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Abstract 
 
Climate Change continues to pose a considerable threat to the well-being of people and economies. 
Today, to avoid catastrophic and irreversible damage, decision-makers and policy advisers need to 
explore possible scenarios and enact mitigation and adaptation policies to curb the rise of global 
temperatures within the thresholds set by the Paris Agreement. However, avoiding a 1.5-degree 
warming seems already out of hand, and the last Conference of Parties in Glasgow (COP26) sparked 
a contentious debate surrounding the role of coal. Representatives rely on climate reports and 
models to understand the problem, including integrated assessment models that aim to 
encompass the whole process straightforwardly and transparently. One example is the RICE-2010 
model developed by the 2018 Nobel Prize winner in economics William Nordhaus, used by the IPCC 
and known for its simplicity. However, the model does not include an explicit formulation of 
energy. This renders it hard to explore scenarios and policy questions directly tied to the 
diversification of the energy mix, a topic that has gained considerable attention with the Energy 
Crisis sparked by the Russian Invasion of Ukraine. Therefore, this thesis attempts to introduce 
energy intensity and carbon intensity to the model by decomposing the Emission Output Ratio. 
These parameters will allow the user to explore the drivers behind decarbonisation, whether it is 
related to an improvement in the energy efficiency of processes or a greener energy mix. The 
selected approach yielded surprising insights, such as the poor documentation and data quality of 
the RICE model, the over-simplistic design choices behind emissions and decarbonisation, and the 
under-representation of carbon intensity. These outcomes have highlighted potential, 
underestimations of future temperature rise, limited policy testing potential and a lack of 
transparency in data, methodology, and reproducibility. 
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1. Introduction 
 
Climate change is a wicked problem that has taken centre stage in global diplomacy. During 
climate summits, decision-makers partake in negotiations to set forth plans to mitigate the 
impacts of global warming (Levin et al., 2012). In a most recent attempt, the Paris Agreement was 
adopted in 2015 by 196 parties under the United Nations Framework Convention on Climate 
Change (UNFCC), to limit the rise in temperature to “well below” 2 degrees Celsius, and ideally to 
1.5 degrees compared to pre-industrial levels (UNFCC, 2015). Maintaining this threshold is meant 
to curtail the detrimental impacts of climate change, and avoid tipping points after which damage 
is irreversible (Lenton et al., 2019). However, it seems that the 1.5 degrees goal is out of reach (Jewell 
& Cherp, 2020), and the last Conference of Parties (COP26) exacerbated frustrations. In Glasgow, 
India and China led an effort to water down the language used for coal, pushing for a phasing-down 
instead of phasing-out of coal (Mathiesen, 2021).  This brought up considerable ethical and political 
debates regarding the political economy of coal, the responsibilities of every nation-state towards 
the climate crisis, and the rights of emerging economies and the Global South in general.  
 
Decision-makers rely on climate reports and models to reduce the complexity of this grand is and 
explore different scenarios and policy options (IPCC, 2022a). One type of model includes Impact 
Assessment Models (IAMs) known for being straightforward and transparent (Evans & Hausfather, 
2018). One prominent IAM model is the Regional Integrated Climate Economy (RICE) model 
developed by Nobel Prize-winning economist William Nordhaus (Nordhaus & Yang, 1996). The 
RICE model is widely-used, including by the IPCC, because of its ability to encompass the major 
elements of the climate change process simply and transparently (Yang, 2008). However, it does 
not include an explicit component for energy, which makes it difficult to comment on the state of 
decarbonisation globally and regionally (Nordhaus, 1992), and answer questions such as those 
resulting from COP26.  
 
Decarbonisation, generally defined as the reduction of carbon emissions, involves a few indicators. 
Most notably, Energy Intensity (EI) represents how energy-intensive the overall economy is, and 
Carbon Intensity (CI) represents the degree to which the energy mix is carbon-intensive. 
Understanding these indicators and comparing them across time and regions would allow the user 
to get a better understanding of how decarbonisation is occurring, what are the main drivers and 
what can be an improvement. It would also shed light on the relative importance of commitments 
adopted in international climate summits and their potential contribution.  
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2. Literature Review 
 
In this section, the main concepts associated with the topic are introduced, along with the gap in 
literature and the main research question. 
 
2.1. Integrated Assessment Models  
 

i. Review of IAMs  
 
Integrated Assessment Models (IAMs) are simple, transparent and easy-to-use climate models 
that integrate many aspects of the climate change process. They are widely used in international 
climate reports (Masson-Delmotte et al., 2018), where economists and climate scientists leverage 
them to make predictions about global warming, and estimate relevant variables to the climate 
debate, such as the Social Cost of Carbon (Harmsen et al., 2021). 
 
A survey of main climate IAMs highlights a diversity in scope, method and complexity, as seen in 
Table 1 below: 
 
Table 1: Survey of IAMs from the Literature 

 
Model Name Regional 

Scope 
Method Complexity Reference 

DICE Dynamic integrated 
model of climate and 
economy 

Global Neoclassical 
economic 
growth, Ramsey-
type 

Highly 
aggregated 

(Nordhaus, 
1992; 
Nordhaus, 
2017) 

RICE Regional integrated 
model of climate and 
economy 

12 
regions 
(RICE-
2010) 

Neoclassical 
economic 
growth, Ramsey-
type 

Highly 
aggregated 

(Nordhaus, 
2010; 
Nordhaus & 
Yang, 1996) 

FUND Climate framework 
for uncertainty, 
negotiation, and 
distribution 

16 
regions 

A non-general 
equilibrium 
model 

Recursive 
model 

(Anthoff & 
Tol, 2014; 
Tol, 1997) 

GCAM Global change 
assessment model 

14 
regions 

Non-linear 
optimization 
with Negishi 
weights 

Dynamically 
recursive  

(Calvin et al., 
2017; 
Edmonds & 
Reilly, 1983) 

MERGE Model for evaluating 
regional and global 
effects of GHG 
reduction policies 

1o 
regions 

Market oriented 
general 
equilibrium 
model 

 (Kypreos, 
2007; Manne 
& Richels, 
2005) 

WITCH World induced 
technical change 
hybrid 

13 
regions 

Neoclassical 
economic 
growth, Ramsey-
type 

 (Bosetti et 
al., 2007) 
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Despite them being widely adopted, IAMs garner a lot of criticism as well. They have been blamed 
for down-playing the climate crisis, reinforcing notions such as the ability for unlimited growth 
the inevitable correlation between mitigation and GDP reduction with an emphasis on richer 
regions, and the misleading illusion of full-integration (Asefi-Najafabady et al., 2021; Budolfson, 
2021). Similarly, despite them being promoted as transparent, many design choices are instead 
opaque, such as what to count and who to count, the assumptions for the baseline scenarios, the 
model behind the feedback loops between submodules and the reasoning behind  inter-temporal 
intergeneration equity (Weyant, 2017). However, despite the validity of many of these critiques, it 
is important to note that IAMs are designed to be a generalised simplification of the process. And 
even if some argue that leveraging them to quantify the impact of climate change policies is not 
fit for purpose (Naeini et al., 2020), they can still provide broader insights and advise policy-
makers on optimal targets to reach climate goals . 
 

ii. The DICE and RICE Models 
 
For the sake of this analysis, the focus will be shifted to the DICE/RICE model family, developed by 
William Nordhaus. The models are known for their high level of aggregation and simplicity in 
combining the different elements of the earth and economy (Edmonds et al., 2012). The DICE 
model is the original IAM developed by Nordhaus in 1992, that explores the impacts of the 
economy on the environment by treating climate change as a stock externality from the 
perspective of a single global economy (Nordhaus, 1992). In 1996, the original RICE model was 
developed, as a regionally disaggregated counterpart to DICE, with six regions (Nordhaus & Yang, 
1996). Later, Nordhaus & Boyer (2000) modified the methods behind the model, including the 
choice of control variables, and increased the regional specification to eight economic or 
politically similar regions with RICE-99. A few more iterations included RICE-2007 and RICE-2009, 
that introduced a longer time horizon, shorter timesteps and more detailed disaggregation (Yang, 
2008). Those were followed by the RICE-2010 model, that was developed to assess the impact of 
the Copenhagen Climate Accords, by diving the world into twelve regions. Despite there being a 
new RICE-2020 model (Yang, 2022), this study will focus on the RICE-2010, refactored on Python 
as PyRICE-2022 by Tjallingii (2021) and Reddel (2022). 
 
The DICE/RICE models are based on the integration of three submodules: the economy, the 
carbon cycle and the climate model. First, the economy submodule follows the neoclassical 
general equilibrium growth principles by Ramsey-Cass-Koopmans, where regions maximize 
utility by consuming a part of global output. This gross output is calculated using a Cobb-Douglas 
Production Function (Nordhaus, 2013b). Emissions are then computed as the sum of emissions 
from land and industry. Industrial emissions depend on the Emission Output Ratio and the gross 
output and are reduced by the Emission Control Rate. In turn, these emissions are either absorbed 
by the oceans or contribute to an increase in CO2 concentrations in the atmosphere, resulting in 
an increase in radiative forcing. The latter induces an increase in both oceanic and atmospheric 
temperatures. And thus, as can be seen in Figure 1, due to the impact of climate change, a share of 
the global income is lost to damages caused by increased temperatures and sea level rise, as well 
as abatement costs to limit emissions. 
 
Some of the assumptions presented in this model were criticized by climate economists, such as 
Keen (2021), who argues that the damages are not representative of reality, as they are assumed 
to impact only a fraction of GDP, thus painting mitigation measures as a considerably more costly 
option. Others criticize the inevitable negative feedback loop, connecting (marginal) abatement 
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costs and global income, citing that the adoption of greener technology could reflect positively on 
the economy (Ji & Zhou, 2020). Despite these critiques, the model is still used by the IPCC for its 
insights on estimations of the social cost of carbon (Masson-Delmotte et al., 2018).  
 
 

 
 

Figure 1: The Main Relationships in the DICE/RICE Models 

Overall, IAMs have for aim to project trends, asses the cost and benefits of adopting certain 
climate policies and assess uncertainties in key parameters influencing climate change (Wilson et 
al., 2021). However, these models represent a reduction of complexity, and thus do not include all 
elements necessary to draw wide-scoped and detailed conclusions. Some expand their damage 
function to include different sectors, such as the new GIVE model that represents energy demand, 
agriculture, sea level rise and temperature mortality (Rennert et al., 2022), while others focused 
on endogenizing key parameters such as technological change  (Pizer & Popp, 2008). One thing 
that is missing from the RICE-2010 model is an explicit consideration for the energy component 
(Nordhaus & Yang, 1996). 
 
2.2. Energy System Models 
 
Energy systems models are vital to determine the energy supply and demand, which are essential 
components of integrated assessment models. To date, a wide variety of energy systems models 
have been developed for different contexts and purposes. Pfenninger et al. (2014) divided these 
into four categories, according to their purpose and challenges. These are (1) Energy system 
optimization models, (2) Energy system simulation models, (3) Power system and electricity 
market models, and (4) Qualitative and mixed-methods scenarios.  
 

i. Optimisation and Simulation Models 
 
Most pertinent to this thesis are the first two categories. They can be seen as opposing ends of a 
continuous spectrum, encompassing all energy systems models, with the exact placement 
depending on the data, purpose, and context in which it is used. 
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The first category, “energy system optimization models”, are aimed to help decision-makers and 
business planners make robust decisions under various scenarios. As such they require a highly 
detailed abstraction of the technical components of the energy system. Two influential model 
families that fall under this category are MARKAL/TIMES (Fishbone & Abilock, 1981) and MESSAGE 
(Schrattenholzer, 1981). Both serve a more general purpose, in that they try to represent possible 
evolutions of the energy system at a national, regional, or global scale over several decades, but are 
not necessarily capable of showing how probable these evolutions are. Both were originally 
conceived as linear optimization models with the minimization of total energy system cost as the 
central objective. Newer, more sophisticated versions also include non-linear and mixed integer 
linear formulations. For example, the MARKAL Elastic Demand version meets energy service 
demands with own-price demand elasticities and maximizes the sum of producer and consumer 
surplus (Dodds & McDowall, 2013). 
 
Complementary to optimization models, the second category “energy system simulation models” 
are used in a more high-level strategic context. Instead of generating possible futures, the focus lies 
on predicting the system’s most likely evolution, given a set of inputs. In contrast, to the more rigid 
mathematical formulation found in optimization models, simulation models are constructed in a 
modular fashion, meaning modules can incorporate a diverse set of methods. Thanks to this 
architecture, individual submodules can be implemented in different ways, which offers flexibility, 
but also makes the system highly complex and can make model results more difficult to 
understand.  
 
Some prominent examples include NEMS (National Energy Modelling System) and PRIMES (Price-
induced Market Equilibrium System). NEMS is used by the US Energy Information Administration 
to produce the Annual Energy Outlook, a cornerstone in U.S. energy policy (Gabriel et al., 2001). 
Similarly, The PRIMES model has long informed the EU’s long-term energy policy decisions, 
including foundational underpinnings to the EU’s Energy Roadmap 2050 (European Commission, 
2011a). The model uses submodules to represent countries as independent agents and finds an 
equilibrium solution for energy supply, demand, cross-border energy trade, and emissions in all 
European member states (Kousoulidou et al., 2008). 
 
Another important simulation model is LEAP (the Long-Range Energy Alternatives Planning 
system), in use since the late 1980s by both the private and public sectors (Roinioti et al., 2012). At 
its core, it provides an accounting system for energy supply with annual timesteps, but it also 
includes other methods e.g., to represent, e.g., demand using a macroeconomic model. 
 

ii. Power Systems and Qualitative Mixed-Method Models 
 
The third category, “Power systems and electricity models” deals with one segment of large energy 
models, the electricity market. These sorts of models are traditionally used within utility companies 
and other power sector businesses to make a wide range of decisions, from strategic investment 
planning to operational strategies such as generator dispatch (A. M. Foley et al., 2010).  
 
Their range of applications fits under the optimization-simulation spectrum. Yet, specific to power 
systems models is the high temporal variation, since a constant balance between supply and 
demand is crucial for a well-functioning power system (Machowski et al., 2020). Two well-known 
commercial large-scale power systems models are WASP (Wien Automatic System Planner) used 
by the International Atomic Energy Agency (Bhattacharyya & Timilsina, 2010), and PLEXOS, a 
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mixed-integer linear programming model with detailed modules for power plants, the 
transmission grid, market planning and capacity expansion. Given the proper data, it can perform 
analyses at up to 1-minute resolution, giving granular insight into supply and demand fluctuations 
(A. Foley & Díaz Lobera, 2013). 
 
The last category, as identified by Pfenninger et al. (2014) concerns qualitative models. The 
previously described modelling approaches are mainly focused on technical and economic aspects. 
But these fail to capture human dimensions such as political circumstances, public acceptance, 
consumer behaviour, technological innovation, etc. The main purpose here is to capture these 
factors, to inform and complement quantitative models and analyses. 
 

iii. Integrating Models 
 
To understand the distributional impacts of climate policies, the various energy system models, 
macroeconomic models, and environmental models need to be integrated comprehensively. 
However, developing these so-called integrated assessment models poses enormous challenges, 
since each type of modelling paradigm tends to follow its own unique perspectives, formulations, 
and conventions. Integrating models is a precarious balance of closing the gap between models 
while preserving functionality and comprehensibility and mitigating the weaknesses of individual 
modelling techniques. 
 
Montenegro et al. (2021) explicate different approaches toward integrated modelling. Coupling is 
the simplest method conceptually. It is a non-interventionist approach, in which minimal changes 
are applied to model formulations, and simply links models via variables, that are exchanged at 
specific points in time. Such an approach often results in longer model run times, depending on the 
number of variables exchanged. Results may also be of lesser quality if different modelling 
assumptions prove to be incommensurable. Hard linking is a more involved approach, where one 
model is adapted to another. The disadvantage of this approach is that it demands a high level of 
modelling skills and is very time intensive, as model objectives, source code, and underlying 
databases must be reformulated. 
 
2.3. Explicit Introduction of Energy into RICE 
 
Given that the RICE model is widely used for its simplicity, it becomes counterproductive to expand 
it based on complex energy system models, such as the ones surveyed above.  A closer look into the 
model highlights how energy is implicitly considered in the model through the Emission Output 
Ratio (noted as Sigma) (Nordhaus, 2018). To make the introduction of energy more explicit, a few 
options were identified from the literature and compiled in Table 2 below.  
 
One critique of IAMs, such as RICE, is that they are based on the traditional Cobb-Douglas equation 
that does not incorporate energy into the economic activity of a modelled economy (Stern, 2010). 
The factors of production represented by the equation are solely Capital and Labour because Energy 
is assumed to be negligible. According to economic equilibrium theory, the output elasticity of a 
particular factor is equal to the cost share of said factor, and with Energy’s cost share being minimal, 
it is often omitted (Kümmel et al., 2010). 
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Table 2: Method Selection 

Method Motivation Implementation Reference 

Introducing energy to 
the production 

function 

The neoclassical Cobb-
Douglas equation assumes 
that factors of production 
operate independently of 

energy needs 

Modified Cobb-
Douglas production 

function with constant 
return to scale 

(Refer to Eq. [1]) 

(Kümmel 
et al., 2010) 

Incorporating energy 
to factors of 

production for a non-
trivial representation 

The above change renders 
energy trivial: a 10% fall in 

input à 0.7% fall in output 

Energy-based Cobb-
Douglas production 

function 
(Refer to Eq. [2]) 

(Keen et al., 
2019) 

Modifying emissions 
in the carbon cycle 

like the FUND model  

Introduce carbon and energy 
intensity to reflect switching 

to RE, nuclear and less 
intensive industries 

Replacing the CO2 
emissions function 

with the Kaya Identity 
(Refer to Eq. [3]) 

(Wang & 
Teng, 2022; 
Anthoff & 
Tol, 2014) 

 
 
Thus, one way of introducing energy into the RICE model would be through the introduction of a 
new production factor for energy, E, to the output function (represented by Q in this section only).   
 

𝑄 = 𝐴 × 𝐾! × 𝐿" × 𝐸#   [1] 
 
However, because of the elasticity of substitution associated with the energy component, the 
impact of energy may not be representative (Jorgenson et al., 2013). To remedy the situation and 
introduce energy in a non-trivial way, Keen et al. (2019) suggest incorporating energy into the 
production factors of Capital and Labour, using the Energy-based Cobb-Douglas production 
function. This interpretation relegates Labour to the background, giving energy a more prominent 
role in economic growth.   
 

𝑄(𝑡) = 	,𝐾(𝑡). 𝐸$%(𝑡).
! . (𝐿(𝑡). 𝐸$&)"   [2] 

 
Lastly, a different method of integrating energy into the RICE model involves modifying the 
emissions function rather than expanding the production function. As mentioned before, RICE has 
an Emission Output Ratio that is used as a proxy for Autonomous Energy Efficiency Improvement 
(AEEI) (Nordhaus, 2018). However, as it stands, the Sigma value does not distinguish between 
decarbonisation improvements due to less carbon-intensive industries (i.e., energy intensity) and 
less carbon-intensive energy mixes (i.e., carbon intensity). Therefore, decomposing the Emission 
Output Ratio into these two values, like in the FUND model (Tol, 1997), could help explore in more 
detail how regions develop less carbon-intensive economies to curb the impacts of climate change.   
 

𝐶𝑂2	𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = '()	+,-..-/0.
+01234

	 × +01234
567

× 567
7/89:;<-/0

 [3] 
 

The first and second methods, based on the alteration of the production function, involve a range 
of changes to the economy submodule and new sets of data to represent the energy used in the 
economy. Despite representing a more holistic approach to expanding the model, and answering 
some recurring criticisms of the current DICE/RICE model family (Kümmel et al., 2010), these 
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approaches require a thorough understanding of neoclassical theory and macroeconomics. 
Moreover, implementing any of these methods involves additional design choices, such as the type 
of return to scale, the role of Labour in the production function, the impact of damages on the 
modified output and assumptions surrounding the elasticities of substitutions (Jorgenson et al., 
2013). Lastly, given that the focus of this thesis is on decarbonisation, additional structures need to 
be incorporated into the energy component to evaluate the decarbonisation rate affecting 
emissions. Thus, after surveying the three methods, the third and final approach was selected, as it 
incorporates energy in the context of regional decarbonisation, while being more straightforward 
to implement in the allocated timeframe for this research (Friedlingstein et al., 2022). 
 
2.4. Exploring RICE-2010 and PyRICE-2022 
 
To better understand PyRICE-2022, one must delve into the RICE-2010 model. Given that the 
energy consideration will primarily impact the energy submodule by changing the emissions 
function, the focus will be directed towards the major drivers of emissions, namely, GDP, 
Population, Energy Intensity and Carbon Intensity. However, while surveying the literature, we 
observed that there was little information regarding the regional disaggregation chosen for RICE-
2010, with data only identified for RICE-99 (Nordhaus & Boyer, 2000). Moreover, the sources of 
data are unclear with missing references and a no indication of data collection and processing 
procedures (Nordhaus & Yang, 1996). And finally, while exploring the details of emissions in the 
model, we found that the choices in methodology vis-à-vis the representation of the emission 
output ration, the role of the decline rate and the growth models behind them are vague and lacked 
proper documentation (Nordhaus, 2010). And, given that these models, are used by the IPCC and 
decision-makers to decide on climate policy (IPCC, 2022a), it is important to delve into the claims 
of transparency and highlight the importance of reproducibility.   
 
2.5. Research Question 
 
This thesis attempts to introduce energy into the PyRICE Model by decomposing the Emission 
Output Ratio, posing the research question: 
 
How does the introduction of an explicit energy consideration into the PyRICE model impact our 

understanding of the drivers behind decarbonisation? 
 
The findings will support future users of the model in exploring more specific scenarios tied to the 
decarbonisation trends and plans of not only the global economy, but also important regions in the 
climate debate, such as emerging economies.  The work presented in this thesis will also shed some 
light on the relatively undiscussed inner workings of the emission component of the economy 
model and highlight shortcomings of the DICE/RICE models family group that impact outcomes.  
 
The next section, Section 3: Theory, will explore basic principles to better understand the reasoning 
behind the methods. Section4: Methods will expand on the approaches undertaken to clean and 
process relevant data and implement the decomposition. The main outcomes of the analysis are 
addressed in Section 5: Results and Discussion. Finally, concluding remarks, recommendations and 
suggestions for future work will be shared in the Section 6: Conclusion.  
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3. Theory 
 
This section outlines a theoretical background necessary for a clear understanding of the adopted 
method.  
 
3.1. Kaya Identity 
 
As mentioned in the previous section, the selected method is inspired by the Kaya Identity 
decomposition. Kaya is a mathematical identity that represents CO2 emissions as the product of 
its constituent drivers.  
 
The drivers of emissions are the population that consumes goods and services, the GDP per capita, 
showing that richer countries produce more CO2 emissions, and the technology factors: Energy 
Intensity and Carbon Intensity (Ritchie et al., 2020a).  
 
Energy Intensity represents the amount of energy per unit of GDP, reduced by improvements in 
energy efficiency and structural changes to the economy. On the other hand, Carbon Intensity 
represents the amount of CO2 that is produced per unit of energy, and that can be reduced by 
switching to cleaner fuels (e.g., from Coal to Gas or RE) and adopting carbon capture and storage 
technology (Peters et al., 2017).  
 
The Kaya Identity is presented by Equation 3 above. It has already been adopted by some IAMs 
such as the FUND Model, with the AEEI and ACEI representing EI and CI (Anthoff & Tol, 2014). The 
Kaya decomposition is also widely used to explore global and regional decarbonisation paths 
(Friedlingstein et al., 2022).  
  
3.2. The PyRICE Model 
 
For the sake of this analysis, the PyRICE 2022 model is used. The Python model was refactored by 
Tjallingii (2021) and Reddel (2022), and is based on RICE-2010 (Nordhaus, 2010) that includes 12 
regions. To better understand the steps taken for this method, the relevant model equations are 
presented below. For a more complete reference to the RICE model, refer to Appendix II. 
 
The total CO2 emissions are based on the sum of ‘industrial’ CO2 emissions from energy-related 
activities and exogenous CO2 emissions related to land-use.  
 

𝐸</<;:,< = 	∑ 𝐸-0>,<,2?
2@A × 𝐸:;0>,<  [4]	

 
 
The ‘industrial’ CO2 emissions function is based on the product of the Emission Output Ratio, 
reduced by the endogenously calculated emission-control rate, and the gross output. Given that 
the emission control rate is an optimisation lever in the PyRICE model, the implementation of 
Kaya will be focused on decomposing the Sigma parameter, rather than modifying the entire 
emissions equation. 
 

𝐸-0>,<,2 = 	𝜎<,2 × 𝑌32/..,<,2 × (1 − 𝜇<,2)	 [5] 
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Where: 
 

• 𝜎<,2  is the Emission Output Ratio per region per timestep 
• 𝑌_𝑔𝑟𝑜𝑠𝑠 is gross output 
• 𝜇 is the emission-control rate  
• 𝑡 is for the time step 
• 𝑟 is for the region 

	
In turn, in the PyRICE model the Emission Output Ratio changes based on the following equation, 
with ∆𝑡 representing a step size of 10 years. The initial value for 𝜎 (i.e., for 2005), is calculated 
based on the ratio between the ‘industrial’ CO2 emissions for 2005 per region and the GDP in 2005 
per region (in 2005$ prices). The calculated Emission Output Ratio from this equation is then used 
to implicitly update the ‘industrial’ CO2 emissions at each timestep. 
 
 

𝜎<,2 = 𝜎<BA,2 × 𝑒∆<	×	3!(<BA)	[6]	
 
Where: 
 

• ∆𝑡 is the step size  
• 𝑔2(𝑡) is the growth rate of 𝜎 at timestep t 

 
The growth rate of 𝜎 has been calculated in multiple ways throughout the development of the 
RICE model. In the RICE-99 model, the growth rate was itself based on exponential decay, with 
the decay rate constant being the sum of two parameters that determine the rate of 
decarbonisation (i.e., decline rates) (Nordhaus & Boyer, 2000). In later iterations, the exponential 
decay function was passed on to the CO2-to-Ouput ratio equation, resulting in a growth rate as 
seen in Equation 7 (Gazzotti, 2022). 
 

𝑔2(𝑡) = 𝑔2(𝑡 − 1) × (1 + 𝑑)∆<	  [7] 
 
Where: 
 

• 𝑑 is the global annual decline rate  
 
In the PyRICE model, the growth rate is calculated differently. It is based on a few variables, 
including the decline rate and the so-called “trend Sigma growth”, a constant of 0.25% for each 
timestep across all regions. The origin of this value and what it represents is unclear, as it is not 
documented. Therefore, the growth rate identified by Gazzotti (2022) was used for this thesis. 
 
There is very little information regarding the last two equations in the literature.  Initially, the 
Sigma variable was computed as CO2-to-GNP, considering the gross national product rather than 
the gross domestic product (Nordhaus, 1992). Unlike the GDP, the GNP excludes the output 
produced by multi-nationals that is sent overseas and includes income generated by nationals 
abroad, and has grown less relevant in the climate debate (Abildtrup et al., 2006).  According to 
Nordhaus (1992), the growth rate estimates for Sigma are based on two unreferenced graphs 
depicting the changes in energy-GNP and CO2-GNP changes from 1929 to 1989 and the forecasts 
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on models that are not explained. In most papers referring to the DICE and RICE models, Sigma 
and its growth are barely discussed (Nordhaus, 2010, 2013a, 2013b; Nordhaus & Boyer, 2000; 
Nordhaus & Yang, 1996). Moreover, the growth rate of 𝜎 is also referred to as the “cumulative 
improvement in energy efficiency” (Diaz, 2015), which reinforces the idea that the Emission 
Output Ratio in the RICE model is designed to represent energy intensity specifically.  
 
The last equation that is relevant in the context of this analysis is the emission control rate. It 
represents a functional reduction in emissions and is determined through optimization as a result 
of policies to reduce emissions in different regions (Nordhaus, 1992). 
 

𝜇<,2 = 𝜇G,2 +
(H"#$BH%,!)
H'(!)*+,!

       [8] 

Where: 
 

• 𝜇<,2 	is the control rate per region per timestep  
• 𝜇,;I	is the maximum control rate per region set globally 
• 𝜇812-/> 	is the period where the control rate reaches the maximum value 

 
In the PyRICE model, the emission control rate is presented as a target year, 2135, where emissions 
will be equal to zero.  
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4. Methods and Preliminary Results 
 
This section describes the approach used to decompose the Emission Output Ratio (Sigma) in 
PyRICE.  The sub-questions that frame the research plan are: 
 

Sub-question 1 How does the choice of CO2 emission, GDP and Population data 
influence the Emission Output Ratio? 
Sub-question4 What is the role of the decline rate in decarbonisation? 

  Sub-question 2 How do emission drivers grow over time? 
Sub-question 3 How can transparency be improved in the model? 

 
4.1. Data Collection, Analysis and Processing 
 
To decompose Sigma, energy intensity (EI) and carbon intensity (CI) components need to be 
introduced. Initially, EI and CI data was collected from Our World in Data’s (OWD) Emissions 
Drivers that includes per country information for every Kaya Identity element. However, after 
inspecting the data, a large deviation between Nordhaus’ initial Sigma (i.e., for 2005) and the 
OWD product of EI and CI for 2005 was identified. This was due to different CO2 emissions 
adopted from each dataset (for details refer to Appendix III). 
 

i. Carbon Emissions 
 
The OWD data’s carbon emissions are based on values from the Global Carbon Project 2021 
(Friedlingstein et al., 2022). They account for “energy-related” carbon emissions, i.e., CO2 
emissions that are a result of energy production and industry. They are around three times greater 
than the CO2 emissions values reported in Nordhaus’ dataset. In fact, Nordhaus & Boyer (2000) 
use what they define as ‘industrial’ CO2 emission, because according to them, these account for 
90% of cumulative CO2 emissions. And although that may have been true last century, things 
seem to be changing. According to the (EIA, 2020), the share of transportation in total CO2 
emissions has grown since the 1990s and currently exceeds industrial emissions, as can be seen in 
the Figure 2 below. 
 

 
Figure 2: Energy-related Carbon Emissions in the US 
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This trend can also be observed on a global level, with the World Resource Institute reporting that 
emissions from energy use in industry accounts for 33% of energy-related CO2 emissions in 2016 
(with the industry sector, i.e., cement and chemicals, accounting for 5.2% of total CO2 emissions) 
(Ritchie et al., 2020b). Similar conclusions can be drawn from datasets tied to other countries, 
such as China (Wan et al., 2021) and India (IEA, 2021). However, direct comparisons cannot be 
drawn between multiple sources because the definition of ‘industrial’ CO2 emission differs 
between authors and datasets. Nordhaus & Boyer ( 2000) define ‘industrial’ CO2 emissions as a 
mix of the industry sector and power generation for industry, whereas other sources defined 
industry as simply cement and flaring.  
 
Some other IAMs such as GCAM, MERGE and EEPA, that cite the DICE and RICE models, also use 
similar values for CO2 emissions. In fact, Wilkerson et al. (2015) state that these relatively smaller 
values of CO2 emissions account for “energy-related emissions” and cites the (EIA, 2012). 
However, according to the EIA’s Annual Energy Outlook for 2012, “energy-related emissions” are 
akin to the values used by the Global Carbon Project 2021, and only the “industrial” emissions are 
like the GCAM, MERGE and EEPA values. This highlights a sort of confusion in reporting and 
interpreting the data at hand, but also a lack of consistency in CO2 emissions used.  
 
Given the shortcomings, a new dataset was used for the CO2 emissions that includes all energy-
related CO2 emissions. Based on the (IPCC, 2022a), the dataset of choice is the European 
Commission’s  Emission Database for Global Atmospheric Research (EDGAR). The values in this 
dataset are comparable to many widely used CO2 emissions data sources (BP, 2022; EIA, 2021; 
Friedlingstein et al., 2022; IEA, 2022b), as well as the up-to-date CDIAC data (IPCC, 2022a). 
Naturally, there are few deviations with the values between different datasets due to inclusion 
and exclusion criteria (for cement, flaring and bunker fuels) and different methodologies (Minx et 
al., 2021), as can be seen in the Figure 3 below. 
 
The EDGAR dataset was thus cleaned and aggregated into the RICE-2010 regions to change the 
initial Sigma value. However, this next step was not without its challenges. 
 

 
Figure 3: Annual Global CO2 emission from Fossil Fuels and Industry from Minx et al. (2021) 

ii. Regional Specification 
 
After surveying every paper published by Nordhaus about the RICE model, no details on the 
regional specification were available for the RICE-2010 model. Given that these groupings are 
vague, aggregating the regions is no longer an objective task and thus there is quite some room 
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for interpretation vis-à-vis what country goes where. This includes unclear descriptions, such as 
the case of the Middle East, which often includes Turkey and Israel. But, Turkey has been a 
member of OECD-Europe since 1961, and Israel, who joined in 2010, is counted as part of Europe 
for statistical purposes (EIA, 2021). Moreover, countries in North Africa, are often grouped with 
other Arabic-speaking countries in the Middle East.  Another challenge is outdated information 
regarding which countries are members of OECD-Europe (e.g., Latvia and Lithuania joined in 2016 
and 2018 respectively (OECD, 2021) ) and countries with gross national incomes (GNI) per capita 
that have risen beyond the World Bank’s high-income classification threshold of $ 13,205, such as 
South Korea (World Bank, 2021). Other issues arise from the fact that different datasets have their 
own regional aggregation level for smaller countries and island nations. For example, in the 
Primary Energy (BP, 2022) dataset, Caribbean countries with a high GNI would go under OHI, but 
they cannot be separated from the Central and South America group. However, given the size of 
these nations and their corresponding CO2 emissions, Primary Energy use and GDP, the impact of 
this limitation can be negligible.  
 
After attempting multiple configurations of the regional specification, and drawing inspiration 
from the RICE-99 region aggregation (Nordhaus & Boyer, 2000), the FUND model’s classification 
(Anthoff & Tol, 2014) and EIA’s Regional Reference (EIA, 2021), the PyRICE’s regions could not be 
exactly replicated. Given that comparisons could not be made to the CO2 emissions (as those too 
could not be replicated), regions were compared based on their share of CO2 emissions, as seen in 
Figure 15, and GDP in Figure 16 in Appendix IV. Ultimately, the suggested regional specification 
was established and can be found in Appendix I. It is worth mentioning that this classification is 
primarily based on economic similarities rather than strictly regional and climactic ones, which 
might lead to some limitations in interpretating results from the climate submodule.  
 

iii. CI and EI Initial Values and Internal Consistency 
 
When looking into the 2005 CI and EI data from the OWD dataset (Ritchie et al., 2020a), a challenge 
was identified. The CI and EI data are presented per country. After grouping the values per region, 
the values for region groups were faulty. This is because the sum of EI across multiple countries is 
not equal to the sum of Primary Energy divided by the sum of GDPs across countries. Therefore, it 
was necessary to decompose both EI and CI elements. For CI, the carbon emission was already 
calculated based on the Edgar Dataset. The OWD data uses the Global Carbon Budget 2021 dataset, 
but the values are similar. Next, the Primary Energy data could be extracted from the BP Statistics 
Review dataset. However, BP (2022) has a more aggregated classification of countries, resulting in 
a loss of granularity. Therefore, the Maddison Project 2021 GDP dataset, the same dataset used by 
OWD was used to calculate the GDP of each country. This was done by multiplying the population 
data by the GDP per capita. One thing to keep in mind is that the data presented in the Madison 
Project dataset is in 2011$ price. To maintain consistency with the rest of the PyRICE model, the 
values were converted to 2005$ prices to adjust for inflation by dividing by 1.15 (U.S. Bureau of 
Labour Statistics, 2022). After calculating both CO2 and GDP, PE was inferred from both CI and EI 
data and the values per region were aggregated.   
 
This step highlighted the importance of maintaining internal consistency across the model. 
Variables like GDP and population are impacted by changes to the CO2 dataset and the regional 
specification. Moreover, the implicit use of new GDP datasets to calculate EI and CI contributes to 
additional inconsistencies if not addressed. Therefore, Nordhaus’ initial population and GDP data 
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were replaced by the Madison Project values aggregated to the new regional specification. With 
this step, internal consistency is maintained for all the kaya identity emission drivers.   
 
4.2. Implementation in PyRICE 
 

i. Modified Equations 
 
After updating the relevant initial datasets, we start by decomposing Sigma into its constituent 
intensities: EI and CI. 
 
 

𝜎<,2 = 	𝐶𝐼<,2 × 𝐸𝐼<,2 	 [9]	
	
Where: 
 

• 𝐸𝐼<,2  is the energy intensity 
• 𝐶𝐼<,2  is the carbon intensity 

 
This product is then used in Equation 5, with the ‘industrial’ emission functions. 
 
As highlighted in the Data Collection and Analysis sections, the data has been modified to 
account for the changes and lack of reproducibility in the original Nordhaus data. The initial 
values for CI and EI were calculated as follows: 
 
 

𝐶𝐼<@-0-<-;:,2 =	
'()),)%)#-,!
7+),)%)#-,!

  [10] 

Where: 
 

• 𝐶𝑂2-0-<-;:,2  is based on the EDGAR dataset 
• 𝑃𝐸-0-<-;:,2  is based on the Our World in Data and Maddison Project datasets 

𝐸𝐼<@-0-<-;:,2 =	
7+),)%)#-,!
567),)%)#-,!

  [11] 

	
Where: 
 

• 𝑃𝐸-0-<-;:,2  is based on the Our World in Data and Maddison Project datasets 
• 𝐺𝐷𝑃-0-<-;:,2	is based on the Maddison Project dataset 

 
As for the change in Sigma, it is decomposed into: 
 

𝐶𝐼<,2 = 𝐶𝐼<BA,2 × 𝑒∆<	×	3'J!(<BA)	 [12]	
	

𝐸𝐼<,2 = 𝐸𝐼<BA,2 × 𝑒∆<	×	3+J!(<BA)	 [13] 
 
Where growth rates of CI and EI are: 
 

𝑔𝐶𝐼2 	(𝑡) = 𝑔𝐶𝐼2(𝑡 − 1) × (1 + 𝑑'J 	)∆< [14] 
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𝑔𝐸𝐼2 	(𝑡) = 𝑔𝐸𝐼2(𝑡 − 1) × (1 + 𝑑+J)∆<  [15] 

 
 

ii. CI and EI Growth  
 
Nordhaus’ growth model is poorly backed in the RICE and DICE papers  (Nordhaus, 1992, 2010, 
2010, 2013a, 2013b, 2018; Nordhaus, 2017; Nordhaus & Boyer, 2000; Yang, 2008), and criticized in 
literature (Gazzotti, 2022). However, due to time constraints associated with this thesis project, 
the exponential model was retained to represent the change in CI and EI over time. This 
introduces limitations, especially considering that even though Nordhaus’ Sigma is intended to 
represent the product of CI and EI, it has been simplified to be a proxy of the Autonomous Energy 
Efficiency Improvement (AEEI), designed to focus on improvements in energy efficiency. 
Therefore, using this model for CI and even Sigma is questionable, and more fitting models for EI 
have already been used for a while (Metcalf, 2008). Suggestions to improve this method can be 
found in Section 6.1 Future Works. 
 
Initial values for growth were calculated based on Nordhaus’ approach of taking the average from 
1996 to 2005. The data was selected from Section 4.1.3.  
 
 

iii. CI and EI Decline Rates and Experiments 
 
The decline rate represents the rate of decarbonisation of the economy and energy mix. In the 
RICE-2010 model, it is assumed that one constant decline rate is used across all regions and for all 
periods. According to Nordhaus & Boyer (2000), it is based on the change in Sigma value in the 
last ten to fifteen years. The value of 1% represented the trend between 2000 and 2010 
(Nordhaus, 2010), and therefore, Nordhaus (2017) later recommended increasing the value to 
1.5% to reflect more recent data. This decline rate, despite being attributed to Sigma, in reality 
reflects the decline rate of energy intensity. More recently, the IPCC recorded a decrease of 2% for 
EI and 0.3% for CI (Friedlingstein et al., 2022; IPCC, 2022a). The focus on EI back when the RICE 
model was conceived could be due to the fact that CI was marginal at the time. However, the 
decline in carbon intensity in recent years has been exerting more downward pressure on carbon 
emissions and is projected to keep doing so (Peters et al., 2017). The change in carbon intensity 
was slower in the past with a 0.1% decline, but has improved with time (Ritchie et al., 2020b). It 
does however, fluctuate with time, with years that witness improvements and other deteriortion. 
Most recently, a decline of 0.5% was recorded (Enerdata, 2022). 
 
The decline rate is a source of great uncertainty in this model, and for that reason the values for CI 
and EI decline rates were varied between more conservative and more optimistic values reported 
in literature, and mentioned above. Nine experiments were run to encompass a full factorial 
design, including low (L), medium (M) and high (H) values of decline, as seen in Figure 4 below.  
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Figure 4: Decline Rate Experiments 

 
The experiments are run using the Nordhaus policy in the model, while maintaining the Standard 
model specificaion, the Nordhays damage function and the Utilitarian ethical principle.   
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5. Results and Discussion 
 
This section presents results from the data analysis and model runs and discusses main insights. 
For the full set of results, refer to Appendix VI. 
 
5.1. Model Outcomes 
 

i. Comparing Outcomes before and after the introduction of harmonized datasets for CO2, 
GDP and Population 

 
After finalising the regional specification and implementing the changes in CO2, GDP and 
population data, the model was run to explore how the new datasets would impact the model 
projections. As seen in the consumption vs. damage graphs, global damages have increased 
considerably from around 100 billion US$ to near 400 billion US$ by 2300. Noting that the EDGAR 
CO2 emission data, consistent with the IPCC recommendation, is around three times larger than 
the Nordhaus dataset, damages are expected to increase proportionally. 
 

  

 
 

Figure 5: Comparison of Consumption vs. Damages between Nordhaus' Data [a] and EDGAR and MDP Data [b] for CO2, GDP 
and Population 

One reservation anticipated before changing the datasets was that the model would go out of 
bounds when the CO2 emissions were greatly increased. However, as can be seen in Figure 5, the 
model maintains its behaviour after the change, but requires further calibration. The same can be 
said of other indicators found in Appendix IV, such as the Damages over Consumption per region 
(see Figure 17).   
 
Increasing the CO2 emissions will also inevitably impact the change in atmospheric temperature. 
As can be seen in these graphs, using the EDGAR emissions dataset has resulted in a doubling of 
peak temperature increase from 3 degrees to 6 degrees C by 2150, a finding that is consistent with 
literature (Valone, 2021), and a common critique  of IAMs for downplaying the increase in 
temperature (Ackerman et al., 2009; Keen, 2021). Moreover, the temperature offshoot occurs a lot 
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earlier with the new dataset, to around 2025, an outcome that has already been identified in 
literature for China using the RefCM3 model (Lang & Sui, 2013), and that continues to be a 
possibility globally. The IPCC (2022) warns that if drastic action to cut CO2 emissions is not taken 
now, maintaining global warming below 2 degrees C by 2030, as proposed by the Paris 
Agreement, will be impossible. 
 
 
 
    
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Comparison of Temperature Increase and Overshoot between Nordhaus' Data [a] and EDGAR and MPD Data [b]for 
CO2, GDP and Population 

In the RICE-2010 model, emissions are endogenous and dependent on the Emission Output Ratio 
represented by Sigma. As can be seen in Figure 7, the overall trend in Sigma before and after 
modifying the datasets is maintained, however, the values increase significantly. Taking the US as 
an example, the value presented with the modified datasets, around 0.45 kg/$ for 2010, is more in 
line with data from literature (Ritchie et al., 2020a), than the value obtained from Nordhaus’ 
dataset (around 0.13kg/$ in 2010). Moreover, as can be noticed while comparing both graphs, the 
value of Sigma for certain regions changes relative to the others. For instance, assuming a 
descending order, the rank of the Middle East decreases. This is probably because the values for 
initial GDP and emissions for the region could not be replicated, even after adding North Africa to 
the specification, leaving the regional proportion of emissions and GDP lower than in the original 
model. Similar conclusions can be drawn for other re-defined regions, such as Latin America and 
OHI. More interestingly, the cases of Africa and Non-Russia Eurasia highlight some of the 
limitations of adopting 'industrial' emissions to calculated Sigma, as these countries’ industrial 
share of emissions is minimal compared to the bulk of energy-related emissions (African 
Development Bank Group, 2020). 
 
Finally, in both graphs, sharp inflections can be observed at the first timestep after initialisation, in 
2015, where the growth model and Sigma calculation functions kick in (instead of the initial 
variables). This then begs the question, of whether the models selected to represent the change in 
Sigma are adequate for this application.  
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Figure 7: Comparison of Sigma between Nordhaus' Data [a] and EDGAR and MPD Data [b] for CO2, GDP and Population 

 
ii. Comparing Outcomes Before and After Decomposing Sigma  

 
In the next step, Sigma was decomposed into its constituent parts: EI and CI. This was achieved by 
decomposing the decline rates representing the rate of decarbonisation, the growth rates of CI and 
EI, and the values themselves to track the change in EI and CI across time. However, in the rest of 
the model, Sigma was kept as the product of EI and CI, a step that can be improved in future work.  

 
Figure 8: Consumption vs. Damages [a] and Damages over Consumption per region [b] with decline rates of 0.2% for CI and 1% 

for EI 

As mentioned in Section 4.2.3, a total of nine experiments were run to explore the impact of 
decomposing EI and CI with different decline rates. The pair of decline rates that is most in line with 
current predictions is the MM experiment with decline rates of 1.5% for EI and 0.3% for CI (IPCC, 
2022a; Nordhaus, 2017). However, for the sake of comparing Sigma to the decomposed EI and CI, 
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the LL experiment with decline rates of 1% for EI and 0.2% for CI was selected, as it most closely 
resembles the 1% Sigma decline rate adopted by the original model (Nordhaus, 2010).  
 
 

 
Figure 9: Atmospheric Temperature Increase and Temperature Overshoot [a] and Emissions [b] with decline rates of 0.2% for CI 

and 1% for EI 

As can be seen in the figures above, the behaviour observed in Figures 5 and 6 is maintained after 
splitting Sigma. However, this is not to be said of all indicators, such as CO2 emission over time. 
Even though they are overall consistent with the model outcomes pre-decomposition (refer to 
Figure 18 in Appendix IV), with the net-zero year selected as 2135 (𝜇), significant differences can be 
identified. First, as seen, China is set to more than double its emissions between 2005 and when it 
peaks in 2050. Even though this is not in accordance with previous PyRICE results, the growth is in 
line with current trends (IEA, 2022a). However, given the current policies that China is 
implementing, it is likely that emissions will peak earlier, between 2022 and 2026 with a 
probability of over 80% (Zhou et al., 2020), and more certainly before 2030 (IRENA, 2022). This 
forecast is not reflected in this experiment because the decline in carbon intensity required to 
achieve such a goal is well above 0.2%. In fact, in 2021, China’s carbon intensity declined by 3.8%, 
resulting in a total change of -50.8% since 2005, with a goal of reaching -65% in 2030 as indicated 
in their Nationally Determined Contribution (UNFCC, 2022). This, however, is highly contingent 
on China’ s ability to increase the penetration of renewables into their energy mix, a step that will 
be difficult to achieve if the country continues to commission new capacity for coal-fired power 
plants (Normile, 2020).  
 
On the other hand, the emissions of Global North countries such as the US and OECD-Europe are 
the fastest to decrease, with Japan and OHI slowly following the trend. These results are 
consistent with previous findings in Figure 18, and  generally in line with forecasts, with some 
regions having similar EI and CI values as set by the experiments, where others have slightly 
higher values(IPCC, 2022a). Other countries like Latin America and Other non-OECD Asia are 
expected to increase their emission until around 2070, before experiencing a decrease, while India 
and Africa are expected to peak earlier between 2050 and 2060, according to this graph. Similar to 
China, India’s current improvements in EI and CI are greater than the experiments suggest, with a 
decline of -3.9% and -3.5% respectively for 2021 (Enerdata, 2022). These values can be explained 
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by India’s commitment to improve energy efficiency and their competitively rapid uptake of 
renewables, despite the country’s leading role in watering down language in COP26 and plans to 
continue expanding coal capacity in the long-term (Climate Action Tracker, 2022; Jiang et al., 
2019).  
 
To avoid optimistic overestimations, it is important to remember that these values represent 
improvements for one year, and not over the average of a decade, and that the last couple of years 
have been marked by the COVID-19 pandemic, that saw global output drop, (something that is 
not represented in the model) which negatively impacts CO2 emissions. Nevertheless, this 
highlights a considerable underestimation of CI in these experiments, and more importantly, an 
underestimation of CI as a driver in the RICE-2010 model, given that the growth of sigma is based 
on the improvement in energy efficiency. Moreover, the adoption of one decline rates across 
regions renders region-specific conclusions difficult to draw, especially when it comes to 
emerging economies with growing CI and EI decline rates.   
 

iii. Comparing EI, CI and Sigma After Decomposition 
 
After comparing the outcomes stemming from the decomposition of Sigma into EI and CI, we 
now compare Sigma itself, as the product of the newly defined Energy and Carbon Intensities. As 
can be seen in Figure 10, the values of the decomposed Sigma are similar in range to the Sigma 
values before decomposition. The overall behaviour is also maintained; however, interesting 
deviations can be observed. The sharp inclinations noticed in Figure 7 are no longer present, 
probably because in the decomposition process, the growth rate function was modified to follow 
Equations 14 and 15, removing constants that were set to adjust EI and CI growth values.  

 
Figure 10: Sigma calculated as the product of EI and CI, with decline rates of 1% and 0.2% respectively 

Moreover, the change in Emission Output Ratio for China is considerably slower. This is due to 
China’s positive change in EI, as seen in Figure 11. However, this is not in accordance with recent 
data (Enerdata, 2022). 
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Figure 11: CI [a] and EI [b] with decline rates of 0.2% and 1% respectively 

Another interesting result is in the change of Africa’s CI over time. Unlike the growth in China’s EI, 
Africa’s CI is expected to grow in the near future, with increased access to electricity generated by 
fossil fuel (UN Department of Economic and Social Affairs, 2018). In fact, CI in Africa has increased 
in the last decade between 2010 and 2019 by 2.6% (IPCC, 2022a). However, it is not expected to 
continue increasing as shown in the graph above. Overall, when comparing the graphs for EI and 
CI, it is clear that EI is dropping faster, as technological advancement has been at the forefront of 
climate debates (Masson-Delmotte et al., 2018). Even though renewables have become cheaper 
and more accessible, regulatory and geopolitical barriers have stood in the way of wide-spread 
adoption (IEA, 2021), limiting a targeted decline of CI. 
 

iv. Comparing Decline Rates  
 
After contrasting the outcomes of decomposing Sigma using the decline rates of 1% and 2% for  
or EI and CI respectively, we now move to compare the different experiments defined in Section 
4.2.3, with three different decline rates per emission driver.  
Values for the decline rate are highly uncertain and there is no consensus estimates about their 
uncertainty (Nordhaus, 2018). Multiple values have been suggested to modifications of the 
DICE/RICE models (Gazzotti, 2022), for other data sources (Global Carbon Project, 2021) and for the 
RICE and DICE models themselves. Nordhaus (2010) originally suggested a decline rate of 1% based 
on estimations between 2000 and 2010. However, according to new values from 2000 – 2015, 
Nordhaus (2017) highlights that the decline rate is now around 2%, while suggesting the use of a 
decline rate of 1.5% in the most recent DICE-2016R model to avoid overestimation.  To explore this 
uncertainty, the experiments were run. 
 
We expect higher decline rates to result in lower increases in global temperature, as well as lower 
values for EI and CI, and consequently Sigma. However, this was not represented in the outcomes 
of the experiments. Instead, as can be seen in Figure 12, the opposite occurs. To understand what is 
happening, the equation used to calculate the growth of CI and EI (defined by Equations 14 and 15) 
was inspected. Given the scarce information regarding relations in the model, the growth equation 
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was adopted from Gazzotti (2022), who identified it as the growth rate equation used in the recent 
iterations of the DICE/RICE family. Given the exponential decay function used to calculate CI and 
EI, the behaviour observed in the graphs below can be expected. To compare the result with the 
PyRICE-2022 model pre-decomposition, the original model was run for all experiments with the 
new EDGAR and MDP data. For reference, growth rates in this model include constants such as 
“trend sigma growth” with a value of -0.25% across all regions and “total growth rate sigma” with 
values ranging between -4.5% and 2% depending on the region. These constants that can be found 
in the RICE Data Excel sheet are not documented nor explained and the Sigma growth rate 
equation is never defined (Reddel, 2022; Tjallingii, 2021). Therefore, it is difficult to estimate what 
these constants would be in the case of the decomposition. However, given that the purpose of 
running this version of the model is only to explore the impact of increasing decline rates, this 
limitation is trivial.  
 

   
Figure 12: Temperature Increase using Gazzotti (2022)’s definition of EI and CI growth [a] and Temperature Increase using the 

original definition of EI and CI growth [b] across all experiments 

As observed in the figure above, both growth rates yield similar results, with higher decline rates 
yielding higher temperature increases. The same can be said about Sigma, chosen here to 
represent both drivers to highlight the results of each experiment. As seen, most regions show 
that higher decline rates translate into higher Sigma values, with a few notable exceptions: China, 
Africa and Other non-OECD Asia.  
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Figure 13: Evolution of Sigma over Time for Every Region Across All Experiments 

 
When looking at the experiment outcomes for CI in Figure 19, we notice that instead of 
decreasing, Africa’s CI increases. And while an increase in CI is expected in the region with growing 
electrification (African Development Bank Group, 2020), it is unclear if the growth will be as 
significant in magnitude. Moreover, according to experiment outcomes for EI in Figure 20, values 
for China and Non-OECD Asia are also expected to grow. Given the current projections for China, 
however, this seems highly unlikely (Zhou et al., 2020). A few hypotheses can be made as to why 
this behaviour is occurring. However, given the obscurity of the growth function, as well as the 
many variables and submodules influencing output, emissions and the control rate, it is difficult 
to pinpoint the source of the problem, especially given how the rest of the input data is 
introduced.  
 
An additional step was taken to better understand the growth rate equations presented in the 
DICE/RICE family. Looking into earlier versions of the models, we identified different equations 
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for Sigma and its growth function, as seen in Equations 16 and 17. Interestingly, in this version, the 
exponential decay is used to calculate the growth of Sigma, rather than Sigma itself, while relying 
on the initial growth in each step, rather than the growth at the step before. The calculation also 
relies on “parameters that determine the rate of decline” without any additional information on 
what they represent, but unlike the decline rate in RICE-2010, they change over time. Even though 
these steps did not yield additional clarity regarding the growth rates, the findings highlight the 
changes made to the growth rate over time, and the modifications that need to be made to 
adequately use this decomposed model. In fact, setting aside some odd behaviours, these 
experiments shed light on the important of the decline rate in defining the Emission Output Ratio 
and consequently the impact on global temperature increases. Moreover, despite being 
marginally addressed in the RICE model, the influence of CI on the decarbonisation paths of some 
regions is clear and should be better represented moving forward.  
 

v. The Role of Carbon Intensity in DICE/RICE models 
 
Even though Sigma is meant to represent the product of CI and EI it is often called carbon intensity 
(of output) resulting in some confusion. This confusion is further exacerbated by the fact that the 
RICE Model seems to use Sigma as a proxy for energy intensity solely. Nordhaus (1992) argues that 
energy use and CO2 emissions per unit output form Sigma but focuses on the trend of Energy/GNP. 
Moreover, as mentioned earlier, Sigma has been used synonymously with AEEI (Nordhaus, 2018; 
Yang, 2022), further contributing to the idea that Sigma does not properly incorporate CI. This 
could be due to the fact that CI has been historically much smaller than EI, with a global change in 
energy per unit GDP of -2% vs. -0,3% for carbon per unit energy (IPCC, 2022b). EI has seen 
improvement due to considerable energy efficiency improvements in the last decades. This trend, 
however, is expected to slow down as a threshold is reached in terms of technological 
improvement. CI on the other hand has not improved as greatly, especially given that the trend of 
decarbonising the energy mix is volatile and influenced by political events, such as the 2008 
financial crisis, the 2014 Fukushima disaster and potentially the current Energy Crisis 
(Friedlingstein et al., 2022). Overall, global energy intensity has improved in transport, buildings 
and industry, whereas carbon intensity has not (IPCC, 2022a).  
 

 
Figure 14: Emissions by Region in 2019 and the Average Annual Change in Kaya Factors (2010-2019). Source: IPCC (2022) 
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However, when taking a closer look at the changes in these kaya factors across regions (see Figure 
14), we can see that using an average to account for global carbon intensity decline greatly skews 
the value towards zero, with countries experiencing a considerable increase in CI versus a decrease. 
And even though regional disaggregation would improve results, the most recent values presented 
in the IPCC report are not enough to maintain temperature increase below 2 degrees C, as 
stipulated by the Paris Agreement. In fact, in literature the improvements in both CI and EI are not 
consistent as the structure of the RICE model would suggest. Instead, decline has slowed down 
compared to historical trends, created a wider gap between current change levels and the 3.5% 
yearly decrease in EI necessary to reach the Paris goals (Enerdata, 2022).  
 
5.2. Limitations 
 
This research project has been challenging, and difficult decision were made to account for time 
and scope. That said, a few limitations should be mentioned. 
 
Despite best efforts, there was not enough data in literature to replicate the regional specification 
thought-out for the RICE-2010 model. An approximation was instead used and adopted across 
the model (see Appendix II ). This regional aggregation mostly gave priority to economic 
similarities between regions, rather than focusing on climactic and/or geographic characteristics. 
Even though this fits better into the context of the economy sub-module modified in this thesis, 
some of these choices may impact outcomes from the carbon and climate sub-modules. 
 
Updating input data was a major contribution to this work. The EDGAR CO2 dataset was selected 
because it has been adopted by the IPCC (IPCC, 2022a). However, many CO2 datasets are 
available, and they vary based on estimation methods and inclusion criteria (Minx et al., 2021). 
Since initial CO2 emissions represent the foundation of the Emission Output Ratio calculation, 
varying the values will have an impact on the results. This is because the Emission Output Ratio is 
used to endogenously represent the change of energy-related carbon emissions in the model, 
which in turn drives the increase in temperature, and eventually, the damages to the economy.  
 
Maintaining internal consistency was also a main concern in this project. For this reason, after 
updating the regional specification and CO2 emissions, GDP and Population data were modified 
to ensure all the emission drivers are consistent with respect to each other. However, the model is 
large and is built in such a way that most of the input data derives from static excel sheets. 
Updating inputs for each variable to reflect changes in regional specification or GDP, CO2 and 
Population is tedious and time consuming, but will be necessary for this model to be used for 
future applications. 

 
Furthermore, the RICE model uses a single constant global decline rate based on the average of 
the regions. According to Peters et al. (2017) and the IPCC (2022), decarbonisation is considerably 
different from region to region, meaning that aggregating this value would result in less 
granularity, and deepen the focus on the Global North in the climate debate (Blicharska et al., 
2017). Moreover, the decline was initially computed based on the average trend observed between 
2000-2010, and later based on observations from 2010-2020. The decline rate is assumed to 
persist from the start of the model in 2005 to the end in 2305, which results in considerable 
uncertainty in the results. Finally, the decline rate is influenced by a multitude of factors, 
including trends in the use of power sources, carbon taxation policies, technological 
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advancements and historical events, rendering difficult to forecast the rate (Nordhaus & Boyer, 
2000).  

 
Another source of limitation is the growth approach used for the CI and EI parameters. Following 
the RICE model growth equation is highly conjectural, especially since there is little information 
as to why this approach was selected. With many iterations of this function available in literature 
and practice, it is challenging to find a detailed application. Moreover, as it stands, it does not 
adequately reflect the impacts of changing the decline rate on the system. Moreover, the growth 
model was initially designed to serve as an indicator for “cumulative improvement in energy 
efficiency”, i.e., an indicator for the improvement in energy intensity, calling into question 
whether it is even suitable for carbon intensity growth calculations. And given that there is great 
discontinuity in historical data for improvements in energy efficiency (Nakata, 2004) , this growth 
model is not ideal to represent changes in energy intensity. Finally, the projected growth of these 
parameters is sensitive to future scenarios and adopted policies, something that is not reflected in 
the current definition. Improvements to growth of Sigma have already been introduced to some 
iterations of the model, such as Gazzotti (2022) who improved the equation and made it vary 
across all five shared socioeconomic pathways (SSP) (Riahi et al., 2017).  
 
As meticulous attention was drawn to the Emission Output Ratio and its constituent parts, other 
variables such as the Emission Control Rate 𝜇 (defined in Equation 8) were not addressed. Given 
that this analysis focused on the Kaya decomposition, the optimization variable 𝜇 was considered 
out of scope. However, 𝜇 does play a significant role in determining the energy-related emissions, 
as it reduces the value of said emissions until a target year is attained where the economy reaches 
net-zero. The Emission Control Rate is thus a lever in the XLRM model of the PyRICE-2022 model 
(Reddel, 2022), and exploring how it is impacted by the changes made to the model in this thesis 
is key to better understanding decarbonisation pathways. 
 
Finally, despite observing similar behaviours to the original PyRICE-2022 when running the 
modified version, the values obtained need to be taken with a grain of salt as the new model was 
not calibrated to account for these changes. 
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6. Conclusion 
 
In summary, the RICE-2010 model lacked an explicit consideration for energy, one that can be 
leveraged to explore how regions decarbonize to mitigate the impacts of climate change. Energy 
was explicitly introduced to the Python version of the model, PyRICE-2022, by decomposing the 
Emission Output Ratio, Sigma, into Energy Intensity (i.e., indicating how energy-intensive the 
economy is) and Carbon Intensity (i.e., indicating how carbon-intensive the energy mix is). 
Leveraging the Kaya identity to achieve this goal, shifted our understanding of the drivers behind 
decarbonisation by highlighting the different roles of CI and EI, their respective impacts on 
decarbonisation paths and the importance to explore them separately. Decarbonisation is an 
umbrella term designating a decrease in carbon emissions per unit output. However, whether 
decarbonisation is driven by a cleaner energy mix or more efficient processes is relevant, as it 
highlights different behaviours between regions and the need to define separate objectives to 
achieve climate goals. Interestingly, CI continues to be under-represented at a time where crucial 
decisions in climate summits, such as the phase-down vs. phase-out debates in COP26, rely heavily 
on its impact on carbon emissions. And whereas the decline in EI is expected to slow down, as it is 
limited by technological change, CI can theoretically reach zero with an energy mix that is 100% 
based on green energy, shedding light on the importance of using adequate and up-to-date 
methods before evaluating climate policies. 
 
Throughout the process, data quality and transparency issues have been identified, resulting in 
considerable data work being done. This includes updating the initial CO2 emissions, the regional 
aggregations, the definition of the Emission Output Ratio and the growth rate of said ratio. These 
obstacles were tackled by researching for and validating quality data, basing choices on other 
applications of the RICE and DICE models, and dynamically introducing the data to maximize 
transparency (instead of relying on static excel sheets). Naturally, as mentioned before, these steps 
were not without their limitations, and a few suggestions for improvements and future work have 
been researched and suggested. These findings can help improve the current refactored RICE-2010 
model, to make reproducibility more accessible and set the basis for evaluating future low-carbon 
pathways using more specific technological advancements in energy sources, energy industries 
and carbon capture and storage. 
 
6.1. Future Works 
 
Decomposing Sigma into EI and CI constitutes the first step in rendering the RICE model better 
suited for energy-related policy questions. The approaches undertaken in this thesis are not 
without their limitations, as mentioned in the sub-section above. To overcome these drawbacks 
and improve the model a few steps can be taken. For a to-do list format of this sub-section, refer 
to Appendix V. 
 
First, the data quality and transparency of the model should be improved further. The regional 
specification defined in Appendix I should be reconsidered. It is based on economic and or 
political similarities between countries, similar to how the regions in RICE-99 were defined 
(Nordhaus & Boyer, 2000). However, given the scope of the model, it would also be helpful to 
assess the impact of prioritising geographic and/or climactic similarities between regions instead, 
and update the specification accordingly. Another important step is to go through the PyRICE 
model and ensure that it is consistent with the RICE-2010 model and adequately refactored. This 
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includes getting rid of unused variables that can be misleading and ensuring that the 
relationships between variables are correct. Moreover, given that data processing and 
documentation have been key challenges throughout this research, updating static data found in 
the Excel files would greatly improve the quality of the results. This could be done by identifying 
what data is introduced through data_sets.py and replace it in case it is outdated or impossible to 
replicate. Later, all the inputs should be introduced in a transparent and clear way to facilitate 
reproducibility. The introduction of new data should be done carefully, while upholding internal 
consistency cross the model. Special attention needs to be given to exogenous variables as they 
rely heavily on the RICE Excel datasheets. To streamline this process, a more detailed version of 
Figure 1 can be used to observe how inputs, variables, equations and outputs are intertwined in 
the model.   
 
The implementation of the decline rate and consequent growth in EI and CI should be amended. 
As it stands, the decline rate is a constant across region and time, based on the average of the 
previous decade. This makes the analysis susceptible to issues regarding the discontinuity in 
growth for EI and CI, and key historical events. Since the decline rate represents the rate of 
decarbonisation, it is important to find a better way to represent it. For instance, this can be 
achieved through the adoption of an adjusted average that accounts for global events like the 
2008 financial crisis and COVID-19 or by adopting forecasts from reliable models that take into 
account the uncertainty range of the variable (Peters et al., 2017). Moreover, to push forward the 
regional disaggregation of the RICE model compared to DICE, the decline rates should be 
specified on a regional level, as regions have considerably different rates of decarbonisation as 
seen in Figure 14. Furthermore, as mentioned in Section 4: Methods, instead of using the RICE 
Model’s exponential growth rate for Sigma, a simple but more representative regression model 
can be used for each of CI and EI (Gazzotti, 2022; Metcalf, 2008; Nakata, 2004) highlighting 
expected slowing trends in EI, and the need for larger decreases in CI. These growth models need 
to account for a few things. First, the growth of EI should consider the limits of technological 
advancement, as improvements in the structure and energy efficiency of the economy slow down 
over time. One simple way of representing this behaviour is using an S-shaped curve. Second, CI 
should not be modelled the same way as EI, as it involves the change in the energy mix, that can 
theoretically become a 100% green (i.e., from non-emitting sources). Lastly, in this simplified 
version of the model, CI and EI depend on a decline rate and are not directly impacted by policies 
taken on scenarios experienced. Given that the development of these drivers of emission is heavily 
influenced by the context in which they calculated, it would be useful to adapt these values to 
multiple scenarios, such as the different SSPs, similar to what was done by (Gazzotti, 2022).  
 
In this research, introducing an explicit consideration for energy was translated into decomposing 
the Emission Output Ratio (𝜎), into its constituent parts. The decline rates, growth rates and the 
calculation of EI and CI themselves were decoupled from 𝜎, allowing for the exploration of these 
variables across time and region. However, in every other part of the model, 𝜎 was maintained 
and updated as the product of EI and CI. Therefore, it helpful to fully decompose 𝜎 across the 
model, such as when calculating the cost for the backstop. This will bring forth a few 
conceptualization and implementation questions as to when the product of EI and CI are 
necessary and when the focus is on energy efficiency or energy mix. Similarly, with the 
introduction of more detail to emission drivers, the role of the Emission Control Rate (𝜇) in the 
emissions function should be reconsidered, especially considering that it is a singular value across 
regions.  
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Finally, to use the model in more complex policy context, additional steps can be undertaken. This 
includes, making the model more adaptable to questions about energy-related technological 
change, an extension of Kaya can be further introduced to check for fuel switching (e.g., from coal 
and gas) as suggested by (Peters et al., 2017). Furthermore, to delve deeper into the role of energy, 
both energy and carbon intensity, which are based on primary energy, can be further decomposed 
into primary and final energy, to better understand the drivers behind decarbonisation and look 
deeper inside the black box models (Koomey et al., 2019). And finally, to test out the question 
behind the phase out and phase down debate, better compare the mitigation pathways of various 
regions and account for the deep uncertainty in the CI and EI parameters, it is helpful to run many-
objective robust decision making (Bartholomew & Kwakkel, 2020; Kwakkel et al., 2016).  
 
6.2. Recommendations and Reflection 
 
Even though the advice from this work is not a comment on the decisions made in COP26, it tackles 
a larger scope that is increasingly common. With COP27 happening a few weeks from when this 
section is written, it is important to remember that all models are wrong (Sterman, 2002), but it is 
the job of modelers to make them useful. The RICE model is an important tool, that simplifies the 
complex challenge of climate change. However, the data quality and transparency in data 
processing and methodology are opaque, resulting in a model with results that cannot be 
reproduced or expanded on. Therefore, it is crucial to provide this model, and other climate IAMs, 
with proper documentation and theoretical backing, to begin the process of using them for climate 
policy making. 
 
On that note, the improvements introduced to the PyRICE model in this research allow for some 
recommendations to be made. First, the prioritisation of EI should be shifted to include CI as well, 
as it is not enough to rely on improvements in energy efficiency, that will eventually plateau due to 
limits in technological advancement. Moreover, as decline rates stand, even when disaggregating 
them across regions, we are still far from reaching the decline rates needed to meet the goals set by 
the Paris Agreement, including the 2 degrees warming above industrial levels. And finally, policy 
makers should re-evaluate the way they use models such as this one. The strength of the DICE/RICE 
models family is that they are simple and straightforward to understand and utilise. Many 
critiques, although well-founded, can be out of scope. Models like these are not meant to be used 
to quantify policy levers, but instead, they are meant to serve as an ideal to strive for, given the 
better understanding of social, economic and climatic processes they confer, such as 
decarbonisation.  
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Appendices 
 

I. Regional Aggregations 
 
The regional specification selected for this analysis is based on a collection of data from (Anthoff 
& Tol, 2014; EIA, 2021; Nordhaus & Boyer, 2000). 
 
Table 3: Suggested Regional Specification 

Regions Countries 
United States United States 
OECD-Europe Austria, Belgium, Turkey, Czech Republic, Denmark, Estonia, Finland, France, 

Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, 
Luxembourg, Netherlands, Norway, Poland, Portugal, Slovakia, Slovenia, 
Spain, Sweden, Switzerland, United Kingdom 

Japan Japan 
China China 

Russia Russia 
India India 

Non-Russia Eurasia Albania, Armenia, Azerbaijan, Belarus, Bosnia and Herzegovina, Bulgaria, 
Croatia, Cyprus, Faroe Islands, Georgia, Gibraltar, Kazakhstan, Kosovo, 
Kyrgyzstan, North Macedonia, Malta, Moldova, Montenegro, Romania, Serbia, 
Tajikistan, Turkmenistan, Ukraine, and Uzbekistan. 

Middle East Israel, Bahrain, Iran, Iraq, Jordan, Kuwait, Lebanon, Oman, Palestinian 
Territory, Qatar, Saudi Arabia, Syria, United Arab Emirates, Yemen,Egypt, 
Algeria, Tunisia, Libya, Morocco 

Latin America Anguilla, Antigua and Barbuda, Argentina, Aruba, Bahamas, Barbados, Belize, 
Bolivia, Brazil, British Virgin Islands, Cayman Islands,Chile, Colombia, Costa 
Rica, Cuba, Curacao, Dominica, Dominican Republic, Ecuador, El Salvador, 
Falkland Islands, French Guiana, Grenada, Guadeloupe, Guatemala, Guyana, 
Haiti, Honduras, Jamaica, Martinique, Mexico, Montserrat, Nicaragua, 
Panama, Paraguay, Peru, St. Kitts and Nevis, St. Lucia, St. Pierre and Miquelon, 
St. Vincent and the Grenadines, Suriname, Trinidad and Tobago, Turks and 
Caicos Islands, Uruguay, Puerto Rico, Venezuela, Netherlands Antilles 

Africa Angola, Benin, Botswana, Burkina Faso, Burundi, Cameroon, Cape Verde, 
Central African Republic, Chad, Comoros, Congo, Democratic Republic of 
Congo, Cote d'Ivoire, Djibouti, Equatorial Guinea, Eritrea, Eswatini, Ethiopia, 
Gabon, Gambia, Ghana, Guinea, Guinea-Bissau, Kenya, Lesotho, Liberia, 
Madagascar, Malawi, Mali, Mauritania, Mauritius, Mozambique, Namibia, 
Niger, Nigeria, Reunion, Rwanda, Sao Tome and Principe, Senegal, Seychelles, 
Sierra Leone, Somalia, South Africa, South Sudan, St. Helena, Sudan, Tanzania, 
Togo, Uganda, Zambia, Zimbabwe  

OHI Canada, Australia, New Zealand, South Korea, Singapore, Taiwan, Hong Kong, 
Greenland, Andorra 

Other Non-OECD 
Asia 

Afghanistan, Bangladesh, Bhutan, Brunei, Myanmar, Cambodia, Cook Islands, 
Fiji, French Polynesia, Indonesia, Kiribati, Laos, Macau, Malaysia, Maldives, 
Mongolia, Nauru, Nepal, New Caledonia, Niue, North Korea, Pakistan, Papua 
New Guinea, Philippines, Samoa, Solomon Islands, Sri Lanka, Thailand, Timor-
Leste, Tonga, Vanuatu, Vietnam 
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II. Model Equations 
 
For the overall model equations for the RICE-2010 model, refer to Tjallingii (2021). 
 
Additionally, the earlier iteration of the Sigma and Sigma growth equations as defined by 
Nordhaus & Boyer (2000) in RICE-99. 
 
The Emission Output Ratio (Sigma) was defined as: 
 

𝜎< =
K%./

AL3K(<)	
	 [16]	

Where: 
 
𝜎< is Sigma at time t 
𝑔𝜎(𝑡) is the growth rate of Sigma as defined by the equation below 
 
 

𝑔𝜎(𝑡) = 𝑔𝜎(𝑡 = 0) × 𝑒(BM/0(<)BM10(<))	 [17]	

 
Where: 
 
𝑔𝜎(𝑡) is the growth rate of Sigma at time t 
𝛿AK(𝑡)  and 𝛿)K(𝑡) are parameters that determine the rate of decarbonisation  
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III. CO2 Emissions Check 
 
This section highlights an example calculation conducted to understand the discrepancy in CO2 
emission values.  
 
Example 2005 United States 
 
Based on Our World in Data (OWD) 
Energy Intensity = 1.83 kWh/$ 
Carbon Intensity = 0.23 kg/kWh 
 
Computing the product of Energy Intensity x Carbon Intensity: 

1.83 kWh/$ x 0.23 kg/kWh = 0.42 kg/$ 
 
 
Step 1: Validating OWD Data with other sources 
 
Energy Intensity: Primary Energy / GDP 
 
From BP Dataset: Primary Energy 

𝑃𝑟𝑖𝑚𝑎𝑟𝑦	𝐸𝑛𝑒𝑟𝑔𝑦 = 96.88	𝑒𝑥𝑎𝑗𝑜𝑢𝑙𝑒𝑠	 ×
2.778	 × 10AA	𝑘𝑊ℎ

1	𝑒𝑥𝑎𝑗𝑜𝑢𝑙𝑒𝑠 = 269.13 × 10AA	𝑘𝑊ℎ 

From World Bank Dataset 
𝐺𝐷𝑃 = 13.04	𝑡𝑟𝑖𝑙𝑙𝑖𝑜𝑛	$ 

 
Calculation 

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑	𝐸𝑛𝑒𝑟𝑔𝑦	𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 = 
	72-,;24	+01234	

567
= )NO.AQ×AG//

AQ.GR×AG/1
= 2.06	𝑘𝑊ℎ/$  » 1.83 kWh/$ from OWD 

 
 
 
Carbon Intensity: CO2 Emission / Primary Energy 
 
From the BP Dataset: CO2 Emissions from Energy 
 

𝐶𝑂2	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 = 5873	𝑚𝑖𝑙𝑙𝑖𝑜𝑛	𝑡𝑜𝑛𝑠 = 5873 × 10N	𝑡𝑜𝑛𝑠 ×
10Q𝑘𝑔
1	𝑡𝑜𝑛 = 5873 × 10O	𝑘𝑔 

 
Calculation 
 

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑	𝐶𝑎𝑟𝑏𝑜𝑛	𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 = 
	 '()	1,-..-/0.
72-,;24	+01234

= STUQ×AG2	V3
)NO.AQ×AG//	VWX

= 0.218	𝑘𝑔/𝑘𝑊ℎ  »  0.23 kg/kWh from OWD 
 
Step 2: Comparing to Emission Output Ratio (σ) in PyRICE mode  
 
From the RICE_PARAMTER.xlsx from the model inputs: 
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As seen above, the initial Sigma (CO2/GDP) is 0.134 ¹ 0.42 (from the OWD data). 
 
When checking how the 0.134 was computed, it’s based on: 

𝐶𝑂2	𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛
𝐺𝐷𝑃 =

1.662
12.3979	𝑡𝑟𝑖𝑙𝑙𝑖𝑜𝑛	$ = 0.134 

 
The GDP = 12.3979 trillion $ is sound » 13.04	𝑡𝑟𝑖𝑙𝑙𝑖𝑜𝑛	$ from the World Bank data, but CO2 
emissions of 1.662 does not: 

• The unit is unclear in the dataset, but it’s found to be 1662 million metric tons (thus, 
the order of magnitude checks out) 

• 1662 million metric tons < 5873-6007 million metric tons (acc. to BP and EIA) 
• The PyRICE CO2 emissions is only 27% of the amount reported by other sources for 

“energy-related CO2 emissions” 
• Checking the original source of the dataset, the CDIAC, shows carbon emissions from 

“Fossil Fuel and Cement Production” is equal to 1579 MMtC » 1662 MMtC. 
 
 
The data was inspected based on Nordhaus & Yang (1996)’s original source, the Carbon Dioxide 
Information and Analysis Centre (CDIAC). However, the sum of the per country CO2 emissions for 
2005 from the CDIAC did not match the sum of the regional CO2 emissions present in the 
RICE_Parameter.xlsx dataset inputted into PyRICE. In fact, the PyRICE data was 336.000.000 tons 
larger than the CDIAC dataset. Moreover, the unit of the CO2 emissions in the PyRICE dataset is 
not clearly documented, resulting in some unnecessary confusion. Finally, when trying to identify 
where the data is imported from, it was found that it is inputted into the dataset from an 
unknown private Dropbox link. This highlights a lack of transparency in the data, how it is defined 
and where it comes from, making it impossible to replicate.  
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IV. Comparing Datasets and Supplementary Results 
 
This appendix includes additional results that are relevant to better understanding the results 
presented in Section 5: Results and Discussion.  
 

i. Modifying CO2 Emissions and Regional Specification 
 
After introducing the new CO2 emissions data for 2005, collected from the European Commission’s 
EDGAR Dataset, and given that detailed regional specification is not provided for this model, the 
regional share of CO2 emissions for 2005 for every region was calculated to validate the regional 
aggregation. As can be seen, for single countries and OECD-Europe the share is somewhat similar. 
However, bigger deviations are observed for grouped regions, especially the Middle East, Africa 
and Latin America and non-OECD Asia.  
 

 
Figure 15: Comparison of regional share of CO2 emissions between the Nordhaus PyRICE data and regional specification and 

EDGAR data for 2005 

For instance, the share of the Middle East is much higher in the Nordhaus dataset. This could be 
due to the fact than in this graph, the Middle East did not include North Africa. However, the 
potential introduction of North Africa into the Middle East, along with its larger players such as 
Algeria, Egypt and Morocco, could tilt the scales for the region. Moreover, Latin America’s share is 
much higher in the EDGAR dataset, potentially because some of the Caribbean islands and 
overseas territories in Latin America fall under OHI. With trial and error, the regions were 
amended to try and capture Nordhaus’ initial specification, but in vain.  
 
Even moving North Africa to the Middle East did not improve the share of CO2 emissions 
considerably for that region. To test out the theory differently, the GDP of the Middle East, the 
Middle East and North Africa (MENA) and (Sub-Saharan) Africa were compared based on data 
from the World Bank (World Bank, 2020). As can be seen the overall GDP of the entire MENA 
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region is still well below the GDP for Nordhaus’ Middle East region. As for Sub-Saharan Africa, it is 
comparable with Nordhaus’ Africa, resulting in a decision to move North Africa to the Middle East 
dataset, despite the discrepancy.  
 

 
Figure 16: Comparison of regional GDP (in trillion $ for 2005$ price) between Nordhaus PyRICE data and regional specification 

and WDI data for 2005 

This poses a new question regarding the quality and transparency of the data presented by the 
RICE-2010 model and its PyRICE counterpart.  
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ii. Experiments: Modifying Nordhaus’ Datasets 

 
To explore whether the model maintained its behaviour after changing the CO2, GDP and 
Population datasets, comparisons were drawn between both Nordhaus’ and EDGAR & MDP 
datasets.  

 
  

 

 

Figure 17: Comparison of Damages over Consumption between Nordhaus' Data [a] and EDGAR and MDP Data [b] for CO2, GDP 
and Population 

 
Given that Sigma has been used as a proxy for CO2 emissions, industrial emissions were also 
graphed using the new datasets to explore how they change over time.  
 

 
Figure 18: Emissions using EDGAR and MPD data (before Sigma decomposition) 
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iii. Experiments: Modifying CI and EI Decline Rates  
 
One of the goals of this research is to decompose Sigma to better understand the role of CI and EI 
individually in the process of decarbonising regional economies. As seen from the figures below, 
some regions still register an increase in Carbon Intensity, such as in Africa, and an increase in 
energy intensity such as China and Non-OECD Asia.  
 
 

 
Figure 19: Evolution of CI over Time for Every Region Across All Experiments 
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Figure 20: Evolution of EI over Time for Every Region Across All Experiments 
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V. Future Work List 
 
Below is presented a more list version of future works that would greatly improve the work 
presented in this thesis:  
 

i. Assess the impact of basing regional specifications on geographic and climatic similarities, 
versus economic and political similarities, and update the regions accordingly.  
 

ii. Revise the PyRICE-2022 model as it includes a few inconsistencies, such as calculating 
Sigma at time t based on the Sigma growth from the time t – 1 instead of t, and the use of 
misleading variables (e.g., self.decl_Sigma_gr that is never used and is inconsistent with the 
decline rate presented in the original Sigma growth equation). 
 

iii. Go through the excel sheets that are used in the model and identify static introductions of 
input data. Either find the dataset or replace them in case of inability to replicate or 
outdated data. Introduce the data into the model by making processing and input 
transparent, clear and reproducible.  

 
iv. Check for internal consistency along the entire model, to assess whether other, less 

obvious, especially exogenous variables are impacted by the changes (e.g., population 
growth). This could be facilitated using detailed diagram that highlights how equations 
related to each other in the model.  

 
v. Completely decompose EI and CI throughout the entire model, getting rid of Sigma. This 

includes yearly emissions and the cost for backstop. 
 

vi.  Identify a more representative way of defining decline rates, rather than just averaging the 
last decade, to account for discontinuity and/or specific historical events. To start small, this 
could include an adjusted average that accounts for incidents (e.g., the 2008 financial crash 
and the COVID-19 pandemic) or predictions from other well-regarded models and or 
reports (Peters et al., 2017).   
 

vii. Specify decline rates for each region, as decarbonisation takes very different forms and 
rates across the world, as can be seen in Figure 11, from the IPCC (2022). It would also be 
helpful to set up a sensitivity analysis, to evaluate how changes in these highly uncertain 
variables will impact the model. 

 
viii. Changing the growth rate function used for EI and CI. For EI, adopt a function that reflects 

the limits of the improvement of energy efficiency (e.g., sigmoid curve). For CI, find a 
function that represents CI’s ability to reach 100% green energy. For both EI and CI, modify 
the growth functions in a way to reflect different scenarios (e.g., the SSPs, such as Gazzotti, 
(2022)) and allow for testing various policies that would impact the growth or decline of 
these variables (e.g., phasing-out policies). 
 

ix. Given the split of the Emission Output Ratio (𝜎), and the potential introduction of other 
details to the drivers of emissions, review the role of the Emission Control Rate (𝜇) in the 
emissions function. 
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For further steps: 
 

x. Implement an extension of the Kaya Identity (Peters et al., 2017), by introducing 
decomposition that allow for the evaluation of fuel switching (e.g., from coal to gas). 

xi. Decompose primary energy into primary energy and final energy, to better understand 
where and how decarbonisation is occurring (Koomey et al., 2019). 

xii. Run an optimization to explore decarbonisation can be achieved through changes in 
emission drivers, under different scenarios and by leveraging different policies. 
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VI. Other Results from Experiments 
 
The full set of results can be found in this repository: 
https://github.com/maryamalki/PyRICE_2022/tree/sigma 
 
They are organised as follows: 
 

a. Under the ‘master’ branch we have the code for the original model, with both the Nordhaus 
datasets and the updated EDGAR and MDP Datasets. Results are saved under 
results_original, with: 
• original_data for the Nordhaus dataset results 
• new_data for the EDGAR and MDP datasets results 

 
b. Under the ‘sigma’ branch we have the code for the decomposed Sigma model, with two 

versions of growth: 
• results_PyRICE_growth for the growth rate defined in the PyRICE-2022 model 
• results_RICE50+_growth for the growth rate defined by (Gazzotti, 2022) 

 
Both these growth rates are intended to represent the original RICE-2010 model growth rates for 
sigma (or “cumulative improvement in energy efficiency”). The growth rate defined by Gazzotti 
(2022) is the one adopted for the main discussion of results.  


