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Opportunistic maintenance for offshore wind farms with 
multiple-component age-based preventive dispatch 

Mingxin Li *, Xiaoli Jiang , Rudy R. Negenborn 
Department of Maritime and Transport Technology, Delft University of Technology, Delft, the Netherlands   
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A B S T R A C T   

Operation & maintenance (O&M) costs account for a large portion of total life cycle cost for onshore wind en
ergy, and the amount is estimated to be more for offshore wind energy. Developing a sound opportunistic 
maintenance strategy is a solution to reduce O&M costs and enhance wind energy’s competitiveness. When the 
wind farm is located offshore, turbines are not only subject to degradation but also the impact from the harsh 
marine environment. However, the degradation is mainly regarded as the only cause of the failure in the existing 
opportunistic maintenance models for the offshore wind energy sector. At the same time, too frequent preventive 
dispatch of maintenance teams exists on some occasions. This paper proposes a maintenance strategy for offshore 
wind farms integrating three types of maintenance opportunities. In addition to the maintenance opportunities 
created by degradation failures and incidents, an age-based opportunity is introduced to improve the trigger of 
preventive dispatch. A numerical example is presented to illustrate the effectiveness of the proposed strategy. 
The comparative analysis shows 2.6% and 1.5% annual cost can be reduced respectively when compared with 
two traditional opportunistic maintenance strategies in the base scenario.   

1. Introduction 

The increasing population in recent decades brings a growing global 
demand for energy, resulting in a serious effect on the environment. 
Considering the global warming and environmental pollution, renew
able energy is being investigated as an sustainable and reliable option to 
replace conventional, fossil energy sources. In particular, wind energy 
trends to be one of the most widely explored renewable and sustainable 
energy resources in the future. According to the Global Wind Energy 
Council (2019), over 355 GW of new capacity will be added all over the 
world in the next five years, that is approximately 71 GW of new in
stallations each year until 2024. Compared with onshore wind energy, 
the power installed offshore is still relatively small. However, offshore 
wind is more promising on the long term, due to the steadier and faster 
wind speeds at sea. In Europe only, about 20 GW of offshore wind has 
been installed nowadays. The European Commission estimates that an 
installed capacity of between 230 and 450 GW could be needed by 2050 
(Wind Europe, 2019), meeting 30% of Europe electricity demand in 
2050. 

As wind energy systems are growing both in capacity and 
complexity, there are ongoing efforts to improve reliability, availability, 

maintainability and safety, aiming to enhance its marketability and 
competitiveness (Marugán et al., 2018). O&M costs account for 12%– 
30% of the total life cycle cost for onshore wind farms (Izquierdo et al., 
2020), and the portion is estimated to rise to more than 32% for offshore 
wind farms (Martin et al., 2016; Lin et al., 2020). As shown in Fig. 1, the 
cost categories of O&M with estimated percentages are: land rent (18%), 
insurance (13%), regular maintenance, repair and spare parts (43%), 
administration costs (21%) and power from the grid (5%) (El-Thalji 
et al., 2009). This means that the maintenance activities account for 
almost half. Optimizing the O&M strategy, especially maintenance ac
tivities, is thus an effective pattern to reduce O&M costs and gain more 
profits. 

As a strategic decision made by decision makers, the determination 
of the long-term maintenance strategy has a straightforward influence 
on wind farm O&M. Fig. 2 demonstrates the decision-making process of 
the farm maintenance. The decision maker, such as offshore wind farm 
owner and operator or the independent service provider, decides if the 
maintenance cycle should start according to the state of components/ 
turbines. In the past decades, a large amount of research has focused on 
the development of the maintenance for wind energy. So far, corrective 
maintenance and time-based maintenance have been the main mainte
nance strategies applied in wind power industry (Nguyen and Chou, 
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Nomenclature and acronyms denition 

k Index for turbine 
i Index for component 
n Index for maintenance cycle 
K Total number of turbines in the offshore wind farm 
I Total number of components at the offshore wind turbine 
M Total number of maintenance levels 
N Total number of maintenance cycles 
Cannual Annual cost during lifetime 
S Lifetime of offshore wind farm 
lm mth maintenance level 
σik Scale parameter 
εik Shape parameter 
λk(t) Intensity function 
p1

k Occurrence probability of critical impact 
p2

k Occurrence probability of influential impact 
p3

k Occurrence probability of minor impact 
bc Age increase of component at cth stage due to influential 

impact 
uik Age of component i in turbine k 
vik Failure age of component i in turbine k 
fik Failure time of component i in turbine k 
Lik Lifetime of component i in turbine k 
Tperiod

Z zth time period 
Amin Minimum age percentage threshold 
Amax Maximum age percentage threshold 
wk Occurrence time of environmental impact on turbine k 

ζ Percentage threshold of number of aged components 
Tn Starting time of nth maintenance cycle 
Ay yth age threshold 
θlm Maintenance quality of mth maintenance level 
XTR

k Binary variable for transportation 
XPR

ik Binary variable for preventive replacement 
XCR

ik Binary variable for failure replacement 
XMR

ik Binary variable for major repair 
XEI

k Binary variable for environmental impact 
Xc

k Binary variable for critical impact 
Xi Binary variable for incident-based opportunity 
Xa Binary variable for age-based opportunity 
Xf Binary variable for failure-based opportunity 
MCR

ik Cost of failure replacement of component i at turbine k 
MPR

ik Cost of preventive replacement of component i at turbine k 
MMR

ikm Cost of mth level of major repair of component i at turbine 
k 

Mf Fixed cost to trigger a cycle of maintenance 
MTR

k Transportation cost to turbine k 
MTR

total Total cost of transportation 
MCR

total Total cost of complete replacement 
MPR

total Total cost of preventive replacement 
MMR

total Total cost of major repair 
Mtotal Total maintenance costs generated in one maintenance 

cycle  

Fig. 1. Cost categories of O&M.  
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2018; Li, Jiang, Polinder and Negenborn, 2020b). Condition-based 
maintenance is catching people’s attention owing to rapid develop
ment of continuous monitoring and inspection techniques (Márquez 
et al., 2012). Relying on the collected signals, such as vibration, 
acoustic, temperature, magnetism, and current signals, fault diagnosis 
and prognosis are performed for developing the condition-based main
tenance strategy(Merizalde et al., 2020). 

A large-scale offshore wind farm is made up of a number of turbines. 
Besides, as a type of complicated electromechanical system, an offshore 
wind turbine system is composed of hundreds of components and sub
systems (Qiao and Lu, 2015). The economic dependence among turbines 
and components applies when the combined maintenance leads to a 
different cost than repairing separately (Izquierdo et al., 2019). It plays a 
positive role when travelling to the location where maintenance activ
ities have to be executed is costly (Keizer et al., 2017). Simultaneously 
performing several maintenance activities is more cost-effective than 
repairing turbines respectively. The opportunistic maintenance is a type 
of strategy taking advantage of the economic dependence to reduce 
maintenance cost. The concept of opportunistic maintenance was firstly 
introduced and applied in a case study of the rocket engine of a hypo
thetical ballistic missile (McCall, 1963; Radner and Jorgenson, 1963). 
There are no norms, standards or consensual accepted meanings of 
‘opportunistic maintenance’ (Thomas et al., 2008). It is a systematic 
research to determine what time to perform maintenance activities for 
what reason, and what components or turbines can be repaired by 
making use of the opportunities. 

1.1. Previous research 

In 2009, Besnard et al. (2009) applied the opportunistic maintenance 

strategy to offshore wind energy. Opportunistic occasions appear when 
power production is unsatisfying because corrective maintenance has to 
be performed on a wind turbine or the wind speed is low. The case study 
shows taking these opportunities can effectively reduce maintenance 
costs. Due to the considerable potential, the number of literature 
focusing on opportunistic maintenance of wind energy sector is 
increasing in the following years. We make a comparative analysis after 
reviewing the following representative papers, as shown in the Table 1. 

1.1.1. Degradation and environmental impact 
Ding and Tian (2011) proposed an opportunistic maintenance model 

with two-level repair actions for wind turbine systems. The failures of 
the components are caused by the degradation. The failure times are 
modelled as Weibull distribution. Perfect and imperfect maintenance 
actions are performed depending on component states. Then, Ding and 
Tian (2012) introduced different maintenance thresholds in their model 
to distinguish the failed turbines and working turbines. 

Instead of the two-level maintenance threshold, Sarker and Faiz 
(2016) proposed the concept of multi-level maintenance in their work. 
Degradation results in the component failure. The interval between 
maximum and minimum maintenance thresholds is divided into multi
ple groups. After discussing the relationship between maintenance costs 
and the number of maintenance levels, the optimal number of level is 
selected to minimize the total costs. Similarly, the failures of the com
ponents are also assumed to be caused by degradation processes in the 
literature (Abdollahzadeh et al., 2016; Atashgar and Abdollahzadeh, 
2016; Erguido et al., 2017; Lu et al., 2018; Zhou and Yin, 2019). 

Zhang et al. (2017) introduced the hybrid hazard rate method into 
the opportunistic maintenance model. The method describes the 
degradation processes causing the failures, where the increase of oper
ation time will accelerate the degradation and weaken the maintenance 
improvement. 

Li et al. (2020c) used Nonhomogeneous Continuous-Time Markov 
Process to represent the multi-state model of offshore wind turbine 
subsystems. The subsystems transfer from one state to another state as 
the operation time increases. The most cost-effective combination of 
qualified components is selected to reduce the maintenance costs when 
compared with individual maintenance. 

It is remarkable that in these models, the wind turbines only expe
rience the degradation. The system deteriorates over time due to wear, 
erosion, fatigue, corrosion and so on. This normal degradation process 
applies when the operation condition is ideal. However, the offshore 
structures suffer from the impact resulting from the harsh marine 
environment (e.g. sea ice, atmospheric icing, typhoon, sea wave, light
ning strike, sudden change in wind speed or direction). The harsher the 
environment is, the random impact will arrive more frequently and the 
influence will be more serious. When the turbine works in the practical 
environments, it is not only subjected to degradation processes but also 
the random environmental impact throughout the whole service life. 

Fig. 2. Decision-making process of offshore wind farm maintenance.  

Table 1 
Previous research of the opportunistic maintenance for the wind energy.  

Reference Main contribution Scope 
modeling 

Failure modeling Environmental 
impact 

Maintenance 
levels 

Preventive 
dispatch 

Ding and Tian (2011) Two-level maintenance Wind farm Degradation 
model 

Not considered Two-level Not considered 

Ding and Tian (2012) Distinguish running/ Wind farm Degradation 
model 

Not considered Two-level Not considered 
failed turbines 

Sarker and Faiz (2016) Multi-level maintenance Wind farm Degradation 
model 

Not considered Multi-level Not considered 

Abdollahzadeh et al. (2016) Multi-objective Wind farm Degradation 
model 

Not considered Two-level Single component 

Zhang et al. (2017) Hybrid hazard rate model Single turbine Degradation 
model 

Not considered Two-level Single component 

Lu et al. (2018) Life prediction by ANN Single turbine Degradation 
model 

Not considered Two-level Single component 

Li, Wang, Kang, Sun and Jin (2020c) Markov process Single turbine Multi-state model Not considered Not considered Not considered  

M. Li et al.                                                                                                                                                                                                                                       
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The presence of these environmental impact on the critical components, 
especially rotor blades, has effect on the performance of O&M and the 
overall economics of a wind energy project (Battisti et al., 2006; Pas
tromas et al., 2018). Only a few paper considered degradation and 
environmental impact simultaneously when developing opportunistic 
maintenance for wind energy. Shafiee, Finkelstein and Bérenguer (2015) 
proposed an opportunistic condition-based maintenance policy for a 
rotor-blade system. The multi-blade system is subjected to stress 
corrosion cracking and environmental impact. In order to avoid the 
expensive failure replacement, a maintenance team is dispatched to 
repair critical blade before the failure occurs, and other blades are 
preventively repaired as well. 

The maintenance model considering random environmental shocks 
has been increasingly concerned in the field of reliability and engi
neering in the past years. Many industrial systems operate in the random 
shock environment and suffer from the damage of these shock which 
triggers the state transitions of the system. The shock models investi
gated in the literature include cumulative shock model, extreme shock 
model, run shock model, delta shock model, and mixed shock model 
(Wang et al., 2020). In addition, for some complicated systems, various 
dependence exists between the shock and degradation, namely 
shock-degradation dependence and degradation-shock dependence (Che 
et al., 2018). When considering the shock-degradation dependence, the 
assumptions are made that these impact may result in the abrupt in
crease of degradation (Ruiz-Castro, 2016), the increasing degradation 
rate (Rafiee et al., 2014), or even the sudden incidents. When consid
ering the degradation-shock dependence, many studies assume that the 
intensity or the magnitude of shock is dependent on the degradation 
process of the system (Fan et al., 2017; Fan et al., 2000). Che et al. 
(2018) developed a Facilitation model where the mutual 
degradation-shock dependence and shock-degradation dependence are 
simultaneously considered. A case study of a jet pipe servo valve is 
presented to demonstrate the established model. 

1.1.2. Maintenance opportunities 
As the description of the opportunistic maintenance models for wind 

energy in the Table 1, Ding and Tian (2011, 2012); Sarker and Faiz 
(2016); Li et al. (2020c) assumed that the occurrence of a component 
degradation failure can be considered as a type of maintenance oppor
tunity (failure-based opportunity). It is a very common assumption 
when developing opportunistic maintenance strategy. This failure-based 
maintenance opportunity can trigger a maintenance cycle, where the 
maintenance teams are correctively dispatched to simultaneously 
replace the failed components and perform preventive maintenance on 
the components needing repair. 

As we know, the failure should be avoided as much as possible given 
the fact that the cost of failure replacement is very expensive. Therefore, 
it is not necessary to start a maintenance cycle only waiting for the 
occurrence of the turbine failure. In the literature (Zhang et al., 2017; Lu 
et al., 2018; Zhou and Yin, 2019), a preventive maintenance threshold is 
set to determine if the turbine component is in a defective or almost 
unacceptable state. In addition to the maintenance cycle triggered by 
failure, a maintenance cycle can also be triggered if any turbine 
component in the farm exceeds this preventive maintenance threshold. 
Actually, this preventive maintenance decision can be regarded as the 
preventive dispatch of maintenance teams. In the literature (Abdollah
zadeh et al., 2016; Atashgar and Abdollahzadeh, 2016; Erguido et al., 
2017), the preventive dispatch of maintenance teams is clearly 
addressed, meaning not until the failure occurs, the maintenance op
portunity can also emerge to dispatch the maintenance teams preven
tively when a component satisfies the maintenance requirement (reach 
the threshold). Generally, the maintenance opportunity will appear in 
these two occasions: a failure occurs; a component reaches the preven
tive maintenance threshold. 

However, although the preventive dispatch of maintenance teams 
has been introduced in the models, this action may not be as cost- 

effective as we expect. The maintenance team has to move to the wind 
site if even the single component reaches the predetermined threshold. It 
may be feasible when the farm is located onshore. Considering the effort 
and cost to dispatch the vessels and staff to the remote location away 
from the shore, the execution of preventive dispatch triggered by single 
component is not economic enough for offshore wind farms. These 
maintenance decisions may induce over frequent but unnecessary 
maintenance activities. Furthermore, in these existing opportunistic 
maintenance models for wind energy, the consequences of environ
mental impact have not been considered, as discussed in Section 1.1.1. 
For example, the critical impact may also result in the incident that the 
suffering turbine stops operating and requires maintenance, which can 
also provide the opportunity to repair the other turbines in the farm. 

In the Table 2, an extensive literature review is made for the 
opportunistic maintenance with impact of external factors(shocks), not 
limited to the area of wind energy. Cui and Li (2006) developed an 
opportunistic maintenance for a multicomponent cumulative damage 
shock model. When the cumulative damage exceeds the predetermined 
threshold, the component will fail and create a maintenance opportunity 
for the system. Zhang (2019) developed a delay time model for an in
dustrial system considering the external shocks. The impact of shocks on 
system may result in the random hazard rate increments (shock-de
gradation dependence). The developed model is demonstrated on a 
critical steel convertor plant in a steel mill. A series system which con
sists of two components with multi-stage accelerated damage is studied 
by Zhao et al. (2019). When the state of components gets worse, the 
shocks with the same magnitude may have more severe influence on the 
component state. A numerical example of a two-rolling bearing system is 
presented to demonstrate the proposed model. Hu, Shen and Shen 
(2020) studied the situation that the system consisting of two indepen
dent components is subjected to the degradation and external shock. The 
shock rate will increase as the increase of the degradation level of the 
component (degradation-shock dependence). The maintenance will be 
carried out when the degradation exceeds the preventive maintenance 
threshold or a fatal shock occurs. A hydraulic system consisting of two 
valves in series is used as the example to illustrate the proposed main
tenance strategy. Zhang and Yang (2020) proposed a state-based 
opportunistic maintenance for industrial assets exposed of environ
mental impact. The impact of environmental stress on system deterio
ration is various based on the state of the system, resulting in the 
increments on the hazard rates (shock-degradation dependence). The 
unscheduled events due to several factors, including production 
shortage and desired tasks can also be regarded as the window to 
perform maintenance besides replacement. 

Although these studies considered the influence of environmental 
impact when developing opportunistic maintenance model, the 

Table 2 
Opportunistic maintenance model considering external shock.  

Reference Failure model Number 
of 
systems 

Maintenance 
trigger 

Cui and Li 
(2006) 

Cumulative shock model Single Failure 

Zhang (2019) Degradation and 
shock-degradation 
dependence 

Single Failure/ 
preventive 
maintenance 

Zhao et al. 
(2019) 

Mixed shock model Single Failure/ 
preventive 
maintenance 

Hu et al. (2020) Degradation and 
degradation-shock 
dependence 

Single Failure/ 
preventive 
maintenance 

Zhang and Yang 
(2020) 

Degradation and shock- 
degradation dependence 

Single Failure 
/preventive 
maintenance 
/unscheduled 
events  

M. Li et al.                                                                                                                                                                                                                                       
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limitations still exist. The models considered opportunities existing in a 
simple system (such as a series system consisting of two components), 
not extending the model to multiple systems (such as an offshore wind 
farm). Every turbine can be regarded as a multi-component system. The 
maintenance performed on a component should provide maintenance 
opportunities for all the turbines in the farm, instead of only the located 
turbine. Moreover, some of the models assume that once one component 
reaches a preventive maintenance threshold, a maintenance cycle will 
be initiated. This maintenance decision may not be reasonable enough 
when applied to a wind farm. As the farm size enlarges and the number 
of the component increases, the maintenance team has to move to the 
offshore location frequently because the occasion easily happens that 
one component reaches the threshold. As discussed above, the problem 
also exists in the opportunistic maintenance models for wind energy, but 
has not been studied before. 

1.2. Proposed strategy 

To address the above issues, we consider the influence of environ
mental impact when developing the maintenance model, and analyse 
the trade-off between the frequency of preventive dispatch of mainte
nance teams and maintenance costs. The purpose of this paper is to 
propose an opportunistic maintenance strategy that reduces mainte
nance costs over an offshore wind farm’s service life. The attempt is 
integrating multiple types of maintenance opportunities into the main
tenance strategy. Based on the shock-degradation dependence, the 
impact can be generally categorized into three types depending on the 
severity, that is critical impact, influential impact and minor impact. 
Critical impact is so fatal to induce the occurrence of incidents, then the 
undergoing component fails and the failure replacement is required. The 
influential impact leads to a sudden increase of the degradation. The 
minor impact may cause a negative influence on operation, such as the 
reduction of power generation, but the system will recover soon without 
any failure. When the dispatch of maintenance teams is caused by 
degradation failures or incidents, these maintenance opportunities are 
called the failure-based opportunity and incident-based opportunity 
respectively. Furthermore, the maintenance team is dispatched pre
ventively when a portion of components reach the age thresholds, which 
can be called the age-base opportunity. The simulation technique is used 
to evaluate the annual maintenance costs during the whole service life. A 
numerical example is provided to illustrate the proposed maintenance 
model. A comparative study with the conventional opportunistic 
maintenance strategy is used to demonstrate the advantage of the pro
posed strategy in reducing maintenance cost. 

1.3. Outline 

The remainder of the paper is listed as follows. In Section 2, the 
proposed opportunistic maintenance strategy is formalized. The failure 
of components and turbines, as well as the maintenance process are 
described and analytically derived. In Section 3, a numerical example is 
used to illustrate the proposed strategy. The optimization results and 
comparative study are presented. Finally, conclusions and future works 
are presented in Section 4. 

2. Model description 

In this section, a mathematical model is developed to formalize the 
proposed opportunistic maintenance strategy. In the model, three types 
of maintenance opportunities can trigger maintenance cycles where the 
maintenance team is dispatched to the site to repair or replace the 
components satisfying the maintenance requirements. After finishing 
the maintenance actions on qualified components, the maintenance 
cycle will end until the maintenance opportunity appears next time. The 
total costs represent the sum of money generated from repair activities 
during the maintenance cycles. 

2.1. Assumptions 

In the offshore wind farm, we assume that all the turbines are of the 
same type. After a wind farm maintenance decision is made, sufficient 
preparation is done to ensure the execution of maintenance activities is 
as successful as we expect. Therefore, the following assumptions are 
made on the offshore wind farm:  

1. A specific component is of similar nature for all the turbines in the 
farm. The same maintenance activity performed on the specific 
component spends the same money, no matter the component is 
contained at which turbine.  

2. The time spent on performing maintenance activities is negligible 
when compared to the long service time of farms.  

3. The maintenance resource and capacity, including staff, tools, spare 
parts, transportation means, etc., are always available to complete all 
the maintenance tasks in the farm.  

4. The accessibility to the location of the farm will not be affected by 
any negative factor such as weather conditions. 

For an individual offshore wind turbine, it can be regarded as a series 
system, because the failure of subsystem may result in the entire system 
break down. For the mechanical or electromechanical components in 
the turbine, Weibull distribution is appropriate to model the failure 
times. Poisson process is a completely random process and each point is 
stochastically independent of all the other points in the process. Impact 
from marine environment arrives randomly with the average rates 
varying with time, so non-homogeneous Poisson process is suitable to 
describe this process. Hence the following assumptions are made on 
every individual turbine:  

1. Offshore wind turbine system is simplified to a series system of 
critical components.  

2. The degradation failure times of components are modelled as a two- 
parameter Weibull distribution with scale parameter and shape 
parameter. The arrival times of the environmental impact are 
modelled as a non-homogeneous Poisson process. 

2.2. Failure of component 

Suppose that there are K offshore wind turbines consisting of I crit
ical components connected in series. The particular type of components 
in different turbines would undergo the same degradation process if they 
operate under the same ideal condition. This process can be defined as 
the normal degradation process. The environmental impact arriving at 
the turbines may have an influence on the component degradation or 
failure. Considering degradation and environmental impact at the same 
time can describe the degradation mechanism of components more 
accurately (Zhou et al., 2016). It is assumed that the arrivals of envi
ronmental impact and the deterioration of the system are independent 
(Caballé and Castro, 2017). 

2.2.1. Degradation 
In the whole lifetime, the component gradually degrades as the age 

increases until failure. Assuming that the failure time of component i at 
turbine k is modelled as a Weibull distribution with scale parameter σik 
and shape parameter εik, the component has the probability density 
function fik(t) as 

fik(t)=
εik

σik

(
t

σik

)εik − 1

e
−

(

t
σik

)εik

(1) 

The reliability function can be expressed as 

Rik(t)= e
−

(

t
σik

)εik

(2) 
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The degradation degree increases as the time passes. The mean time 
to failure, MTTFik, denotes the expected time to failure for the compo
nent, and can be represented as 

MTTFik =

∫ ∞

0
tfik(t)= σikΓ

(
1
εik

+ 1
)

(3)  

with Γ(∗) denoting the Gamma function. The lifetimes of components 
are randomly generated by employing the Weibull distribution. Let 
αik = σ− εik

ik , inverse Weibull model is used to generate Weibull distrib
uted random numbers. We could begin with the random number, γ, 
which is in the range from 0 to 1. Then we can use the following 
equation to obtain new independent random numbers which have the 
Weibull distribution with the mean and variance depending on shape 
and scale parameters (De Gusmao, Ortega and Cordeiro, 2011). These 
random numbers will be assigned to corresponding components to 
represent their lifetimes (Tian et al., 2011). 

tik =

[

−
1

αik
ln(1 − γ)

] 1
εik

(4) 

The degradation process of components may also be affected by some 
factors, such as environmental impact. For example, at time point t1 and 
t2, two times of impact arrive, resulting in the component degradation 
increases abruptly with the magnitude of b1 and b2 respectively (Fig. 3). 

2.2.2. Environmental impact 
We assume that the impact arrives somewhat randomly, modelled as 

a non-homogeneous Poisson process. A non-homogeneous Poisson pro
cess {Nk(t) : t≥ 0} is a counting process where Nk(t) is the number of 
load arrivals during time (0, t], and the intensity function λk(t) varying 
with time is a non-negative, integrable function satisfying the Poisson 
postulates (Leonenko et al., 2017). The Poisson random variable having 
mean is given by: 

Λk(t)=Λk(0, t) =
∫ t

0
λk(z)dz (5) 

In order to simulate the occurrence times of impact, we can use the 
thinning algorithm to simulate the points in the non-homogeneous 
Poisson process (Kim and Singh, 2009; Xu and Dowd, 2010). The pro
cedure starts with the determination of the maximum intensity value λ 
and with the generation of a realization of a homogeneous Poisson 
process with intensity value equal to this maximum intensity value. 
After that, the generated points of the homogeneous Poisson process at 
location t are retained and discarded based on the probability λk(t)/ λ 
(Lewis and Shedler, 1979). 

2.3. Failure of offshore wind turbine 

Considering the offshore wind turbine is a series system, the system 
fails once a component failure occurs. In other words, the component 
failures caused by degradation and environmental impact will force the 
turbine where the component is located to stop working immediately. 

Not every environmental impact must induce the failure of turbines. 
The impact can be generally categorized into three types depending on 
the severity, that is critical impact, influential impact and minor impact. 
The critical impact means the impact is so disastrous that the turbine 
will break down until the failed component is completely replaced. The 
influential impact will cause an abrupt increase of the degradation. The 
minor impact will not make the turbine break down. It may affect the 
operation or production of wind turbines temporarily, so it is not 
necessary to perform maintenance. Correspondingly, the occurrence 
probability of critical impact p1

k (0≤ p1
k ≤ 1) is the least, because this 

incident rarely happens. The probability of minor impact p3
k (0≤ p3

k ≤ 1)
is the most, and the probability of influential impact p2

k (0≤ p2
k ≤ 1) is 

intermediate. The sum of p1
k , p2

k and p3
k is equal to 1. 

2.4. Opportunistic maintenance model 

After studying the failure mechanism of turbines in the offshore wind 
farm, the opportunistic maintenance model will be developed to deter
mine what time to activate maintenance activities and how the com
ponents will be repaired. The money spent on these maintenance-related 
activities will generate the corresponding maintenance costs. 

2.4.1. Maintenance opportunities 
There are three types of maintenance opportunity in the model, 

namely failure-based opportunity, age-based opportunity, and incident- 
based opportunity. The maintenance opportunities emerge when the 
corresponding situations happen. Every type of maintenance opportu
nity can initiate a maintenance cycle in the offshore wind farm. In Fig. 4, 
the detailed flow chart of the proposed opportunistic maintenance 
strategy is introduced. Only in the case that no opportunities happen, the 
system is determined to be without maintenance.  

1. Failure-based opportunity. When the component i at turbine k breaks 
down because of the degradation, the maintenance opportunity will 
be triggered.  

2. Age-based opportunity. No component fails, but a certain number of 
components reach the specific age threshold, the maintenance op
portunity will arrive.  

3. Incident-based opportunity. If the arriving environmental impact is 
critical so that the component fails, the maintenance opportunity 
will appear. 

When the offshore wind farm begins to operate, all of the compo
nents are brand new, their ages uik are certainly 0. The inverse Weibull 
model is adopted to generate the random lifetime Lik of each component. 
The failure age vik of the component equals its lifetime. Once the age 
reaches the failure age, this components will break down due to 

degradation. After every period of time 
{

Tperiod
1 ,Tperiod

2 ,…Tperiod
Z ,…

}
, the 

information of system is updated to determine if maintenance actions 
are needed. 

During time Tperiod
Z− 1 to Tperiod

Z , the environmental impact is firstly 
checked. For each component subject to the environmental impact, the 
arrival time of impact is wk. If Tperiod

Z− 1 < wk ≤ Tperiod
Z , the turbine k has to 

endure the environmental impact (XEI
k =1). Considering the impact is 

critical, influential or minor, the Binomial distribution can present 
whether the impact can induce the incident. If the impact is minor, the 
turbines will maintain in the previous state. If the impact is influential, 
an abrupt increase of component age will be caused with the value bc . 

Fig. 3. Abrupt increases of degradation caused by influential impact.  
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We separate the interval between maximum age percentage threshold 
Amax and minimum age percentage threshold Amin into groups of equal 
lengths, {Amin, …, Ay, …, Amax}. If the component is younger than Amin, 
there will an age increase with b1. The age will be updated to uik(1 + b1). 
The age of components in the group between Amin and A1 will increase 
with b2, and so on. The younger component is, the age increase will be 
less, because it is in a better state to withstand the impact. If the impact 
is so catastrophic to destroy the turbine (Xc

k = 1), the incident-based 

opportunity is generated (Xi=1). 
If no incident happens, then the failure times fik are compared with 

the real time. If Tperiod
Z < fik, that means the component won’t fail during 

this period and no failure replacement is needed, the binary variable XCR
ik 

is equal to 0. Only for all the components, the XCR
ik = 0, the value of Xf is 

0. Otherwise, the Tperiod
Z− 1 < fik ≤ Tperiod

Z , the degradation failure occurs on 
one component. In this case, XCR

ik = 1, the failure-based opportunity 

Fig. 4. Flow chart of the proposed opportunistic maintenance model.  
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appears (Xf=1) and one maintenance cycle will launch. If it is lucky that 
no failure occurs during this time period, the third maintenance op
portunity, age-based opportunity, should be estimated. For component i 
at turbine k, if its age uik is more than a specific percentage of failure age 
vik, the component is regarded as an aged component. In other words, 
the component is judged as aged because it exceeds the maximum age 
threshold Amax. We assume ζ is the percentage threshold of number of 
aged components. If the total number of aged components in the wind 
farm is greater than or equal to U, U = ζI, the age-based opportunity is 
triggered (Xa=1). If Xa, Xi, Xf = 0, no maintenance is needed during the 
period. The time moves to next period, and values of time and age are 
updated. 

2.4.2. Maintenance actions 
Three maintenance actions are included in one maintenance cycle. 

Failure replacement is conducted on the failed component due to 
degradation or critical impact. The failure replacement means the 
component is completely replaced to a component of similar nature, 
implying the component is brand new with the age reset to zero. If the 
component is to fail because of the degradation, it is qualified for a 
preventive replacement. The preventive replacement can also restore 
the age of component to zero. Because it is preventively carried out 
before the failure to avoid potentially serious damages, so the cost is less 
when compared with failure replacement. The major repair will be 
carried out on the components satisfying the requirements (between 
maximum and minimum age threshold). The major repair can effec
tively improve the component health. The maintenance actions for 
components of different stages are illustrated as Fig. 5. 

The nth maintenance cycle begins after the maintenance opportunity 
emerges. The starting time of this cycle is Tn. The component states in 
the site can be classified into four cases: failed, aged, mature, and young.  

1. Failed component. 

As introduced above, the failed components no matter due to 
degradation or critical impact should be completely replaced, their 
corresponding binary variables XCR

ik = 1. Accordingly, their ages are 
reset to 0, as follows: 

unew
ik = 0 (6) 

By sampling from Weibull distribution, the lifetimes of these new 
components are obtained, Lik, then their new failure ages (equals to the 
lifetime), vnew

ik , is known. The next failure times can be obtained as: 

fik = vnew
ik + Tn (7)    

2. Aged component. 

In the maintenance cycle, the ages of running components are 
compared with the predetermined age thresholds. We assume two per

centages of failure ages as basic thresholds, Amax and Amin. If 
uold

ik > vold
ik Amax, it is determined as the aged component to be replaced 

and XPR
ik is equal to 1. Similar to failed component, the age will be 

restored to 0 after preventive replacement, as follows: 

unew
ik = 0 (8) 

The new lifetimes Lik and failure ages of these components vnew
ik are 

obtained. The occurrence time of next failure can be obtained as: 

f new
ik = vnew

ik + Tn (9)    

3. Mature component. 

For the running components with ages between maximum and 
minimum thresholds, namely vold

ik Amin < uold
ik ≤ vold

ik Amax, these compo
nents are judged as mature components which major repair should be 
conducted on (XMR

ik =1). The components in the group between Amin and 
A1 will undergo the l1 level maintenance action. The l2 level mainte
nance action is performed on the components between A1 and A2, and so 
on. For the mth maintenance level, lm, there is a maintenance quality, 
θlm . The maintenance quality means the age of components can be 
improved to a fixed percentage (Moghaddam and Usher, 2010). There
fore, the ages of component will be updated after major repair as 
follows: 

unew
ik = θlm uold

ik (10) 

The failure age is updated as follows (Sarker and Faiz, 2016): 

vnew
ik = vold

ik θlm + (1 − θlm )Lik (11) 

The occurrence time of next failure is as follows: 

f new
ik = vnew

ik − unew
ik + Tn (12)    

4. Young component. 

For the components younger than the minimum threshold 
(uold

ik ≤ vold
ik Amin), there is no need to maintain them. They are left there 

to continue operation, and no money is spent on them. During the 
maintenance cycle, they still retains the previous state, so the degra
dation process and failure age don’t change, as follows: 

vnew
ik = vold

ik (13) 

After the maintenance cycle, their ages are updated as follows: 

unew
ik = uold

ik (14) 

The occurrence time of next failure is as follows: 

f new
ik = vnew

ik − unew
ik + Tn (15)  

Fig. 5. Maintenance actions for the components of different stages.  
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2.4.3. Maintenance costs 
The objective is to reduce the total maintenance costs of offshore 

wind farm. After developing the maintenance model, the cost generated 
in the procedure is calculated to estimate economic. The first step is to 
calculate the money spent on four types of components (failed, aged, 
mature, young) in each maintenance cycle. 

For the failed component, it should be completely replaced, so the 
total cost of failure replacement of the wind farm, MCR

total, is as follows: 

MCR
total =

∑K

k=1

∑I

i=1
MCR

ik XCR
ik (16)  

where MCR
ik represents the cost of failure replacement of component i at 

turbine k, and XCR
ik is the binary variable to determine whether this 

component needs to be replaced. 
For the aged components reaching the maximum age threshold, they 

are replaced as well. The money spent on activities of preventive 
replacement, MPR

total, is calculated as: 

MPR
total =

∑K

k=1

∑I

i=1
MPR

ik XPR
ik (17)  

where MPR
ik represents the cost of preventive replacement of component i 

at turbine k, and XCR
ik is the binary variable to check if preventive 

replacement is required. 
The mature components with ages between the maximum and 

minimum age thresholds are qualified for major repair. In the present 
work, it is commonly assumed that the cost MMR

ikm of intermediate 
maintenance level performed on component is function of the expected 
value θlm of the improvement coefficient of lm in addition to the age and 
the operating state of the component (Pandey et al., 2013). According to 
literature (Khatab and Aghezzaf, 2016; Duan et al., 2018), the cost of 
major repair can be obtained as: 

MMR
ikm = rikmMPR

ik (1 − θlm )
dikmηikm (18)  

where rikm and dikm are the characteristic constants that determine how 
the improvement coefficient affects the corresponding intermediate 
maintenance cost. Variable ηikm represents the stability level of the 
maintenance quality. The dikmηikm is smaller, then the major repair will 
be more expensive. Therefore, the total costs of major repair is: 

MMR
total =

∑M

m=1

∑K

k=1

∑I

i=1
MMR

ikm XMR
ik =

∑M

m=1

∑K

k=1

∑I

i=1
rikmMPR

ik (1 − θlm )
dikmηikm XMR

ik

(19)  

where XMR
ik is the binary variable to indicate if major repair is necessary. 

For the young components, they aren’t maintained in the mainte
nance cycle. Consequently, no cost is consumed for these components. 
Moreover, some extra cost exists along with the cost for maintenance 
tasks when conducting maintenance. Fixed cost Mf is the money used to 
make some preparation and trigger maintenance activities (Dalgic et al., 
2015; Martin et al., 2016). MTR

k is the transportation cost to turbine k in 
one maintenance cycle, thus more turbines are visited and repaired, the 
transportation cost is higher. Therefore, the total transportation cost is: 

MTR
total =

∑K

k=1
MTR

k XTR
k (20)  

where XPR
k is the binary variable to indicate if the turbine is visited. 

Finally, the total cost of one maintenance cycle is calculated as fol
lows: 

Mtotal = Mf + MTR
total + MPR

total + MCR
total + MMR

total = (21)  

Mf +
∑K

k=1
MTR

k XTR
k +

∑K

k=1

∑I

i=1
MPR

ik XPR
ik +

∑K

k=1

∑I

i=1
MCR

ik XCR
ik +

∑M

m=1

∑K

k=1

∑I

i=1
rikmMPR

ik (1 − θlm )
dikmηikm XMR

ik 

It is assumed that the offshore wind farm operates for S years (life
time) which N cycles of maintenance are carried out during. We can 
calculate the total costs during S years, and further obtain the annual 
cost Cannual, as follows: 

min ​ Cannual

(

Amin,Amax, ζ

)

=

∑N
n=1Mtotal

S

=
1
S

∑N

n=1

(

Mf +
∑K

k=1
MTR

k XTR
k +

∑K

k=1

∑I

i=1
MPR

ik XPR
ik +

(22)  

∑K

k=1

∑I

i=1
MCR

ik XCR
ik +

∑M

m=1

∑K

k=1

∑I

i=1
rikmMPR

ik (1 − θlm )
dikmηikm XMR

ik

)

s.t. 0 < Amin < Amax < 1  

where Amin (minimum age percentage threshold), Amax (maximum age 
percentage threshold), and ζ (percentage threshold of number of aged 
components) are the decision variables of the proposed model. Actually, 
the values of Amin and Amax can be regarded as the criterion to determine 
whether a component is qualified for the repair. If it is older than Amin 

but less than Amax, a major repair is needed. If it is more aged than Amax, 
it should be preventively replaced. By varying the thresholds, the 
number of components which should be repaired will change accord
ingly. The variable, ζ, can determine how many aged components can 
trigger the age-based opportunity. The objective is to determine the 
optimal combination of variables which can minimize the annual 
maintenance cost during the whole lifetime. 

3. Numerical example 

In order to illustrate the effectiveness of the proposed opportunistic 
maintenance method, a numerical example of the offshore wind farm is 
used in this section. The optimization results of three strategies are 
represented. A comparative study with the conventional opportunistic 
maintenance strategies under the same parameters demonstrates the 
advantage of the proposed strategy in reducing the maintenance cost. 

3.1. Scenario set-up 

We assume that there is an offshore wind farm containing 50 offshore 
wind turbines following a design life of 20 years. It is noted that the 
numerical example is generic, instead of a real and specific wind farm 
operating. Considering the turbine is a type of complicated electrome
chanical system containing hundreds of components, it is difficult to 
take every subsystem into account. Previously published results in peer- 
review journals (Shafiee and Dinmohammadi, 2014; Arabian-Hoseyna
badi et al., 2010; Kang et al., 2019; Zhang et al., 2016; Kang, Sun, Sun 
andWu, 2017; Zhou et al., 2015; Scheu et al., 2019; Li, Teixeira and 
Soares, 2020a) have revealed the criticality ranking of wind turbine 
components by using the methods, such as Failure modes and effects 
analysis (FMEA), Failure mode effects and criticality analysis (FMECA), 
two-stage Failure Mode and Effect Analysis, etc. In our model, every 
turbine is simplified to a multi-component series system with five crit
ical subsystem (gearbox, generator, rotor&blade, pitch system, and main 
bearing). Due to the extremely low failure rates, tower and support 
structure are not considered in our model. The blade is the component 
more subject to the environmental impact, and the influence of critical 

M. Li et al.                                                                                                                                                                                                                                       



Ocean Engineering 231 (2021) 109062

10

impact on other components are ignored because of the protection of 
cabin. Carroll, McDonald and McMillan (2016) collected the mainte
nance information of operational data of 1768 turbines years. The data 
is based on 350 offshore wind turbines which are from between 5 and 10 
wind farms throughout Europe. The ages of turbines are between from 3 

to 10 years. The capacity is between 2 and 4 MW and the rotor diameter 
is between 80m and 120m. Santos, Teixeira and Soares (2015); Le and 
Andrews (2016) also collected and estimated the failure distribution and 
maintenance cost from several studies in the literature focusing on the 
O&M for European wind energy. The basis of the input information of 
the model is mainly estimated from these papers (Table 3), which rep
resents the properties and parameters of the example of the offshore 
wind farm. 

The decision moments are assumed to be periodic (20 days). The 
fixed cost Mf and transportation cost MTR

k are 50k€ and 10k€ respec
tively. The intensity function of external factor is assumed to be 
2/27∗(t /27) (Shafiee et al., 2013, 2015). The value of p1

k , p2
k , p3

k is 
assumed to be 0.001, 0.005 and 0.994. Three age thresholds, maximum 
threshold Amax, intermediate threshold Ay, and minimum threshold 
Amin, are considered in the model. The maintenance improvement of two 

Table 3 
Failure distribution and cost parameters for critical components.  

Component Shape 
parameters 

Scale 
parameters 
(days) 

Failure 
replacement 
(k€) 

Preventive 
replacement 
(k€) 

Rotor&blade 3 1847 215 55 
Bearing 2 1811 60 15 
Gearbox 3 1477 260 65 
Generator 2 1594 90 25 
Pitch system 3 1144 46 10  

Fig. 6. Simulation process of the maintenance strategy.  
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levels, l1 and l2, are 0.5 and 0.7 respectively, indicating the maintenance 
quality will be more significant for older components. Accordingly, the 
maintenance task of higher quality is more costly. The values of b1b2, b3 
and b4 are 0.025, 0.05, 0.075 and 0.1 respectively. The values of rikm and 
ηikm are both 1, and dikm is 2. 

3.2. Optimization results 

The possible maintenance optimization techniques include opera
tions research models, analytical approaches, Markov models, simula
tion models, Petri net models, Bayesian networks and so on (Shafiee and 
Sørensen, 2019). In recent years, increasing attention has been directed 
towards improving and optimizing maintenance for industrial systems 
using the simulation method. One main reason is that many practical 
cases are too complicated to be given tractable mathematical formula
tions. The simulation method has the potential to tackle these chal
lenging optimization problems involving nonlinearities, combinatorial 
relationships, and uncertainties (April et al., 2003). In addition, it allows 
experimenting and better understanding of systems with increasing 
complexity (Alrabghi and Tiwari, 2015). This method has been used in 
many studies about maintenance strategy optimization (Do et al., 2015). 
In this paper, the simulation frame work is established for the mainte
nance model of the offshore wind farm, as shown in Fig. 6. The simu
lation algorithm is presented in Algorithm 1. The Monte Carlo 
simulation method is implemented to evaluate the outcome of the pro
posed maintenance strategy. 

There have been three strategies, NABO Strategy, SABO Strategy, 
and MABO strategy, as follows:  

1. NABO Strategy 

In the first strategy, only failure and incident can trigger the main
tenance opportunities and the age-based opportunity is not considered, 
similar as the model in some papers (such as Sarker and Faiz (2016)). 

This kind of strategy is called as NABO Strategy (none age-based 
opportunity).  

2. SABO Strategy 

Failure and incident can trigger the maintenance cycle. Besides, if 
any component age reaches Amax, the age-based opportunity will arise, 
like the model in some papers (such as Lu et al. (2018)), the model is 
called SABO Strategy (single age-based opportunity).  

3. MABO Strategy 

We call the developed model in the present paper is MABO Strategy 
(multiple age-based opportunity). Failure-based, incident-based, and 
age-based opportunities exist in the strategy. If a predetermined number 
of components are aged, the maintenance decision can also be made to 
maintain the wind farm.  

Fig. 7. The genetic algorithm optimization process results.  
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As introduced above, the decision variables of the model (MABO 
Strategy) are Amin, Amax, ζ. The annual maintenance cost is the function 
of these decision variables. Genetic algorithm (GA) is a metaheuristic 
proposed according to the evolution of organisms in nature, which has 
been widely used to tackle the maintenance optimization issue 
(Compare et al., 2015). GA has its advantages when compared with 
other optimization methods, such as: avoid being trapped in local 
optimal solution by searching parallel from a population of points; use 
probabilistic selection rules instead of deterministic ones, etc. In this 
paper, we adopt GA to find the optimal combination of variables. The 
algorithm was configured with a population size of 40 individuals and a 
maximum number of generations (G) of 50. The fitness value of each 
individual is evalauted by Monte Carlo simulation with 500 times. With 

Fig. 8. Annual costs versus combinations of decision variables Amin, Amax, ζ  

Fig. 9. Annual cost with different age thresholds under MABO Strategy when ζ 
= 1.2%. 

Fig. 10. Annual cost with different age threshold under three strategies.  

Table 4 
Optimized results of three strategies.  

Strategy Amin  Amax  ζ Annual cost (k€) 

MABO 0.65 0.94 1.2% 1956 
SABO 0.64 0.96 - 1984 
NABO 0.60 0.90 - 1996  
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this setting, the simulation in Fig. 6 should be run 1× 106 times, which is 
implemented in MATLAB software. The GA optimization process results 
are represented in Fig. 7. The optimal combination of three decision 
variables is about (0.65, 0.94, 1.2%), with the lowest value 1956k€. 

In order to illustrate how the varying variables affect the annual cost, 
we further test various combinations in Fig. 8 and show the effects of age 
percentage threshold under MABO Strategy when ζ equals 1.2% in 
Fig. 9. In Fig. 8, there exists an optimal combination of the decision 

variables which can minimize the annual maintenance cost. The vari
able ζ determines the exact number of the ‘multiple’ in the MABO 
Strategy. We select and present four faces (ζ = 0.8%,1.2%,2.0%,2.8%,) 
in the figure where the lowest point is on the yellow face (ζ = 1.2%). 
The lowest point means the optimal combination of the variables (0.65, 
0.94, 1.2%). In Fig. 9, when changing Amin or Amax, the trend is similar: 
the annual cost gradually drops as the increase of age threshold until the 
bottom, then increases to a high value. For the former, it can be 
explained that resulting from the lower threshold, more components are 
determined to be repaired in one maintenance cycle, contributing to 
more money. Then as the increase of threshold, the number of qualified 
components decreases, but the state of wind farm becomes worse due to 
less frequent repair. For the latter, the lower threshold indicates more 
components need to preventively replaced. More components are likely 
to fail due to insufficient preventive maintenance if the threshold is set 
at a higher percentage of the failure age. 

In Fig. 10, the comparison among three strategies under different 
thresholds is illustrated. The MABO Strategy is the most cost-effective 
strategy after optimization as shown in Fig. 10 and Table 4. In the 
figure, the blue face (MABO Strategy) is the lowest in almost half of the 
area. However, we can find that it is not always the most cost-effective 
when varying the maintenance thresholds. When Amax is very high, 
MABO and SABO both perform better than NABO, because the expensive 
failure replacement can be avoided due to the benefit of age-based op
portunity. When Amax begins to decrease, it will become gradually easier 
to trigger the age-based opportunity, causing the increasing 

Fig. 11. Comparison of different opportunistic maintenance strategy.  

Table 5 
Breakdown of maintenance costs of different strategies.   

Annual cost (k€) Failure replacement (k€) Preventive replacement (k€) Major repair (k€) Transportation and fixed cost (k€) 

NABO strategy 2149 271 67 1070 741 
SABO strategy 2173 126 54 1148 845 
MABO strategy 2116 198 63 1089 766  

Fig. 12. Comparison of maintenance cost percentage for different maintenance strategies.  
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maintenance frequency and cost, especially for SABO (yellow face). In 
these occasions, the NABO Strategy has a better performance to reduce 
costs. Compared with MABO and SABO, the variance of annual cost is 
relatively stable when changing threshold for NABO Strategy (as shown 
in green face), because the change of thresholds does not affect the 
trigger of age-based opportunity. 

3.3. Comparative analysis 

In order to study the differences among three strategies and discuss 
the reasons, all the parameters should be assumed the same, and the 
strategies are applied on the following base scenario: Amax = 0.95, 
Amin = 0.5, ζ = 1.2%. 

In Fig. 11, the Monte Carlo simulation of three strategies is pre
sented, where the number of iterations is presented by W. The simula
tion is run independently in each iteration. The convergence analysis for 
the Monte Carlo simulation is conducted. After running the Monte Carlo 
simulation for 500 iterations, it can be seen that no significant variations 
of the intermediate mean value are obtained. It indicates that the 500 
iterations provide a sufficiently accurate statistical analysis of the re
sults. The final results at the 500 simulation times are used to estimate 
the economic of different strategies. As shown in Table 5 and Fig. 12, 
these results suggest that MABO strategy shows the economic advantage 
compared with other two strategies. By introducing the age-based op
portunity, the cost of failure replacement decreases accompanied by a 
increase in the cost of major repair, fixed cost and transportation cost. In 

SABO strategy, the triggering condition is set as single component. The 
corresponding result is the offshore wind farm can be maintained to a 
good state, with the lowest costs of replacing failed components. How
ever, more maintenance cycles and activities make the costs of major 
repair, fixed and transportation cost grow, inducing the strategy doesn’t 
perform satisfactorily in the aspect of economic. The age-based oppor
tunity reduces the occurrence of failure events at the expense of trig
gering preventive repair more frequently. The MABO strategy found a 
balance to reduce the replacement costs with a slight increase of the 
major repair, fixed and transportation costs. Overall, the proposed 
MABO opportunistic maintenance strategy can lower the total mainte
nance costs compared with the other two strategies. 

We further show the effects of following parameters on the MABO 
strategy: percentage threshold of number of aged components, ζ; the 
occurrence probability of critical, influential and minor impact, p1

k , p
2
k , 

p3
k ; the size of the offshore wind farm K. The value of these parameters 

will change gradually and all other parameters remain fixed. 
In Fig. 13, as the increase of percentage threshold ζ, the annual cost 

drops at first until the bottom, then gradually grows with slight fluctu
ation. The size of the wind farm is 50 turbines with 250 critical com
ponents. The range of percentage thresholds from 0.4% to 3.2% 
indicates the number threshold of aged components is from 1 to 8. When 
the number is 1, that means once one component is determined to be 
aged, the age-based opportunity will make the maintenance cycle start. 
The number is 2 means two or more than two aged components can 
trigger the maintenance. And so on, for each set of percentage threshold. 
At the threshold of 0.4%, the failure occurrence can be avoided as much 
as possible, but the frequency of maintenance is also the highest 
resulting from the easily triggered conditions. The frequent maintenance 
results in the highest total cost. Then, as the increase of threshold, the 
negative influence of maintenance frequency weakens, but component 
failure is more likely to occur, resulting in the costly repair. A balance 
considering these two factors is find out until the lowest point at 1.2%. 

Fig. 13. Annual cost with different percentage thresholds.  

Fig. 14. The effect of varying probability of impact on annual maintenance cost.  

Table 6 
The cost savings under different size of offshore wind farm.  

Farm size NABO 
strategy (k€) 

SABO 
strategy (k€) 

MABO 
strategy (k€) 

Cost savings 
(%) 

10 463 408 408 11.9%/- 
20 865 816 816 5.7%/- 
50 2149 2173 2116 1.5%/2.6% 
80 3574 3692 3507 1.9%/5% 
100 4572 4731 4547 0.5%/3.9%  

M. Li et al.                                                                                                                                                                                                                                       



Ocean Engineering 231 (2021) 109062

15

Afterwards, the effect of failure occurrence becomes significant, causing 
the rise of annual cost. 

Setting of the parameters of the environmental impact presents the 
harshness of the marine environment. In Fig. 14, it clearly shows that the 
annual cost rises as the increase of the probability of critical impact and 
influential impact. The value of p1

k has the most significant influence. 
The higher probability results in more components have to be 
completely replaced, so the cost of failure replacement will increase 
obviously. The influential impact can only accelerate the degradation, so 
its effect is less significant. 

As shown in Table 6, we have applied the opportunistic maintenance 
strategy to the offshore wind farms with different number of turbines. 
When comparing MABO strategy with NABO strategy, for the small- 
scale farm, the results reveal that the cost saving is the most signifi
cant, as high as 11.9%. However, as the expansion of farm the reduction 
of maintenance costs become less considerable. It is largely explained by 
the more occurrence of failure-based opportunities and incident-based 
opportunities with the increase of farm size. The number of failure 
and incidents is less for a small-scale farm. In this case, the age-based 
opportunity is more promising to trigger the preventive maintenance 
and avoid failure replacement, then save more money. When the farm 
gets larger with even 100 turbines, the failure because of degradation or 
environmental impact have provided a number of opportunities to start 
the maintenance cycles. The age-based opportunity could make the 
strategy perform better on this condition, but not as substantial as small- 
scale farm. When the size is small, the cost savings of SABO strategy and 
MABO strategy is the same, because the single component is the best 
option to trigger preventive dispatch. However, the execution of SABO 
strategy becomes more costly as the increase of the farm size, even 
exceeding the NABO strategy. More turbines mean the number of aged 
component is more, so the over frequent maintenance activities may 
result in much unnecessary costs. In summary, the MABO and SABO 
strategy can reduce maintenance costs for a small-scale offshore wind 
farm when compared with NABO strategy. As the increase of turbine 
number, the MABO strategy is still the best option, followed by NABO 
strategy and SABO strategy. 

In Fig. 15, we change the number threshold of aged components, U, 
under the MABO strategy when the size of wind farm is different. The 
annual cost of NABO strategy is seen as the comparison criterion, and the 
cost saving is presented by Q. When the threshold is only 1, the main
tenance cost is minimized for the 10-turbine and 20-turbine farm. The 
preventive dispatch can significantly avoid the severe failure occurrence 
and high replacement costs. Furthermore, the case is also difficult to 
happen that more than 1 components reach the maximum age threshold 
at the same time for a small-scale farm. The more thresholds can only 

make the age-based opportunity happen more impossibly and the 
improvement weaken successively. When the number of turbines in
crease to 50, 80 and 100, the optimal number thresholds are obtained as 
3, 5 and 7 respectively, showing that the optimal number of aged 
components increases as the wind farm enlarge. 

4. Conclusion & Future research 

The opportunistic maintenance strategy has been studied for the 
wind energy sector in recent years. A common assumption is made that 
the failure is mainly caused by degradation, ignoring the influence of 
environmental impact. Furthermore, the preventive dispatch of the 
maintenance team triggered by the occasion that a single component 
reaches the predetermined threshold probably induces much excessive 
cost. In this paper, an opportunistic maintenance strategy is developed 
for offshore wind farms. The offshore wind turbines operating in the 
harsh marine environment do not only suffer from degradation, but also 
impact from environment. The impact may result in the abrupt increase 
of degradation or the sudden incidents. The failures due to ultimate 
degradation and critical impact will create maintenance opportunities, 
namely failure-based opportunity and incident-based opportunity. 
Another maintenance opportunity considering the number of aged 
components, age-based opportunity, is also considered to balance costly 
failure replacement and over frequent maintenance cycles. The simu
lation method is used to represent the maintenance scenarios and 
evaluate the average annual maintenance costs. 

In the NABO strategy, only failure and incident can create the 
maintenance opportunities. The SABO strategy assumes that if any 
component becomes aged and requires preventive replacement, another 
maintenance opportunity (age-based opportunity) will also arise. The 
developed strategy in the paper (MABO Strategy) considers the number 
of aged components. The age-based opportunity will be created when 
the number of aged components reaches a predetermined value. The 
comparative analysis under the based scenario shows the MABO and 
SABO strategies can both reduce about 11.9% cost than NABO strategy 
for a 10-turbine farm,. When the scale of the farm enlarges, the MABO 
strategy still has the best performance. An economic benefit of 2.6% and 
1.5% respectively can be achieved for a 50-turbine farm when compared 
with SABO and NABO strategy. When the number of turbine increases to 
100, MABO strategy saves 3.9% and 0.5% costs respectively in com
parison to SABO strategy and NABO strategy. It is noted that the nu
merical example is generic, instead of a real offshore wind farm. In 
future work, if more detailed data can be collected from a real wind 
farm, the calculation results will be more realistic and contributive. 

There are several potential extensions of this study. The O&M of 

Fig. 15. Strategy improvement under different size of offshore wind farm.  
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offshore wind farm is a complicated task involving failure, repair, spare 
parts management, transportation, weather prediction, and so on. In this 
paper, the assumption is made that the maintenance resource are always 
sufficient to perform maintenance activities and the accessibility to the 
location of the turbines will not be affected by any negative factor. 
However, the resource limitation and uncertain accessibility are signif
icant problems during O&M for wind energy sector. The introduction of 
these factors into opportunistic maintenance model is worth further 
studying. Moreover, the developed model is based on the assumption 
that the parameters of the model are certain. For instance, the failure 
time of components is modelled as a Weibull distribution with param
eters we have known even before the operation. However, these pa
rameters should be uncertain due to the lack of knowledge of the actual 
use and maintenance of the equipment, and inaccurate historic data and 
records. These uncertain parameters will affect the performance of the 
maintenance strategy. It is necessary to further consider uncertainty 
when improving the O&M for offshore wind energy. 
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Márquez, F.P.G., Tobias, A.M., Pérez, J.M.P., Papaelias, M., 2012. Condition monitoring 
of wind turbines: techniques and methods. Renew. Energy 46, 169–178. 

Martin, R., Lazakis, I., Barbouchi, S., Johanning, L., 2016. Sensitivity analysis of offshore 
wind farm operation and maintenance cost and availability. Renew. Energy 85, 
1226–1236. 

Marugán, A.P., Márquez, F.P.G., Perez, J.M.P., Ruiz-Hernández, D., 2018. A survey of 
artificial neural network in wind energy systems. Appl. Energy 228, 1822–1836. 

McCall, J., 1963. Operating characteristics of opportunistic replacement and inspection 
policies. Manag. Sci. 10, 85–97. 

Merizalde, Y., Hernández-Callejo, L., Duque-Perez, O., López-Meraz, R.A., 2020. Fault 
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