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Abstract

In this work, a quantum self-test which certifies that measurements of a quantum device have a large
Gowers norm of order k is presented and analysed. The test protocol is described as a two-player quantum
game, in which players provide answers based on measurements on subsystems of a maximally entangled
bipartite state. The protocol makes use of 2¥ 4+ 1 subtests. It is shown that strategies that succeed in the test
with success rate 1 — e must have a Gowers norm larger than 1 — O(e). This test generalises measurement
tests that certify measurements based on the second order Gowers norm.

1 Introduction

Quantum algorithms, like Shor’s quantum algorithm for integer factorization [1], require a computational system
that affords the advantage of employing quantum mechanical properties such as superposition, interference
and entanglement. This dependence of the quantum advantage on the physical apparatus brings about a trust
issue regarding the specifications of quantum devices. The means to verify quantum mechanical properties of a
computational system has, accordingly, become an important issue in the field of quantum computation.

The Bell test [2] provided the first procedure that could certify quantum mechanical properties of a system. It
makes use of a statistical bound, called a Bell inequality, that bounds the correlation of answers of two isolated
parties to questions of a verifier. The Bell inequality holds under the assumption that the parties do not share any
entanglement. As such, a violation certifies that the parties have successfully made use of entanglement. From
here, the capacity of tests has developed to means of specifying more detailed features, such as the measurements
employed during the test [3].

As pointed out by Vidick, there is a connection between the analysis of these measurement tests and the field of
approximate representation theory. In particular, the Gowers-Hatami theorem [4] can be used to show that when
measurements are tested to approximately satisfy representative group relations, the measurements essentially
behave as the corresponding group. A key aspect herein is the notion of Gowers norms. Gowers norms are useful
tools for quantifying structure in functions on a finite group. More specifically, matrix-valued functions with a
large second order Gowers norm, or U? norm, correlate with a group representation. In testing applications, it is
verified that the employed strategies have a large U? norm, so that it can be concluded that the measurements
essentially behave as the corresponding group.

For scalar-valued functions, similar structural conclusions can be formulated for functions with a large Gowers
norm of higher order (U* norm, with k > 3) [5]. However, as the order increases, less structure remains and the
description of the class of functions becomes more complicated. At this point, a precise structural classification
of matrix-valued functions with a large U* norm is not available. Nonetheless, while it is still unclear what
structural properties are present in this class of functions, the question arises whether the property of a large U*
norm can be verified in a test.

In this work, a two-player protocol to test order k& Gowers norms consisting of 2 + 1 subtests is introduced and
analysed. It is shown that strategies that are successful in the test with success rate 1 — e must have a Gowers
norm larger than 1—O(e). The proof of this claim follows the structure of an analysis of the Blum-Luby-Rubinfeld
linearity test by Vidick [6]. Each of the subtests is shown to produce a correlation between observables employed
in the test, which can be combined to obtain an estimate of the Gowers norm.

The remaining part of this work proceeds as follows: Section 2 introduces notation and describes the set-up of
two-player tests. In Section 3, Gowers norms for scalar functions are introduced and we discuss their generalisation
to matrix-valued functions. Thereafter, in Section 4, we present the Gowers-Hatami theorem on approximate
representations and examine the relation with measurement testing. Section 5 treats the protocol to test Gowers
norms and its analysis. Lastly, the results are discussed in Section 6.

*This work resulted from an internship at QuSoft, CWI, under supervision of Dr. J. Briét as part of the Applied Mathematics
Masters program at the Delft University of Technology.



2 Preliminaries

In what follows, the set-up of a two-player self-test is described before we discuss the topic of Gowers norms
and their connection with approximate representation theory in Sections 3 and 4. We also introduce notation
regarding the quantum states and measurements involved.

2.1 Two-player games

The protocols that make up quantum self-tests can be conveniently formulated in the language of two-player
quantum games. In this setting, we think of two players having access to a subsystem of a quantum state, instead
of speaking about two measurement devices. The end-user takes on the role of a referee, who communicates with
the two players by randomly sending them instances from an agreed upon set of queries. The players, whom we
will name Alice and Bob, must then respond according to an agreed upon set of answers. The testing protocol
describes what queries the referee should send to the players, what answers the players can provide and which
responses are accepted.

Alice and Bob are assumed to have no means of communication, except for having access to parts of the same
quantum system. This ensures that the test cannot be trivially cheated, because a player does not know what
query the other player receives. In order to still succeed in the test, they must make use of the non-local nature
of quantum measurement by preparing an entangled state. In this work, we con51der a setting in which the
two players have access to a maximally entangled bipartite state |EPR>dxd f Zz 16 ®e; € C?® C? of
dimension d x d. Alice and Bob can perform projective measurements on their subsystem, and we denote the
space of n-outcome projective measurement on C?¢ as Proj,, (d). In case the measurement is binary, we call the
projective measurement an observable, and we denote the space of observables on C% as Obs(d).

2.2 Measurement

Upon receiving a query, both players measure their subsystem with a projective measurement and submit the
measurement result to the referee. Say Alice measures her subsystem with an n-outcome projective measurement

{A1,..., A, } with outcomes {)\1,...,\,}, and Bob with an m-outcome projective measurement {Bj,..., B}
with outcomes {1, ..., p,}. Here, A' ... A" and B!,..., B™ are projectors that sum to identity. This results
in the following probability distribution on {A1,..., A\p} X {p1, ..., tm} of measurement outcomes (a, b):
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Before the start of the game, Alice and Bob should come up with a strategy on how to respond to the queries
of the referee. That is, for each question that the referee can ask, Alice and Bob must select a projective
measurement that will be used to produce their answer to a query. Their strategy is thus characterised by a
function that maps queries of the referee to projective measurements.

3 Gowers norms

As seen in the previous section, strategies of players in a quantum game are specified by a function that sends
queries to projective measurements. For quantum self-tests that are used to certify measurement behaviour,
the queries of the referee are often labelled by elements of some Abelian group G. One can then associate a
function f : G — My(C) with the strategy of a player that maps group elements to a d x d complex matrix. A
useful tool for analysing functions on an Abelian group is the Gowers norm. Below, we define the Gowers norms
first on scalar-valued functions and show that they are indeed norms. Thereafter, we introduce a matrix-valued
generalisation.



3.1 Scalar-valued

Gowers uniformity norms originated in the field of additive combinatorics. The following definitions and proofs
are adapted from [7].

Definition 1 (Gowers uniformity norm, scalar-valued). Let G be an Abelian group and f : G — C. For k > 2,
the Gowers uniformity norm is defined by

2k |l .
Il =, B, 11 ¢“f@+w ),
we{0,1}F
where Cf = f is the conjugation operator, w := (w1, ...,wg),h = (hi,..., k), and |w| := w1 + ... + wi.

So for instance, we have for k = 2:

1£lte =, B _ f@F@+h)f@+ho)f(w+h+ha),

and for £ = 3:

1£lEs =, E,  J@F@+h)f(e+ha)f@+hi+ ha)x

f(@+ h1 + hs) f(x + ha + h3) f(x + hi + ha + h3).

To see that these expressions indeed define norms, it is convenient to define a multilinear form on 2* functions
(fw)we {0,1y%, which takes on the role of an inner product. This form can be used to show that the Gowers norm
satisfies the triangle inequality. Homogeneity and non-negativity are clear from the definition.

Definition 2 (Gowers inner product, scalar-valued). Let G be an Abelian group, k > 2, and f,, : G — C for all
w € {0,1}*. The Gowers inner product is defined by

(fw)wego,i3r)uk = E H Il fo(x +w-h).

z,h1,... i €G

Note that the Gowers inner product induces the Gowers norm:

1712 = (Fweoays)on-

The selective conjugation of terms in the Gowers inner product ensures that the product satisfies a generalised
version of conjugate symmetry. More precisely, for 1 <14 < k we can divide the functions in the product into
two subsets of equal size by the value of their label w at the i-th position. Interchanging the groups results in
conjugation of the Gowers inner product. As such, the Gowers inner product behaves as a regular inner product
on these groups. This allows the use of the Cauchy-Schwarz inequality, for instance for the subdivision based on
the last position of the label:

‘<(fw)w€{0,1}k>U" ‘ < <(fw/,0)w€{0,1}k>[1]/k2<(fw',1)w€{0,1}k>(1]/k27

where w’ denotes the first ¥ — 1 components of w. By repeated application of the Cauchy-Schwarz inequality one
obtains the Gowers-Cauchy-Schwarz inequality

((f)oecrorydorl < [T HFa)werorydonl = T Ifullon

w0e{0,1}F we{0,1}*

The Gowers-Cauchy-Schwarz inequality can be used to deduce the triangle inequality as follows:
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and it follows that

1fo + fillor <l follus + I fillux,

as desired.



3.2 Matrix-valued

Since our interest lies with matrix-valued functions, we introduce a generalisation of the Gowers norms for
functions that take values in the matrices of size n x n.

Definition 3 (Gowers uniformity norm, matrix-valued). Let G be an Abelian group and F : G — M, (C). For
k > 2, the Gowers uniformity norm is defined by

2k _ w] .
1Ellg =, B T [ #“F@+w n)|,
we{0,1}k

where HF := F* acts as the conjugate transpose.
With this expression we can also associate a generalised inner product.

Definition 4 (Gowers inner product, matrix-valued). Let G be an Abelian group, k > 2, and F,, : G — C for
all w € {0,1}*. The Gowers inner product is defined by

= |w] .
(Foloeoryyor = E T [ #“F.(z+w-hn
we{0,1}+

By linearity of the trace, the matrix-valued Gowers inner product is multilinear. Furthermore, the cyclic property
of the trace ensures that the product satisfies the generalised version of conjugate symmetry [4]. Therefore we
can conclude that also in the matrix-valued case, the Gowers norms are indeed norms as their inner products
satisfy the Gowers-Cauchy-Schwarz inequality.

4 Approximate representations

Having defined the notion of Gowers norms for both scalar-valued and matrix-valued functions on an Abelian
group, we will now move on to discuss the relation of the second order Gowers norm to representations in Section
4.1. We then move on to applications in the field of measurement testing in Section 4.2, and consider what can
be expected higher order Gowers norms in Section 4.3.

4.1 Gowers-Hatami theorem

In the context of matrix-valued functions on a group, the most structured examples of functions are homomor-
phisms from the group to the matrix group, as they preserve the group relation and thereby the group structure.
It is easily verified that the homomorphisms from a group to the matrix group, or group representations, have a
large U2 norm. The Gowers-Hatami theorem provides an inverse statement. It states that functions with a large
U? norm correlate with a group representation [4]:

Theorem 1 (Gowers-Hatami). Let G be a finite group, let ¢ > 0 and let F : G — M,,(C) be a function such that
|F(2)|lop < 1 for every x € G and ||F||f;2 > cn. Then there exists m € [en/(2 — ¢), (2 — ¢)n/c], n x m partial
unitary matrices U and 'V, and a unitary representation P : G — U(m) such that

[Eo(F(2), VP(2)U)| > 7(c)*m,

where 7(c) = max{(c/(2 — ¢))?, (¢/2)'/?}.

In the conclusion of the theorem, the expectation denotes an average over the group elements, and the inner
product is the Frobenius matrix inner product. The condition || F(z)||,p < 1 for every « € G ensures that the
functions do not have a large U2 norm by trivial means. We see that the representation with which the function
correlates is not necessarily of the same dimension, and the unitary matrices serve to reconcile this difference.
The Gowers-Hatami theorem characterises the role of the U? norm as measure of structure. The larger the U?
norm of a function, the closer it lies to a function that has perfect structure, a group representation.

4.2 Testing group relations

When brought into the context of strategies for quantum test as described in Section 2, the Gowers-Hatami
theorem provides a meaningful statement about strategies that have a large U2 norm. That is, the measurements
performed during the test upon receiving a query, behave as a group representation. This conclusion can thus
certify a claim that a measurement device can perform some group of measurements. Vidick and Natarajan,



for example, have formulated a self-test which verifies that a measurement device performs measurements that
are homomorphic to the group of Weyl-Heisenberg operators [8]. Their protocol makes use of the concept
of approximate representations, which is a sufficient condition for having a large U? norm. Approximate
representations are functions on the group for which the homomorphism property holds approximately. For
instance, one can define the approximate representations as a function F : G — M, (C) that satisfies

[F(z)F(y) = F(z +y)| <e

for all z,y € G. The relation above is a suitable starting point for quantum testing. Consider for the moment
that = and y are fixed. Then, one can verify the relation above by sending one player questions = and y, and the
other x 4+ y. The verifier accepts the answers when product of the two answers matches the answer of the other
player. For such a protocol, a large success rate demonstrates that the approximate representation property is
satisfied. Vidick and Natarajan extend the statement to all x,y € G by choosing a suitable group presentation,
and testing that these relations hold approximately. One can then retrieve the approximate representation
property by writing elements of the group in terms of the generators. With the approximate representation
property established, it can be concluded from the Gowers-Hatami theorem that the measurements are close to
a representation of the group.

4.3 Outlook

The work of Vidick and Natarajan provides a clear method for establishing group relations in measurement
devices via the U? norm. There may however be instances where a device can not achieve a large enough U?
norm to pass such a test. Nevertheless, it can be the case that a function has a small U? norm, but a large U
or higher order Gowers norm. Presently, it is unclear what one can conclude about functions with a large U*
norm, for k£ > 3. In the simplified case of the scalar-valued Gowers norm, inverse theorems for higher order
Gowers norms do exist. They have been established in [5], and are a lot more complicated than the U? case.
Since scalar-valued functions are a trivial example of matrix-valued functions, inverse theorems for higher order
matrix-valued Gowers norms can not be expected to be any simpler. Although the nature of functions with a
large U* norm is presently unclear, having a large U¥ norm is a property that can be verified in a quantum
self-test. This claim is asserted in the following section.

5 Testing the Gowers norms

In the section below, a two-player protocol is introduced that can certify the use of a strategy with a large U*
norm for functions on an Abelian group Z. Section 5.1 provides a description of the testing protocol. In Section
5.2, it is shown that the protocol is a sound test for the order & Gowers norm.

5.1 Protocol

Two players, Alice and Bob, each have access to one subsystem of a maximal entangled bipartite state of
dimension d x d upon which they can perform measurements. The referee assigns roles ‘Player 1’ and ‘Player 2’
to Alice and Bob at random. He selects x, hq, ..., hx € Z uniformly at random. Denote ¢, := z+w - (hy, ..., hq)
for all w € Q := {0,1}% and furthermore c4 := {c,|w € A} for subsets A C Q. With equal probability, the
verifier performs one of the following subtests described in Table 1 below.

Table 1. In this table, the subtest used in the Gowers test are summarized. The test consist of one Parallel consistency
subtest, 2¥ — 1 Linearity consistency subtests (one for each w € Q\ I) and a Gowers norm subtest. For each subtest, the
queries sent by the verifier, the expected answers from the players and the condition for success is specified.

Subtest Query for | Expected answer | Query for | Expected answer Condition
Player 1 of Player 1 Player 2 of Player 2 for success
Parallel consistency x 1 bit a x 1 bit b a=1"b
Linearity consistency ConT 2F — 1 bits ao\1 Cw 1 bit b a, =0b
w, forw e O\ 1
Gowers norm Co\T 2F — 1 bits ao\T T 1bit b HweQ\T Ay,
=b

Alice answers 1 bit questions via a strategy F : Z — Obs(d) and 2 — 1 bits questions via a strategy G : Z2\I —
Projy. (d), with n = 2¥ — 1. Here it is understood that upon receiving a query x € Z, Alice measures her
subsystem with observable F'(x), and upon receiving a 2¥ — 1-tuple query Co\T she measures her subsystem with

the 22"~ _outcome projective measurement G(CQ\T). We denote Bob’s respective strategies as F and G.



The Parallel consistency subtest enforces the players to use strategies that are almost identical. The linearity
consistency subtests ensures that the answers to a query ¢, correlate with the bit with label w in the 2¥ — 1
bits answer. Lastly, the Gowers subtest sets up a correlation between the product of bits in the 2* — 1 bits
answer and the 1 bit answer. These correlations can be combined to show that the expectation of the product of
answers to queries cq, is large. As will be explained in the following section, this implies that the strategies used
have a large Gowers norm of order k.

5.2 Analysis

In this section we show that the Gowers test described in the previous section can only by passed with strategies
that have a large U* norm. The analysis follows the structure of a work by Vidick on the Blum-Luby-Rubinfeld
linearity test [6]. More precisely, we prove the following theorem.

Theorem 2 (Soundness of the Gowers test). Let k > 2 be an integer, € > 0, and F : Z — Obs(d) and

G: (Z)Q\T — Projy. (d) with n = 2F — 1 a quantum strategy for the Gowers test. If players determining their
answers according to this strategy succeed in the test with probability at least 1 — €, then

k
IFI[Ex > 1= O(e).

Proof: Suppose a strategy determined by F, G, F,G as above is successful in the Gowers test with success rate
larger than 1 — e. It follows that the success rate for each of the subtests is larger than 1 — (2% + 1)e. Note that
in the Linearity consistency subtest only 1 bit of the 2 — 1 bits answer of player 1 is relevant for the subtest. As
such, we introduce 2¥ — 1 observables associated to a projective measurement, each corresponding to a bit in the
2% — 1 bits answer. For an 2"-outcome projective measurement G = > jefoyn NG, where (G7)jeq0,13n are

projectors that sum to identity, we define for i =1,...,n:
G = Z (—1)7wGa,
je{o,1}
where u; is the n-tuple with value 1 only at position 4. Let us fix a bijection Q « {1,...,2*} so that we can use

both i € {1,...,2F} and w € Q as labels. Note that these observables commute pairwise and that their product
is

GiGn= > (-1)'¢.
jefo,1}

which corresponds to a measurement of product of the 2% — 1 bits answer. The success rates of the subtests each
imply a ‘closeness’ relation between related observables. For functions A, B : Zk+1 — Mgxq(C) we define the
closeness relation A ~, B, which holds if and only if

2
— <
E hk”A B|% <e,

&,
where | - || denotes the Frobenius matrix norm. The relations we obtain from the subtests are the following:
e Parallel consistency: F(x) @ I o) I @ F(x),
o Linearity consistency w: F(cy) ® I =o) I @ CZ‘Q,(CQ\T) and Gu(co\1) ® I Ro(e) I ® Fl(c,),
o Gowers norm: F(cy) ® I =) I ® GI(CQ\T) e én(CQ\I) and G1(cq\1) ++ Gnleg\1) ® I mo( I @ F(cx).

In the relations above, the arguments in the functions should be interpreted as a composition. For example,
F(cy,) denotes the map (x, by, ..., ki) — F(c,). We derive the first relation below, the others are analogous.
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We recognise this last sum as the probability that Alice and Bob give the same answer in the Parallel consistency
subtest, given that it was played with question . Upon taking the expectation over possible questions we obtain:

E [F(z)® 1 —I® F(2)||7 <2—-2(1— (2" +1)e) = 2" +2)e,

as desired.

To proceed, we will use that the closeness relation ~¢(.) is transitive via the triangle inequality. This allows us
to reduce relations about observables on different subsystems (as obtained from all subtests but the Parallel
consistency subtest) to relations about observables on the same subsystem by switching the players around via
F(z) ® I =o(e) I @ F(x). In case of the Linearity consistency w subtests, this gives:
F(Cw) Q1 ~0O(e) I® F(Cw) RO(e) Gw(CQ\T) ® 1
= F(c,)®1 ~o(e) Guw (CQ\T) ® 1.

Writing out the squared norm in the definition of the closeness relation then gives us

E A <F(cw)®I7Gw(CQ\T) ®[>f >1-0(e),

z,h1,.h

which in turn gives us

E <F(Cw)7Gw(CQ\T)>f >1-0(e).

z,h1,...,hg

Here we have used the relation obtained from the Parallel consistency subtest as F(c,) ® I o) I ® F(c,)

instead of F(z) @ I =o) I @ F(a:) It is still valid because when x, hy, ..., hg are chosen uniformly in Z, the
sums ¢, are also uniformly distributed in Z. In total, we have the following correlations:

E . (Gulea\1)s Flew))r 21 =0(e), for weQ\T,

z,h1,...,hy

E (Gilegyg) -+ Gulegy): Flep))y 21— 0(e).

z,h1,ho

Let us now fix a query and write G; := Gi(cQ\T) fori=1,...,2" —1and F; := F(c;) for j =1,...,2F. We can
then use the triangle-inequality as follows:

||F1 o For g — sz”?f
=||(Fy — G1)Fy- For_1 + G1(Fs — Go)F5 -+ - For_;

oo+ G Gk _o(For_y — Gok_1) + G-+ Gar g — szH?
<[|(Fy = G1)Fy -+ Fae_q |7 + |G1(F2 — G2) F3 -+ - Fox 4[|

+o Gy Gk o (Fok g — G2k—1)||?v +Gr- - Gorq — Fox ||3‘]



Expanding the squared norms and using that the dimension-normalized Frobenius norm of an observable is 1
and that this norm is invariant under unitary transformations, we find:

2- 2<F1 . "F2k—1,F2k>f < 22k+1 - 2k+1[<FlaG1>f .ot <F2k—1,G2k—1>f + <G1 : "G2k—17F2’””>f]7
which gives:
<F1 : "F2k717F2k'>f >1- 4k + 2k[<F1701>f +...+ <F2k—17G2k—1>f + <Gl T G2L17F2k'>f]~

Taking expectations, and applying the correlations gives the result:

2k 1
k
IFl = B hk<H F<c2->7F<c2k>> >1-0(e).
i\ L .

O

6 Discussion and conclusions

This work set out to present and analyse a quantum self-test which can certify that measurements of a quantum
device employed in the test have a large U* norm, when interpreted as a function from a group of labels to
unitary measurement matrices. This Gowers test protocol was described in the setting of a two-player game, in
which two isolated parties receive queries from a verifier, and are required to provide classical answers. The
players are assumed to produce their answer by performing measurements on their respective subsystems of a
maximally entangled bipartite state.

The protocol consists of 2% + 1 subtests, that the verifier executes with equal probability. The first is a Parallel
consistency subtest in which both players receive the same question and are required to submit a 1 bit answer,
used to ensure that the strategies of the players is nearly identical. Additionally, the test includes 2¥ — 1 Linearity
consistency subtests, in which one player is expected to submit a 2¥ — 1 bits answer, and the other a 1 bit answer.
This test is used to verify consistency between the 1 bit answer and components of the 2% — 1 bit answer. The
last subtest forms the essence of the Gowers test. It ensures that the product of the 2¥ — 1 answer matches the
answer of the other player, resulting in a large Frobenius inner product of the observables used in measurement.

It was established that the Gowers test protocol forms a sound test for verification of large Gowers norm strategies.
Strategies with a success rate larger than 1 — e were shown to have a Gowers norm of at least ||F' H?]kk >1-0(e).
The proof makes use of a closeness relation, which states that measurements performed upon certain queries are
expected to behave similarly. This implies a set of correlations between the strategies, from which it can be
concluded that Gowers norm of the strategy function must satisfy a lower bound of 1 — O(e).

The analysis assumes a setting in which players make use of a maximally entangled bipartite state, resulting in
strong correlations between strategies. This work does not consider a setting in which players make use of a
more general quantum state. For such a setting, the analysis should be adapted by describing the correlation in
a different inner product. The suitable inner product would then be a trace matrix inner-product specified by a
positive-definite matrix that is related to the quantum state.

The Gowers test protocol presented in this work has been formulated in the setting of an Abelian group. A
generalisation towards non-Abelian groups requires an adaptation of the Gowers norm, cf. [4]. This Gowers
norm for functions on a non-Abelian group averages over slightly different subsets of the group, as one has to
specify the order of group operations in this setting. In order to modify the test for functions on non-Abelian
groups, the distribution on group elements in the test has to be changed accordingly.

It is presently unclear what further conclusions can be drawn about functions with a large U* norm, as inverse
theorems for higher order Gowers norms on matrix-valued functions are presently not available. As such, the
implications of successfully passing the Gowers test remain somewhat limited. In contrast, inverse theorems for
higher order Gowers norms on scalar-valued functions have recently been established. Generalising these results
to the matrix-valued case would be a fruitful area for further work.
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