
 
 

Delft University of Technology

Subspace identification of 1D spatially-varying systems using Sequentially Semi-
Separable matrices

Sinquin, Baptiste; Verhaegen, Michel

DOI
10.1109/ACC.2016.7524891
Publication date
2016
Document Version
Accepted author manuscript
Published in
Proceedings of the 2016 American Control Conference (ACC 2016)

Citation (APA)
Sinquin, B., & Verhaegen, M. (2016). Subspace identification of 1D spatially-varying systems using
Sequentially Semi-Separable matrices. In K. Johnson, G. Chiu, & D. Abramovitch (Eds.), Proceedings of the
2016 American Control Conference (ACC 2016) (pp. 54-59). IEEE.
https://doi.org/10.1109/ACC.2016.7524891
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ACC.2016.7524891
https://doi.org/10.1109/ACC.2016.7524891


Subspace Identification of 1D Spatially-Varying Systems using
Sequentially Semi-Separable matrices

Baptiste Sinquin1, Michel Verhaegen1

Abstract— We consider the problem of identifying 1D
spatially-varying systems that exhibit no temporal dy-
namics. The spatial dynamics are modeled via a mixed-
causal, anti-causal state space model. The methodology is
developed for identifying the input-output map of e.g a
1D flexible beam described by the Euler-Bernoulli beam
equation and equipped with a large number of actuators
and sensors. It is shown that the static input-output map
between the lifted inputs and outputs possess a so-called
Sequentially Semi-Separable (SSS) matrix structure. This
structure is of key importance to derive algorithms with
linear computational complexity for controller synthesis of
large-scale systems. A nuclear norm subspace identification
method of the N2SID class is developed for estimating
these state space models from input-output data. To enable
the method to deal with a large number of repeated
experiments a dedicated Alternating Direction Method of
Multipliers (ADMM) algorithm is derived. It is shown in
this paper that a nuclear norm relaxation on the SSS
structure can be imposed which improves the estimates
of the system matrices.

Index Terms— nuclear norm subspace identification,
spatially distributed systems, sequentially semi-separable
matrices.

I. INTRODUCTION

Research on scalable algorithms for system identi-
fication has received increased attention over the past
years and is driven by projects such as smart grids for
power networks, large scale adaptive optics [1] and also
coordinated transportation or biology [2] to name but a
few. Efficient modelling of large systems with thousands
of actuators and sensors with a compact representation
may be a key in starting control synthesis. This was
e.g highlighted in [3] where efficient control design
methods with linear computational complexity in the
system size dimension were derived when the original
state space system matrices where belonging to the so-
called Sequentially Semi-Separable (SSS) matrices.
In general, Partial Differential Equations (PDE) model
both spatial and temporal dynamics. However, for sys-
tems that are used in a frequency band far below their
first resonance frequency, the temporal dynamics can be
neglected, e.g deformable mirrors in adaptive optics. A

1 Both authors are with the Delft Center for Systems and Control,
Delft University of Technology, the Netherlands.
Corresponding author: b.sinquin@tudelft.nl
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spatio-temporal discretization of a 1D thin plate [4] can
be described by the following string interconnected state
space model:

xj(k+1) = Ajxj(k)+A`,jxj−1(k)+Ar,jxj+1(k)+Bjuj(k)

where (j, k) are indices respectively for space and time.
The quasi-static assumptions implies xj(k+1) = xj(k),
hence the aforementioned system representation is re-
casted into a descriptor form:[
−Ar,j 0

0 I

] [
xj+1(k)
xj(k)

]
=

[
Aj − I A`,j

I 0

] [
xj(k)
xj−1(k)

]
+

[
Bj

0

]
uj(k) (1)

in which Ar,j is not necessarily full rank. The
Kronecker-Weierstrass canonical form [5] that decouples
causal and anti-causal directions from (1) give rise to a
mixed causal, anti-causal state space model:

[
xcj+1,k

xaj−1,k

]
=

[
Rj 0
0 Wj

] [
xcj,k
xaj,k

]
+

[
Qj

Vj

]
uj,k

yj,k =
[
Pj Uj

] [xcj,k
xaj,k

]
+Djuj,k + ej,k

(2)

with xcj,k ∈ Rnc
j , xaj,k ∈ Rna

j and the measurement noise
ej ∈ Rpj . j denotes a spatial index within the range of
indices [1, Ns] whereas k represents the index of a given
experiment within [1, Nt]. uj,k ∈ Rmj and yj,k ∈ Rpj

are respectively the input and measurement from the k-th
experiment taken at spatial position j. The map between
the lifted inputs uj,k and outputs yj,k at time instant
k is a SSS matrix. In adaptive optics (AO) this map
is called the influence matrix and considered as dense
in the so-called Matrix-Vector Mutliplication approach.
The methods presented in this paper impose a SSS
structure on this matrix. This structure opens the way
for development of algorithms for control of extremely
large AO systems with linear computational complexity.
In this paper we focus as an important initial step on the
identification of the generators of the SSS input/output
map. SSS matrices were introduced in [6] in which
their efficiency for distributed and fast computations is
highlighted. The spatially-varying dynamics of system
(2) in the context of a 1D flexible beam stem e.g from the
varying material properties but also from the dimensions
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of the inputs uj,k and outputs yj,k that can vary with the
position j. This arises e.g when actuators and sensors are
not collocated.
The model (2) describes a mixed causal, anti-causal
linear time-varying (LTV) system. This class of systems
was analyzed in the context of SSS matrices in [7].
The identification of causal LTV in the old MOESP
framework was considered in [8], the identification of
mixed causal, anti-causal LTI state space models in
that same framework was considered in [9]. In this
paper we generalize the methods of [8] to the case of
mixed causal, anti-causal varying systems and treat the
problem in the new N2SID framework [10]. It leads to
three major improvements over existing works. First, it
enables to handle both the mixed causal, anti-causal
and time-varying properties. Second, it avoids the use
of the Kronecker decomposition in separating the causal
and anti-causal part. The avoidance of the calculation
of the generalized eigenvalues contributes to numerical
robustness. A third improvement that contributes to more
robustness is in the estimation of the system matrices
without the need of projections and the possibility to
take the constraints of the SSS structure into account.
The derived N2SID variant can be used as an initial
estimate to the parametric identification methods of SSS
models as proposed in [11] following the Extended
Kalman filtering methodology or in [12] using output-
error identification method.
The paper is organized as follows. Section II introduces
structural notions and formulates the data equation,
Section III recasts the non-unique rank minimization
problem into a unique convex problem with structure
information on the SSS matrix. Section IV uses the
shift-invariance property of the SSS matrix to estimate
the generators up to a similarity transformation. Dealing
with large datasets is made possible through the use of
ADMM whose implementation is described in Section
V. The method is illustrated with numerical experiments
in Section VI.
Notations. X† and XT represent respectively the Moore
pseudo-inverse and transpose of X . The Frobenius norm
of the matrix X is denoted as ‖X‖F . rank(X) is equal
to the number of non-zero singular values of X whereas
the nuclear norm ‖X‖? is defined as the sum of the
singular values. For X and Y matrices the inequality
X ≺ Y (�) means that Y −X is (semi-)positive-definite.
The inner product 〈X,Y 〉 is equal to Trace(XTY ).
bxc denotes the floor part of the real number x. The
standard Matlab notations are used for both vectors and
matrices: X(:, i) denotes the i-th column of X , X(i, :)
the i-th line. X(:) is the matrix X reshaped columnwise
into a vector. xa:b denotes the sequence (xa, . . . , xb).

The block-diagonal matrix
[
X 0
0 Y

]
is written with

blkdiag(X,Y ).

II. PROBLEM FORMULATION

The discrete spatial dynamics of the 1D system
under consideration (2) are defined as a function of
the spatial index j that takes integer values in the
interval [1, Ns − s+ 1]. Here s is an integer defining
the size of the matrices to be processed in the subspace
identification method. On the interval [1, Ns − s+ 1] we
consider a window of size s as depicted in Figure 1, on
which we define the following extended observability
matrix with s > ncj + naj+s−1:

Oj:j+s−1 := (Oc
j:j+s−1|Oa

j:j+s−1)

:=


Pj UjWj+1Wj+2 . . .Wj+s−1

Pj+1Rj Uj+1Wj+2 . . .Wj+s−1

...
...

Pj+s−1Rj+s−2 . . . Rj Uj+s−1



A definition for uniform observability is mentioned in

Fig. 1. Schematic representation of a spatial local zone. Above:
general view. Under: concatenation of experiments for a zone starting
at index 1.

[15] for LTV systems. We extend it here to the mixed
causal, anti-causal case.
Definition 1: The pairs (Pj , Rj) and
(Uj+s−1,Wj+s−1) are uniformly observable if there
exists a strictly positive integer l and positive constants
b1, b2 such that the following inequality on the Gramian
holds:

0 ≺ b1I � Oj:j+l−1OT
j:j+l−1 � b2I

If we denote the smallest integer l for which this holds,
Sylvester inequality is used to prove that:

rank(Oj:j+l−1) = ncj + naj+l−1

The controllability matrix is defined with:

Cj:j+s−1 :=

[
Cc

j:j+s−1
Ca

j:j+s−1

]
=

[
Qj+s−1 . . . Rj+s−1Rj+s−2 . . . Qj

WjWj+1 . . . Vj+s−1 . . . Vj

]
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Controllability and observability are dual notions,
and uniform controllability is defined similarly as in
Definition 1.
Definition 3: Let us consider the mixed causal,
anti-causal state space representation (2). The
set of SSS generators is the set of matrices
{Pj , Rj , Qj , Dj , Uj ,Wj , Vj}.
Definition 4: A bounded set of SSS generators is
said to be uniform if it is uniformly observable and
uniformly controllable.
We are now ready to formulate the problem.
Consider:
the state space representation (2) for j defined in the
interval [1, Ns], the experiment index k in the range
[1, Nt], and measurements of inputs uj,k and outputs
yj,k, then:
Estimate, for all j ∈ [2, Ns − 1]:
• the causal and anti-causal orders (ncj , n

a
j ) corre-

sponding to a uniform SSS realization.
• the generators Pj , Rj , Qj , Dj , Uj ,Wj , Vj , up to a

similarity transformation.
For a local spatial zone j ∈ [1, s] we have the following
relationship:y1,1...

ys,1

 = O1:s

[
xc1,1
xas,1

]
+ T1:s

u1,1...
us,1

+

e1,1...
es,1

 (3)

where T1:s is a SSS matrix defined in (4). Nt−1 other
independent experiments are performed and input-output
data is compactly written in the data equation:

Y1:s,Nt
= O1:sX1:s,Nt

+ T1:sU1:s,Nt
+ E1:s,Nt

(5)

where

Y1:s,Nt =

y1,1 y1,2 . . . y1,Nt

...
...

...
ys,1 ys,2 . . . ys,Nt


and

X1:s,Nt
=

[
xc1,1 xc1,2 . . . xc1,Nt

xas,1 xas,2 . . . xas,Nt

]
The matrices U1:s,Nt and E1:s,Nt are built similarly to
Y1:s,Nt

from the data uj,k and ej,k. When s > ncj +
naj+s−1, from Sylvester’s inequality it comes that the
matrix O1:sX1:s,Nt

is of low rank. Hence identifying
the SSS matrix T1:s in the N2SID framework [10] boils
down to the following optimization problem:

min
Ŷ1:s,Nt ,T1:s,Nt

rank(Ŷ1:s,Nt
−T1:sU1:s,Nt

)+λ‖Ŷ1:s,Nt
−Y1:s,Nt

‖2F
(6)

with λ a regularization parameters that establishes the
trade-off between the two cost functions. Uniqueness of
the rank minimization problem shall be studied here. For
the N2SID method the Toeplitz structure was sufficient

to guarantee a unique solution to the rank minimization
problem. For (6) more care is required.

III. TOWARDS A CONVEX AND STRUCTURED
OPTIMIZATION PROBLEM

For sake of clarity we drop in this section the indices s
and Nt mentioning respectively the spatial position and
the number of experiments. The causal and anti-causal
orders are nc and na.

A. A non-unique solution to the rank minimization prob-
lem

Lemma 1: We assume the input is persistently excit-

ing such that the compound matrix
[
X
U

]
has full row

rank. Then in the noise-free case E = 0, the solution T
of:

min
T

rank(Y − T U) (7)

is not unique.
Proof: Let Θ1 and Θ2 be two solutions of (7). The
difference of both solutions ∆ := Θ1−Θ2 is introduced.

Y −Θ1U = Y − (Θ2 + ∆)U

=
[
O ∆

] [ X
−U

]
Using Sylvester’s inequality and the persistence of ex-
citation of the input show that:

rank

([
O ∆

] [ X
−U

])
= rank(

[
O ∆

]
)

For ∆ = 0, the rank equals na + nc and the rank is
minimal. Now we can find a non-zero ∆ such that the
above rank does not increase:

rank(
[
O ∆

]
) = nc + na (8)

One example of such a ∆ is:

∆ =


P1

P2R1

...
PsRs−1 . . . R1

 [1nc×1 0 . . . 0
]

(9)

B. A biased, although unique, solution with the nuclear
norm relaxation

The nuclear norm convex relaxation in subspace iden-
tification used in [13] and [10] has open up the way for
improvements upon classical methods. Let us relax (7)
into the following nuclear norm optimization:

min
T

‖Y − T U‖? (10)

It is well known that the nuclear norm relaxation intro-
duces a bias as it minimizes the whole vector of singular

3
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T1:s =


D1 U1V2 U1W2V3 . . . U1W2 . . .Ws−1Vs
P2Q1 D2 U2V3 . . . U2W3 . . .Ws−1Vs

...
...

. . .
...

...
...

. . . Us−1Vs
PsRs−1 . . . R2Q1 PsRs−1 . . . R3Q2 . . . PsQs−1 Ds

 (4)

values instead of only the last s − n values that don’t
contribute to the observable subspace.
Lemma 2: Let the conditions of Lemma 1 hold and
denote T0 the true values of the SSS matrix, and T as
in (4). Then the estimate T̂ solving (10) is unique but
biased as follows:

T̂ = T0 + Γ

for Γ 6= 0 when X is not orthogonal to U .
Proof: Following the same line as in the previous proof,

‖Y − T̂ U‖? = ‖
[
−Γ O

] [U
X

]
‖? (11)

The following RQ factorization is introduced:[
U
X

]
=

[
Ru 0
Rux Rx

] [
Q1

Q2

]
Inserting this equation in (11) yields:

‖
[
−Γ O

] [U
X

]
‖? = ‖

[
−ΓRu +ORux ORx

]
‖?
(12)[

U
X

]
is full row rank, hence the optimal solution to the

above problem is Γ = ORuxR
−1
u . The underbound of

the above cost function is obtained by:

‖ORx‖? ≤ ‖
[
−ΓRu +ORux ORx

]
‖? (13)

We here proved the solution to the nuclear norm problem
(10) is not biased if Rux = 0. Determining the bias Γ
with the Frobenius norm solution is only valid if no
additional structure is enforced as it would be the case
when dealing with only-causal varying systems. In other
words,

‖Y − T̂ U‖? ≤ ‖Y − T0U‖?

To prove that the above biased solution is unique, we
now consider a deviation γ to the computed solution
Γ̂ = ORuxR

−1
u :

Γ = Γ̂ + γ (14)

‖
[
−ΓRu +ORux ORx

]
‖? = ‖

[
γRu −ORx

]
‖?

(15)
which yields γ = 0 when minimizing with respect with
γ. Hence the solution to the nuclear norm problem (10)
is unique.

C. A structured SSS matrix

The block-terms in the matrix T1:s, such as P2Q1,
which are called with some abuse of terminology the
Markov parameters, are not constant along the diagonals.
However, s−1 Hankel submatrices appear in both lower
and upper parts of T1:s and can be factorized into a
product of observability and controllability matrices. For
example, by taking the following partition of T1:s:

∀j ∈ [2, s] , T1:s(
j−1∑
i=1

pi + 1 :

s∑
i=1

pi, 1 :

j−1∑
i=1

mi)

with block-columns in reverse order, the generalized
Hankel matrix Hc

j is formed:

Hc
j :=


PjQj−1 . . . PjRj−1 . . . Q1

Pj+1RjQj−1 . . . Pj+1Rj . . . Q1

...
...

Ps . . . Qj−1 . . . Ps . . . Q1



=


Pj

Pj+1Rj

...
Ps . . . Rj

 [Qj−1 . . . Rj−1 . . . Q1

]
= Oc

j:sCc1:j−1

Each SSS realization is uniform, hence with Sylvester’s
inequality:

rank(Hc
j) = ncj

The upper-side contains as well the generalized Hankel
matrices Ha

j of rank naj :

∀j ∈ [1, s− 1] , Ha
j := Oa

1:jCaj+1:s

The structure is highlighted in Figure 2.

Fig. 2. Schematic representation of the low rank matrices inside a
SSS matrix.
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However, both ncj and naj are unknown and an upper
bound r ∈ N of these ought to be chosen such that:

max(n) + 1 < r < s−max(n) + 1 (16)

where max(n) = max({ncj}j∈[2,s], {naj }j∈[1,s−1]). The
additional low rank constraints on the matrices Hc

j and
Ha

j , that is a consequence of the SSS structure, are
integrated by convex relaxation in the cost function (6)
as follows:

min
Ŷ1:s,N ,T1:s

‖Ŷ1:s,N − T1:sU1:s,N‖? + λ‖Ŷ1:s,N − Y1:s,N‖2F

+µ

s−r+2∑
i=r

(
‖Hc

i‖? + ‖Ha
i−1‖?

)
(17)

Here λ and µ are regularization parameters.

IV. MATRICES ESTIMATION

Analysing the SSS matrix T1:s reveals 7s− 8 genera-
tors as it has already been studied in [7]. The procedure
to estimate these generators and hence the 7 system
matrices to define the mixed causal, anti-causal system
(2) is here not rewritten because of space limitation.
The quadruplets (P1, R1,W1, V1) and (Rs, Qs, Us,Ws)
cannot be determined from T1:s. However only a spatial
window of length s has been studied so far. Solving (17)
on a minimum of bNs

s c+1 overlapping windows enable
to estimate a total of 7Ns − 8 generators .

V. ALTERNATING DIRECTION METHOD OF
MULTIPLIERS

A solver is proposed to cope with the

nx =

s∑
i=1

pi

(
Nt +

s∑
i=1

mi

)
unknowns of problem (17). The Alternating Direction
Method of Multipliers (ADMM) is used following the
line of [13] and [10]. It is of major importance to
relieve the computational burden implied by both the
increased number of variables compared to N2SID and
the additional low rank constraints. We define the vector
of unknowns x first. For all i ∈ [1,

∑s
i=1 pi]:

vi = T1:s(i, :) ŷi = Ŷ1:s,Nt
(i, :) (18)

xi =
[
ŷi vi

]
x =

[
x1:

∑s
i=1 pi

]
The nuclear norm is not differentiable which is why
the ADMM algorithm in [13] introduces a consensus
variable to deal with this specificity. The following
lemma makes the use of this approach still possible.

Lemma 3: Let (Q1, . . . , Qq) ∈ Rm1×n1×. . .×Rmq×nq .
Let P be the q−block diagonal matrix built from the
sequence (Q1, . . . , Qq). Then: ‖P‖? =

∑q
i=1 ‖Qi‖?

The term Ŷ1:s,Nt
−T1:sU1:s,Nt

is linear in its unknowns
(18), the linear operator associated is denoted with

A1(x). The linear operator Hc
i (xi:

∑s
i=1 pi

) maps the
vector x into the Hankel matrix Hc

i . The linear operator
BHc(.) defined as:

BHc(x) := blkdiag(Hc
t(xt:

∑s
i=1 pi

), . . . ,Hc
s−t+1(xs−t+1:

∑s
i=1 pi

))

maps the vector x into a block diagonal matrix built
from the causal Hankel operators on which there is a
low rank property enforced in (17). The operator BHa(.)
is defined similarly. The linear operator A2(x) handles
the SSS Hankel structure, both causal and anti-causal:

A2(x) := blkdiag(BHc(x),BHa(x))

Finally we introduce: A(x) := blkdiag(A1(x),Ai(x))
The Gramian matrix M is defined withAadj(A(x)) =

Mx where Aadj denotes the adjoint of A. Let us
introduce a lemma to deal with the high-dimensionality
of M and be able to compute it distributively.
Lemma 4: Let x ∈ Rnx and A(x) a linear operator
with block diagonals A1(x) and A2(x). Then,

〈A(x),A(x)〉 = 〈x,
2∑

i=1

Mix〉

where Mi for i = 1, 2 are such that Aadj,i(Ai(x)) =
Mix. Proof: Using the definition of the inner prod-
uct.

Let us then analyze the Gramian associated to A1(.).
Lemma 5:
• M1 is block-diagonal, with

∑s
i=1 pi blocks M1 [k]

of size R(Nt+
∑s

i=1 mi)×(Nt+
∑s

i=1 mi).
• Moreover, M1 [k] is given by:

M1 [k] =

[
INt −UT

1:s,Nt

−U1:s,Nt
U1:s,Nt

UT
1:s,Nt

]
Proof: The linear operator A1(x) is decomposed

with:

A1(x) =


ŷ1
ŷ2
...
ŷs

−

v1
v2
...
vs

U1:s,Nt

Hence,

〈A1(x),A1(x)〉 =
∑s

j=1 ‖ŷj − vjU1:s,Nt‖22
=

∑s
j=1〈

[
ŷTj
vTj

]
,

[
INt

−UT
1:s,Nt

−U1:s,Nt
U1:s,Nt

UT
1:s,Nt

] [
ŷTj
vTj

]
〉

=
∑s

j=1〈xTj ,M1 [j]xTj 〉

Lemma 6:
• M2 is block-diagonal, with

∑s
i=1 pi blocks M2 [k]

of size R(Nt+
∑s

i=1 mi)×(Nt+
∑s

i=1 mi).
• M2 [k] is diagonal:

M2 [k] =

[
0Nt

diag(P2(k, :))

]

5
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where P2 ∈ R
∑s

i=1 pi×
∑s

i=1 mi is a matrix such
that the element P2(i, j) is equal to the number of
times the parameter vi(j) is included in a Hankel
operator in (17).
Proof: BHc(x) is block-diagonal by definition.

Lemma 4 indicates that M2 is the sum of all Gramian
matrices associated to each block. Therefore, for one
given causal Hankel operator indexed with j:

〈Hc
j(xj:

∑s
i=1 pi

),Hc
j(xj:

∑s
i=1 pi

)〉 = 〈x, (P c
j )TP c

j x〉

where P c
j is a diagonal matrix that selects the entries

from Hc
j . The above equation is derived for the anti-

causal part as well, which yields:

M2 =

s−t+1∑
j=t

(P c
j )TP c

j + (P a
j )TP a

j

Hence it comes that M2 is diagonal and contains in the
diagonal the number of times a given variable appears
in a Hankel operator.

Let us consider a 5 × 5 SSS matrix for illustration.
SISO systems of order 1, with s = 5, r = 3 are
considered. The matrix P2 is then:

P2 =


0 0 1 2 2
0 0 1 2 2
1 1 0 1 1
2 2 1 0 0
2 2 1 0 0


The conclusion is that the Gramian matrix can be com-
puted very efficiently by taking into account the structure
of the problem. The inverse of a block diagonal matrix is
the matrix with inverted diagonal blocks, therefore it is
not necessary to form M but rather work with

∑s
i=1 pi

block matrices.

VI. NUMERICAL EXPERIMENTS

A sequence of Ns = 30 SSS generators is randomly
generated. Although the methodology applies to mixed
causal-anti causal MIMO systems, we consider here
SISO with a causal only part of order equal to 2 in
order to have a comparison with the MOESP method
[8]. The upper bounds r and s are respectively chosen
equal to 4 and 15, and this choice is not unique. Within
the bounds mentioned in (16), it should be such that the
number of low rank constraints on the SSS structure is
maximized, and hence r is optimally equal to n + 2.
Experiments have been carried out on Matlab R2015b
on a processor Intel Xeon E5-1620 with 8GB memory.

A. Dealing with measurement noise

The first set of experiments analyses how the algo-
rithm behaves in presence of measurement noise. The
set of identification data contains Nt = 100 independent
time experiments. For each of them, the spatial input

is zero-mean white Gaussian noise with unit variance.
The Signal to Noise Ratio (SNR) ranges from −5dB
to 40dB with a step of 5. 100 runs are performed for
each SNR. The trade-off parameter λ weighting the fit
between the measured and predicted output is generated
with logspace(1, 3, 6). Equation (17) is considered first
with µ = 0, then logarithmically spaced in the range[
10−2, 5

]
with 5 values. The quality criteria is the

Normalized Root Mean Square Error (NRMSE). For
all regularization parameters tested, the system with the
smallest NRMSE between the true SSS matrix and the
estimated one is selected. Figure 3 highlights a smaller
residual error when adding information on the SSS
structure. For high SNR, the estimates obtained from
(17) don’t converge to the true estimates contrary to
MOESP. The reason is the bias introduced by the nuclear
norm, which has been theoretically analyzed in Lemma
2.
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Fig. 3. Normalized Root Mean Square Error between the real values
of the SSS entries and the estimated ones as a function of the noise.
Mean over 100 different noise conditions.

B. Large datasets

Noise conditions of 5dB are considered in order to
analyse how the residual error evolves when increasing
the data length available for identification. The same
7Ns generators and input data are considered. The data
batch is truncated according to the data length wanted.
Here again considering the low rank properties of the
SSS matrix achieves better results than without as can
be seen in Figure 4.

VII. CONCLUSION

In summary we have formulated the problem of iden-
tifying 1D distributed systems as the identification of
mixed causal anti-causal and spatially varying systems.
For this, a new solution is developed with the N2SID
framework. The convex relaxation proposed using the
nuclear norm leads to a unique solution. The latter how-
ever includes a bias that has been reduced by imposing
a SSS structure. Finally the memory requirements are
relieved by analysing the structure of the Gramian matrix
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Fig. 4. Normalized Root Mean Square Error between the real values
of the SSS entries and the estimated ones as a function of the length
of the identification data.

M , and more specifically using the pattern of additional
low rank constraints on the SSS matrix.
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