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Abstract
In the digital economy, individual data sovereignty
is a requirement for sustainable and secure develop-
ment. With an increase in the number of outsourced
computations, due to the adoption of web services,
artificial intelligence and research-based innova-
tion, privacy became one of the main concerns for
individuals and third parties alike. Fully Homomor-
phic Encryption (FHE) addresses this gap by en-
abling secure computations on encrypted data. This
paper reviews and presents the FHE literature in
a structural manner, covering the topics of mathe-
matical constructions, security, efficiency and func-
tionality. In doing so, it highlights the current
state-of-the-art techniques and provides a systemic
comparison with other privacy enhancing mecha-
nisms. In addition, it discusses its applicability
in the practical domain, such as Confidential Ma-
chine Learning, Medical Data Analysis and Rec-
ommender Systems, mentioning potential impedi-
ments and their solutions for mass adoption.

1 Introduction
Privacy is one of the most prominent concerns when it

comes to storing, sharing and processing data. To protect
against unauthorized access, encryption is used to render the
data unrecognizable during storage and transfers. However,
in order to process it, the data first needs to be decrypted, and
then used, leaving it exposed during computations.

The earliest formulation of functions enabling operations
on encrypted data dates back to 1978, under the name of pri-
vacy homomorphism [1]. Until 2009, only functions with lim-
ited homomorphic capabilities were discovered. These were
called Partially Homomorphic Encryption (PHE), as they al-
lowed only one operation to be performed - either addition
[2–4] or multiplications [5,6]. Attempts were made to extend
this functionality to include both operations [7], which led
to the creation Somewhat Homomorphic Encryption (SwHE)
schemes. These were still impractical, as they only allowed a
limited number of operations to be performed.

Craig Gentry developed the first theoretical construction of
a Fully Homomorphic Encryption (FHE) scheme [8], through
a process called bootstrapping that transforms a SwHE into a
FHE. This enables an arbitrary number of simple operations
to be performed without decrypting first, which ensures no
information leakage occurs in the process [9]. It was a monu-
mental breakthrough in the field of cryptography, as FHE has
numerous applications in various fields [10]. Encrypted in-
formation forms a key part of scientific projects that involve
human health [11], cloud computing [12], and economic, po-
litical and social phenomena [13].

The implications of FHE reach beyond theoretical com-
puter science. Its functionality enables secure delegation of
computation of sensitive data and to untrusted environments,
such as cloud servers. However, usability remains a chal-
lenge due to high resource demands, lack of interoperability,
and slow computation. As for integration, while progress has

been made, real-world deployments remain constrained to
specific, low-depth applications. Nonetheless, FHE research
is promising for privacy-preserving analytics, encrypted ma-
chine learning, and multi-party (MKFHE) [14] computation.

This paper will present a literature review on the topic of
Fully Homomorphic Encryption schemes. It will examine the
best-known construction mechanisms, their characteristics,
and a comparison with other privacy-enhancing techniques.

2 Preliminaries
2.1 Background

The technological gap that Homomorphic Encryption (HE)
covers is the ability to delegate computation to untrusted en-
vironments, while maintaining the security and integrity of
the data. This system consists of two parties: the user who
uploads the encrypted data and the server, which executes the
computations and manages the encrypted data. Compared to
other privacy-enhancing technique, HE does not require mul-
tiple communications, shared states, nor support the use of
data encrypted under different keys. Instead, it facilitates the
server to compute any given function without decrypting in
the process, or knowing the secret key.

A central concept in HE is noise - a small random error in-
tentionally added during encryption to ensure semantic secu-
rity. Over the course of multiple additions and multiplications
with ciphertexts, this noise accumulates. When it is small, it
can be removed in the decryption process using some prior
knowledge of the hidden ”error correcting codes”. Otherwise,
if it grows beyond a certain threshold, the decryption will re-
turn the wrong plaintext or fail altogether. Many resources
were dedicated to the study of noise growth [15], since it de-
termines the use cases and effectiveness of the schemes.

Craig Gentry introduced the first theoretical method of re-
freshing the accumulated noise of a SwHE scheme [8], which
he later adapted to make it practical [16]. This breakthrough
was facilitated by introducing the concept of bootstrapping,
turning a depth bounded [17] HE scheme into a FHE scheme.

The construction of a FHE, based on Gentry’s framework,
includes two major steps. First, a SwHE is designed to per-
form a limited number of operations homomorphically. Ini-
tial works [8, 16] had decryption circuits larger than their re-
spective SwHE schemes could safely compute. As such, for
a short period of time, an additional step was added to the
framework - squashing - which was used to shorten the de-
cryption circuit up to a manageable depth, which resulted in
a ”bootstrappable” SwHE scheme. Finally, apply bootstrap-
ping to transform the ”bootstrappable” SwHE scheme into a
FHE, by reducing the noise to its baseline level.

Any HE construction has 2 fundamental properties: circuit
privacy and multi-hop homomorphism. The circuit privacy
property guarantees that the cloud server inputs, such as the
function that needs to be computed, do not leak information,
while the user is only allowed to know few elements about
them. Whereas multi-hop homomorphism permits the output
of the evaluation function to be use by another homomorphic
evaluation function [9] for a virtually unlimited number of



times. This property refers to the ciphertext bit-length expan-
sion with each operation [18]. A scheme which presents an
error growth independent of the degree of the function under
evaluation is called compact. Generally, FHE schemes are
compact, while SwHE schemes may not be.

Following Gentry’s breakthrough, numerous constructions
have improved efficiency, security, and applicability. Based
on the taxonomy of FHE schemes presented by Chris Peik-
ert [19], there are 4 generations of schemes, using different
underlying hardness assumptions, such as: Ideal Lattices, Ap-
proximate Greatest Common Divisor (AGCD), Learning with
Errors (LWE) and Ring-LWE (RLWE). Each has their State-
Of-The-Art (SOTA) constructions, which are: BGV [20],
B/FV [21, 22], FHEW [23], TFHE [24] and CKKS [25].

2.2 Methodology
The central question of the research paper is ”What are the

State-Of-The-Art Fully Homomorphic Encryption schemes
and their computational characteristics?”. Subsequent guid-
ing questions can be found in Appendix C.2. In order to ad-
dress these questions, the topic of FHE was analyzed on a 3-
axis plane: background, technical aspects, characteristics and
contextualized in a comparison with other privacy-enhancing
techniques. For the comparison, Tables 4 and 5 were co-
created by the collective knowledge of fellow students, under
the supervision of Assoc. Prof. PhD. Lilika Markatou.

The paper has followed the structure of a literature review.
The central reference Craig Gentry’s ”Fully Homomorphic
Encryption using Ideal Lattices” [8] was followed by the rep-
resentative publications for each generation of FHE schemes,
as per the taxonomy of Chris Peikert [19]. The research tech-
nique called forward reference searching was used to identify
publications that cite the original articles. Auxiliary materi-
als were found using search engines, such as Google Scholar
and Scopus, by applying Queries and Filters, such as in Ap-
pendix C.1. The resulting papers have be ranked based on the
number of citations and their influence on subsequent works.

3 Technologies
This section displays a comprehensive account of the con-

structions of the most relevant FHE schemes. These will be
discussed in relation to each other and to their respective gen-
eration design.

Most FHE constructions are naturally based on asymmetric
(public key) encryptions, given the necessity of proper inte-
gration with real-world environments and lower complexity
of key management. Alternative constructions, purely based
on symmetric key mechanisms have been proposed [26–28],
along with a way to convert a symmetric key to a public key
scheme [29], but many suffer form security design flaws [30].
Moreover, most relevant constructions to date are probabilis-
tic, highlighting the non-deterministic properties of the en-
cryption function. As such, encrypting the same plaintext
twice will not return the same ciphertexts, which accredits
them semantic security.

Ideal Lattices
Many cryptographic systems use a mathematical concept

called lattice as a basis for their security. Specifically, cryp-

tographic constructions leverage the hardness1 properties of
ideal lattices based problems. Broadly speaking, ideal lat-
tices are a set of infinitely repeating points in a n-dimensional
space, represented by the set of all integer combinations of n
linearly independent vectors.

The most common hard lattice problem is the shortest
vector problem (SVP). The best known algorithm for solv-
ing such lattice search problems is the LLL-algorithm, which
achieves a complexity of an approximation factor of 2O(n)

[31], where n is the dimension of the lattice [32]. The con-
jecture that there is no non-quantum (perhaps even quantum)
polynomial time algorithm that solves this kind of problems
[33] confers the basis for the security analysis of many cryp-
tographic systems. The research publications of Micciancio,
Goldwasser and Regev cover analysis of Lattice-based Cryp-
tography [32, 34, 35] in great depth.

Following this conceptualization, the first generation FHE
constructions were mainly ”based on ad-hoc average case as-
sumptions about ideal lattices” [19], such as Sparse Subset
Sum Problem (SSSP) [36], Polynomial Coset Problem (PCP)
[37], Ideal-Shortest Independent Vector Problem (I-SIVP)
[38], Bounded Distance Decoding Problem (BDDP) [39].
The nature of these schemes required high computational ef-
ficiency and large ciphertext sizes, which led to bottlenecks
in bandwidth required to transfer the ciphertexts [40]. Most
relevant subsequent constructions (Generation 2 to 4) lever-
aged the (Ring) Learning with Errors hardness properties of
Lattices to address these issues.

(Ring) Learning With Errors
Oded Regev first introduced the concept of Learning with

Errors (LWE) in 2005 as an ”extension of the learning from
parity with error problem” [33], introduced by Blum, Furst,
Keans and Lipton [41]. Informally, LWE problems ask to
recover a secret s ∈ Zn

q given a set of random, approxi-
mate (noisy) linear equations on s [42]. Regev demonstrated
that LWE assumes similar hardness assumptions as worst-
case lattice problems, such as GapSVP (the decisional ver-
sion of SVP) and SiVP [33, 43], by using a quantum2 reduc-
tion. In turn, this implied that solving the LWE problem in
polynomial time, leads to a solution of the SVP-like prob-
lems in quantum polynomial time3. This ensured the security
of the LWE based schemes, and marked the beginning of a
new generation of FHE schemes. Later the concept of Ring-
LWE (RLWE) has been introduced by Stehlé under the name
of Ideal-LWE [45], and further defined by Lyubashevsky [46]
under the current notation. RLWE is an algebraic version of
LWE, which manifests the same strong security guarantees
(no attack so far leveraged the ”ring” property), while being
more efficient for applications.

1Hardness refers to the difficulty of finding an efficient - polyno-
mial time algorithmic complexity solution to a problem.

2This reduction assumes that the attacker has quantum comput-
ing capabilities, which are more powerful than classical adversaries.

3Refers to the time complexity of algorithms that can be executed
by a quantum computer in polynomial time with a bounded error
probability (<1/3) (BQP). Quantum algorithms, such as Shor’s [44],
can break many classical schemes, while lattice-based assumptions
like LWE remain hard even for quantum computers.



Prerequisites
The central feature of cryptographic scheme is the security

parameter λ. Complexity-wise all the functions, the noise
growth, and the length of the secret values can be expressed
in terms of λ. In order for the scheme to be considered
provably secure, the probability of a successful attack (i.e.
scheme failure) should be negligible in the security parame-
ter: P (failure) < 1

poly(λ) . This implies that as λ increases,
the probability of a successful attack decreases faster than the
inverse of any polynomial, making the attack computation-
ally infeasible. However, with the security increase, so does
the complexity of all the other HE functions.

A HE scheme consists of 3 probabilistic algorithms [8,18]:
• Key Generation - Gen: For a given security parameter
λ, outputs a pair of public - private keys: pk, sk and the
(public) evaluation key evk which is needed for the error
reduction procedure

• Encrypt - Enc: Takes the public key pk and a message
m (from the message space), and outputs a ciphertext c

• Decrypt - Dec: Takes the secret key sk and a ciphertext
c, and outputs the message or a special character in case
of failure

Additionally, any FHE construction requires a general pur-
pose interface for applying functions (i.e. an arithmetic or
boolean circuit of permitted length [8]) to a set of ciphertexts:

• Evaluation - Eval: Takes as input the evaluation key
evk, a function f and a tuple of ciphertexts c1, ...ct. The
output of this function should decrypt to the output of
the function applied to the set of plaintexts, specifically:
Decsk(Evalevk(f, (c1, ...ct))) = f(m1, ...mt).

It’s worth mentioning that while Encpk(f(m1, ...mt)) and
Evalevk(f, (c1...ct)) both decrypt to the same message, they
are not equal - their constructions and noise levels differ [18].
This algorithm is the core construction behind bootstrapping.

Bootstrapping
Based Gentry’s framework, bootstrapping is a special use

case of Eval, which ”evaluates the decryption circuit homo-
morphically” [8, 16]. As such, the function used in this inter-
face is the decryption circuit, along with an encryption of the
secret key: cf = Evalevk(DecEncpk(sk), (c1...ct)).

Fundamentally, the bootstrapping procedure uses Eval in-
terface to Decrypt and Recrypt simultaneously, which pro-
duces a new (fresh) ciphertext and doesn’t expose any data
in the process [18]. However, this approach has 2 underlying
assumptions. Firstly, that the Dec circuit has a depth small
enough so that it can be evaluated homomorphically. This
was addressed in the initial constructions through the squash-
ing mechanism, which is used before bootstrapping, to ex-
press Dec as a function with a lower degree (decreasing the
circuit depth). This was made possible by adding ”extra in-
formation” [8] about the secret key sk to the evaluation key
eval, without compromising security4. Secondly, circular se-
curity - that the secret key can be safely encrypted under the

4An additional assumption was made to maintain security,
namely the hardness of the average-case SSSP

public key. Most constructions also implicitly assume this as
a requirement for bootstrapping [20].

3.1 First Generation

Based on Ideal Lattices

First generation FHE schemes debuted with Gentry’s
framework [8, 16] based on Ideal Lattice assumptions. Ini-
tially it was ”conceptually and practically not a realistic
scheme” [47], given the complexity of the bootstrapping pro-
cedure. Nevertheless, it was first implemented by Smart and
Vercauteren [48]. They proposed slight modifications to the
encryption Enc function that produced smaller key sizes,
”whilst ciphertexts are the same size”. Noteworthy is the in-
troduction of the Single Instruction Multiple Data Processing
(SIMD) in this implementation, which was achieved by us-
ing the Chinese Remainder Theorem (CRT)5. This technique
set the foundation of batching, which permits packing mul-
tiple plaintext to be encrypted in the same ciphertext. It sig-
nificantly reduced the time for processing sequences of mes-
sages, by allowing parallel computation, at a cost of a highly
complex and slow key generation process.

Meanwhile, Stehlé and Steinfeld reduced the complexity
of the refreshing procedure, by reducing the number of vec-
tors in the hard problem assumption instance and introduc-
ing ”a probabilistic decryption algorithm that can be imple-
mented with an algebraic circuit of low multiplicative de-
gree” [49]. A subsequent improvement was later made by
Gentry and Halevi [50], who relied on the previous construc-
tion concepts [8, 16, 48, 49] to reduce the complexity of the
KeyGen method, and expand on the SIMD batch encryption
processing. While naturally this key generation construction
doesn’t present the same batching capabilities, these can be
preserved by selecting a specific set of parameters. Smart
and Vercauteren explored this topic further in another dedi-
cated publication [51].

All of the First Generation constructions are based on
principal ideals that have “relatively short generators, which
serve as secret keys” [52]. As such, their ”hardness” and se-
curity is based on efficiently finding one such short generator.
This is known as Short Generator of a Principal Ideal Prob-
lem (SG-PIP) and it was broadly considered a hard problem.
However, more recent works initiated by Dan Bernstein’s at-
tack on the Campbell-Groves-Shepherd SOLILOQUY asym-
metrical cryptosystem [53] have given shape to potentially
efficient attacks against this specific problem. A concrete
proof of such attacks was later provided [52], which, coupled
with the difficulty to implement these mathematical construc-
tions, had marked the end of the First Generation of FHE
schemes based Ideal Lattices. Specifically, they provided a
key-recovery attack in quantum polynomial time or exponen-

tial classical time (2n
2
3
−ϵ

) for finding ”short generators” [18].

5CRT states that given k divisors (or moduli) n1, ...nk and k
remainders a1, ...ak with ai < ni, there is only one number (x)
smaller than the product of the divisors N = n1 · ... · nk with the
property that it presents the remainder at to the division with nt:
x ≡ at (mod nt), for any t ≤ k



Based on Approximate Greatest Common Divisor
A significant contribution to the first generation of FHE

was the DGHV scheme [54] due to its simplicity and appli-
cability to integers. The underlying security assumptions are
based on the hardness of the SSSP and Approximate Great-
est Common Divisor6 (AGCD) [55] problems. Initially the
proposed DGHV scheme was symmetric, but the authors also
presented the way to convert it to asymmetric, by comput-
ing many ”encryptions of zero”, which are shared as a pub-
lic key. Then, encrypting relies on adding to the message a
subset sum of these encryptions. To achieve a FHE, the boot-
strapping method was coupled with the public key DGHV’s
SwHE construction:

• KeyGen : based on λ output the secret key p and the
public key (x0, ...xn), such that xi = p · qi + ri, where
x0 > xi ∀i > 0 and qi, ri are random integers

• Enc : for a message m ∈ {0, 1}, create the ciphertext
c = m + 2r + 2

∑
i∈S xi, where r is a random integer

and S is a subset of {1, ..n}
• Dec : for a ciphertext c compute (c mod p)mod 2. The
c mod p eliminates the multiples of p from xi, leaving
m+2 ∗ noise, which is reduced mod 2, as long as 2r+
2
∑

i∈S xi < p/2

Despite the simplicity of the scheme, it presents large key
sizes (O(λ10)) and high computational costs. As such, sub-
sequent publications have addressed the issue of public key
sizes: Coron et al. reduced it to O(λ7) [56], then again to
O(λ5) [57] and Yang et al. brought it to O(λ3) [58]. Their
approach was based on the idea that only a subset of elements
of the public key should be stored, since the rest can be safely
recovered. However, Chen et al. [59] presented an new ap-
proach to the exhaustive search attack over the hardness of
AGCD, ”whose running time is essentially the “square root”
of that”, which reduced the security of the scheme.

This scheme was further improved by research addressed
in the Section 3.2. For example, it’s worth noting that Coron
et al. [57] additionally used the modulo switching technique,
introduced by Brakerski and Vaikuntanathan [60]. This fur-
ther reduced the key size by scaling the equation with a frac-
tion composed of the new smaller modulus base p′ divided by
the secret key: p′

p , implicitly scaling down the noise as well.
Moreover, a more recent publication [61] has leveraged Brak-
erski’s [22] scale-invariant property to address the limitations
of the modulus switching technique. Additionally, batch ver-
sions of DGHV were independently introduced [62, 63] and
merged in a final version [64] to handle multiple ciphertexts
and re-encryption operations in parallel [47].

3.2 Second Generation
Brakerski and Vaikuntanathan developed a couple of

SwHE scheme based on LWE [60] and RLWE [65], which
marked the starting point of the Second Generation of

6AGCD asks to determine a secret integer p from a set of ”noisy”
equations of the form xi = p∗qi+ri, with given conditions. Specif-
ically, p is a η bit prime, xi have γ bits, ri have ρ bits and ρ signifi-
cantly smaller than η [55].

schemes [19]. They had introduced two central concepts:
re-linearization (known as key switching) and dimension-
modulus reduction (known as mod switching). Given the
n-dimensional ”random” vectors representation of the se-
cret key, homomorphic operations introduced the problem
of exponential growth of the dimension of the ciphertexts:
a single multiplication grows the ciphertext size to n2

2 . Re-
linearization addresses this problem: reducing the quadratic
equation c1 · c2 to a linear one by means of encrypting all
the terms of the secret key under a new key [18], scaling
the size back to n + 1. Mod switching replaced squashing7

with a technique that mathematically scales down the com-
plexity (depth) of the decryption circuit (degree of at least
max(n, log(q)) [60]) from polynomial in the bits of the se-
cret key (poly(λ)), by some polynomial factor poly(n). Si-
multaneously, this technique also reduces the absolute error
to some fixed polynomial bound [19, 60].

The key and mod switching techniques were highly uti-
lized in the construction of the BGV [20] scheme (RLWE).
It was constructed as a Leveled-FHE, which displays homo-
morphic capabilities up to any predefined depth. As such,
it removes the costly bootstrapping procedure, and is much
more efficient (O(λ · d3)) in circuits that have a depth d
known apriori. The authors also presented a faster bootstrap-
ping technique(O(λ2)) that can transform it into a FHE when
necessary. This scheme is highly used in the industry, hav-
ing some of its optimizations been implemented in the IBM
HElib [66]. The most relevant optimization [67] marked an
important step towards fast bootstrapping, and used Smart-
Vercauteren [48, 51] batch processing on the BGV [20] con-
struction to achieve one of the fastest schemes, with poly-
logarithmic overhead (polylog(λ)) for each gate. The BGV
[18, 20] scheme design can be found in Appendix D.

Based on this technique, Brakerski [22] proposed a scale
invariant LWE scheme, which removes the need for modulus
switching. In this approach, the error growth rate is bound
at a poly(n) rate per multiplication. Fan and Vercauteren
(FV) implemented this scheme [22] over RLWE [21], op-
timizing the computation and the key switching approach.
These two constructions, referred to as B/FV, are imple-
mented in Microsoft’s Simple Encrypted Arithmetic Library
(SEAL) [68]. Later publications have presented optimiza-
tions to the bootstrapping procedure for large moduli [69],
modifications to the plaintext space [70], and to the modu-
lus used [71]. Regardless, both B/FV and BGV are consid-
ered SOTA schemes in the context of the Second Generation.
These have been studied in comparison, especially how they
manage error growth. Given the fact that decryption is only
possible if the ”small error” remains smaller than the modulus
q, the representations of BGV-B/FV-inspired constructions
are faced with a security - error margin tradeoff that influ-
ences parameter selection [18]. Performance-wise, Costache
and Smart [72] found that for a fixed number of levels and
small plaintext B/FV is preferable to BGV, whereas the lat-
ter outperforms all the other schemes as the plaintext mod-
ulus increases. Subsequently, Costache et al. [15] have aug-

7Implicitly removed the need for an additional SSSP hardness
assumption



mented this comparison with a noise growth analysis. They
concluded that there is a discrepancy between the theoretical
(assumed) and practical (observed) noise growth, in addition
to the fact that for large moduli BGV outperforms B/FV.

3.3 Third Generation
Gentry, Sahai and Waters (GSW) [73] proposed a scheme

based on LWE called the approximate eigenvector method.
The scheme has no evaluation key and knowing the public
key is no longer required, except for basic parameters. In this
approach additions and multiplications are treated as matrix
operations, resulting in an ”asymptotically faster” scheme.
It removed the need for key and modulus switching, fur-
ther reducing the complexity of the operations. Due to this
fact, GSW presents a polynomial (L poly(n)) growth in er-
ror rate rather than the quasi-polynomial (poly(n)log(L)) that
relinearization-based schemes exhibit [74] for a maximum
multiplicative depth L and a scheme dimension n. Moreover,
it reduced the space complexity from quasi-cubic to quasi-
quadratic, although the authors state that the RLWE version
performs worse than the best known RLWE schemes by a log
factor. Additionally, it is worth noting that the main draw-
back of this method, as stated by the authors is the costly
bootstrapping procedure: ”our scheme loses some of its ad-
vantages once bootstrapping is used” [73]. Following the no-
tation [75, 76], the construction of GSW [18, 73]:

• KeyGen : outputs random sk = (1, s2, ...sn) ∈ Zn
q ,

and pk = A ∈ Zn×n
q , such that A · sk = e ≈ 0

• Enc : computes C = mIn + RA, where m ∈ Zq is the
message, In the identity matrix, R a n × n matrix with
random binary elements

• Dec : outputs first element of the n-dimensional vector
Csk = mInsk+RAsk ≈ mInsk = (m,ms2, ...msn).
R is small, so RAsk = Re ≈ 0

While this scheme benefits from better error management
and a more ”natural” procedure, the performance suffers
when used on complex large operations. To address this
issue, multiple bootstrapping optimizations have been pro-
posed, the most remarkable of which is the Alperin-Peikert
(AP) [75,77]. In fact, these consist of a new approach to eval-
uate decryption as an arithmetic circuit, rather than a boolean
one. Interestingly, the AP approach enables Eval to be per-
formed in the same time as the noise reduction operation,
later refered to as Programmable Bootstrapping (PBS). The
outcome is a quasi-optimal construct - quasi-linear (Õ(λ))
in the security parameter λ operations to bootstrap any 2λ se-
cure LWE system.

Gama et al. [78] proposed GINX as an alternative to AP
[75, 77], that generalizes over RLWE problems with polyno-
mial noise overhead. Similar to the AP approach, GINX is
also considered a PBS technique, and represents an impor-
tant step towards fast bootstrapping. In terms of distinctions,
as shown by Micciancio and Polyakov [79] GINX in practice
is preferable for binary secrets, while AP outperforms it for
larger secret sizes8. Following this line of research, a signif-

8Secret keys drawn from distributions (e.g. Gaussian [79]) over
large intervals, as opposed binary or ternary secrets (e.g. 0, 1,−1)

icant number of papers were published to improve or extend
the functionality of these bootstrapping procedures [80–84],
starting either from AP or GINX. These were monumental in
constructing the SOTA Third Generation schemes [23, 24].

Ducas and Micciancio [23] proposed a new RLWE scheme,
FHEW, which leverages the Ring variant of the AP’s quasi-
optimal bootstrapping procedure [77]. Their main contri-
bution, however, consists of a new method to compute the
NAND gate, which is functionally complete9. Thus, instead
of boolean or arithmetic circuits, FHEW uses NAND circuits
to compute, which ”introduces a much lower level of noise
than previous techniques” [23]. FHEW operates, like the
other Third Generation schemes, at a bit-level, which, cou-
pled with the NAND gate computation achieves much bet-
ter performance. However, in this construction bootstrapping
must be performed after every operation.

Alternatively, Chillotti et al. [24] have proposed a gener-
alized FHE method based on GINX. As a consequence, they
vastly reduced the bootstrapping running time and key sizes.
Technically, they proposed 3 FHE schemes over Torus re-
ferred to as TFHE [18]: TLWE as a generalized version of
LWE, TRLWE its RLWE equivalent and TRGSW the gener-
alized version of the ring equivalent of the GSW [73]. Be-
ing generalized versions, one could switch between them, by
changing the domain of the application.

3.4 Forth Generation
The Forth Generation of schemes was characterized the

breakthrough of computing on floating point numbers.
Cheon, Kim, Kim and Song [25] proposed a new method
of performing approximate arithmetic, initially known as
HEAAN, by treating the noise as ”part of error occurring dur-
ing approximate computations”. As such, the decryption Dec
circuit has predefined level of precision when outputting the
approximate value of the plaintext. This approach suffers
from a small accuracy loss, which is bounded by the depth of
the circuit. Their discovery was treated as a starting point for
approximate arithmetic schemes, in which they laid out the
foundational LFHE construction. They also proposed a new
batching (SIMD) technique for RLWE constructions, which
preserves the set precision while not increasing error growth.

The basic example they provide to illustrate this scheme
is that the ciphertext will be decrypted as Dec : ⟨c, sk⟩ =
m+ e (mod q), using the same notion as before for (R)LWE
problems. Additionally, for a small error compared to the
message, that equation can become the new approximate
message m′ = m + e. Their construction can be extended
to more complex functions, but in this form it presents an
exponential bit size growth in terms of circuit depth. Con-
sequently, to address this issue and obtain a linear cipher-
text modulus growth, they proposed a technique referred to
as rescaling, very similar to BV’s [60, 65] key switching. It
is realized by multiplying the decryption circuit by 1/p, for
some number p after multiplications, obtaining a valid en-
crypting of m

p with a lower noise e
p under mod q

p , hence the
small accuracy loss. Over the course of multiple operations,
the modulus decreases until operations are no longer feasible.

9Can represent any circuit using NAND gates



The following year, they augmented this approach with a
bootstrapping method to transform the scheme into a FHE
[85]. They used a scaled sine function to evaluate the decryp-
tion circuit approximately and obtain the original message in
a ”large ciphertext modulus”. Subsequent constructions fol-
lowed this blueprint to present optimization methods. No-
tably, Boemer et al. [86] improved the ciphertext additions
and multiplications, as well as the runtime of scalar encoding,
through the use of complex packing [18]. Moreover, Kim et
al. [87] adapted the rescale technique to be used before com-
putations, leading to a smaller error growth.

It’s important to mention that to address the issue of ver-
satility, CHIMERA [88] scheme was developed. The authors
presented a method to switch between the 3 generations of
RLWE representative schemes: TFHE [24], FV [21, 22] and
CKKS [25, 85]. FV is by necessity the middle scheme, the
one which can be switched in either of CKKS and TFHE, and
vice-versa. This way, one could obtain the advantages of each
these constructions in less defined or changing environment.

4 Characteristics
This section addresses the characteristics of FHE, examin-

ing the differences between the generations of constructions,
on the Functionality, Efficiency, Usability and Security axis.

4.1 Functionality
Homomorphic Encryption first evolved in the form of PHE

as a direct response to specific problems. As such, these were
developed with low versatility in mind, high speed, no inter-
actions with other parties and very precise use cases. Most
of these schemes are already used in the real world scenar-
ios [1,4,6,89], such as: electronic voting protocols [90], smart
grid services [91] and biometric applications [40] through the
Pai scheme [3]. However, the need for a general purpose
encryption technique had intensified in the following period,
due to technological advancements. Then, the topic of FHE
became of interest since it can cover all the drawbacks of PHE
schemes. The key differences between FHE and PHE can be
found in Table 3. FHE was developed so that it can enhance
data secrecy during any computations. The main goal is to
become a general purpose tool, that can be used for ad-hoc
applications, as well as, underlying secure infrastructure. In
terms of reliability, FHE is only bounded by the hardness of
the problems is based on, not circuit depth or types of opera-
tions, as LFHE or PHE are.

Especially in the age of Artificial Intelligence, when data
is capital, superior security measures have to be implemented
not only to prevent intrusions, but also to protect data in such
event. Specifically for these kinds of applications FHE was
developed. For example, Munjal et Al. [11] have analyzed
the benefits FHE can bring to the healthcare sector via secure
Electronic Health Record (EHRs), where data leaks carry
high risks. Moreover, the applicability of FHE is still un-
der study in relation to the 5/6G technology, in the process
called fog computing [92]. Specifically, FHE has a role to
play in the data aggregation services used via fog computing
in smart grids (smart cities’ infrastructures) [93]. Addition-
ally, protected data could be used in the training of Machine

Learning (ML) models without exposing sensitive informa-
tion in the process, regardless of the ML model. Architectures
for ML applications, such as Neural Networks (CNN) [94],
Decision Trees (DT) [95] and Deep Learning [96] are being
developed. However, the adoption process requires overcom-
ing some major obstacles in terms of performance, standard-
ization and interoperability, further discussed in Section 7.

4.2 Usability
Each generation of schemes has their respective practical

features, presented in Table 2, which highlight advantages,
disadvantages, which lead to specific use cases in practice, as
displayed by Table 1 in Appendix B.

The second generation of schemes, such as BGV [20] and
B/FV [21, 22], introduced integers operations, packing via
CRT, which allowed parallel computations to be performed,
but present a slow bootstrapping mechanism. However, for
circuits with predefined circuit length, these can display an
efficient leveled design, which circumvent the need for noise
reduction. These are appropriate for exact operations on large
arrays (batches) of data, as these can be parallelized.

Similarly, the forth generation of schemes via CKKS
[25, 85], improved the batching framework to an exponen-
tial number of entries, which can lead to an amortized speed
of the slow bootstrapping technique. Remarkably, these intro-
duced approximate arithmetic FHE, allowing operations to be
performed with real numbers. Moreover, they optimized spe-
cific computation procedures used in Machine Learning, Data
Streaming and Analysis, such as polynomial approximation,
logistic regression and multiplicative inverse [18].

However, the second and forth generations are not well
equipped to perform non-linear operations. Instead, the third
generation via FHEW [23] and TFHE [24] can outperform
the others, as long as the computations can be expressed as
boolean circuits. The main two limitations for the third gen-
eration are that bootstrapping has to be performed after every
operation/NAND gate, and that these don’t support batching.

4.3 Efficiency
FHE introduces an overhead in terms of performance, com-

pared to plaintext computations, due to multiple main factors:
Key Generation (order of minutes), encrypted-domain repre-
sentation, ciphertext sizes, Bootstrapping procedures, which
differ between constructions. Generally, the operands are ci-
phertexts with abstract algebraic structures, such as polyno-
mials over rings, not integers or floats, thus being orders of
magnitude larger than the plaintext.

The Bootstrapping procedures differ between generations,
the most efficient achieving amortized10 polynomial over-
head. These might be repeated frequently, depending on the
error growth, number of operations and the depth limit. In ad-
dition, some schemes require the use of key or mod switching,
or rescaling, that increase overall computation time. The sub-
ject of efficiency was further examined in depth in Sections
3.2 -3.4 with regard to each construction in particular.

10The 2nd and 4th generations, which offer support for batching
(SIMD), amortize their very slow (order of minutes) bootstrapping
procedures through parallel computing.



4.4 Security
In terms of security, all FHE schemes use non-

deterministic encryption algorithms, which ensure that the
same plaintext encrypted twice does not yield the same re-
sult. As such, FHE schemes benefit from the security level
IND-CPA: Indistinguishability under Chosen Plaintext At-
tack, also known as semantic security. It implies that an
adversary with access to the public parameters cannot dis-
tinguish between ciphertexts that result from encrypting two
adversarially chosen plaintexts [97].

However, many applications require a stronger security
level, known as Indistinguishability under Non-adaptive Cho-
sen Ciphertext Attack (IND-CCA1). To achieve this level,
an adversary with polynomial-bounded access to an encryp-
tion and decryption oracle, cannot reliably guess the message
when given its encryption. A superior security level is IND-
CCA2, in which the attacker is given access to the same or-
acle even after receiving the encryption of the message. In
real-world scenarios, IND-CCA2 security level is required,
as it prevents any meaningful modification of a given cipher-
text [97]. FHE is malleable by design, so it cannot achieve
IND-CCA2 security, as an attacker could simply use the ho-
momorphic property of the scheme to add to the ciphertext the
encryption of a known number, decrypt the resulting cipher-
text, and subtract that number to obtain the plaintext. How-
ever, some schemes can achieve IND-CCA1 security [97].
Moreover, some attempts to improve the security level have
been made [98], but were proven to be unsuccessful [99].

5 Comparison
To further clarify the role of FHE as a cryptographic tech-

nique, this section will conduct a wider comparison with
other privacy-enhancing techniques. The key aspects are also
highlighted by the Tables 4 and 5 in Appendix B.

Multi-Party Computation
Secure MPC facilitates distributed computing capabilities

with the underlying assumption of malicious party behavior
profiles, such as: malicious - can compromise correctness,
and honest-but-curious - follows the protocol but attempts to
gain information. If the number of corrupted parties forms
a minority, MPC can achieve fairness and guarantee output
delivery, assuming access to a broadcast channel [100, 101].
Such protocols support innovation in the fields of health-
care, government technology and advertisement. For exam-
ple, these can facilitate secure genome comparisons across
institutions’ databases to detect cancer predispositions [102].

Like FHE, MPC supports general purpose computations,
but requires interactive protocols for each gate evaluation,
limiting scalability in asynchronous or high-latency settings.
Most MPC consists of three phases, namely: Input Sharing
(such as Shamir’s Secret Sharing [103]), Circuit Evaluation
and Output Reconstruction [102]. Relevant semi-honest con-
structions are Yao’s GC [104], GMW [105], BGW [106], and
BMR [107]. These differ in circuit types (Boolean or Arith-
metic), Round Complexity (Linear or Constant) and adversar-
ial models, making them suitable for different use cases. For
example, Yao’s GC encodes a boolean circuit in truth tables

and allows one party to evaluate it, whereas GMW represents
the circuit as a series of gates and evaluates them collabora-
tively via bitwise secret sharing and oblivious transfer.

The collaborative environment and speed in computing
with a limited number of parties makes them distinctive from
FHE, which does not require coordination, trust or communi-
cation rounds between the parties. However, MPC shifts the
cost from computation to communication, requiring multiple
rounds of exchange per gate. Nevertheless, MPC can bene-
fit from the development of FHE by enabling encrypted data
computation on each parties’ secret share.

Structured Encryption
Structured Encryption (StE) enables queries to be per-

formed on structured data (as matrices, arrays, graphs, la-
beled data etc.) stored in untrusted servers, without reveal-
ing information about the operations or the data [108]. StE
has evolved as a generalization of the Symmetric Searchable
Encryption (SSE) proposed in 2000 [109]. SSE facilitated
keyword searches on encrypted documents, further refined in
2003 [110] by introducing Secure Indexes. These enabled
finding documents which included certain words in constant
time, while ensuring the pointers are encrypted, through the
use of Bloom filters. The following publications on SSE
[111] and on secure keyword searches [112] gave stronger
security definitions and more efficient constructions.

At a high level, StE takes as input structured data and out-
puts an encrypted structure and the respective ciphertexts.
StE can be viewed as a functional encryption which uses a to-
ken, generated with the secret key, that can recover the point-
ers to the ciphertexts from the encrypted structure. To achieve
this, there is an induced permutation that shuffles the data,
acting as a mapping function, which inevitably leaks access
pattern data. This vulnerability is leveraged in the IKK-type
attacks [113], where attackers can accurately infer sensitive
information, given some prior knowledge about the data.

StE offers greater performance, but is less versatile than
FHE, which supports any computation. Instead StE is de-
signed for specific use cases, where encrypted data structures
represent client data stored on the server, enabling efficient
searches and updates, at the cost of access pattern leakage.

Oblivious RAM
Integrating cryptosystems, such as FHE, secures data con-

tent, but using it may leak access patterns to memory (se-
quences of addresses or operations). ORAM complements
them by protecting against software-level leaks, hiding ac-
cess patterns. It facilitates secure data storage on untrusted or
outsourced servers, by ensuring attackers cannot observe or
infer memory accessing operations.

The initial proposal by Goldreich and Ostrovsky [114] as-
sumed a client-server scenario, where the server stores in-
formation, while the client is the one performing operations
on it. Subsequent works [115] have extended the capabili-
ties of the server to also compute, which make use of PHE or
LFHE [116, 117], to obtain confidentiality of both, data con-
tent and access patterns, enhancing the capabilities of servers
to achieve trusted executions. These are evaluated in terms
of bandwidth, client and server storage [118], highlighting



SOTA ORAM techniques, such as: SSS [119, 120], Burst
ORAM [115], Ring ORAM [121], and Path ORAM [122].

Generally speaking, ORAM divides data into blocks and
stores it in graph-like structures. It continuously shuffles and
re-encrypts it as it’s being accessed, thus offering indistin-
guishability between objects accessed, and parties that access
them. However, typical ORAM constructions are vulnerable
to side-channel (hardware-level) attacks that leverage execu-
tion time [123, 124], power consumption [125], and electro-
magnetic radiation [126]. By measuring the output from these
side-channels and correlating them with private information,
attackers can learn the underlying secret in the system [126].

Trusted Execution Environment
TEEs denote secure enclaves in hardware, where code and

data are isolated and protected from the rest of the system
(e.g. OS, Hypervisor or applications). This technology re-
lies on a minimal Trusted Computing Base (TCB) and is
heavily used in servers that require secrecy, at no additional
complexity overhead, which alternative approaches, such as
FHE, would introduce. As such, these are well suited for low
latency - high throughput scenarios, such as file-based en-
cryption, biometric authentication, and anti-piracy controls
for video streaming [127]. There are two architecture de-
signs for TEEs, namely enclave-based, with relevant exam-
ples being Intel SGX [128] and Keystone [129], and VM-
based, with Intel TDX [130], and AMD SEV. The former one
offers tighter control at the cost of platform fragmentation and
limited memory models.

Given their reliance on the code TCB, all TEEs try to min-
imize it for enforcing the security guarantees. Nevertheless,
they are vulnerable to micro-architectural design flaws and
side-channel attacks, such as cache timing and speculative ex-
ecution [131,132]. Hardware bugs (e.g. Foreshadow for SGX
- L1TF [133]) can bypass enclave protections, highlighting
the necessity of supply chain trust. Compared to FHE, TEEs
have an entirely different usability model. TEEs shift the re-
sponsibility to the manufacturers, facilitating a secure compu-
tation space, isolated memory and trusted Input/Output. Con-
versely, FHE enhances the security of the computations with
a layer of encryption, which expands the feasibility of secure
operations to untrusted servers as well.

6 Responsible Research
This section will dive deeper into how the research en-

deavor was performed in terms of material choices and care-
ful representation of information, with the aim of ensuring the
transparency, trustworthiness, and reproducibility.

Code of Conduct
The research was conducted in accordance to the following

established ethical frameworks: Association for Computing
Machinery’s (ACM) Code of Ethics and Professional Con-
duct [134], TU Delft’s Code of Conduct [135] and National
Society of Professional Engineers’ (NSPE) Code of Ethics for
Engineers [136]. These have guided source selection, com-
parative methodology, and the framing of claims throughout
the paper.

Ethical Consideration and Privacy
Although this research project does not involve data col-

lection or experimentation of any form, it unequivocally sup-
ports the principles of Privacy by design. European regula-
tions, such as General Data Protection Regulation (GDPR)
highlight the ideas of data collection minimization and max-
imal privacy, which are technologically realizable through
FHE. In addition, it emphasizes that FHE can augment
privacy-sensitive applications to enable compliance in com-
putations, without compromising user choice of participa-
tion. As such, the ethical discussion around data handling
is not empirical, but conceptual and normative. Thus, FHE
serves not only as a research subject but also as an enabler of
privacy-compliant data computation.

Replicability, Reproducibility and FAIR Data
This paper does not present new implementations of the ex-

posed methods, nor data collection from already implemented
libraries. Instead it composes an analytical and comparative
endeavor of theoretical concepts, based only on public data
- freely available, with no restrictions on access or usage.
The cited sources are Findable and Accessible on the inter-
net, without the need for authentication, and are used to create
Interoperable and Reusable data points through this research
project. Thus, the principle of Reproducibility is strongly em-
phasized - another researcher given the listed open references
can trace the rationale behind technical or comparative claims
made. These claims are often supported by previous publica-
tions, which are also cited. To specify:

• The core of the narrative presentation, the FHE scheme
timeline, is agreed upon by the scientists and engineers
in the field of encryption, having been published about
10 years ago [19], highly reviewed and widely adopted
in all subsequent works.

• The mathematical constructions of the FHE schemes
were analyzed starting from their publication source and
displayed in light of other cited sources, such as surveys
or reviews.

• The comparison tables are based on peer reviewed sur-
vey metrics and benchmark data from primary sources,
co-authored by fellow research project students, which
abide by the same principles.

• Other discussed items of interest, such as security
claims, are grounded in mathematical provable concepts,
otherwise cited or intentionally excluded.

Replicability is highlighted by this paper’s use of primary
source data. As such, it would be infeasible to construct an
equivalent survey using entirely disjoint sources. The major-
ity of the sources cited are the foundational layer of the sub-
ject. Any additional sources were used to support the claims
or comparisons made by these central publication.

It is worth mentioning that the Reproducibility and Repli-
cability of this research are only limited by interpretative lens
of the literature, especially in the context of ”Functionality”,
”Ethical Considerations” and ”Discussion and Future Work”.
It is possible that other scientists may weigh in differently,



but the supporting materials offered them the transparency
required to retrace the rationale behind those claims.

Research Integrity
The core principle of the paper pertains to integrity. All

actions taken in the research must be justifiable in terms of
maintaining integrity. As such, original formal FHE con-
structions (primary sources) were given priority above aux-
iliary, processed information. For auxiliary sources, priority
was given to the most cited among them or those that were
produced by some of the most cited authors in the field. Re-
lated claims of reviews or surveys were verified in a forward
referencing manner and cross-validated wherever possible, or
excluded otherwise. Moreover, the message gathered from
all the sources was reproduced as faithfully and truthfully as
possible to its original source, and adheres to the same truth-
seeking ethos as the original theoretical framing. To highlight
this effort, the terminology used was always the same as that
of the cited sources, and it coincides with the domain-wide
terminology and methodology consensus. Moreover, it was
further emphasized through clearly separating claims from
mathematically-grounded construction and implications.

Bias
Bias cannot be avoided, yet it must be recognized. This

report may be affected by two types of bias, namely Selection
and Interpretation Bias. By acknowledging these biases, the
paper invites critical reflection and further inquiry.

Selection Bias refers to the fact that the inclusion criteria
was based on the most prominent (most cited or impactful)
publications in the field, which may lead to overlooking lesser
known, but highly relevant publications. However, one core
axiom which this research operated under was the fact that in
a quantifiable scientific field, such as Cryptography, the most
relevant publications given enough time will have the most
citations relative to their niche. Moreover, the taxonomy of
the FHE schemes was adopted from Piekert [19], which is
the only officially recognized one, but it may not be exhaus-
tive. Consequently, certain schemes and constructions were
deliberately excluded, given the fact that these do not overlap
well with the classification presented or that these have not
been peer reviewed.

Interpretation Bias refers to the choices the researcher has
made in analyzing or framing the presented information.
This, too, was minimized by continuous efforts of adopting
what would be considered as general comparison metrics,
such as ”Ciphertext Size”, ”Noise reduction mechanism” etc.
Nevertheless, it is worth emphasizing that the interpretation
of qualitative aspects, such as ”usability” or ”efficiency” was
portrayed with interpretation bias. Such categories are depen-
dent on the research scope - attempted to be exhaustive - and
the personal understanding of the researcher. Similarly the
conclusions are based on both, the quantifiable data and the
limited experience and understanding of the subject.

Artificial Intelligence
The increasing accessibility of generative AI tools, such

as Large Language Models (LLMs), presents new opportuni-
ties for scientific research. However, under no circumstance,

should AI substitute critical thinking and analysis. As such,
this paper did not rely on generative AI for content creation,
citations, or technical explanations. However, it did make
limited use of freely available ChatGPT (OpenAI) to improve
clarity and consistency in language, in accordance with TU
Delft’s Research Project policy on AI use. It facilitated im-
provements to surface-level grammar and spelling in the final
revision stage, not for analytical reasoning or source evalu-
ation. A representative example was the prompt: ”Identify
in the following paragraphs any writing mistakes without re-
formulating or adding any other information”. The resulting
feedback was used to correct typographic errors and ensure
writing consistency, while all analytical, comparative, and in-
terpretive work remained the sole responsibility of the author.

Closing Remarks
This research was conducted with a commitment to ethical

clarity, reproducibility, and fair representation of knowledge.
Through rigorous source citation and cross-validation, trans-
parent methodology, and bias acknowledgment, the project
aims to adhere to responsible knowledge development within
the fields of scientific and engineering research.

7 Discussion and Future Work
FHE has the potential to become the general tool for un-

derlying security even in the event of intrusions. However, at
the moment there are 3 characteristics that impede its mass
adoption: performance, standardization and interoperability.

Firstly, FHE computations are still relatively slow [19].
Reducing the noise in any FHE demands evaluating the de-
cryption circuit homomorphically, which impedes the effi-
ciency of the scheme. Despite support for parallel comput-
ing (SIMD) and various optimizations, the required improve-
ment for adoption might not be achievable from software-
based solutions alone [18]. Instead, FHE hardware accelera-
tors have been developed, such as Doroz et al. [137], Cousins
et al. [138] and, more recently the F1 accelerator [139]. These
have achieved up to 4 orders of magnitude speed-ups (the F1)
in the SOTA schemes, such as BGV [20], GSW [73] and
CKKS [25, 85]. Recent hardware-focused technologies are
required to fill in the performance gap that would make FHE
a standard practice.

Secondly, resources have been devoted for deep theoretical
understanding and improvements, but standardization is re-
quired for large-scale usability. In turn, this implies establish-
ing benchmarks in terms of FHE schemes and their respec-
tive parameters and abstracting away the theoretical hurdles
through dedicated SDKs and APIs. Considerable progress
had been made on this front by a consortium consisting of
large companies, such as Microsoft and IBM, academic re-
searchers and government representatives. They have made
remarkable progress by paving the way to focused discussion
in the direction of standardization, publishing standards of
FHE schemes parameters [140].

Thirdly, in order to become a general-purpose tool, FHE
has to enable for data interaction. By design, FHE cannot
compute on data encrypted with a different key. This pre-
vents its deployment in collective environments, such as dis-
tributed machine learning or decentralized systems. With



this goal in mind, the extension of FHE to a Multi-Key FHE
(MKFHE) [14] has been developed, but is less efficient than
other MPC protocols. Moreover, the ciphertexts obtained this
way cannot be decrypted if one of the parties doesn’t deliver
its share of the output. The subsequent publication of Thresh-
old MKFHE (TMFHE) [141] has addressed this issue, at the
cost of superior trust requirements between the parties. Nev-
ertheless, industry adoption of FHE schemes requires data in-
teroperability, along with active zero-knowledge proofs [18].

8 Conclusion
Fully Homomorphic Encryption (FHE) represents a crucial

development in privacy-preserving computation, enabling
data to be processed while remaining encrypted. This pa-
per provided a technical and functional characterization of
FHE, analyzing its evolution through mathematical design,
efficiency constraints, and real-world relevance. Particular
emphasis was placed on the limitations of current schemes,
such as bootstrapping overhead, the features each iteration
presents, and the role of FHE in a wider ecosystem of privacy-
enhancing technologies.

Through the theoretical constructions, FHE helped lay the
groundwork of zero-knowledge computing for untrusted, un-
secured environments. In doing so, it displays a monumen-
tal potential in maintaining individual privacy, while ensuring
ethical innovation. As such, its interaction with other privacy-
enhancing techniques is a topic of interest, which can bring
this vision closer to becoming a reality. However, obstacles
pertaining to efficiency, applicability and interactivity have
to be overcome in order for mass adoption to be achievable.
To address these, this paper recommended enhancing the per-
formance through dedicated hardware architecture, standard-
ization through public-private partnerships and interoperabil-
ity through integration with other privacy-enhancing purpose-
built techniques.



A Appendix A: FHE Characteristics Comparison Tables

Table 1: High-level usability comparison of FHE schemes generations, extending the table in [18]

Characteristic 1st Gen 2nd Gen 3rd Gen 4th Gen

Schemes Gentry, DGHV BGV [20], B/FV [21, 22] GSW [73], FHEW [23],
TFHE [24] CKKS [25, 85]

Operation domain Ideal Lattices Integers Bitwise (Integers) Real Numbers

Advantages Support for packing (SIMD) Packing (SIMD) Efficient boolean circuits Efficient packing (SIMD)
Simplicity Fast linear functions Fast Bootstrapping Fast Linear Computation

Exact Arithmetic Fast comparisons Fast Approximation

Disadvantages Not secure Slow Bootstrapping Frequent Bootstrapping Slow bootstrapping
Very slow Slow complex functions No batching Accuracy Loss

Applications Impractical Large array operations Many complex operations Machine Learning

Table 2: Key characteristics of generations of FHE schemes

Generation Operation
Gates

Bootstrapping
Speed

Packing
(SIMD)

Error
Growth Rate

Ciphertext
Reduction

Bootstrapping
Key size

2nd Modular
Arithmetic Low H# Quasi-polynomial

High Linear
Key & Mod Switching

Scale invariant Very Large

≈ 1000 slots

3rd Arbitrary Boolean
Gates via PBS Very High # Constant

Polynomial (GSW) Scale invariant Large initially
Smaller

4th Approximate
Arithmetic

Low
High If Amortized  Linear Rescaling Large

≈ 215 slots

Table 3: Comparison between types of Homomorphic Encryption constructions, expanding table in [40]

Attribute Operation
Type

Circuit
Depth Versatility Speed Use Cases

PHE Additions or
Multiplications Unlimited Low Very High Voting Protocols

Biometric applications

SwHE Additions and
Multiplications Limited Medium High Medical Information

Bioinformatics data

FHE Additions and
Multiplications Unlimited High Low

Big Data Processing
Sensitive Data Analytics

Machine Learning



B Appendix B: Comparison with other Privacy Enhancing Techniques

Table 4: Functionality and Usability Comparison of Privacy-Enhancing Techniques

Technique Computation
Type

Parties
Communication Applicability Use Cases

FHE Any computation Non-interactive
Client–server

Available in
open-source libraries

Medical data analysis
Recommender systems

Confidential ML

MPC General computation
(excluding specialized protocols)

Multiple clients or
distributed parties

Used in practice
but with limitations

Secure auctions
DNA comparison

Collaborative research

ORAM Data access Non-interactive
Client(s)–server(s)

Used in secure processors
and oblivious DBs

SGX integration
ObliDB, Signal protocol

StE Specific data access
on encrypted structures

Non-interactive
Client–server

Practical protocols for
specific structures

Encrypted DBMS
(e.g. MongoDB)

TEE Any computation
Interactive

Client–server with
attestation service

Optional in real world
cloud deployment

Data analytics
Trusted AI workloads

Medical Federated Learning

Table 5: Security and Performance Comparison of Privacy-Enhancing Techniques

Technique Threat Model Information Leakage Performance
Overhead

FHE IND-CCA1
Non-adaptive attack None by itself High: Key Generation

& Polynomial Operations

MPC Semi-honest or
malicious

Nothing beyond
function output Constant or Linear

ORAM Semi-honest or
malicious

Leakage through
side-channel attacks Logarithmic

StE Semi-honest Access pattern
sometimes response volume Sublinear

TEE Malicious actor
controlling server

Access patterns,
plaintext in CPU

Generally near-native,
bottleneck in I/O heavy



C Appendix C: Methodology

C.1 Search Queries
An example of a query used to retrieve relevant literature pub-
lications: TITLE-ABS-KEY((”homomorphic encryption*”
OR ”FHE” OR ”LFHE” OR ”bootstrapping*”) AND NOT
”multi-party*”).

Then, the following filters were applied, defining the inclu-
sion and exclusion criteria for the resulting papers:

• Time frame: between 2009 and 2024

• Subject area: computer science, cryptography

• Document type: conference paper, article, journal, book

• Language: English

• Publication stage: Final

C.2 Research Questions
1. What are Homomorphic Functions and what are the dif-

ferent types of such functions?

2. What are the functional differences between FHE and
PHE and SwHE?

3. What are the construction methods of a FHE?

4. How does Fully Homomorphic Encryption integrate into
the current systems in terms of key sizes, overhead and
threat model?

5. What are the most relevant (SOTA) FHE schemes?

6. How do the differences of construction manifest in the
use case scenarios of these SOTA schemes?

7. What are the differences in terms of functionality, us-
ability, security, and efficiency of the most relevant FHE
schemes?

8. How does it compare to other privacy techniques such
as Multi-Party Computation, Structured Encryption,
Trusted Execution Environment and Oblivious RAM?

D Appendix D: BGV Mathematical
Construction

Following the notation and construction of the BGV [18,
20] scheme:

Let d be a power of 2, q an odd positive integer modulus,
R = Z[x]/⟨f(x)⟩ a ring of polynomials with integer coeffi-
cients modulo the polynomial f(x), X an error distribution
over R = Z[x]/⟨xd + 1⟩, and B a bound on the length of the
elements outputted by X .

• KeyGen : takes as input λ, randomly selects a small
error e, chooses an element s, e ∈ X , and sets the secret
key sk = (1, s) ∈ R2

q . It generates a ∈ Rq uniformly at
random and computes b = as+2e, setting pk = (b,−a)

• Enc : takes as input pk and a message m, converting
it in (m,0)∈ R2

q , and randomly selects r, e0, e1 ∈ X .
Outputs ciphertext c = (c0, c1) = m+2(e0, e1)+pk r =
(m+ 2e0 + br, 2e1 − ar) ∈ R2

q

• Dec : takes as input sk and a ciphertext c. Outputs
⟨c, sk⟩ = c0 + c1s = (m + 2e0 + 2e1s + 2er) mod q
mod 2, which equals m

• Addition: Performed component-wise: c + c′ = (m +
m′)+2(e0+e′0, e1+e′1)+pk (r+r′) = c′′. It decrypts
to m+m′ as long as the resulting error is smaller than q

• Multiplication: ⟨c, s⟩ · ⟨c′, s⟩ = (c0 + c1s)(c
′
0 + c′1s) =

d0 + d1s + d2s
2. Thus it leads to the extension of the

secret key vector to (1, s, s2), for which key switching
is proposed. This encrypts s2 under s 11 and transforms
the resulting ciphertext to c′′0 + c′′1s.

11Operation requires circular security assumption
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