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Nonlinear Inversion in TE Scattering

Bert Jan Kooij and Peter M. van den Berg

Abstract—A method for reconstructing the complex permittiv-  permeability, and conductivity, and the second is the error
ity of a bounded inhomogeneous object from measured scattered- jn satisfying the equations of state integral equations for the
field data is presented. This paper extends the mgthod previously field produced in the body by each excitation of the known
developed for the TM case to the more complicated TE case. . . .
In the TM case, the electric-field integral equation involves an SOurces. The index and fields are each updated by a linear
integral operator whose integrand was simply a product of the iterative method in which the updating directions are weighted

background Green’s function, contrast, and field. In the TE case, by parameters which are determined by minimizing the cost
the magnetic field is polarized along the axis of an inhomogeneous fnctional.

cylinder of arbitrary cross section and the corresponding integral Lo . )
equation contains derivatives of both the background Green'’s In the TE case, the domain integral equation can be formu

function and the field. The nonlinear inversion based upon the ated as a scalar-domain integral equation with the one nonzero
modified-gradient method as presented in the literature is applied magnetic-field component as the unknown field [4], [5] or in
to the magnetic-field equation. However, the integral equation terms of a vector integral equation with the electric-field vector
can also be formulated as an electric-field integral equation (o nonzero components) as the unknown field. It is shown
for the two transversal components of the electric field. Again, . . - g .
the integrand is a product of the background Green’s function, " th'S, paper that the single n?ag.nenc-ﬂeld. equation turns QUt
contrast, and electric-field vector. The derivatives are operative t0 be inferior to the dual electric-field equation. The magnetic-
outside the integral. In this paper, the latter formulation will be  field equation is not as stable and not as numerically efficient
taken as a point of departure to develop a nonlinear inversion as the electric-field equation. The electric-field equation further
scheme using the modified-gradient method. has the feature that the formulation can easily be extended

Index Terms—Electromagnetic waves, nonlinear inversion. to the three-dimensional case (one additional equation of the
same type).

The main distinction between this paper and earlier work

. ) _done by Kleinman and Van den Berg is that in the case of
I N THE reconstruction of material shapes and properties, Wg_nqarized illumination, the domain integral equation which

often distinguish between two different classes of objeci§ecyrs covers the object domain and contains a gradient-

One class involves the determination of the constitutive Pgyergence operator. It acts on the vector potential (the vector
rameters of a penetrable scatterer (permittivity, permeabiliyotentia| s the convolution of the free-space Green func-
and conductivity), while the second class is concerned wigh and contrast source). In order to solve this singular

determining ttr)wehshiape of tEe bqundqry of 3n| 'mp_e”etr]?t?megral equation numerically, we have to take care that in
scatterer. In both classes, the orientation and location o tgﬁ‘r numerical scheme no artificial surface currents (Dirac

scagerer r;re kalso of interest. F(rjom the |Ilum|ntat|(;nthof ;h&g;ca functions in the domain equation) are generated. One

scatterer by known sources -and measurement ot the T achieve this by considering that the spatial derivatives
at distinct locations exterior to the object, together wit at occur in the integral equation should only act on a
pr:éi%;ticgpsgug]ficzﬂeaggcc;rgggrs :;anj Fg;orci)big%rggjaﬂfr)gé sgé':ltially continuous function. By imposing this condition on
uctic . ined. ur numerical discretization scheme of the integral equation,

of the a priori information, whether the scatterer is penetra- . -

: . ) L .we developed a scheme that was quite similar to the one

ble or impenetrable, is standard in designing reconstructlan .

alaorithms eveloped by Zwamborn and Van den Berg [6]. First, we
?n this |c-)aper both classes of scatterers are investigapeec{form an expansion of the vector potential in which the

. ' T . . nature of the expansion depends on the operator that is actin

In case t.h € scattgrer 1S |IIum|.nated by TE-polarized .sourcéz it. In the disl?cretizationpof the diverg:nce operator thatg
fields. This paper is an extension of the method described th 'on the vector potential we use a spatially continuous

Kleinman and Van den Berg [1]-[3] to the case of illuminatiof P ' P y

by TE-polarized source fields. The method is based on casti ansion function, like the rooftop function, in the direction
the inverse problem as an optimization problem in which t the spatial derivative. By introducing a suitable weighting

cost functional is the sum of two terms: one is the defeg{ocedure, we have the opportunity to let spatial derivatives

in matching measured (actual or synthetic) field data wiH:l'at occur in the gradient operator act on the weighting

the field scattered by a body with a particular permittivity/unction. Similar as for the expansion function, we use for
the weighting function a spatially continuous function, like
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Il. INTEGRAL REPRESENTATIONS A. Integral Equation for the Magnetic Field

Consider the scattering object to be an inhomogeneoushNe note that after substituting
lossy dielectric cylinder of arbitrary cross sectibnimbedded o
in free space. The incident field consists of electromagnetic Ey = — (iwe)” 0:H3
waves with the magnetic vector polarized along the cylinder By = (iwe) 710 Ha (7
axis. To reconstruct the complex permittivity of an unknown
object from a knowledge of the scattered field, we assume tiathe right-hand side of (6), we obtain the integral represen-
the object is illuminated successively by a number of differefftion used by Lixinet al. [4], [5], viz.,
excitations. For each excitation [time factorigp(—iwt)], we

assume that the scattered magnetic field is measured exteHgf*(z) = M2V’ [i Hél)(k0|:c—:c/|) V' Hs(x') dv
to the scatterer. The vectorial position in the two-dimensional zCDh 8
space is denoted by = (z;, z2). The complex permittivity (8)
of the inhomogeneous dielectric object is given by in which

e(x) =epg0 +io/w (1) e(x) — eo

9)
wheree, denotes the relative permittivity of the object with
respect to the lossless and homogeneous embedding veitid whereV’ denotes the spatial differentiation with respect
permittivity 9, and o denotes the electric conductivity ofto «’. Using (3) in (8) and taking the point of observation in
the object. The incident electric-field vector is denoted g3, we arrive at

E™ = (Fin¢_ Einc) and the incident magnetic-field vector

H™ has only the componed{i*. When we assume that ther,(z) / M(z )V’[ H(l)(k |z — '|)|- V' Hs(z') dv
magnetic-field vector is given, the electric-field vech‘f‘“

(Eimc | Ein) follows from E™° = (—iweo) ™'V x H™ o = Hy"(z), «eD. (10)
Ein® = — (jweg) " 9o HY This is an integral equation fdfs and V Hs. Although these
B = (iweg) 0, HP©. (2) quantities are coupled through a spatial differentiation, we

prefer an integral equation in which inside and outside the
The electromagnetic field scattered by the two-dimensionategral the same unknown occurs.
object is obtained as

E = BE— E™ HF = Hy— HiF 3) B. Integral Equation for the Electric-Field Vector

Using (3) in (4) and taking the point of observationIin
where theE = (E,, E»;) and Hz denotes the total electro-we arrive at
magnetic field present in the configuration. For the scattered :
field, we have the integral representations in terms of contrdtz) — (k2 + VV-)/ 1 Hél)(k0|z —z'|)x(z ) E(z') dv
sources, Viz., z'CcDh

B () = (2 4+ VV.) /

:I:ED4

=E™(z), =ze€D. (11)
H(l)(k|:c Z'|) . o _ _
The spatial differentiations in this integral equation can simply
x(z")E(z')dv (4) be handled by a technique successfully used by Zwamborn

and Van den Berg [6]-[10]. In this technique, the gradient

whereD denotes the contrasting domai, = w(eop0)'/? is  operator is handled by testing the integral equation with
the wavenumber, and where the normalized material contrasdftop functions and, via partial integration, this spatial

is given by differentiation is moved to operate on the testing functions.
e(z)— Subsequently, the integral ovExis linearly interpolated, after
x(z) = =22, (5) which the divergence operator can be taken. This technique
€0

has proven to solve two- and three-dimensional scattering
Once the electric-field vectaE is known in the contrasting problems fairly accurate, and we shall use this method here
domainD, the scattered electric field can be computed througs well. We follow a slightly different method and take the

(4). Since we assume that we measure the scattered magrigtRgral equation (11) for further consideration. Once we have

field, we useH*" = (iwuo) 1V x E** to arrive at solvedF in D, the scattered magnetic field follows from (6).
. Before discussing the discretization procedure of the integral
H3™(x) equation, we first write it as
. 1 .
~iweo | ,EDaQL HG (holz — 2 |>} X#)Ea)dv B, 3A, - B, =B, (z1,m)€D. el 2},

) (12)
— iweo / o B H (kolz — xw x(z')Ex(2')dv.  where the vector
z'eD

(6) B = {Bi(z1, x2), Ba(z1, x2)} (13)
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is given by The expansion functions are now defined as
B = 0x[01A1 + 02 42),  re{l, 2} 4) ) (w1, 22) = Mo — 21im| A1) (72 — 22,0 |Ax2) (22)
and where the vector potential form=1,---,Mandn=1,---, N, and
A={A (21, x2), Ax(x1, x2)} (15) 1/)573?”(3517 x2) = I(z1 — 21, | Az )A(T2 — 22, ,|Aza) (23)
is given by form=1,---, M andn =1, ---, N. Let us further define
Az, z3) = / Gz — o, 2o — 2h) the quantities
(z1,z,)CD .
X, ) B}, o) ol dity (16) Biim,n = Enl@iim, 22n) o
. . . Bm'rn n :Bm ;M in
and the Green function is given by T (@1;ms 22:n) (25)
An;rn,n :An(xl;rnv x?;n) (26)

Gz, — 2, T2 — @ :iH(l)k z—x|). 17
(w1 — 27, 2 — 7) 7 Ho (Kol 1) 17) for m =1, ---, M,

n
(12) is discretized as

Eﬂ;nl,n_k(%An;nl,n_Bn;rn nEmC S {1, 2}. (27)

Kym, n?

=1,---, N, andx € {1, 2}. Then,

I1l. DISCRETIZATION PROCEDURE

We assume that the domali is a rectangular domain with
boundaries along the, - andz,-directions. We discretize the Using the expansion functions defined in (22) and (23), (12)
domain in a rectangular mesh. The mesh is uniformly spaceddnreplaced by its weak version
the z;- andx,-directions. The rectangular subdomains with a
width of Az in the z;-direction andAz- in the z,-direction Brim,n

are given by P, (1, 22)0:[01 A1 + 2 As] dv
Dm,n:{(ajlv T2) ER'2|371;m_A371/2<371 < ZTim — J=zeD , r e {1, 2}
+ Az1/2, 29,5 — D22 /2 < k9 < o, p + Axa/2}, / z/)mn (21, z2)dv
m=1,---, M, n=1,---, N (18) (28)
where

while the vector potential is expanded as

Am(-/rlv -TQ) = Z Am;nl,nz/}r(:’)n(xlv x?)v K€ {17 2}
1 m,n
T2:n :]}2;1/24— <7’L—§>A$2, n=1---, N (19) (29)
We then arrive at
M N

T1;m :x1;1/2+<m——>Aa:1, m:]_’...’M

in which z,;,> is the lowerz; bound of the contrasting
domain D, while zs.1/2 is its lower zo bound. In each
subdomairD,y,, ,, with c/enter POINtSL 1. 1, T2:n), W assume  Drim,n = Z S ale ), Avip g k€ {1, 2}
the contrasty to be constant with valug,, . v=lp=lg=l (30)
We define two sequences of basis functions over the domaln ere
D, viz., a sequence/;m n(z1, z2) that is continuous in the
a:l-dlrectlon and may jump at discontinuities of the matenala(]; " pa (Aa:l)_Q(&p, mt1 — 26p, m + 6 m—1)0¢ n, (31)

distribution in thex,-direction, and a sequen@/é,,,, w21, x2) al:2) —a&n
that is continuous in the,-direction and may jump at discon- . mop,q = monpg
tinuities of the material distribution in the;-direction. The = Z(AazlAa:Q)—l(ép,m_l — Op mt1)

most simple basis functions which meet these requirements

are the rooftop functions [6]-[10]. 2.2 ) (6’1’";21 ~ bg,n+1) (32)
To this order, we define the pulse function Uy py g = (B22) "7 (0g, n41 — 264, + Og,n—1)0p,m-  (33)
1, if — lAy <y< %Ay Hence, the expressions f&,;,. » become
H(y|Ay) = 1 |f |y| _ (20) Bl;rn,n = (A'Tl)_2(Al;rn—l,n - 2A1;rn,n + Al;rn-l—l,n)
2’ N 1 _
0, elsewhere + (Az Azy) HAzm 1,01 — Azim 1 nt1
with supportAy, and the rooftop function — Agimttne1 + Az gt ng1)
(1+2) it -ar<y<o 2 (34)
A( |A ) Y (21) BQ;rn,, n — (A-/L'Q)_ (AQ;rn,, n—1 — 2A2;rn,,n + AQ;rn,,n—l—l)
YY) = Y . 1
<1 - A_y>’ if 0 S Y < Ay + Z(AxleQ)_l(Al;rn—l,n—l - Al;rn—l—l,n—l
0, elseWhere - Al;rn—l,n-|—1 + Al, m+1, n—l—l)-

with support2Ay. (35)
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Note that the result in (34) and (35) is identical to th€30), and (38) as

one if we had replaced (14) directly by its finite—differenc?LE)
apﬁroximati%n. | A _ _ f ®ipd s w N
ext, we have to replace the continuous representation o .
the vector potentialA by a discrete one. In order to cope = Ey;p.q = koArip,q — Z Z Zaéim)mnA”;m:"
with the singularity of the Green function, we also take the v=tm=ln=1 39
weak form by replacing it by the circular mean of the vector (39)
potential. We integrated,, over a circular domain with the for p = 1, ---, M andg = 1, ---, N, and whereA, .
center at the pointz1,,», 22, ). The radius of these patches isirectly follows from (38).
taken to bel Az = 1 min(Axy, Az). The results are divided  The norm onD is defined as
by the surface area(3Axz)?. We then may write > M N
||E||]2:) = (E, E>D = Z ZZEu;p,qEV;p,q (40)
An;rn,n :An(xl;rna x?;n) v=1p=1q=1

= / G(x1;m — @, T2, — 25)x(21, z5)  where the overbar denotes the complex conjugate. The adjoint
(a1, ;) €D operator is defined through the relation
B (x, ob) da’ dat, with x € {1, 2} (36
where we have interchanged the order of integrations, such thgstituting the expression of the operafaE in the left-

4 hand side of (41) and interchanging the various summations,

Gz, x2) = W the adjoint operator is recognized as
L") o = Tiip.g — Xy oCh: 42
(22 +ay )2 <(1/2)Ax forp=1,---, M andg =1, ---, N, in which
- dx’y dxb M+1 N+1
¢ Ji lkoAx Hél)[ko(x% _|_agg)1/2]7 Crip,q = AT1AT2 Z Z G(x1,p — T1ps X234 — T257)
IfOA.’L’ 2 1 p’'=0 ¢'=0
B when (23 4+ 23)1/2 > 3 Az (37) Frp,q (43)
B i i here
¢ w1 4z W
— | H = koA
koAﬂ?[ ! <2 ’ x>+7f/fom7} 2 NS ()
\ Whenxl =T = 0. FN;P:(I = kOTNQP:(I + Z Z Z arn/:n,p,qTV;nl,n' (44)

v=1lm=1ln=1
In fact, G is the mean value of the Green function over a ciffhe |atter expressions may be written explicitly as
cular domain with the center &t,, x.). After this weakening
procedure, we are now able to compute the integrals of (38)r.¢ =ka71;p,q + (A21) 2(rLp—1,q = 2715 p, ¢ + 715 p41,0)
numerically. In view of the functional properties &,., we

1
) . . N . + S (AZ AL T (P2 pe1 g1 — T2
approximate the integral of (36) using a midpoint rule in the g (ATIAZ2) T r2ip=1, -1 = Posp-ta)

z1- and zs-directions. We then arrive at = T2 pt+1,q-1 T 72, pt1, g+1)
(45)
M N 5 5

Arim,n = AT1ATS Z Z G(@1;m—T1;m’ s T2, — T2, 7) Fyipq =koraip, g + (B22) 7 (ra;p,g—1 — 2r;p, g + 72p, g41)

;m, ; ; ; ; 1
m/=1n/=2 —1
+ S (Az1AZ2) " (T1p-1, -1 — TLip+1, g1

Xm/, n’Em;rn’, n’ (38) 4

— TLip—1,q41 T 71 pt1,g41)-
with « € {1, 2} and form =1, ---, M andn =1, ---, N. (46)
Note thatA,; ., » are discrete convolutions and can efficiently

be computed by fast Fourier transform (FFT) routines. Since according to (43)’ runs from 0 toM +1 andq’ runs

from 0 to N + 1, we set in (45) and (46)
Trip,q =0, for p=—1,00M+1, M+2 Vg
IV. FORWARD SCATTERING PROBLEM Trip,q = 0, for g=—1,0,N+1, N+2 Vp.

When we substitute (38) in (30) and use the result in (27Rrote thatC (47)

we obtain a linear svstem of tions 16 when th «: p, ¢ 1S @ discrete convolution ip andg, and these
€ obtain a inear system of equations Xok; ., », WNEN e ¢y 61utions can be computed efficiently by FFT routines [11].

material contrask is known._This system of equations can be With these definitions, we are now able to apply a conjugate
solved by a conjugate gradient scheme. In such a scheme,gﬁgdiem iterative scheme to solve the equations
need the representation of the operator, definition of the no

and inner product, and representation of the adjoint operato{LE),.,, , = E;‘;“;yq, p=1,---. M, ¢g=1,---. N

The operator expressiohE is directly obtained from (27), (48)
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Once the normalized error weights to be determined. The residual errors at each step in
LE - EimHD the object equation and data equation are defined as
ERR = inc (49) (s) i (s) (s)
|1E™lp ) =E"C) B L VB (56)
is small enough, the approximate solutionfis substituted pgj) :H?(f) - Wi -Egj). (57)

in (6) to arrive at the scattered magnetic field at the receiver
pomts:c(’) with 7 = 1, 2 R, The constantsy, and 3, are determined by minimizing the

value of the cost functional

S 2 S
s=1 s=1

Hy (&) = iw (aé”Al -7 4) (50)
(58)

in which 0" and a{" denote the spatial differentiations in
regard tOx(’) and xé”), respectively.

in which
S —1
V. INVERSE SCATTERING PROBLEM wp = Z HElnc (s) (59)
We now assume that the inhomogeneous objacts ir- pr
radiated successively by a number € 1,2, ---,.5) of L\ E
known incident fields. For each excitation, the direct scattering ws = Z HH?’S) ) (60)
problem may be reformulated as the domain integral equation $
cf. (48
[ef. (48)] ) Here, the nornj| - ||p in the object domain is defined in (40),
LE® = E" () onD (51) while the norm in the data domain is defined as
where the operatol: depends on the material contrastTo | Ha||% = Z |H(z")|*. (61)
show this explicitly, we write this equation as Tres
E® _VXE(S) — Einc (8)7 onD (52) Substitution of (55)—(57) in the cost functional of (58)
results in an expression involving terms determined at the
where (k—1)st step, the directions”’ and m,, and the two
. N v . parametersa;, and Fx. Once the directions:gf) and mg
(VXE(' ))M L kAL, |+ Z Z ali AL L are chosen, we have a nonlinear expressionyinand /3.
” v=lm=1n=1 (53) The values of the parameters, and 3, are determined by

requiring ¥ to be a minimum. Minimization of the quantity
F, is accomplished by solving this nonlinear problemaip
and 3, using a standard conjugate gradient method.

The update directions:Ef) and m; are chosen as the

forp=1,---, Mandg=1, ---, N.In(53), A,, 'm, n. TOllOWS
from (38) by replacingEmm,n by Eff;)m,n. Equation (52)
is denoted as theBJECT EQUATION that holds in the object

domain D. o . : SR
Further, in the inverse problents is known at the mea- Polak—Ribére conjugate gradient directions, namely,
surement pointse(™. We assume that all the measurement ae(s) _i_,yee(S)
points are located in the data doma&nHence, we write (50) ol
and
also in the shorthand notation
) [ ir my = 0my, + v mi—_1 (62)
Wy E® = H (;M), ons (54)
where
whereWy - E©¥ is equal to the right- hand side of (50) after s
replacing E by E® and Hs by H{?. Equation (54) is > <8e§f), 9el” — 8e§f_)l>
denoted as thBATA EQUATION that holds in the data domaifi € = s=1 b 63)
. (s)
A. Reconstruction of the Complex Contrast ZHaek—lHD
s=1
The inverse problem is that of finding the material contgast (9my., dmy, — Omi_1)p

from (52) and (54). Since the electric-field vec#®f* is also = 7||8m E (64)
unknown, we propose the iterative construction of sequences b-1lip
{ng)} and {xx} as follows: and the gradients are given by

ng) :ng_)l + akegf) de ( ) =wp (r( *) — Xp— lV*ré )1) + wsx_ W p . (65)

Xk = Xk—1 T /3kmk7 k= 17 27 Tt (55) and

S S
For eachk, the functionse|” and m,, are update directions g, = — wp ZEE&?I V| s ZEECS_)IW*pgl_
for the electric-field vectorE( ) and the material contras, et =1
respectively, while the complex parameters and /3; are (66)
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The various operators are calculated as (omitting the iteration

index & — 1)

(XV*T(S))MP v =Xp, ¢’ S)p ' Xp,qcf(ﬁsp q (67)

=) e (s (s) () s

(E 'VT())pq ZEquz(f)pq Eupqcz(fzoq

’ v=1
(68) _
FTW*(3) -~ * (5) AL
(XW P ) IXM(W P ) (69) 20
5P, 4 5P, 4 «m:.\.\';;.

,'v;
& ';'i\\‘\“\\\\‘.\'\i'.u
ST ,,;;7; m‘ g\\\\\\\\}\\;\}e
‘ls.\‘"

CRE w*p<s>)p7 = éﬁ q (W*p@))w , (0

forp=1,---,Mandg=1,---, N. (b)

lllllll,

B. Reconstruction of a Positive Conductivity Contrast

& ‘i‘o";
l \ 5 ; X " S "0 'lll s
\vflm 'l‘\‘ &

'5, ‘ """

In order to perform the reconstruction of a positive conduc- _4 0” ,,,, ‘\‘ \ , 05 o0 (& ¥
tivity contrast, we can incorporate priori information about <&, !ll.ll'"’” f° R \\\\\\\‘ O 2] ""Ifi//”’i,’““\\\\\\\\\\\\\\\ >
pvity conTas e - - Ly m‘ > Sl
its positivity into our inversion scheme. By introducing a new 15 > ,\,I \,.

function ¢, such thaty, = i¢? and by updating;, as
(©
Ce = Ch—1 + Bibe, k=1,2,--- (71) Fig. 1. (a) The original profile. (b) The reconstructed profile using the mag-

netic-field integral equation and synthetic data generated by the magnetic-field

instead of the contrast,, we are able to enforce the pos|t|v|ty|ntegral equation. (c) The reconstructed profile using the electric-field integral

quation and synthetic data generated by the electric-field integral equation.

of our contrast functiory. The residual errors at each step ”Tzs iterations, 29 stations.

the object equation and data equation are defined in (57) with

xx = i¢;. The constantsy, and 3, are determined again by

minimizing the cost functional’}, defined in (58). A. Example 1

The update directiong}”’ and ¢, are chosen as the Po- e illustrate the TE inversion of a complex contrast with
lak—Ribiere conjugate grad|ent directions given by the firg{ numerical example, in which the measurement surf&ie

equation in (62) and by chosen to be a circle of radis\ containing the test domain
¢ D, which is a square3( x 3)) whereX is the wavelength in the
& = 0k + 7ln—1 background medium. The test domain is discretized int<29
and 29 subsquares. The configuration to be reconstructed consists
= (O0&, Oy — 0&1_1)D (72) of two concentric square cylinders, an inner cylindehy A,
k 10€k—1]|H with complex permittivitye = (1.6+0.2i)eo surrounded by an

outer cylinder2X x 2, with complex permittivitye = (1.3 +
whered¢;. is the gradient of the cost functiafi, with respect 4i)eo, as shown in Fig. 1(). In our first example, we assume
to changes i evaluated at stepk — 1), assuming the fields ¢ 29 stationg. = 29) are located uniformly on the surface
do not change S with each station serving successively as a line source and

all stations acting as receivers. The reconstruction based on the

9, = O F =2 Im[Oxi]. 73 . . . L .
G = IcFie—1 = 20— Im[Oxa] (73) magnetic-field equation [4], [5] is shown in Fig. 1(b), while the
The initial choice in our iterative scheme is determined from dgconstruction based on our present approach using the integral
estimate of the contrast sources according to method descrif8yation for the electric-field strength JS presented in Fig. 1(c).
in (22)—(28) of Kleinman and Van den Berg [3], which idn both cases, synthetic “measured” data are generated by

adapted to our vectorial object and data integral equations SCIVing the forward problem using the same type of integral
equation as the one used in the inversion scheme.

However, in the reconstruction procedures of Fig. 1, we
have the possibility of inadvertently committing the “inverse

In our numerical examples, it was assumed that the unknowatime” by using the same numerical method in the inversion
scatterer was located entirely within a test square of knowatgorithm as is used for solving the forward problem to
dimension, although knowledge of the precise location withpproduce the synthetic “measured” data. Therefore, in Figs. 2
the test square was not assumed. All computations were carded 3, we use the synthetic data generated by the magnetic-
out on a 200-MHz Pentium Pro Workstation running Windowgeld integral equation in the inversion procedure based on the
NT 4.0. The Fortran code was compiled using a Digital Visua&lectric-field integral equation, while we use the synthetic data
Fortran 5.0 compiler and the computation time for one iteratiayenerated by the electric-field integral equation in the inversion
in the inversion in the most complicated examples was 2.2 mprocedure based on the magnetic-field integral-equation. The

VI. NUMERICAL EXAMPLES
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Fig. 2. (&) The original profile. (b) The reconstructed profile using the mag
netic-field integral equation and synthetic data generated by the electric-field
integral equation. (c) The reconstructed profile using the electric-field integral
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Fig. 3. Same as Fig. 2, but now only 15 stations.

Fig. 4. (a) The reconstruction of a perfectly conducting circular cylinder

with a bounded contrast symmetrically located with respect to the sources
and receivers. (b)—(f) A bounded reconstruction after 2, 4, 8, 16, and 32
iterations, respectively.

B. Example 2a

We illustrate the TE inversion of a positive conductivity
contrast with a numerical example. In this example, we assume
a test square of 6% 61 subsquares of 0.0015 0.0015 n3.

In the center of this test square, a perfectly conducting circular
cylinder with a radius of 0.0159 m is located [see Fig. 4(a)].
The unit circle with center point in the center of the test domain
is taken as the measurement surf&eOn the surface of,

we illuminate the object with 36 uniformly distributed plane-
wave sources and measure the wave field at 18 uniformly
distributed receivers. The operating frequency of the sources
is 10 GHz. The measured data were simulated by solving the
direct scattering problem of a perfectly conducting circular
cylinder. The analytic solution in terms of Bessel functions
has been employed. In this example, the positivity of the
conductivity has been enforced in our iterative inversion
scheme. As for a perfectly conductive object, the contrast in
the reconstruction reaches at some point a value such that the
penetration depth of the wavefield is of the order of the mesh
width in the testing domain, we can improve the visualization
of the boundary of the object by imposing an upper bound to
the reconstructed contrast in such a way that the penetration

results for 29 stations are presented in Fig. 2, while tliepth of the wavefield is not less than three times the mesh
results for only 15 stations are given in Fig. 3. From Fig. 3yidth. When in the iterative procedure the contrast reaches
we observe that for a limited amount of data, the inversiahis upper bound, then this value is kept fixed and the gradient
procedure based on the electric-field integral equation, efsthe contrast in this direction is set to zero. For this reason,
presented in this paper, still yields acceptable reconstructioti®e reconstruction of the cylinder does not improve after 32
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contrast of the cylinder has been bounded again to one. We
observe, in the subsequent iterations, the same phenomena as
in the previous example. However, we observe that the object
in this case is not reconstructed in a symmetric way because
the location of the object, with respect to the sources and
receivers, is not symmetric in this case. This example shows
that not only the reconstruction of the boundary is very well,
but that the location of the object in the testing domain is
determined precisely. In this example, we also investigated
the influence of noise. The results in Fig. 5(c) and (e) show
that the method performs well when 10% noise is added to
the data.

VIl. CONCLUSIONS

®) © We have developed a nonlinear inversion method for the
two-dimensional problem of the scattering of an electro-
magnetic wave with the magnetic-field vector parallel to
the cylindrical structure. The electric-field vector has two
components in the transversal plane (TE case). We have shown
that a formulation of the inversion procedure in terms of
the electric field yields better reconstruction results than an
inversion procedure formulated in terms of the magnetic-field
vector. The theoretical results in this paper are written in
(d) () such a form that the necessary changes of the original scalar
Fig. 5. The reconstruction of a perfectly conducting circular cylinder WitﬁompUter code of the TM Fa?’e’ develope_d by Kleinman and
a bounded contrast asymmetrically located with respect to the sources Man den Berg [3], [5], are limited to a minimum. The results
ritceiv%s ;:éﬂ ggpiig?;i:)nnéa)-r e(S) :Crlﬁl/ é:i) rzécr;re;r?dnt(z)b?eu?gggnffzogsgﬁmained with the TE case look quite the same compared to
?eceornstruction of the data \’Nith fo% noi)ge added after 1(F5) and 32 iteratiof % results Obtalned with the TM case [3]. The reason for this
respectively. is probably that in the TE case, as well as in the TM case, we
are measuring a scalar field instead of a vectorial field.
The present solution of the TE case is an intermediate
Qp to the full three-dimensional problem where all the
tee components of the electric field play their role. In the

the obiect is already clearly visible. Specificall b rward problem, Zwamborn and Van den Berg [8] have
€ object 1S afready clearly VISIDle. Speclically, We 0DSENG, ,,, ihat the step from the two-dimensional TE case to the

that after eight iterations, the inner center part_of the.cylin'dﬁg” three-dimensional case is rather trivial. All fundamental
already reaches the bounded value of one. At sixteen 'terat'oaﬁriculties of the three-dimensional case are the same in the

we observe that the boundary of the cylinder already h case. Only, in the three-dimensional case, there is extra

reached its bogndeq value of one anq thgt incrementationb%ok keeping in writing the computer code and, obviously
the number of iterations only gives a little improvement. for realistic configurations, the computation time increases
substantially [9]. It is expected that the same will be true for
C. Example 2b the inverse problem. Hence, it is a prerequisite to first solve the
In this last example, we assume a test square ofx61 inver;e problem in the TE case. For the_ I_atter case, we have
61 subsquares of 0.001% 0.0015 ni. Out of the center described the method based on the modified-gradient method,;

of this test square, a perfectly conducting circular cylinddfiS avoids the need of a full solution of the forward problem

with a radius of 0.0159 m is located [see Fig. 5(a)]. The unift each iteration of the inverse problem. With this feature, it

circle with the center point in the center of the test domaﬁﬁems that a three-dimensional inverse problem can be handled

is taken as the measurement surfateOn the surface of With present-day computer power.

S, we illuminate the object with 36 uniformly distributed
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