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In this paper we apply the general analysis described in our first paper to a binary mixture of cyclohexane
and n-hexane. We use the square gradient model for the continuous description of a nonequilibrium surface and
obtain numerical profiles of various thermodynamic quantities in various stationary state conditions. Details of
the numerical procedure are given and discussed. In the second part of this paper we focus on the verification
of local equilibrium of the surface as described with excess densities. We give a definition of the temperature
and chemical potentials of the surface and verify that these quantities are independent of the choice of the
dividing surface. We verify numerically that the surface in a stationary state of the mixture can be described in
terms of Gibbs excess densities, which are found to be in good approximation equal to their equilibrium values
at the stationary state temperature and chemical potentials of the surface.
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I. INTRODUCTION

In a previous article �1� we have established the square
gradient description of the interface between two phases in
nonequilibrium mixtures. We considered temperature, den-
sity, and mass fraction gradients; heat and diffusion fluxes as
well as evaporation or condensation fluxes through the inter-
face. Some profiles were given in �1�, without going into
details of the numerical procedures used to obtain them. In
this paper we will do this.

In the general description of the interface one uses contri-
butions to the Helmholtz free energy density proportional to
the square of the density and mass fraction gradients. These
contributions imply that it is not possible to use continuous
local equilibrium thermodynamics in the interfacial region,
i.e., to calculate the local values of the various thermody-
namic parameters in terms of the local density, mass frac-
tions, and temperature only. Rowlinson and Widom �see �2�,
p. 43� use the name point thermodynamics for this, to distin-
guish it from other quasi-or local thermodynamic treatments.
Given the nonautonomous nature of the square gradient
model, it is sensible to question whether a description in
terms of excess variables along the lines given by Gibbs �3�
can be autonomous. Gibbs’ treatment, though only given for
equilibrium systems, suggests such an assumption. This
would imply that the surface is a separate thermodynamic
phase. Bakker �4� and Guggenheim ��5�, p. 45� made this
assumption, the validity of which was subsequently disputed
by Defay and Prigogine �6�. We refer to Rowlinson and Wi-
dom ��2�, p. 33� for a discussion of this point. In the theory
of nonequilibrium thermodynamics of surfaces �7–10�
Gibbs’ description in terms of excess variables has been
used. It is then assumed that Gibbs’ description of the surface
in terms of excess variables is autonomous, or in other words
that one can use this property, which we will call local equi-
librium of the surface, to describe the surface. In earlier work
�11� coauthored by one of us, this property was verified for a
one-component square-gradient system. It is the main objec-
tive of this paper to verify this property for binary mixtures.

For details about the extension of the square-gradient model
to nonequilibrium mixtures we refer to �1�. For figures of
typical density, mass fraction, and temperature profiles, and a
discussion thereof, we also refer to the first paper. In this
paper we focus on the properties of the excess variables.

The validity of local equilibrium for a surface in a non-
equilibrium mixture is a great simplification. Without this
simplification the surface excess densities depend also on the
values of the temperature and chemical potentials of the ad-
jacent phases. This complicates the description to a level that
is difficult to manage. Also the possibility to introduce and
define a temperature and chemical potentials for the surface,
which are independent of the location of the dividing surface
chosen, is an important simplification. For the one-
component system local equilibrium has been verified on the
basis of both molecular dynamics simulations �12–14� and
the nonequilibrium square-gradient model �11�. For binary
mixtures a limited number of molecular dynamics simula-
tions of evaporation and condensation have been done
�15–18�. None are available which verify the property of
local equilibrium, however. Establishing this property using
the square-gradient model is therefore the only available op-
tion. For a proper understanding of an important industrial
process such as distillation the validity of local equilibrium
for the interface would be a great help. In this paper we
succeed to prove this for a binary mixture. Given the validity
for one- and two-component systems we feel confident to
formulate the hypothesis that local equilibrium is valid for
surfaces in nonequilibrium multicomponent mixtures.

We consider a flat interface between a binary liquid and
its vapor with the normal n= �1,0 ,0� pointing from the vapor
to the liquid. We choose all fluxes and gradients to be in the
x direction. Due to this, all variables depend only on the x
coordinate. To simplify the analysis we assume the fluid to
be nonviscous, so that the viscous pressure tensor ���=0.
Neither the parallel nor the normal hydrostatic pressure are
assumed to be constant.

In Sec. II we give all the equations which are required for
the determination of the various profiles in stationary states
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of the system. The numerical analysis of stationary states is a
natural first step, as the numerical analysis of nonstationary
states is much more involved. In the following section we
shall give the various thermodynamic densities which follow
from the van der Waals equation of state �1� and the gradient
terms to be added in the interfacial region. We choose the
system such that the gas is on the left-hand side and the
liquid is on the right-hand side. The x axis is directed from
left to right and the gravitational acceleration g is directed
towards the liquid. The numerical solution is calculated be-
tween two points where boundary conditions are given. The
region between these two points we refer to as the box. In
Sec. III we describe the numerical procedure which has been
used to solve these equations. We give the results in Sec. IV.
We then proceed to the second part of the article, the verifi-
cation of local equilibrium of the surface. In Sec. V we in-
troduce excesses and surface variables and discuss in general
the meaning of local equilibrium of the surface. In Sec. VI
we give the results of the verification procedure. Finally, in
Sec. VII we give concluding remarks.

II. COMPLETE SET OF EQUATIONS

We give the complete set of equations required to calcu-
late the various profiles in the nonequilibrium mixture. This
set is given by the hydrodynamic balance �conservation�
equations, the thermodynamic equations of state, and the
phenomenological force-flux relations. These equations were
given �derived� and discussed in �1�, to which we refer. In
this paper we will only list them for the stationary case.

A. Conservation equations

In a stationary state the conservation equations take the
following form: The law of mass conservation for the com-
ponents give

d

dx
��v� = 0,

d

dx
�J1 + �1v� =

d

dx
�J1 + ��v� = 0, �2.1�

where �=�1+�2 and v= ��1v1+�2v2� /� are the mass density
and the barycentric �center of mass� velocity. Furthermore
�=�1 /� is the mass fraction of the first component and J1
=�1�v1−v�=���v1−v� is the diffusion flux of the first com-
ponent relative to the barycentric frame of reference. The
diffusion flux of the second component is J2=�2�v2−v�
=−J1. Momentum conservation is given by

d

dx
��v2 + p + �xx� = �g , �2.2�

where ��� is called the thermodynamic tension tensor, which
will be defined below. Furthermore p and p+�xx are the pres-
sures parallel and perpendicular to the interface, for the pla-
nar interface under consideration. For curved surfaces see
our first paper �1�. Energy conservation is given by

d

dx
Je = 0, �2.3�

where Je�Jq+�ev+ pv is the total energy flux, Jq is the heat
flux, e=u+v2 /2−gx is the total specific energy, and u is the
specific internal energy.

B. Thermodynamic equations

The square gradient model, discussed in the first paper
�1�, gives the following expressions for the specific Helm-
holtz energy f , the specific internal energy u, the parallel
pressure p, the chemical potential difference1 ��	1−	2, the
chemical potential of the second component 	�	2, and the
xx element of the tension tensor �xx:

f�x� = f0�T,�,�� + K��,�,��,��� ,

u�x� = f0�T,�,�� − T
�

�T
f0�T,�,��

+ K��,�,��,��� ,

p�x� = �2 �

��
�f0�T,�,�� + K��,�,��,����

− �
d

dx
��

�

���
K��,�,��,���� ,

��x� =
�

��
�f0�T,�,�� + K��,�,��,����

−
1

�

d

dx
��

�

���
K��,�,��,���� ,

	�x� =
�

��
���f0�T,�,�� + K��,�,��,����	

− ��x�� − �
d

dx
��

�

���
K��,�,��,���� ,

s�x� = −
�

�T
f0�T,�,�� ,

�xx�x� = 2�K��,�,��,��� . �2.4�

Here f0�T ,� ,��= f0

�T ,c ,�� is the specific Helmholtz energy

of the homogeneous phase, which can for instance be de-
rived from the equation of state. Furthermore K�� ,� ,�� ,���
is the gradient contribution, where the primes indicate a de-
rivative with respect to x. Since the equation of state is usu-
ally given in molar quantities, it is convenient to use them
here as well. Thus, c=� /M is the molar concentration, �
=�M /M1 is the molar fraction of the first component, where
M =M1M2 / �M1+��M2−M1��=M2+��M1−M2� is the molar
mass of the mixture, and M1 and M2 are molar masses of
each component.

1We use this name lacking a better one

K. S. GLAVATSKIY AND D. BEDEAUX PHYSICAL REVIEW E 79, 031608 �2009�

031608-2



C. The Helmholtz energy of a homogeneous system

This energy is given by the following equation:

f0

�T,c,�� = − RT ln� e

cNA

w�T,��
�3�T,��

�1 − B���c�� − A�T,��c ,

�2.5�

where the de Broglie wavelength � and the characteristic
sum over internal degrees of freedom w are, respectively,

��T,�� = NA� 2�

MRT
�1/2

,

w�T,�� = 
w1

�
�M1

M
�3/2��
 w2

1 − �
�M2

M
�3/2�1−�

. �2.6�

Expressions for the characteristic sums over internal degrees
of freedom for each component, w1 and w2, are given in �1�.
In this paper they are assumed to be independent of the tem-
perature and the molar fractions, i.e., just constant numbers.
Equation �2.5� together with Eq. �2.6� follow from the van
der Waals equation of state.

The mixing rules for A and B are

A�T,�� = a11�
2 + 2a12��1 − �� + a22�1 − ��2,

B��� = b1� + b2�1 − �� , �2.7�

with aij =�aiaj, where ai as well as bi is a coefficient of a
pure component i. We will assume in this paper that all aij
and bi are independent of temperature.

D. The gradient contribution

This contribution is given by the following general ex-
pression for a binary mixture

K��,�,��,��� �
1

2�
������,����2 + 2�����,������

+ �����,����2� . �2.8�

The coefficients ���, ���, and ��� can be expressed in the
gradient coefficients ��1�1

and ��2�2
for components 1 and 2

in the following way �see �1� for details�:

�����,�� = ���1�1
− 2��1�2

+ ��2�2
��2 + 2���1�2

− ��2�2
��

+ ��2�2
,

�����,�� = ���1�1
− 2��1�2

+ ��2�2
��� + ���1�2

− ��2�2
�� ,

�����,�� = ���1�1
− 2��1�2

+ ��2�2
��2, �2.9�

where for the cross coefficient we use the mixing rule ��1�2
=���1�1

��2�2
similar to the one for coefficients aij. In this

paper we will assume ��i�j
to be independent of the densities.

With the above mixing rules the gradient contribution can
be written in the form

K��,�,��,��� �
�q�2

2�
, �2.10�

where ����2�2
and q���1+��

m��, where ��
m��������1�1

−���2�2
� /���2�2

. Some of the quantities from Eq. �2.4� can
be rewritten as

p�x� = p0 − ��1

2
q�2 + qq�� ,

	�x� = 	0 − �q�,

��x� = �0 − ���q�, �2.11�

where p0, 	0, and �0 are values of the corresponding quan-
tities in the homogeneous phase, which are found from Eq.
�2.4� by setting K=0. For a one-component fluid q equals the
density. For the two-component mixture q plays a similar
role as the density for the one-component fluid. We shall
therefore refer to q as the order parameter.

For the surface tension of the flat interface one may show,
using Eq. �2.10� and Eq. �2.4�, that in equilibrium

�eq = dx�xx,eq�x� = dx2�Keq = � dxqeq�
2. �2.12�

It follows that ��i�i
is proportional to the surface tension of

the pure component �i. It follows therefore that as an esti-
mate for �� one may use the relation

�� ���1

�2
− 1. �2.13�

In an organic mixture such as cyclohexane and n-hexane,
a mixture we will study in more detail in this paper, the
components are very similar and as a consequence ���� is
small, as one can see from Eq. �2.13�. The order parameter is
then in good approximation equal to the density. When the
components are very different ���� may be large and q may
become in good approximation equal to the density of one of
the components.

E. Phenomenological equations

In the first paper �1� we derived the general expression for
the entropy production of a mixture in the interfacial region.
For a binary mixture which has only gradients and fluxes in
the x direction it takes, neglecting the viscous contribution,
the following form:

� = Jq
d

dx

1

T
− J1

d

dx

�

T
, �2.14�

where we used J2=−J1. The resulting linear force-flux rela-
tions are

d

dx

1

T
= RqqJq − Rq1J1,
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d

dx

�

T
= R1qJq − R11J1. �2.15�

The resistivity coefficients Rqq, R11, and Rq1=R1q will in gen-
eral depend on the densities, their gradients, as well as on the
temperature, so they vary through the interface. Expressions
for the resistivity profiles in the interfacial region are not
available. We model them, using the bulk values as the lim-
iting value away from the surface and the order parameter
profile as a modulatory curve,

Rqq�x� = Rqq
g + �Rqq

� − Rqq
g �q0�x� + �qq�Rqq

� + Rqq
g �q1�x� ,

Rq1�x� = Rq1
g + �Rq1

� − Rq1
g �q0�x� + �q1�Rq1

� + Rq1
g �q1�x� ,

R11�x� = R11
g + �R11

� − R11
g �q0�x� + �11�R11

� + R11
g �q1�x� ,

�2.16�

where

q0�x� =
q�x� − qeq

g

qeq
� − qeq

g , q1�x� =
�q��x��2

�qeq� �x��max
2 �2.17�

are modulatory curves for resistivity profiles. Here qeq
g and

qeq
� are the equilibrium coexistence values of the order pa-

rameter of the gas and liquid, respectively. Furthermore
�qeq� �x��max

2 is the maximum value of the squared equilibrium
order parameter gradient. For each resistivity profile Rg and
R� are the equilibrium coexistence resistivities of the gas and
liquid phase, respectively. Coefficients �qq, �q1, �11 control
the size of the gradient term, which gives peaks in the resis-
tivity profiles in the interfacial region. Such a peak is ob-
served in molecular dynamic simulations of one-component
fluids �19�.

Limiting coefficients Rb �where b is either g or �� are
related to measurable transport coefficients in the bulk
phases: thermal conductivity �b, diffusion coefficient Db, and
Soret coefficient sT

b. In the description of transport in the
homogeneous phases it is convenient to use measurable heat
fluxes

Jq�
b = Jq

b − J1
b�h1

b − h2
b� , �2.18�

where hi
b is a specific enthalpy of component i in phase b.

Furthermore we used J2
b=−J1

b. In the homogeneous phases
the entropy production then takes the following form:

� = Jq�
d

dx

1

T
− J1

1

T

d�T

dx
, �2.19�

where we have suppressed the superscript b for now. The
subscript T of � indicates that the gradient is calculated
keeping the temperature constant. Using the Gibbs-Duhem
relation in a homogeneous phase at a constant pressure one
can show

d�T

dx
=

�	1

��

1

�1 − ��
d�

dx
. �2.20�

After introducing measurable transport coefficients, the
force-flux relations derived from Eq. �2.19� can be written in
a form used in �20�,

Jq� = − �
dT

dx
− ��

�	1

��
TDsT

d�

dx
,

J1 = − ���1 − ��DsT
dT

dx
− �D

d�

dx
. �2.21�

Comparing Eq. �2.15� and Eq. �2.21� in the homogeneous
region we find the values R of corresponding resistivity co-
efficients,

Rqq =
1

LT2

D�

��

,

Rq1 = R1q =
1

LT2�D�

��

�h1 − h2� + DsT���1 − ��T� ,

R11 =
1

LT2�D�

��

�h1 − h2�2 + DsT���1 − ��T�h1 − h2� + �T� ,

�2.22�

where ��= ��� /���, L= ��D� /���− �DsT���1−���2T. All the
quantities in Eq. �2.22� are taken in the specified, either gas
or liquid, phase.

III. SOLUTION PROCEDURE

The numerical procedure is similar to the one described in
�21�, however, it has some differences. We will describe the
special features below. We use the MATLAB procedure bvp4c
�22� to solve the stationary boundary value problem. This
requires a reasonable initial guess as well as boundary con-
ditions. We use the equilibrium profile as the initial guess.
We use a box of width 80 nm with the grid containing 81
equidistantly spread points.

A. Equilibrium profile

It is easier to describe equilibrium properties of the mix-
ture using molar quantities. In this section we will do this.
The superscript 
 indicates a molar quantity. The total molar
concentration and molar fraction of the first component, de-
noted by c and �, respectively, were defined at the end of
Sec. II B.

Equilibrium coexistence is determined by the following
system of equations:

	eq

 = 	0


�Teq,ceq
g ,�eq

g � = 	0

�Teq,ceq

� ,�eq
� � ,

�eq

 = �0


�Teq,ceq
g ,�eq

g � = �0

�Teq,ceq

� ,�eq
� � ,

peq = p0�Teq,ceq
g ,�eq

g � = p0�Teq,ceq
� ,�eq

� � , �3.1�

where �0

= ��f0


 /���, 	0

= f0


+c��f0

 /�c�−�0


�, and p0
=c2��f0


 /�c� are chemical potentials and pressure of the ho-
mogeneous phases. ceq

g , �eq
g and ceq

� , �eq
� are coexistence den-

sity and mass fractions of gas and liquid, respectively.
Having six equations, Eq. �3.1�, and eight unknowns, ceq

g ,
�eq

g , ceq
� , �eq

� , �eq

 , 	eq


 , peq, Teq, two of the unknowns need to
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be specified for the two component mixture. The temperature
and the pressure are experimentally a convenient choice. We
have found, however, that it is more convenient to control
Teq and �eq


 in the calculations, because �eq

 changes mono-

tonically with �eq
g or �eq

� , and it is therefore a good measure
for the composition. Since �
=	1


−	2

, the value of �
 gives

the difference of the chemical potentials of two components.
To obtain the equilibrium profiles ceq�x� and �eq�x� one

needs to solve a system of two differential equations

	eq

 = 	0


�c,�� − �
�q
��,

�eq

 = �0


�c,�� − ��

�
�q
��, �3.2�

where q
=c�1+��

��=qM2, �
=�M2

2, and ��

 = �1

+����M1 /M2�−1, where M1 and M2 are the molar masses
of the components. This system of equations is, in fact, sin-
gular, since coefficients of the higher derivatives are propor-
tional. Thus, we can derive one algebraic equation instead of
a differential one,

�0

�c,�� − ��


	0

�c,�� = �eq


 − ��

	eq


 . �3.3�

The bvp4c procedure takes only differential equations, so we
have to transform Eq. �3.3� to a differential one. This can be
done easily by taking the derivative of both sides. After some
transformations, we have the following equation set:

�q
�� =
1

�
 �	0

�c,�� − 	eq


 � ,

�� = − �q
��
�1 + ��

��

�0�

 − ��


	0�



�0c

 − ��


	0c

 −

��

q

1 + ��

�
�−1

, �3.4�

where subscripts � or c mean partial derivative of the corre-
sponding quantity with respect to � or c. This is the system of
3 first-order differential equations for 3 variables �, q
, and
�q
��, which requires 3 boundary conditions. One of them is
Eq. �3.3� taken on one of the boundaries, which simply de-
termines the integration constant for the second differential
equation. The other two are �q
���xg�=0 and �q
���x��=0,
which indicates the fact that box boundaries are in the ho-
mogeneous region.

The numerical procedure allows the variables to take any
value. However, not all the values are allowed physically.
For instance, the mole fraction � is bounded in the interval
�0; 1� and the molar concentration is bounded in the interval
�0;B−1�, where B is given in Eq. �2.7�. In order to avoid
out-of-range problems, we use the function which safely
maps a unit interval to real axes,

X�u� = arcsin�2u − 1� and X��u,u�� �
d

dx
X�u� =

u�
�u − u2

.

�3.5�

Particularly, the actual variables, which we provide to the
bvp4c procedure are

Y1 = X��� ,

Y2 = X�q
/q�

 � ,

Y3 = X��q
/q�

 ,�q
��/q�


 � , �3.6�

where q�

 =B−1 max�1, ���


�� is the limiting value for q
.

B. Nonequilibrium profile

Nonequilibrium conditions are implemented by changing
temperature or pressure from their equilibrium values. This
results in mass and heat fluxes through the interface. The
amount of matter will then change in the gas and liquid
phase. We will put the system in such conditions, that the
total contents of the box is constant and equal to the equilib-
rium contents. It means that if some amount of liquid has
been evaporated, the same amount of gas is condensed ex-
ternally and put back into the liquid phase.

We introduce the overall mass m�x�=�xg

x dy��y� and the
mass of the first component m��x�=�xg

x dy��y���y�, which
obey the following equations by definition:

m��x� = ��x� ,

m���x� = ��x���x� . �3.7�

We introduce the overall mass flux Jm, the mass flux of the
first component J�, the energy flux Je, and the “pressure” flux
Jp,

Jm = �v,

J� = J1 + �Jm,

Je = Jq + Jm
u0 +
1

2
� Jm

�
�2

+
1

�
�p� −

1

2
�q�2� − gx� ,

Jp = p� +
Jm

2

�
− mg . �3.8�

From Sec. II A one can see that all these fluxes are constant.
From Eq. �2.11� we obtain

�q� =
1

q
�p0 − p� +

1

2
q�2� ,

�q� =
1

��

��0 − �� , �3.9�

where p��x�= p�x�+�q�2. As in Eq. �3.2� we have a singular
set which leads to the algebraic equation

�0 − � −
��

q
�p0 − p� +

1

2
q�2� = 0. �3.10�

Taking derivative of this equation with respect to the coordi-
nate we obtain the expression for the first derivative of the
fraction

�� =
�� − ���0��� − ��p0 − p��������/q��

�0� − �p0 − p������q�
, �3.11�

where ������ /��� and ��������−����=�qq�+�TT� for
any �. The expressions for ��, T�, and q� are taken from Eq.
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�2.15� and Eq. �3.9�. The expressions for p0, �0, as well as
�0T, �0q, and �0� one can derive from Eq. �2.5� using stan-
dard formulas. Furthermore, p��=−Jm

2 �� /q and �p����= �qg
+q�Jm

2 /q2� / �1+����.
As a consequence we have 7 unknown variables, q, q�, m,

m�, �, T, �, and 4 unknown fluxes, Jm, J�, Je, Jp. This re-
quires 7 first-order differential equations and 11 boundary
conditions �7 of them determine integration constants of dif-
ferential equations and 4 of them determine constant fluxes�.
As differential equations we use Eq. �3.7�, Eq. �2.15�, one of
Eq. �3.9�, and Eq. �3.11�. As boundary conditions we use the
following: The first boundary condition is Eq. �3.10� taken
on one of the boundaries, which simply determine the inte-
gration constant for Eq. �3.11�. The 4 other conditions con-
trol the overall content of the box �particularly, it is the same
as in equilibrium�,

m�xg� = 0,

m��xg� = 0,

m�x�� = meq,

m��x�� = m�,eq. �3.12�

Here meq and m�,eq are the equilibrium values of the total
overall mass and the total mass of the first component in the
whole box. The 2 more conditions are

q��xg� = 0,

q��x�� = 0, �3.13�

which indicate the fact that box boundaries are in the homo-
geneous region. In contrast to the equilibrium case, the den-
sity in the nonequilibrium homogeneous region may vary
with coordinate, so q� differs from zero on the boundaries,
and, in fact, they do. The value of the q� is, however, small
in the homogeneous region, comparing to the value in the
surface region, so we may neglect it and use such approxi-
mation. This will lead to the wrong profile behavior only in
the small vicinity on the boundary, which we will exclude

from the further analysis. The choice of the 4 last boundary
conditions should preferably reflect the conditions of a pos-
sible experiment. For instance, we may control the tempera-
tures on both sides of the box, the pressure on the vapor side
and the fraction on the liquid side,

T�xg� = Tg,

T�x�� = T�,

p��xg� = pg,

��x�� = ��. �3.14�

To solve these equations numerically we use the same
techniques as in the equilibrium case. All the variables
should be properly scaled in order to make them the same
order of magnitude. This balances the numerical residual and
gives better solution result. We use the following variables:

Y1 = X��� ,

Y2 = X�q/q�� ,

Y3 = X��q/q�,q�/q�� ,

Y4 = m/�x*q*� ,

Y5 = m�/�x*q*� ,

Y6 = T*/T ,

Y7 = ��/T��T*/�*� , �3.15�

where X is defined in Eq. �3.5�, q�=q�

 /M2, and scaling pa-

rameters x*=x�−xg, T*=Teq, �*=�eq, q*= peq /�eq.

IV. TEMPERATURE AND CHEMICAL POTENTIAL
PROFILES

A. Data input

In this section we show some profiles, obtained with the
help of the above procedure. We choose a mixture of cyclo-
hexane �component 1� and n-hexane �component 2� and give
some of their properties relevant for our calculation in the
table below. We note that among them only the molar masses
have been measured. There are a number of problems to
obtain the values of other material properties. We deter-
mined, for instance, the two van der Waals coefficients of the
pure phases using their critical temperatures and pressures.2

As a consequence the critical volumes per mole found in our
description for the pure components differs substantially
from the experimental value. For the mixture the van der
Waals coefficients were then found using the mixing rules,
Eq. �2.7�. We use the values of the molar mass and the van
der Waals coefficients given in Table I.

2In this we follow the example of the Handbook of Chemistry and
Physics �23� rather than Refs. �11,21� where Tc and vc were used.

TABLE I. The molar mass and the van der Waals coefficients of
cyclohexane �1� and hexane �2�.

Component
M �10−3

�kg/mol� a �J m3 /mol2�
b�10−5

�m3 /mol�

1 84.162 2.195 14.13

2 86.178 2.495 17.52

TABLE II. Transport coefficients.

Phase and/or component

� �W/�m K��

D �m2 /s� sT �1 /K�1 2

Gas 0.0140 0.0157 3.876�10−5 10−4

Liquid 0.1130 0.1090 3.876�10−9 10−4
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Transport coefficients of homogeneous fluids depend on
temperature and densities, while these dependencies are not
always available. We use typical constant values of these
coefficients at the conditions, close to the above equilibrium
conditions. The values of the thermal conductivity � are well
tabulated and we take them from �24�. We take a typical
value of the diffusion coefficient D for a liquid mixture in the
barycentric frame of reference from �25� and use the argu-
ment from Ref. �20�, p. 279, to obtain the typical value of the
diffusion coefficient for a gas mixture. Another argument
from �20�, p. 279 is used to obtain the typical value of the
Soret coefficient sT. We use the data given in Table II to-
gether with the “mixing” rules for the heat conductivity

�g = �eq
q �1

g + �1 − �eq
q ��2

g,

�� = �eq
� �1

� + �1 − �eq
� ��2

�. �4.1�

In the calculations in this paper we took the term related to
the possibility of excess resistivities in the interfacial region
equal to zero, �qq=0, �q1=0, and �11=0 in Eq. �2.16�. As
one can see in the figures in �1� the choice of �qq=1 of
�11=1 leads to a relatively minor change in the continuous
profiles. In view of the complexity of the analysis we there-
fore restricted the analysis to zero �’s. We do not expect
finite and realistic values of �’s will modify our results re-
garding the validity of local equilibrium for the surface.

The values of the gradient coefficients are not available at
all. One can determine them comparing the actual value of
the surface tension of a pure fluid with the one, calculated
with a given ��i�j

. For given conditions the value of the
surface tension of the mixture is about 0.027 N /m. We there-
fore choose �
 to be equal to 12�10−18 J m5 /mol2 and ��




=0.01. This gives ��16�10−16 J m5 /kg2 and ���0.03 ac-
cording to the line below Eq. �3.2�. This also gives values of
the surface tension around 0.03 N /m.

B. Results

The equilibrium properties of the system are calculated3 at
Teq=330 K and �eq


 =700 J /mol. This gives peq
=376 095 Pa, 	eq


 =−57 098 J /mol, ceq
g =153.23 mol /m3, ceq

�

=4898.26 mol /m3, �eq
g =0.5519, and �eq

� =0.5934.
The mixture is then perturbed from equilibrium for the

following three cases: �1� setting T� equal to 0.98, 0.99, 1.01,
1.02 of Teq and keeping Tg, pg, and �� equal to their equilib-
rium values, see Fig. 1; �2� setting pg equal to 0.98, 0.99,
1.01, 1.02 of peq and keeping Tg, T�, and �� equal to their
equilibrium values, see Fig. 2; �3� setting �� equal to 0.98,
0.99, 1.01, 1.02 of �eq

� and keeping Tg, T�, and pg equal to
their equilibrium values, see Fig. 3. Both the profiles and the
equilibrium properties were calculated with an accuracy
10−6.

V. LOCAL EQUILIBRIUM OF THE SURFACE

In equilibrium it is possible to describe the surface in
terms of Gibbs excess quantities �3�. One can treat a system
of coexisting liquid and vapor as a three-phase system: liquid
and vapor bulk phases and the surface. The surface has ther-
modynamic properties. The temperature and chemical poten-
tials have the same equilibrium value as in the rest of the
system. Furthermore the thermodynamic state of the surface
is given by excess concentrations and thermodynamic poten-
tials. Following Gibbs we have for the surface

heq
s = 	1,eqc1,eq

s + 	2,eqc2,eq
s + Teqseq

s ,

ueq
s = 	1,eqc1,eq

s + 	2,eqc2,eq
s + �eq

s + Teqseq
s ,

feq
s = 	1,eqc1,eq

s + 	2,eqc2,eq
s + �eq

s ,

3From now on we will use specific quantities per unit of mole in
the description. We will omit the superscript 
 in the following
sections.
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FIG. 1. Temperature and chemical potential difference profiles at various T�.

NUMERICAL SOLUTION OF THE NONEQUILIBRIUM… PHYSICAL REVIEW E 79, 031608 �2009�

031608-7



geq
s = 	1,eqc1,eq

s + 	2,eqc2,eq
s . �5.1�

The superscript s indicates here the surface and equal to the
excess of corresponding quantities. In these relations the
equilibrium temperature and chemical potentials are the
same everywhere independent of the choice of the dividing
surface. The excesses depend on the choice of the dividing
surface, in a such way that the above relations are true for
any choice of the dividing surface, see Gibbs �3�.

It is our aim in this paper to show that the surface in a
nonequilibrium liquid-vapor system can also be described as
a separate thermodynamic phase using the Gibbs excess
quantities. We will call this property local equilibrium of the
surface. The property of local equilibrium for the surface
implies that it is possible to define all thermodynamic prop-
erties of a surface such that they have their equilibrium co-
existence values for any choice of the dividing surface given
the temperature of the surface Ts and the chemical potential
difference �s�	1

s −	2
s . For this purpose we will define the

excess densities in Sec. V A. Furthermore we will in Sec.
V B develop a method to obtain Ts and �s which are inde-
pendent of the choice of the dividing surface. The procedure
both in Sec. V A and Sec. V B uses the numerical solution of
the system in stationary nonequilibrium states. In the rest of
the paper we discuss the precise meaning of local equilib-
rium, verify its validity and in the process verify that the
surface temperature and chemical potential difference are in-
deed independent of the choice of the dividing surface.

A. Defining the excess densities

The definition of the excesses consists of 3 steps: deter-
mining the phase boundaries, defining the specified dividing
surface and, in particular, defining the excesses.

To determine the phase boundaries we will use the order
parameter q. We introduce a small parameter � and define
the �-dependent boundary, x�

g,s, between the vapor and the
surface by

� q�x�
g,s� − qeos�p��x�

g,s�,��x�
g,s�,T�x�

g,s��
q�x�

g,s�
� � � , �5.2�

where qeos�p� ,� ,T� is the equation of state’s value �no gra-
dient contributions� of q for pressure p�, mass fraction �,
and temperature T. The �-dependent boundary, x�

�,s, between
the surface and the liquid is defined in the same way.

The numerical procedure calculates profiles only at speci-
fied grid points, which we provide to the procedure. That
means that x�

g,s and x�
�,s can only be situated at points of the

grid. We choose their position to be the last bulk point of the
grid where the left-hand side of Eq. �5.2� does not exceed the
right-hand side. In our calculations we will choose �=10−3

and use a grid of 81 points.
We shall also choose bulk boundaries near the box bound-

ary where, because of the finite size of the box, the behavior
of the profiles might be uncharacteristic. To avoid this effect,
we do not consider the first 5 points of each phase close to
these boundaries when we calculate the properties in these
phases. The 6th point we call xg and the 76th point x�.

The bulk gas therefore ranges from xg to x�
g,s and the bulk

liquid ranges from x�
�,s to x�. The surface therefore ranges

from x�
g,s to x�

�,s. In order to define excess quantities properly
we always choose conditions such that the widths of the
vapor and the liquid phases x�

g,s−xg and x�−x�
�,s are larger

then the surface width x�
�,s−x�

g,s.
In order to determine excess densities we need to extrapo-

late profiles from the vapor and the liquid phases into the
interfacial region. In equilibrium extrapolated bulk profiles
are constants which are equal to the coexisting values of the
corresponding quantities. Nonequilibrium bulk profiles are
not constant. We fit the bulk profile with a polynomial of
order nb=2 and use this polynomial to extrapolate nonequi-
librium bulk profiles into the interfacial region. This is done
with the help of MATLAB functions polyfit and polyval.
The extrapolation of the bulk profiles introduces a certain
error depending on the choice of � and nb in particular for
nonequilibrium systems. This error is the main source of
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FIG. 2. Temperature and chemical potential difference profiles at various pg.
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inaccuracy in the determination of the surface quantities. We
will come back to this later.

The distances between commonly used dividing surfaces,
such as for instance the equimolar surface and the surface of
tension, are very small �2,11�. Thus, if there occurs an error
in the determination of a dividing surface using a course
grid, it would lead to inaccurate results. We therefore divide
each interval of the course grid between x�

g,s and x�
�,s in 104

subintervals. This surface grid is used for all operations re-
lated to the surface. Within the interfacial region we interpo-
late all the profiles �which were obtained by extrapolation
from the bulk to the surface region using the course grid�
from the course grid to the surface grid using a polynomial
of order ns=3 with the help of MATLAB functions polyfit
and polyval.

We can now define the excess �̂ of any density ��x� as a
function of a dividing surface xs as

�̂�xs� = 
x�

g,s

x�
�,s

dx���x� − �g�x���xs − x� − ���x���x − xs�� ,

�5.3�

where �g and �� are the extrapolated gas and liquid profiles
and ��t� is the Heaviside function. The density � is per unit
of volume and �̂ is per unit of surface area. In our calcula-
tions integration is performed using the trapezoidal method
by MATLAB function trapz.

We can now define different dividing surfaces. The
equimolar dividing surface xc is defined by the equation
ĉ�xc�=0. Analogously, we define equimolar surfaces with re-
spect to component 1 and 2: ĉ1�xc1�=0 and ĉ2�xc2�=0, and
the equidensity surface x�. The surface of tension x� is de-

fined from the equation x�p̂��x��−xp�
ˆ �x��=0. All the densi-

ties are given as arrays on a coordinate grid, but not as con-
tinuous functions. Thus, in order to find the solution of an
equation ��x�=0 we calculate the values �i=��xi� for each
point xi within the surface region and find the minimum of its
absolute value, mini���i��. Because of the discrete nature of
the argument this value may not be equal to zero, but it will

be the closest to zero among all other coordinate points. So
we will call this point the root of the equation ��x�=0. We
use the fine surface grid in this procedure.

If follows from Eq. �5.3� that

d�̂�xs�
dxs

= ���xs� − �g�xs� , �5.4�

which we will use later.

B. Defining the temperature and chemical potential difference

An equilibrium two-phase two-component mixture has
two free parameters, for instance the temperature T and the
chemical potential difference �=	1−	2. Local equilibrium
of a surface implies that also in nonequilibrium it should be
possible to define the temperature Ts and the chemical poten-
tial difference �s of the surface. As found in Ref. �11� for the
surface temperature in the one-component system, both Ts
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and �s should be independent of the choice of the dividing
surface.

The equilibrium temperature and chemical potential dif-
ference determine all other equilibrium properties of the sur-
face. Thus, there is a bijection from Teq and �eq to any other
set of independent excess variables X1,eq and X2,eq, so that
one can use them equally well in order to characterize a
surface. In nonequilibrium the temperature and chemical po-
tential difference vary through the interfacial region, but as
X1,ne and X2,ne are excesses, they characterize the whole sur-
face. If a nonequilibrium surface is in local equilibrium, the
same bijection should exist. This implies that given two in-
dependent nonequilibrium excesses X1,ne and X2,ne one can
determine the temperature Ts and the chemical potential �s

of the whole surface. Thus one can calculate equilibrium
tables of X1,eq�Teq ,�eq� and X2,eq�Teq ,�eq� for different values
of Teq and �eq and then determine temperature and chemical
potential of a surface as Ts=Teq�X1,ne ,X2,ne� and �s

=�eq�X1,ne ,X2,ne�.
As we want the temperature and chemical potential dif-

ference to be independent of the position of the dividing
surface, we shall use excesses which are also independent of
the position of a dividing surface in equilibrium for X1 and
X2. For two component mixtures these independent variables
are the surface tension � and the relative adsorption �12. If
the number of components is more than 2, additional relative
adsorptions should be used.

These quantities are well defined for equilibrium, but not
for nonequilibrium. So we will define them first. In equilib-
rium the surface tension is defined as minus the excess of the
parallel pressure �eq=−p̂�. Alternatively one often uses the
integral of p�− p��x���xx�x� across the interface: �eq
=�dx�xx�x�. Both definitions are equivalent in equilibrium
since p� is constant through the interface and �xx�x� is iden-
tically zero in the bulk phases. In nonequilibrium �xx�x� may
differ from zero in the bulk regions, however, and this makes
the second definition inappropriate. We will therefore define
the nonequilibrium surface tension using the standard defini-
tion �11�

��xs� = − p̂��xs� . �5.5�

This quantity differs from �̂xx by the term equal to p̂�, which
is usually small compared to p̂�.

The relative adsorption is defined as �12,eq= ĉ1,eq
− ĉ2,eq�c1,eq

� −c1,eq
g � / �c2,eq

� −c2,eq
g � in equilibrium �6�, where ci,eq

�

and ci,eq
g are coexistence concentrations of the corresponding

components. Since these quantities are not constant in non-
equilibrium, we cannot use this definition directly. One can
however see from Eq. �5.4� that both in equilibrium and
nonequilibrium ĉi��x

s�=ci
��xs�−ci

g�xs�, where the prime indi-
cates a spatial derivative. Since in equilibrium ci

��xs�
−ci

g�xs�=ci,eq
� −ci,eq

g we can use the following definition:

�12�xs� = ĉ1�xs� − ĉ2�xs�
c1

��xs� − c1
g�xs�

c2
��xs� − c2

g�xs�
, �5.6�

both in equilibrium and nonequilibrium.
If the system is in local equilibrium we may write

��xs� = �eq�Ts,�s� ,

�12�xs� = ĉ1�xs� − ĉ2�xs�
c1,eq

� �Ts,�s� − c1,eq
g �Ts,�s�

c2,eq
� �Ts,�s� − c2,eq

g �Ts,�s�
. �5.7�

Substituting the expressions for ��xs� and �12�xs� from Eq.
�5.5� and Eq. �5.6� into Eq. �5.7� we obtain the following
relations:

p̂��xs� = p̂�,eq�Ts,�s� ,

c1
��xs� − c1

g�xs�
c2

��xs� − c2
g�xs�

=
c1,eq

� �Ts,�s� − c1,eq
g �Ts,�s�

c2,eq
� �Ts,�s� − c2,eq

g �Ts,�s�
. �5.8�

This gives the bijection equations to determine Ts and �s

from the actual nonequilibrium variables. As the left-hand
sides in Eq. �5.8� are in good approximation independent of
the position of the dividing surface, Ts and �s are similarly
independent on this position.

C. Defining local equilibrium

The other quantities required for the Gibbs description of
the nonequilibrium surfaces we define in the following way.
The surface chemical potentials are the equilibrium coexist-
ence values determined via the procedure discussed in Sec.
III A,

	1
s � 	1,eq�Ts,�s� ,

	2
s � 	2,eq�Ts,�s� . �5.9�

We define the surface extensive properties as4

�s�xs� � �̂�xs� �5.10�

The local equilibrium of a surface should be established
for any choice of a dividing surface. The results of the cal-
culations for any particular choice of a dividing surface may
not be representative since they differ for another choice of a
dividing surface. Thus, the property of local equilibrium
should be established for all dividing surfaces together.

Consider the profile of an excess �̂�xs� as a function of
position of a dividing surface xs. It follows from Eq. �5.4�
that the slope of the excess profile is equal to the difference
between the extrapolated values of a profile of thermody-
namic quantity �. In equilibrium these values are constant
and equal to the coexistence values. Thus, equilibrium excess
densities are linear functions of the position of the dividing
surface, as one can see on Fig. 4. Nonequilibrium profiles in
the bulk phases are not constant. We construct the extrapo-
lated profiles using nbth order polynomials with nb=2. Re-
sulting nonequilibrium excesses are therefore polynomials of
the order nb+1=3, according to Eq. �5.4�. These excesses,
for the most extreme case of nonequilibrium perturbation
T�=1.02Teq, are shown in Fig. 5. Even though these excesses
are polynomials of the third order they are very close to
straight lines. As one can see from Fig. 6 the variation in the
slope is about 1% through the whole surface. It indicates that

4Note that for some quantities this definition differs from the one
used in �11�. We will come back to this point later.
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this nonequilibrium “state” is very close to an equilibrium
one.

We therefore develop the procedure to relate the nonequi-
librium state to an equilibrium one by comparing thermody-
namic quantities in equilibrium and in nonequilibrium. The
comparison performed in one particular point of the surface
may not be sufficient because it may suffer from artifacts
peculiar to this particular surface. Moreover, any comparison
performed in a particular point does not speak for the whole.
We therefore compare the nonequilibrium surface with an
equilibrium one for all dividing surfaces together. We will
use the least square sum method for this.

Consider a nonequilibrium thermodynamic excess ts�xs�
and a quantity rs�xs ;T ,�� which is a combination of excesses
and may depend on �T ,�� as parameters. We introduce the
following measures of the difference of ts and rs:

�ts,rs�xs;T,�� � �ts�xi
s� − rs�xi

s;T,��� �5.11�

and

Sts,rs�T,�� � �
i�surface

�ts�xi
s� − rs�xi

s;T,���2,

�ts,rs�T,�� �
1

N
�Sts,rs�T,�� , �5.12�

where N is the number of surface points.
We say that ts and rs are the same in the surface if the

value of �ts,rs�T ,�� is negligible compared to the typical
value of either �ts�xs�� or �rs�xs ;T ,���. If two quantities ts and
rs are the same in the above sense, we say that the nonequi-
librium state of the surface is characterized by surface tem-
perature T�xs	

s and chemical potential difference ��xs	
s if

Sts,rs�T�xs	
s ,��xs	

s � = min
T,�

Sts,rs�T,�� . �5.13�

Here superscript s indicates that we speak about surface
quantities only �as everywhere in this paper� and subscript
�xs	 indicates that T�xs	

s and ��xs	
s are the parameters for all

dividing surfaces together �in contrast to the values Ts�xs�
and �s�xs� determined from Eq. �5.8� for each particular di-
viding surface xs�.

These definitions are easy to illustrate in
equilibrium. For instance, for
heq,gibbs

s �xs ;T ,���	1,eq�T ,��c1,eq
s +	2,eq�T ,��c2,eq

s +Tseq
s

it follows from Eq. �5.1� that
heq

s �xs ;Teq ,�eq�=heq,gibbs
s �xs ;Teq ,�eq�. Furthermore

geq
s �xs ;Teq ,�eq��heq,gibbs

s �xs ;Teq ,�eq�. Thus
�heq

s ,heq,gibbs
s �xs ;Teq ,�eq�=0 and �geq

s ,heq,gibbs
s �xs ;Teq ,�eq��0. It

is also true that Sheq
s ,heq,gibbs

s �Teq ,�eq�=min Sheq
s ,heq,gibbs

s �T ,��
and �heq

s ,heq,gibbs
s �T ,����geq

s ,heq,gibbs
s �T ,��. According to the

above definitions �i� heq,gibbs
s and heq

s are the same quantities,
but heq,gibbs

s and geq
s are not the same; �ii� the equilibrium state

is characterized by �Teq ,�eq�; as it should be. While this
analysis is trivial in equilibrium, it is not trivial in nonequi-
librium.

Note that while in equilibrium the conditions
�t,r�xs ;Teq ,�eq�=0 and St,r�Teq ,�eq�=min St,t�T ,�� are
equivalent, in general it does not follow in nonequilibrium
from Eq. �5.13� that

�t,r�xs;T,�� = 0 ∀ xs. �5.14�

Thus Eq. �5.14� is not a good measure of the equality of the
quantities and states in nonequilibrium. We may therefore
speak about the equality of thermodynamic quantities as well
as about the state Ts and �s=	1

s −	2
s of the surface in non-

equilibrium only in the least square sense, as it is given in
Eq. �5.13�.

Within establishing the local equilibrium property of a
nonequilibrium surface we would like to verify the following
properties: �i� the existence of the unique temperature Ts and
chemical potential difference �s of a nonequilibrium surface;
�ii� the validity of Eq. �5.1� in nonequilibrium at the surface’s
Ts and �s; �iii� the possibility to determine all the properties
of a nonequilibrium surface from equilibrium tables at the
surface’s Ts and �s. We do this in the following section.
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VI. VERIFICATION OF LOCAL EQUILIBRIUM

We calculate the equilibrium properties �coexistence data,
such as the pressure or bulk densities, as well as various
excesses� of the system for the range of temperatures T
= �325,326, . . . ,340	 K and the range of chemical potential
differences �=	1−	2= �400,450, . . . ,1000	 J /mol. The
value of a thermodynamic quantity at any point �T ,��, which
is between these is interpolated using the MATLAB procedures
interp2 and griddata.

The temperature range was chosen to be well above the
triple point of both components �279.5 K and 177.9 K for
cyclohexane and hexane, respectively� and below the critical
temperature of both components �553.5 K and 507.5, respec-
tively�. As discussed in Sec. IV B the equilibrium mole frac-
tions of cyclohexane in the vapor and in the liquid were 0.55
and 0.59, respectively, when the temperature was 330 K and
the chemical potential difference was 700 J /mol. As one can
see in Figs. 1–3 it was enough to consider the range of tem-
peratures of 15 K and the range of chemical potential differ-
ences of 600 J /mol, for the stationary state conditions con-
sidered in this paper. A larger range would be necessary to
consider for unrealistically extreme nonequilibrium condi-
tions across the system.

A. Surface temperature and chemical potential difference

As was mentioned, in equilibrium both � and �12 are
independent of the location of the dividing surface xs. Given
the above definitions, Eq. �5.5� and Eq. �5.6�, we can calcu-
late these quantities for nonequilibrium states. Calculations
show that even though � and �12 are not exactly independent
on xs away from equilibrium, the relative deviation is so
small �about 0.004% for � and 4% for �12 in the worst case�,
that one can consider these quantities to be independent of
the position of the dividing surface. Thus one may use them
in order to find the temperature, Ts, and the chemical poten-
tial difference, �s, of the surface in nonequilibrium states,
which will be independent of the position of the dividing
surface.

Using Eq. �5.12� and Eq. �5.8� together with Eq. �5.4� we
construct the following expressions:

S��T,�� = �
xs

�p̂��xs� − p̂�,eq�T,���2,

S�12
�T,�� = �

xs

 ĉ1,eq� �xs;T,��

ĉ1��x
s�

−
ĉ2,eq� �xs;T,��

ĉ2��x
s� �2

, �6.1�

where the prime indicates the derivative with respect to xs.
Si�T ,�� �where i is either � or �12� should reach the mini-

mum at T�xs	
s and ��xs	

s . We note however that neither Si�T ,��
have a minimum at a single point �Ts ,�s�. There is a whole
generatrix curve of minima Ci�T ,��=0 so the plot of Si�T ,��
is a valley. One can see it on Fig. 7. Every point of the
generatrix curve is the minimum point of Si�T ,�� along the
direction “perpendicular” to this generatrix. If p̂��xs� or ĉ1��x

s�
and ĉ2��x

s� represent the corresponding profiles for some
equilibrium state �Teq ,�eq�, then Si�T ,��=0 and the genera-
trix is constant. Since these profiles are nonequilibrium pro-
files, the generatrix is not exactly constant but very close to
it. Thus Ci�T ,��=�Si�T ,�� /�w, where w is a direction in the
T-� plane which is perpendicular to generatrix. In fact, one
should be careful speaking about directions, since no metric
is defined in the T-� plane. Thus we cannot introduce �T� so
that Ci�T ,��= ��T�Si�T ,���. In fact, w can be any direction
which does not coincide or does not almost coincide with the
direction of generatrix. In practice we find that we can use
w=T, while using w=� gives less accurate results. Thus we
determine the minimum curve from the equation

�Si�T,��
�T

= 0. �6.2�

Thus one needs two quantities S� and S� in order to de-
termine T�xs	

s and ��xs	
s uniquely. The surface temperature and

chemical potential difference T�xs	
s and ��xs	

s are determined
from the intersection of two minimum curves of S� and S�,

� �S��T,��
�T

�
T

�xs	
s ,�

�xs	
s

= 0,

� �S�12
�T,��

�T
�

T
�xs	
s ,�

�xs	
s

= 0. �6.3�

TABLE III. Surface temperatures �K� and chemical potential
differences �J/mol� for the case of perturbing T�.

Surface

T�=1.02Teq T�=0.98Teq

Ts �s Ts �s

�xs	 331.831 770.53 328.129 650.92

xc 331.823 769.51 328.124 650.29

x� 331.828 770.22 328.123 650.21

xc1 331.814 767.97 328.127 650.43

xc2 331.838 771.86 328.121 650.1
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FIG. 7. The plot of St�T ,�� for t being the profile of the surface
tension � for the case of perturbing T�=1.02Teq. The lines in the
T-� plane are lines of constant value of St�T ,��
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We calculate the temperatures and the chemical potential
differences for different nonequilibrium conditions. They are
outlined in Tables III–V. The first row of each table, corre-
sponding to �xs	, gives Ts and �s calculated from Eq. �6.3�.
The following rows, corresponding to different particular di-
viding surfaces, give Ts and �s calculated from Eq. �5.8�.

Note that Ts and �s may be different from the continuous
values in the interfacial region.

B. The nonequilibrium Gibbs surface

In this section we would like to verify that the surface
quantities defined by Eq. �5.10� satisfy Eq. �6.4� with Ts and
�s=	1

s −	2
s determined by Eq. �5.8� and Eq. �6.3�,

�s = �gibbs
s �Ts,�s� , �6.4�

namely, with the definition Eq. �5.9�,

hs = 	1
sc1

s + 	2
sc2

s + Tsss,

us = 	1
sc1

s + 	2
sc2

s + �s + Tsss,

fs = 	1
sc1

s + 	2
sc2

s + �s,

gs = 	1
sc1

s + 	2
sc2

s , �6.5�

where the right-hand side is �gibbs
s �Ts ,�s� of the correspond-

ing quantity. Equation �6.5� is the nonequilibrium analog of
equilibrium Equetion �5.1�.

In order to analyze the measure of validity of Eq. �6.4� we
construct the quantities

E�gibbs
�T,�� = �

i�surface

�s�xi

s� − �gibbs
s �xi

s;T,��
�s�xi

s� �2

,

��gibbs
�xs;T,�� = ��s�xs� − �gibbs

s �xs;T,��
�s�xs�

� , �6.6�

for each thermodynamic potential h, u, f , g. E�gibbs
gives the

relative error of the determination of the surface quantity �s

using the Gibbs excesses relations, Eq. �6.5�, for all dividing
surfaces together, while ��gibbs

gives this error for a particular
dividing surface. We build E�gibbs

�T ,�� for T=T�xs	
s , �=��xs	

s

determined from Eq. �6.3� only for the whole surface. We

build ��gibbs
�T ,�� both for T=T�xs	

s , �=��xs	
s determined for

the whole surface and for T=Ts�xs�, �=�s�xs� determined
from Eq. �5.8� for particular dividing surface. The values of
the corresponding errors are listed in Tables VI–VIII in the
Appendix, and are found to be small.

As one can see, there is a variation in the value of the
error for the different dividing surfaces. This has two rea-
sons. The first reason for this is a slight variation in Ts and �s

from Tables III–V for different dividing surfaces. The varia-
tion of each excess potential corresponds to the variation of
Ts and �s through these surfaces. Thus so do the relative
errors.

Another factor which influences the value of these errors
is the actual value of an excess at a given dividing surface. If
it is close to zero, then in the expression for � the small value
is in denominator and it gives the huge value for the error.
Particularly, gs�xc��0 both in equilibrium and in nonequilib-
rium which makes the row corresponding to g at xc be unin-
formative and one should not take into account these data.

We emphasize however that the overall error E�gibbs
rep-

resents the whole surface and thus does not suffer from the
fact that some quantity is negligible at some dividing sur-
face. There are such points for each potential �, however
their contribution to the whole error is negligible itself. So
we can see that if the particular dividing surface is far from
the zero point of �, ��gibbs

gives the good measure of the
error. While if the particular dividing surface is close to the
zero point of �, ��gibbs

fails to measure the error. One can see
from Fig. 8 that the relative error ��gibbs

indeed rises enor-
mously at x�. Particularly because of this fact the definition
of the excess quantities in �11� was different from Eq. �5.10�.

We conclude that E�gibbs
is the most appropriate measure

of the deviation of local equilibrium for the surface. From
Tables VI–VIIIin the Appendix it then follows that even for
such extreme conditions where the temperature difference
across the box is up to 108 K /m the deviation is not more
then a few thousandth. For less extreme conditions the de-
viation is correspondingly smaller. This is in agreement with
the nonequilibrium surface being in local equilibrium.

Another possible test is to compare the absolute error
��s�xs�−�gibbs

s �xs ;T ,�s�� with the deviation ��gibbs
�T ,�� de-

fined in Eq. �5.12�. The calculations show that for the par-
ticular dividing surfaces the former quantity does not exceed
the latter, which indicates that all the absolute errors are ac-
tually within the trust region.

TABLE IV. Surface temperatures �K� and chemical potential
differences �J/mol� for the case of perturbing pg.

Surface

pg=1.02peq pg=0.98peq

Ts �s Ts �s

�xs	 330.796 683.87 329.059 696.52

xc 330.8 684.68 329.063 697.22

x� 330.799 684.44 329.063 697.12

xc1 330.804 685.19 329.065 697.46

xc2 330.795 683.93 329.061 696.87

TABLE V. Surface temperatures �K� and chemical potential dif-
ferences �J/mol� for the case of perturbing ��.

Surface

��=1.02�eq
� ��=0.98�eq

�

Ts �s Ts �s

�xs	 329.577 559.32 330.24 812.86

xc 329.598 562.44 330.242 813.16

x� 329.584 560.5 330.253 814.67

xc1 329.63 566.83 330.219 809.99

xc2 329.554 556.3 330.278 817.99
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C. Equilibrium tables

In this section we verify the possibility to determine all
properties of a nonequilibrium surface from equilibrium
tables at the surface’s Ts and �s. The surface chemical po-
tentials 	1

s and 	2
s are already defined as their equilibrium

values by Eq. �5.9�. So in this section we will verify the
relation

�s = �eq
s �Ts,�s� �6.7�

As in Sec. VI B we compare the actual excess of a ther-
modynamic potential with the corresponding equilibrium
value at given temperature and chemical potential of the sur-
face. Before we do this a note has to be made.

Under nonequilibrium conditions the profile of a quantity
�s is shifted with respect to the equilibrium one. One can see
this in the example for �=h in Fig. 9. The reason for this are
the fluxes caused by the nonequilibrium perturbation. The
whole surface is therefore shifted. One can clearly see that
comparing the positions of the particular dividing surfaces

on Fig. 4 and Fig. 5. So the direct comparison of the profiles
should be done not in the observer’s frame of reference
�OFO, which is used in all other calculations�, but in the
surface’s frame of reference �SFO�. The SFO is simply
shifted with respect to the OFO, depending on the rate of
nonequilibrium perturbations. Zero of the SFO is chosen at
the reference surface, which can be either the equimolar sur-
face, or any other physically sensible surface. If x� is the
position of this surface in OFO and �OFO

s �xOFO
s � is the profile

of �s in OFO, then �SFO
s �xSFO

s ���OFO
s �xOFO

s �=�OFO
s �xSFO

s

+x�� is the profile of �s in SFO.
We can now determine the equilibrium state to which the

nonequilibrium one should correspond. Consider the follow-
ing definitions of E�table

and ��table
which have the same

meaning as in Eq. �6.6�:

E�table
�T,�� = �

i�surface

�s�xi

s� − �eq
s �xi

s + xeq
� − x� ;T,��

�s�xi
s� �2

,

��table
�xs;T,�� = ��s�xs� − �eq

s �xs;T,��
�s�xs�

� , �6.8�

for each thermodynamic potential h, u, f , g. x� and xeq
� are

the nonequilibrium and equilibrium positions of the refer-
ence surface in OFO. The set �xi

s	 is the nonequilibrium sur-
face grid and is used for both profiles. Since the width of an
equilibrium surface may not be the same as the nonequilib-
rium one, the summation may exceed the formal boundaries
of the equilibrium surface. This is not a problem, however,
since the equilibrium profile �eq

s is the line with constant
slope everywhere, as well as beyond the formal boundaries.
We do not shift the surface grid in the definition of
��table

�xs ;T ,�� because in that notation xs means the particu-
lar dividing surface, while xi

s means the point of the surface
grid.

The values of the corresponding errors are listed in Tables
IX–XI in the Appendix, and, though somewhat larger then
those in Sec. VI B, are still small. As in Sec. VI B we see
that for the equimolar surface the relative error in g is huge.
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There is the same reason for this, namely that gs�xc��0 both
in equilibrium and in nonequilibrium. This again makes the
row corresponding to g at xc be uninformative and one
should not take into account these data.

As discussed in Sec. VI B E�table
�T ,�� is now the appro-

priate measure of the validity of local equilibrium. In view of
the small size of this quantity we similarly conclude that Eq.
�6.7� is satisfied in good approximation. This again supports
that the nonequilibrium surface as described by Gibbs excess
densities is in local equilibrium.

VII. CONCLUSIONS

The article continued the verification of the validity of
local equilibrium for the Gibbs surface started in �11�. We
consider a binary mixture of cyclohexane and n-hexane and
describe in detail how to implement the general analysis pre-
sented in the first article �1� to stationary states. We give a
numerical procedure to solve the resulting system of differ-
ential equations. The profiles of continuous variables ob-
tained are presented in Sec. IV and in the first article. We see,
in particular, that a two-component mixture develops a tem-
perature profile in the surface region which is similar to the
temperature profile obtained for a one-component system
�21�. Another characteristic of a binary mixture is the differ-
ence �=	1−	2 between the chemical potentials of the com-
ponents. The behavior of the profile of � in nonequilibrium
steady states shows that it has different values in the two
bulk phases and we observe a transition from one value to
the other in the surface region.

We then proceed to verify the local equilibrium property
of the Gibbs surface. This property means that a surface
under nonequilibrium steady-state conditions can be de-
scribed as an equilibrium one in terms of Gibbs excess den-
sities. We have discussed the meaning of the surface quanti-
ties in nonequilibrium and established the systematic
procedure to obtain them. We were in particular focused on
�i� the existence of the surface temperature and chemical
potentials which are independent of the choice of the divid-
ing surface; �ii� the validity of the relations between thermo-
dynamic Gibbs excesses for a nonequilibrium surface; �iii�
the correspondence between the nonequilibrium and equilib-
rium properties of the surface. It was possible to verify that
these properties are valid for all choices of the dividing sur-
face with a good accuracy. Similar results were obtained for
the one-component system in Ref. �11�.

The solution procedure is numerical, and contains there-
fore a certain error. We may not expect this error to be neg-
ligible, not only because of numerical inaccuracy, but in par-
ticular also because of the nonequilibrium nature of the
system. All these errors contribute to the overall measure of
the deviation E�. As this quantity is not more then a few
thousandth for very extreme boundary conditions, we con-
sider this a satisfactory verification of local equilibrium.

The main part of the analysis in the interfacial region is
the introduction of the excesses of thermodynamic densities,
which are constructed with the help of extrapolated bulk pro-
files. In contrast to equilibrium, nonequilibrium bulk profiles
are not constants, and therefore their extrapolation to the
surface region is not always accurate. The accuracy of ex-

TABLE VI. Gibbs excesses relative error for the case of perturbing T� in percent.

T�=1.02Teq T�=0.98Teq

� Error For T�xs	
s , ��xs	

s For Ts�xs�, �s�xs� For T�xs	
s , ��xs	

s For Ts�xs�, �s�xs�

h E 0.01328 — 0.033276 —

���xc� 0.023799 0.023419 0.064597 0.065002
���x�� 0.020605 0.020737 0.056585 0.057148
���xc1� 0.035878 0.033571 0.085212 0.085204
���xc2� 0.015606 0.016541 0.047847 0.048578

u E 0.0071257 — 0.026714 —

���xc� 0.016729 0.016462 0.045109 0.045392
���x�� 0.015059 0.015156 0.041048 0.041457
���xc1� 0.022033 0.020616 0.054286 0.05428
���xc2� 0.012161 0.012889 0.036244 0.036797

f E 0.20039 — 0.12983 —

���xc� 7.3727 7.3666 8.7959 8.799
���x�� 1.9809 1.981 2.2605 2.2602
���xc1� 1.6966 1.6881 2.5586 2.5602
���xc2� 0.65429 0.65354 1.0109 1.0095

g E 0.36323 — 0.15487 —

���xc� 272.37 272.15 73.468 73.494
���x�� 2.7241 2.7242 3.2313 3.2309
���xc1� 1.4054 1.3983 1.9592 1.9605
���xc2� 0.72857 0.72773 1.1818 1.1802

NUMERICAL SOLUTION OF THE NONEQUILIBRIUM… PHYSICAL REVIEW E 79, 031608 �2009�

031608-15



trapolation lowers when the surface width increases. Appar-
ent small deviations from local equilibrium are therefore to
some extent an artifact of the inaccuracy of the extrapolation.

In the description of the surface excess densities it may
happen that for a particular choice of the dividing surface not
one but several of the excesses are negligible. This increases
the relative error enormously while the absolute error re-
mains finite and more or less constant. In order to avoid this
problem we consider the excesses for all dividing surfaces
together, rather then for a particular dividing surface. Par-
ticularly, in �11� the definition of the excess Gibbs energy
was chosen differently because this excess was very small
for the equimolar surface. We have shown in this paper why
this is not needed.

One can see from these data that within different ways of
perturbing mixture from equilibrium the biggest error comes
when one perturbs the temperature on the liquid side. This is
the most extreme condition for the mixture being in nonequi-
librium. While the relative temperature perturbation is only
2%, the resulting temperature gradient is about 108 K /m
which is very far beyond ordinary nonequilibrium condi-
tions. The other perturbations make the validity of local equi-
librium for the surface more precise. Similarly smaller per-
turbations make the validity of local equilibrium also more
precise.

We therefore conclude that the local equilibrium of the
surface is valid with a reasonable accuracy also under ex-
treme temperature gradients for binary mixtures. For the de-
scription of transport through and into surfaces this verifies
that the use of nonequilibrium thermodynamics as done in,
for instance, Refs. �7–10�, is appropriate. For the application
to industrial processes this is an important simplification,
which is of great importance.
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APPENDIX A: EXCESSES ERRORS

1. Gibbs excesses relative errors

Tables VI–VIII list the Gibbs excesses relative errors for
perturbing T�, pg, and ��.

2. Equilibrium table excesses relative errors

Tables IX–XI list the equilibrium table excesses relative
errors for perturbing T�, p9, and ��.

TABLE VII. Gibbs excesses relative error for the case of perturbing pg in percent.

pg=1.02peq pg=0.98peq

� Error For T�xs	
s , ��xs	

s For Ts�xs�, �s�xs� For T�xs	
s , ��xs	

s For Ts�xs�, �s�xs�

h E 0.0013703 — 0.0019532 —

���xc� 0.0018964 0.0022352 0.0011722 0.00088793
���x�� 0.0017063 0.0019978 0.0010683 0.00083823
���xc1� 0.0025175 0.0030049 0.0015513 0.0010756
���xc2� 0.0014259 0.0016451 0.00090372 0.00076269

u E 0.00041867 — 0.00033213 —

���xc� 0.0013316 0.0015695 0.00081921 0.00062057
���x�� 0.00124 0.001452 0.00077388 0.00060722
���xc1� 0.0015926 0.001901 0.00096161 0.00066669
���xc2� 0.001093 0.001261 0.00069529 0.00058679

f E 0.043422 — 0.033692 —

���xc� 1.4194 1.4152 1.2845 1.2884
���x�� 0.3884 0.38805 0.37919 0.3795
���xc1� 0.40171 0.39739 0.30303 0.30621
���xc2� 0.13128 0.1311 0.13976 0.13952

g E 0.08442 — 0.021892 —

���xc� 28.236 28.152 48.786 48.935
���x�� 0.56258 0.56208 0.54645 0.5469
���xc1� 0.3187 0.31528 0.24447 0.24704
���xc2� 0.15021 0.15001 0.1583 0.15802
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TABLE VIII. Gibbs excesses relative error for the case of perturbing �� in percent.

��=1.02�eq
� ��=0.98�eq

�

� Error For T�xs	
s , ��xs	

s For Ts�xs�, �s�xs� For T�xs	
s , ��xs	

s For Ts�xs�, �s�xs�

h E 0.00035435 — 0.0011482 —

���xc� 0.0023134 0.0028072 0.0042669 0.0042419
���x�� 0.0021873 0.0026065 0.0039043 0.0039484
���xc1� 0.0028054 0.0035457 0.0054811 0.0052479
���xc2� 0.0020102 0.0023063 0.0033597 0.0035215

u E 0.00040969 — 0.0015073 —

���xc� 0.0016206 0.0019665 0.0029893 0.0029717
���x�� 0.0015861 0.0018901 0.0028345 0.0028665
���xc1� 0.0017517 0.0022139 0.0034446 0.003298
���xc2� 0.0015408 0.0017677 0.0025842 0.0027086

f E 0.0063873 — 0.0026805 —

���xc� 0.17101 0.15419 0.033343 0.034999
���x�� 0.014471 0.015093 0.023261 0.022844
���xc1� 0.15718 0.13049 0.066572 0.055875
���xc2� 0.062407 0.065842 0.037405 0.042978

g E 0.013595 — 0.0004864 —

���xc� 5.3413 4.816 0.77321 0.8116
���x�� 0.021 0.021903 0.033471 0.032872
���xc1� 0.12645 0.10498 0.052965 0.044454
���xc2� 0.071253 0.075175 0.042467 0.048795

TABLE IX. Equilibrium table excesses relative error for the case of perturbing T� in percent.

T�=1.02Teq T�=0.98Teq

� Error For T�xs	
s , ��xs	

s For Ts�xs�, �s�xs� For T�xs	
s , ��xs	

s For Ts�xs�, �s�xs�

h E 0.67514 — 0.21243 —
���xc� 1.1052 1.1012 0.51202 0.50951
���x�� 0.0062189 0.0050111 0.074177 0.071345
���xc1� 8.5087 8.4753 6.4524 6.4581
���xc2� 3.9073 3.8963 6.1946 6.1882

u E 0.32181 — 0.23381 —

���xc� 0.77685 0.77406 0.35744 0.3558
���x�� 0.0043659 0.00366 0.053575 0.051756
���xc1� 5.2257 5.2046 4.1104 4.1143
���xc2� 3.0451 3.0361 4.692 4.6875

f E 0.0046133 — 0.0035049 —

���xc� 6.6737 6.67 8.0558 8.0599
���x�� 7.242 7.2428 0.37022 0.37236
���xc1� 15.74 15.7 25.631 25.642
���xc2� 13.328 13.306 20.092 20.077

g E 0.0017615 — 0.001069 —

���xc� 246.55 246.41 67.29 67.32
���x�� 9.9591 9.9604 0.52885 0.53228
���xc1� 13.038 13.006 19.627 19.635
���xc2� 14.84 14.817 23.49 23.472

NUMERICAL SOLUTION OF THE NONEQUILIBRIUM… PHYSICAL REVIEW E 79, 031608 �2009�

031608-17



TABLE X. Equilibrium table excesses relative error for the case of perturbing pg in percent.

pg=1.02peq pg=0.98peq

� Error For T�xs	
s , ��xs	

s For Ts�xs�, �s�xs� For T�xs	
s , ��xs	

s For Ts�xs�, �s�xs�

h E 0.26501 — 1.3628 —

���xc� 0.79783 0.80083 0.90685 0.90956
���x�� 1.4549 1.457 1.2481 1.2505
���xc1� 1.3056 1.2901 2.0582 2.0702
���xc2� 2.3955 2.3962 0.069749 0.072757

u E 0.047434 — 0.20486 —

���xc� 0.5599 0.56232 0.63362 0.63569
���x�� 1.0571 1.0589 0.90402 0.90589
���xc1� 0.82642 0.81614 1.2756 1.2832
���xc2� 1.836 1.8368 0.053565 0.055977

f E 0.003912 — 0.0035128 —

���xc� 1.218 1.2144 1.1886 1.1919
���x�� 4.7735 4.775 2.1767 2.1788
���xc1� 7.4201 7.3951 2.2105 2.2271
���xc2� 5.5423 5.5439 1.9531 1.9467

g E 0.0013182 — 0.00041813 —

���xc� 24.251 24.157 45.122 45.27
���x�� 6.9147 6.9164 3.1371 3.1398
���xc1� 5.8866 5.8671 1.7835 1.7967
���xc2� 6.3419 6.3437 2.212 2.2049

TABLE XI. Equilibrium table excesses relative error for the case of perturbing �� in percent.

��=1.02�eq
� ��=0.98�eq

�

� Error For T�xs	
s , ��xs	

s For Ts�xs�, �s�xs� For T�xs	
s , ��xs	

s For Ts�xs�, �s�xs�

h E 0.093953 — 0.20248 —

���xc� 0.85205 0.86417 0.83511 0.8363
���x�� 1.5557 1.5598 1.1532 1.1601
���xc1� 0.24334 0.33902 0.26902 0.23261
���xc2� 1.265 1.2405 1.2654 1.3065

u E 0.068203 — 0.24097 —

���xc� 0.59647 0.60537 0.585 0.58586
���x�� 1.1278 1.1311 0.8372 0.84222
���xc1� 0.15127 0.21168 0.169 0.14618
���xc2� 0.96943 0.95081 0.97333 1.0049

f E 0.0026249 — 0.0035651 —

���xc� 0.095422 0.080499 0.18152 0.18276
���x�� 4.6443 4.6454 2.382 2.3867
���xc1� 2.3591 2.2252 2.7907 2.8466
���xc2� 1.6382 1.5842 1.897 1.9858

g E 0.00098739 — 0.0010871 —

���xc� 3.025 2.5143 4.2062 4.237
���x�� 6.7404 6.7414 3.4276 3.4343
���xc1� 1.8975 1.7901 2.2203 2.2648
���xc2� 1.8705 1.8088 2.1538 2.2546
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