the origin is mainly due to the Reynolds number effects. Patterns in this region represent
scales somewhere between small and large scales. The related Reynolds number scaling and physics
will be further discussed in Sec. III B.

The flow topology is computed from the averaged flow patterns using the invariants of the
velocity gradient tensor Q-R. It can be classified into four different quadrants in the Q-R plane.?*-?!
The flow patterns in Figure 3 mainly fall into two categories: stable focus/stretching, and unstable
node/saddle/saddle, as confirmed by the joint pdf of O-R in Figure 5. The contour lines exhibit the
expected teardrop shape for both TCF and TBL, a typical feature of small-scale turbulence in many
different types of flows.

The above discussions about the universality of the averaged flow patterns were so far mainly
conducted in a qualitative way. A quantitative study is needed for further evaluating the universality.
The averaged flow field has patterns related to flow topology and turbulence scales on which Reynolds
number has a significant effect. It is interesting to investigate this effect which may shed some light
on turbulence modeling, e.g., sub-grid scale models for large-eddy simulation (LES).

B. Reynolds-number scaling of the averaged flow patterns

Reynolds-number scalings of the universal flow patterns for all cases are computed using the

Kolmogorov (length 1 and velocity u,) and Taylor scales (I, = ﬁ/u_2 where 12 is the mean

streamwise turbulence intensity and u, = du/dx), and the macro scale (k). Close to the origin,
Kolmogorov or Taylor scalings may be expected, but further away from the wall, neither of these
two scalings is probable and the macro scale may be depending on the size of scales. Since the local

flow pattern indicates a shear layer with two vortical regions, as indicated in Figure 3(a), the scalings
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FIG. 3. Averaged fluctuating velocity field in the local strain-rate eigenframe for TCF at Re; &~ 550 ((a), (c), (¢)) and for
TBL at Re; =~ 1000 ((b), (d), (f)). Axes are scaled with the Kolmogorov length scale n. Lines I, II...., IV in ((a), (b)) and V,
VIin ((c), (d)) are used for the velocity profiles below.

will be focused on their parameters, such as the thickness, width, strength of the shear layer, and the
distance between the two vortical regions, which will be discussed below.

The thickness and strength of the shear layer in Figure 3 are determined from the profiles of
the velocities along lines I and III in Figure 3(a) with their origin located at the center (A3 = A;
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FIG. 4. 3D streamlines in the local strain-rate eigenframe, with the origin located in the center of the cube. Colors from blue
to red represent increasing velocity magnitude.

= A, = 0). The related Reynolds-number scalings using Kolmogorov length scale, Taylor micro
scale, and macro scale are generated for both lines I and III and both profiles are very close to
rotational symmetry due to quasi-homogeneity. Therefore, the profiles over lines I and III are
averaged for presentation purposes (similar averaging procedures are done for the scaling profiles of
the other pairs: lines II-IV, V-VI, in this section) and plotted in Figure 6, where A45 is defined along
the direction of line I-IIT and u is the shear velocity, that is, the velocity component perpendicular
to the line I-III. It can be seen that Kolmogorov scaling profiles lead to a fairly good collapse of
the profiles until reaching the peak of the velocity at A45 & 9n while Taylor scaling appears more
appropriate away from the origin. In particular, the Taylor length scale seems to mark the transition
from the shear velocity peak to an “outer” tail, in which point can be defined as the total thickness of
the shear layer. The scalings give a total shear layer thickness of around 1/,. The shear layers share a
universal thickness for both TCF and TBL, as can be seen in Figures 6(a) and 6(b). The quantitative
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FIG. 5. Normalized joint pdf of Q-R for TCF at Re; ~ 550 (a) and TBL at Re; =~ 1000 (b) in the local strain-rate
eigenframe. Qw is the second invariant of the rotation-rate tensor. The thinner black solid line represents the zero-discriminant:
D = 27/4R?> + @® = 0, which separates the four quadrants together with the dotted line R = 0. The contour levels have a
log-scale distribution.
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FIG. 6. Scaling of the shear layer using Kolmogorov length scale » (a), Taylor micro scale /; (b), macro scale 4 (c), and
related peak velocity scalings using Kolmogorov velocity scale u, and root-mean-square of the streamwise velocity u;,,; (d),
where L45 (A45 = Az/cos (;r/4)) is on line I-III in Figure 3(a) and u is on and perpendicular to line I-III, w4y is the maximum
velocity, & is the half channel width/boundary layer thickness. The various lines and symbols correspond to TCF at Re,
= 550 (solid line), 1000 (dashed line), 1500 (dashed-dotted line), TBL at Re; = 550 (circles), 1000 (triangles), 1350 (plus),
and peak velocity for TCF scaled by uy, (cross), u,,s (star) and for TBL scaled by by u, (square), u;,,s (diamond), the same
hereafter in this section.

universality extends up to about 1/, after which the profiles start to deviate. Moreover, the tail is
seen to increase with Reynolds number consistent with the largest scales increasing in size when
expressed in Taylor length scales. In particular, the tail seems flow dependent, as expected for large
scales. The curves approach zero at approximately the same length scaled in outer units (Fig. 6(c)),
illustrating the influence of large outer scales. This scaling is further improved if u,,, is used as
normalization of the velocity. Here the peak location is moving closer to the origin with increasing
Reynolds number, which is an indication of increased scale separation.

In addition to the length scalings discussed above, velocity scalings using u, and u,,, are
also analyzed. Only the scaling of the peak velocity u,,,, is plotted for simplicity and shown in
Figure 6(d). It can be seen that the peak velocity is around 2.5u,, or 0.4u,,,, for both TCF and TBL.
Yet both 4./t and te./Ums vary slightly with Reynolds number, which indicates a mixed scaling
of the shear layer strength containing small (u,) and large scale (u,) influences simultaneously.
Differences between TCF and TBL are small, and therefore not only the thickness of the shear layer
but also its strength are quantitatively universal.

The distance between the two vortices in the shear layer is another important fundamen-
tal feature of the structure. It can be obtained through the profiles of velocities perpendicular to
line II-IV in Figure 3(a). The Kolmogorov, Taylor and macro length, and velocity scaling pro-
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FIG. 7. Scaling of the vortex velocity profile using # (a), I; (b), & (c), and the scaling of the peak velocities using u; and us
(d), where A_45 = Ay/cos (r/4) on line II-1V in Figure 3(a) and u), represents the velocity perpendicular to line II-1V, that is,
perpendicular to the shear layer.

files are compared in Figure 7. The peak and zero-crossing of the velocity profiles approximately
represent the edge and center of the vortex, respectively. The results indicate that the edge loca-
tion is A_4s &~ 7n or 0.28/, (Figures 7(a) and 7(b)) with an edge velocity of 0.5u, or 0.08u,
(Figure 7(d)), which is about 1/5 of the peak velocity in the shear layer, and the center of the vortex
is at A_45 &~ 0.82/,. This gives a distance of around 1.64/, between the cores of two vortices for
all cases, which is similar to the spacing of 1.7; reported by Elsinga and Marusic.'? The scaling
profiles based on the Taylor scale seem to have a slightly better collapse between the cores of two
vortices. Interestingly, a Reynolds number dependence is seen in the tails of Kolmogorov and Taylor
scaling profiles. As an indication of large scales, all the macro scaling profiles have returned to zero
beyond 0.5k, which shows the extent of the shear layer. The velocity scalings shown in Figure 7(d)
look similar to Figure 6(d). It seems that both velocity scalings show a slight (positive and negative)
trend, suggesting a mixed scaling for the current cases, but higher Reynolds number cases will be
needed to draw a firm conclusion about the velocity scalings.

Now scalings of some characteristics of the averaged shear-layer patterns in the A, = O plane
including shear layer thickness, strength, vortex distributions, and the horizontal span are discussed.
The vertical span, or the height of the shear layer along the A, direction, i.e., the direction aligned
with the vorticity vector is of interest to determine the extent of the shear layer and to complement
the study of the local 3D flow structure. One way is to compute the shear strength, i.e., the derivative
of shear velocity du/dA4s, along A, (along line V-VI in Figure 3(c)), as displayed in Figure 8. It
can be seen that it scales well with Taylor scale. Defining the outer edge as the position where the
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FIG. 8. Scaling of shear layer height in the A, direction, i.e., aiﬁ’

shearing velocity shown in Figure 6.

on line V-VI in Figure 3 using /;, where u is the same

velocity is half of its maximum value, gives a universal height of around 1.6/, (taking into account
symmetry).

It can be seen from the above discussions that the different parts of the obtained shear-layer
like structure scale on Kolmogorov, Taylor, and the macro scale, which indicates that the structure
represents both small and large scales of turbulence. Kolmogorov scaling performs well near the
origin, where viscosity seems important, and Taylor scale appears to give a good collapse in a broader
region, while macro length scaling works well further away from the origin, i.e., outside the shear
layer. The universal structure of the shear layer indicates a thickness of around 1/, separating large
scale motions and a common height of around 1.6/, for the current cases with the current subdomain
located in the outer layer at around 0.3# away from the wall. The two aligned vortices inside the
layer are spaced 1.6/, apart. The scaling at other locations will be discussed in Sec. III C.

C. Wall-normal scaling of the averaged flow patterns

It was discussed in Sec. III B that the averaged flow patterns for TCF and TBL in the local
strain-rate eigenframe with a specified subdomain chosen as the region around 0.3# away from the
wall appear universal when applying an appropriate scaling. It is interesting to see how universal
it is for the subdomain in the regions closer to the wall. Scaling profiles at different wall-normal
locations for different cases are thus considered next. Since the profiles for different cases (Reynolds
number, flow case) were similar, only those for the Re; = 1000 channel flow case are presented
here.

The wall-normal locations considered are y* = 12, 50, 169, 299 in wall units. The closest
location y* = 12 is in the buffer layer and the furthest one y* = 299 is at 0.3 for the current case,
that is, on the edge of the log-law region and the wake region.>* Taylor and macro length scalings
of the shear layer and distance between the vortices are presented in Figure 9. To obtain the profiles
for the locations y© = 50-299 the same averaging procedure as before for lines I-III and II-IV has
been applied since the flow field in the strain-rate eigenframe is nearly homogeneous. At y* = 12
only the profiles on line I and II are shown in Figures 9(a) and 9(b), respectively, because the flow
near the wall is strongly inhomogeneous and the eigenframe has a clear preferential orientation, as
discussed in Sec. III A. The averaged flow field at all wall-normal locations displays a clear shear
layer structure with a Kolmogorov scaling of the inner part as expected (not shown here). However,
the two aligned vortices are only observed in the averaged flow fields above the buffer layer at y*
= 50 — 299, see Figure 9(b). The averaged flow patterns at these locations show strong similarities
with a Taylor micro scaling of the size of the shear layer and distance between the vortices, see
Figures 9(a) and 9(b), respectively.
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(a) (b)

FIG. 9. Scaling of the shear layer (a) and the distance between vortices (b) for Re; = 1000 TCF at different wall-normal
positions, using ;. The various lines and symbols correspond to different wall normal locations y* = 12 (dotted line: scaling
on line I or I in Figure 3), 50 (solid line), 169 (dashed-dotted line), 299 (dashed line).

IV. CONCLUSIONS

The universality of small-scale turbulence motions in well-resolved spectral DNS data of tur-
bulent channel and boundary-layer flow at different Reynolds numbers and various wall normal
locations has been investigated using the average flow pattern in the eigenframe of the strain-rate
tensor. The related Reynolds-number scaling has been considered for friction Reynolds numbers
between 550 and 1500. The applied methodology is to map a global flow field around a point in
some chosen subdomain onto a local coordinate defined by the eigenvectors of the strain-rate tensor,
in order to obtain a local flow field, and average these local flow fields for all points in the subdomain
to get a statistically averaged flow pattern. Using this approach, the small-scale structure of the flow
field and the dimensions of this structure can be studied quantitatively and systematically.

Above the buffer layer at y* = 50 and beyond, the resulting average flow patterns in TBL and
TCF feature a distinct shear layer containing two aligned vortices, in agreement with previous work
that showed a similar structure in the outer layer of TBL, TCF, and isotropic turbulence.'? The
vorticity inside the shear layer is being stretched in the direction of the intermediate principal strain.
The joint pdf of the invariants Q and R of this structure has the same characteristic teardrop shape as
that of the non-averaged flow field, showing that the applied methodology captures the fundamental
features of the small-scale turbulence. The average flow pattern near the wall in the buffer layer also
reveals a shear layer but no clear evidence of vortices indicating that the small-scale flow field is
dominated by shear near the wall.

For the first time, the structures in the strain-rate-eigenframe have been studied in a quantitative
way by considering the scaling of the profiles across and along the shear layer. We find that above
the buffer layer, in the log layer and wake region, the thickness and span of the shear layer and
the distance between the two vortices scales well with the Taylor micro scale in all cases. Only
the innermost part of the shear layer displays a clear Kolmogorov scaling while the outermost part
suggests a macro scaling. The intensity of the shear layer appears to obey a mixed scaling based
on the Kolmogorov velocity scale and u,,,;. Although we focused on the small scales in this study
by conditioning on the local velocity gradients and local principal strain directions, we see thus
clear indications of the direct influence of large scales on small-scale motions in both velocity and
length scalings. In summary, a high degree of universality of the small scale motions is demonstrated
quantitatively through this scaling of the structures defined in the strain-rate-eigenframe of reference.
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