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Abstract. Parametric 3D human body models are valuable tools for ergonomic
product design and statistical shape modelling (SSM) is a powerful technique to
build realistic body models from a database of 3D scans. Like the underlying 3D
scans, body models built from SSMs are typically represented with triangle
meshes. Unfortunately, triangle meshes are not well supported by CAD software
where spline geometry dominates. Therefore, we propose a methodology to
convert databases of pre-corresponded triangle meshes into multi-patch B-spline
SSMs. An evaluation on four 3D scan databases shows that our method is able
to generate accurate and water-tight models while preserving inter-subject cor-
respondences by construction. In addition, we demonstrate that such SSMs can
be used to generate design manikins which can be readily used in SolidWorks
for designing well conforming product parts.

Keywords: Statistical shape modeling � B-splines � Computer-aided design
Digital human modeling

1 Introduction

In user-centered product design, ergonomics is pursued by putting the physical and
mental characteristics of the human user center-stage [1]. For products that are worn on
the body or closely interact with it, e.g. wearables, garments, seating furniture, etc.,
‘body shape’ is a dominant physical characteristic with an impact on product affordance,
comfort, and wearability [2]. Statistical shape models (SSM) are an elegant way to
represent body shape variation observed in a population. SSMs typically represent shape
variation by a shape space with the average shape at the origin and spanned by a small
set of orthogonal shape modes. In this way, each point in the shape space represents a
specific body shape and its coordinates define the contribution/weight of each shape
mode. In this formulation, the weights are body shape parameters and such parametric
body models are considered a valuable tool for user-centered product design [3].

A large part of the research on statistical shape modeling is devoted to method-
ologies for the construction of inter-subject correspondences and mathematical
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formulations of the statistical model that is derived from these correspondences. Many
algorithms are available from the literature, both for organ modeling [4–6], mostly
within the medical imaging field, as well as for full body modeling [7–12]. Most of
these works construct SSMs from 3D triangle meshes, obtained from 3D scanning or
medical imaging. Naturally, the derived SSM is also represented in triangular mesh
form. Other geometric representations for SSMs are available, e.g. landmarks, medial
models, level-sets, or basis-functions [4], but they are much less widespread.

For user-centered design, the predominance of triangular mesh SSMs is somewhat
unfortunate since digital models in the form of triangular meshes are not well supported
by popular CAD packages (e.g. SolidWorks). There, the majority of CAD operations is
only available for B-spline geometry and while reverse engineering allows the con-
version of triangular geometry to B-splines, for organic shapes it is often a slow and
cumbersome process. In addition, it generally results in a varying number and distri-
bution of patches, even for shapes generated by the same SSM. As a result, inter-
subject correspondences are lost and, with it, the ability to consistently link (para-
metric) designs to anatomical reference points on these shapes. SSMs with a spline-
based representation could improve compatibility of SSMs with CAD-software.

Only limited work has been done on spline based SSMs. In [13], Quan et al. built a
B-spline SSM of the face. They took as input triangular meshes with a pre-existing
vertex correspondence, then parameterized the meshes using cylindrical coordinates
and subsequently fitted the scans with a single B-spline patch. Unfortunately, the
cylindrical mapping approach only handles simple geometries with disc-like topology.
Hu et al. constructed SSMs of organs in the pelvic area using a NURBS representation
and deformation [14]. The NURBS, however, was manually constructed using the loft
tool in Rhinoceros and their NURBS deformation technique was only demonstrated on
very coarse organ approximations. From the brief description of the method it is
unclear whether the method can be applied to more detailed and/or complex shapes. In
[15], Peng et al. employed conformal mapping to obtain a T-spline SSM of the face and
its expressions. Similar to [13], their method is developed for shapes of disc topology
and further modification would be required to apply the methodology to more complex
shapes.

In this paper, an automated methodology is proposed that allows the construction of
SSMs with a B-spline representation with less restrictions on topology or shape. Our
method takes as input a set of pre-corresponded triangular meshes and generates as
output a multi-patch B-spline SSM, where the B-spline patch topology is derived from
a rough quadrilateral mesh approximation of the mean shape of the triangular SSM.
Shape instances generated by our B-spline SSMs have consistent patch layout and
seamlessly integrate with parametric CAD-software, where they can be utilized for
ergonomic product design.

2 Methods

Starting from a set of triangular meshes (the population sample), with a one-to-one
vertex correspondence, our method constructs an SSM with a B-spline representation
in three phases. The process is visualized in Fig. 1.
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Fig. 1. A depiction of the steps of our method for the construction of a B-spline statistical shape
model. See text for the explanation of the different steps.

In the first stage (Fig. 1a), the B-spline patch network topology for our SSM is
defined, based on a rough quadrangulation of the mean shape. The mesh of the mean
shape is then split into smaller patches, one patch per quad in the quadrangulation, and
the vertices of the patches are equipped with uv-parameters, using a convex combi-
nation mapping, to facilitate B-spline fitting. In the second stage (Fig. 1b), the shape of
each subject is approximated with a multi-patch B-spline surface. The approximation is
achieved by first warping the modified mean mesh to the subject’s shape via the vertex
correspondence, followed by a B-spline curve approximation of the patch boundaries,
and finally by a B-spline surface approximation for each of the patches where the
approximation interpolates the B-spline patch boundary curves to ensure water-
tightness of the surface. In the final stage (Fig. 1c), the SSM is calculated from the
B-spline approximations by applying principal component analysis (PCA) to the
control point coordinates and a further parametric body model can be derived via a
regression analysis of the 3D shapes versus subject features.

In the following sections, a more elaborate description of the involved steps is
provided.
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2.1 Patch Layout

Our method starts from a set of ns shapes S ¼ S1; . . .; Snsf g in triangular mesh form
with a pre-existing vertex correspondence. Thus, each shape Si is described by a set of

nv vertices vi1; . . .; v
i
nv

n o
, with vij 2 R

3 at the same anatomical location for each i. The

surfaces Si all share the same mesh connectivity consisting of nt triangles. From these
surfaces, the mean shape M can be derived with nv vertices m1; . . .;mnvf g and

mi ¼ 1
ns

Pns
j¼1

v ji . The mean shape M is fairly smooth but still contains the common

characteristic features of the shapes under consideration. We therefore consider it as a
good starting point to define the B-spline patch layout for our SSM. The patch layout is
obtained by approximating M with a rough quadrangular (or quad) mesh Q using the
mixed-integer quadrangulation method of Bommes et al. [17]. Any other method that
generates a conforming quadrangulation, i.e. without T-junctions, could be used
equally well [16]. The obtained quad mesh is described by a set of np � nv vertices in
R

3 and a set of nq � nt quads. The connectivity of this quad mesh Q will be used to
define the connectivity of the B-spline patches of the SSM in the next steps. There will
be one patch per quad and the neighborhood relation of the quads will be adopted for
the patches.

The mean mesh M is split into a set of smaller meshes, one mesh for each quad. Let
us consider a quad q from Q with vertices ðc1; c2; c3; c4Þ. First, each of the four corners
ci is mapped to the closest vertex on M; denoted ri. Here, the closest point search for
points that are on the boundary of Q is limited to the boundary vertices of M. Then, for
each edge e ¼ ck; clð Þ of the quad, a geodesic curve g between the corresponding
vertices (rk; rl) on M is traced using the method of Kimmel and Sethian [18]. Finally,
by cutting the mesh M along the four obtained geodesic curves, the surface patch that
corresponds to quad q can be extracted. This procedure is executed for each quad qi in
Q, resulting in the split of mean mesh M into a set of nq patches M1; . . .;Mnq

� �
. The i-

th patch Mi is described with ni vertices mi
j, either directly inherited from M or

introduced by the cutting of triangles along the geodesic paths.
Each of the meshes Mi will contribute one B-spline patch to the SSM. In order to

facilitate B-spline approximations in the next phase of our methodology, the vertices mi
j

of mesh patches Mi are equipped with uv-coordinates uij 2 0; 1 �� ½0; 1½ �, defining their
location in the parameter space of the B-spline. First, the perimeter of Mi is mapped to
the perimeter of the parameter space. The four corner points ofMi, corresponding to the
quad corners of qi, are mapped to the four corners of the rectangular B-spline parameter
space. The four boundary segments of Mi, connecting the patch corners, are mapped to
the straight boundary segments of the parameter space using arc-length parameteri-
zation. The mapping of the boundary of Mi is extended to the interior vertices of Mi via
the mean value surface parameterization method of Floater [19, 20]. This guarantees a
one-to-one map between the surface of Mi and the B-spline parameter space, resulting
in a complete and unambiguous parameterization of the patch for fitting. In addition,
for neighboring patches, the parameterization of common boundary curves matches up,
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which is a requirement in our methodology in order to ensure water-tightness of the
B-spline SSM.

2.2 B-Spline Approximation

For each shape Si in the population, a multi-patch B-spline approximation is calculated
based on the parameterized patches obtained in the previous step. First, the vertices of
all the surface patches Mj are warped to match the shape of Si and will be denoted Mi

j .
For vertices on Mj inherited from M, this warping is trivially derived from the vertex
correspondence between M and Si. Vertices of Mj that were newly introduced during
the splitting of M into patches, however, do not have an explicit correspondence with
M or Si. For these vertices, the warping is derived by barycentric interpolation with
respect to the triangle of M in which the vertex was inserted.

The actual B-spline approximation of Si, via the warped patches Mi
j , is obtained in

two steps, in order to ensure water-tightness. First, the boundary segments of the
warped patches are approximated with 3D uniform cubic B-spline curves, exactly
interpolating the patch corners. This is followed by the approximation of each patch
with a 3D uniform bi-cubic B-spline surface, exactly interpolating the previously
calculated B-spline boundary curves. Robustness with respect to overfitting and
undersampling is guaranteed by Tikhonov regularization promoting patch smoothness.

In this procedure, B-spline curves are specified by a set of nk uniformly spaced
knots K ¼ kif g in R and nk control points P ¼ pif g in R

3. The B-spline curve t,
parameterized by a 1D parameter u, is then defined as

t ujK;Pð Þ ¼
Xnk
i¼1

bi;4 uð Þpi; ð1Þ

where bi;4 is the i-th 1D cubic B-spline kernel [21] corresponding to the knot sequence
k1; k1; k1; k1; k2; . . .; knk�1; knk ; knk ; knk ; knkf g.

Similarly, B-spline surface patches are specified by a set of nk � nk knots K ¼ kij
� �

in R
2 with uniform spacing and nk � nk control points P ¼ pij

� �
in R

3: The B-spline
surface s is parameterized by the 2D parameter u ¼ u; vð Þ and is defined as

s ujK;Pð Þ ¼
Xnk
i¼1

Xnk
j¼1

bi;4 uð Þbj;4 vð Þpij: ð2Þ

For a given patch boundary curve with nc points xi and parameters ui, the
approximation with a B-spline curve c entails finding the optimal control points P̂ and
is formulated as the following minimization problem:

P̂ ¼ argmin
P

BP� Xk k2 þ sLP2;

subject toCP ¼ D:
ð3Þ
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The first term of the minimization objective measures the distance between the
points xi and the B-spline point t uið Þ, i.e. the fit of the curve. The nc � 3 matrix X
contains the stacked boundary points xi and the nk � 3 matrix P is formed by stacking
the unknown control points. In the sparse nc � nk matrix B, the i-th row contains for
each control point pj the weight bj;4 uð Þ it contributes to the B-spline point t uið Þ. The
second term measures the smoothness of the B-spline curve, weighted by a factor s, by
means of summing the discrete Laplacian at each interior control point pj. This
Laplacian operator is formed by the rows of the sparse nk � 2ð Þ � nk matrix L as

Lij ¼
2; i ¼ j
�1; i� jj j ¼ 1
0; otherwise

8<
: : ð4Þ

The equality constraint enforces the fixation of the two curve end-points at the
patch boundary end-points. The 2� nk matrix C is sparse and has a 1 on the first row at
the index of the first control point and on the second row at the index of last control
point. The 2� 3 matrix D contains the stacked start and end point of the patch
boundary. The minimum of Eq. (3) is obtained by solving the normal equations
BTBþ kLTLð ÞP ¼ BTX using a sparse LU factorization [22] with Karush-Kuhn-Tucker
conditions to enforce the equality constraints.

For the fitting of the surface patches an analogous procedure as in Eq. (3) is
followed. Matrix X is formed as before by stacking the patch points, P contains the grid
of unknown control points in row-major order, and matrix B now contains the row-
major ordered weights bi;4 uð Þbj;4 vð Þ for the grid of control points pij. The matrix L
computes the 2D discrete Laplacian, with a central weight of 4 and a weight of �1 for
the four incident control points on the grid. Finally, the equality constraints simply
match the control points at the boundaries u ¼ 0, v ¼ 1, u ¼ 1, and v ¼ 0 with the
control points of the previously calculated boundary B-spline curves. The resulting
sparse system is again solved with LU-factorization.

The approach outlined in this section results in a water-tight, multi-patch approx-
imation of each subject preserving the inter-subject correspondences.

2.3 SSM Construction

In order to calculate a B-spline SSM, each subject is represented by a n-dimensional
vector obtained by concatenating the coordinates of all control points of all its B-spline
patches calculated in the previous section. By applying a PCA on the resulting ns
vectors of dimension n a linear model of the variation is obtained:

H ¼ �Hþ
Xns�1

i¼1

wi
€Hi: ð5Þ

Here,H is the nD vector of control point coordinates of the modeled shape, �H is the
n D vector of mean control point coordinates, €Hi are the ns � 1 principal component
vectors of dimension n providing a basis for the space of shape variations, and the
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weights wi control the contributions of the shape variations for a specific shape H.
Typically, the weights wi are allowed to vary in the range jwij\3

ffiffiffiffi
ki

p
, where ki is the i-

th eigenvalue obtained in the PCA. In order to reconstruct the B-spline patches of the
modeled shape, the control points of each patch in H are inserted in Eq. (2).

Following the approach of Allen et al. [7], a further body model is constructed that
is parameterized by subject features, such as height, age, BMI, etc. The parameteri-
zation is captured by an ns � 1ð Þ � nf þ 1

� �
linear mapping matrixP that maps subject

features fj onto the PCA weights wi ¼ ½w1. . .wns�1�T for each subject:

P½f1. . .fnf 1�T ¼ wi: ð6Þ

The mapping matrix is obtained by solving P ¼ WF þ , where W is the ns � 1ð Þ �
ns matrix of stacked subject PCA weights wi, F is the ðnf þ 1Þ � ns matrix of stacked
subject feature vectors, and F þ denotes the pseudo-inverse of F. With the obtained
mapping matrix P, Eq. (5) can be rewritten to obtain a model parameterized by subject
features:

H f1; . . .; fnf
� � ¼ �Hþ €HP½f1. . .fnf 1�T ; ð7Þ

where €Hi is the n� ðns � 1Þ matrix obtained by horizontally stacking the ns � 1
principal components €Hi.

Fig. 2. The four datasets the methodology was evaluated on: (1) MRI heads, (2) CAESAR
heads, (3) ear molds, and (4) femurs. For each dataset, from left to right, the mean shape, the
quad mesh, a population subject, and the B-spline fit of that subject as calculated by our method.
The table lists the chosen parameters that are required as inputs to our methodology.
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2.4 SolidWorks AddIn

The authors developed a custom SolidWorks AddIn that allows the creation of
instances of the parametric body models as native (B-spline) surfaces in SolidWorks.
The AddIn with GUI was written in VB.net. The AddIn communicates with a custom
written C#-library that encapsulates the model IO (HDF5 format) and shape generation
process of Eq. (6).

3 Results

Our methodology was applied to four datasets: (1) 100 head surfaces, 50 male and 50
female subjects, extracted from MRI data in the ICBM database [23], (2) 1384 head
surfaces from the CAESAR laser scan database [24], comprising 346 surfaces each of
the groups male-Dutch, female-Dutch, male-Italian, and female-Italian, (3) 150 ear
scans based on laser scans of silicone ear molds, and (4) 189 femur surfaces extracted
from CT scanning. All surfaces were triangle meshes and inter-subject correspondences
were calculated with previously published methods of the authors: the elastic surface
registration method of [25] for datasets (1) and (2) and the cylindrical correspondence
method of [6] for datasets (3) and (4). Intermediate results for each of the four datasets
are shown in Fig. 2, along with the input parameters required by our methodology.

Fig. 3. Top: the triangle mesh of the first subject in the femur dataset. Bottom: resulting
B-spline fits of this subject with varying number of control points per patch (rows) and Tikhonov
regularization factors s (columns). The fitting error is also provided for each case, measured as
RMS surface distance from the mesh to the B-spline fit (in mm).
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An experiment was performed on the femur dataset to investigate the influence of
the number of control points per patch and the Tikhonov regularization factor s (cfr.
Eq. (3)) on the B-spline fitting. A multi-patch B-spline fit was calculated for the first
subject of the database with combinations of, on the one hand, grids of 6� 6, 12� 12,
and 24� 24 control points per patch, and on the other hand, Tikhonov regularization
factors of 0:001, 0:01, 0:1, 1:0, and 10:0. The resulting B-spline surfaces are shown in
Fig. 3. There, also an estimate of the surface fit is provided by means of the root mean
square (RMS) surface distance, measured from the triangle mesh vertices to the closest
points on the B-spline surface.

The most computationally intensive part of our methodology is the fitting of the
B-spline patches for all subjects in the population. For all datasets, the computation
time per subject took up to 2s on a single core of an i7-5960X CPU.

In order to demonstrate our SolidWorks AddIn, a parametric model, with a variety
of subject features such as ‘head length’ and ‘head width’, was calculated from the
MRI head dataset and loaded into SolidWorks via our AddIn. Four head shapes
(manikins) were generated: the average head and three heads with varying head width
(percentile 5, 50 and 95). Finally, the average head manikin was employed to construct
a part with perfect fit to the body using standard SolidWorks CAD-operations. The
results are shown in Fig. 4.

4 Discussion

The results in this paper show that our methodology is able to convert triangle mesh
SSMs to B-spline parametric body models for a variety of shapes, without sacrificing
on accuracy, water-tightness, or anatomical correspondence. Our methodology has
three input parameters: number of patches, control point grid size, and the Tikhonov

Fig. 4. Example body shapes (manikins) generated by our method and imported into SolidWork
though our AddIn. Left: the average manikin of the MRI head model. Middle: cut-away of three
manikins of this model with varying head/bi-tragion width (P5-50-95). Right: cutaway of the
average manikin together with a perfectly fitting solid body obtained from the manikin by the
SolidWorks features ‘Intersect’ and ‘Shell’.
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regularization factor. It was empirically determined that accurate models with a limited
number of control points can be obtained by balancing the number of patches (here
ranging from 90 to 200) with the number of control points per patch (ranging from
8� 8 to 12� 12). For the models considered in this paper, the Tikhonov regularization
factor, used to regularize the B-spline fitting of the patches, could be kept constant at
0:01. A further analysis on the femur dataset demonstrated that the resulting models are
not too sensitive to the regularization factor, i.e. the amount of smoothing and the
fitting error remained acceptable for regularization factors differing several orders of
magnitude: Fig. 4, s ranging from 0:001 to 0:1 for the femur with a 12� 12 grid size.
Nevertheless, a too low value might lead to an ill conditioned system, especially when
the number of control points far exceeds the number of vertices in the patch. Too high
values can result in significant artifacts at the patch boundaries as can be seen from
Fig. 4.

The resulting SSMs are also easily imported in CAD software, via our AddIn, and
can be used to generate a variety of body shapes that are sufficiently detailed for the
ergonomic design of products. Using standard CAD-operations, available in Solid-
Works, products or product parts can be constructed directly from the manikins to
nicely conform to the contours of the human body, as demonstrated in Fig. 4. It should
be noted, however, that certain CAD operations, like surface offsetting, are notoriously
complicated and are not always able to generate valid results for organic shapes. We
anticipate that the robustness of these algorithms will keep on improving, but also
acknowledge that it might also help if our models would be smooth at patch boundaries
(on top of the water-tightness we currently provide).

For future work, we envisage two main directions. On the one hand, we would like
to further improve the B-spline approximation by (a) integrating the splitting of the
mean mesh in patches with the quad-remeshing step for improved stability and (b) by
including the boundary curve normals in the patch fitting for improved smoothness at
the patch boundaries. On the other hand, we would like to further improve the mod-
eling step by investigating the use of weighted PCA to compensate for patch size
variations in the SSM and to extensively evaluate the derived B-spline SSMs in terms
of model compactness, generalization ability, and specificity.

Acknowledgments. This work was financially supported by VLAIO grants TETRA-130771
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