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A B S T R A C T

High-resolution rainfall forecasts are essential for forecasting urban pluvial floods and providing local decision 
support before an event when using rainfall or model-based approaches. Regional Numerical Weather Prediction 
(NWP) models increase the resolution and extend forecasts by several days when initialised with global models. 
These models produce forecasts at higher spatial and temporal resolutions but are computationally demanding 
and do not necessarily result in more accurate forecasts especially in data-scarce cities. This research evaluated 
how rainfall forecasting model scale dependencies satisfy high-resolution hazard forecasting requirements with 
two different flood forecasting approaches. Rainfall forecasts of different spatial resolutions, cumulus schemes 
and lead times from a high-resolution Weather Research and Forecasting (WRF) model were first evaluated and 
then used as input in a rainfall threshold and 1D MIKE urban drainage model for flood forecasting in the data- 
scarce city of Alexandria City, Egypt. Results indicate the flood forecast severity class and flood model simulation 
results vary with the neighbourhood size, forecast horizon, and chosen cumulus configuration but in general the 
smallest resolutions evaluated did not improve the hazard estimation for both flood forecasting approaches. 
Therefore, trade-offs must be made regarding model configurations, resolution, lead times and how the forecast 
output will be used. This study demonstrates the opportunities and limitations for better integrating high- 
resolution meteorological for the development of a rainfall threshold-based and model-based flood forecasting 
in cities with similar conditions. It also highlights the need to align the selected model configuration with the 
goals of the flood forecasting application which is critical for effective early warning systems and anticipatory 
flood management.

1. Introduction

The frequency and intensity of extreme rainfall events are on the rise 
(Prein et al., 2017), and as a result, of higher population densities, cities 
will be disproportionately at higher flood risk (Ermagun et al., 2024). 
Urban pluvial (rain-driven) or surface water flooding occurs due to high 
rainfall intensity in urban pluvial catchments with insufficient drainage 
capacity and water accumulation in low-lying areas, resulting in prop
erty damage, disruption of services, and loss of life. In urban areas with 
combined drainage systems, there is the additional risk of untreated 
effluent surcharging manholes, which mix with surface water, creating 

unsafe health conditions (Houston et al., 2011). With continued ur
banisation and rapidly expanding cities under threat of flooding, the call 
to make cities more disaster resilient through preparedness for extreme 
weather events is increasing.

This research aims to further our knowledge of applying early 
warning systems supported by real-time rainfall and flood forecasting 
for Anticipatory Flood Management (AFMA). AFMA promotes forecast- 
based actions taken ahead of time to increase preparedness and reduce 
residual risk in data-scare areas. AFMA actions include warnings to 
avoid flood-prone areas, flow redistribution and pumping out water, 
mobilising emergency management, and cleaning the drainage system. 

☆ This article is part of a special issue entitled: ‘Real-time Flood’ published in Journal of Hydrology.
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The effectiveness of actions depends on the information provided by 
rainfall forecasts and flood forecasting (FF) approaches, which include 
rainfall thresholds, pre-simulated scenarios and/or real-time simulation 
approaches. Flood forecasting and warning approaches in urban pluvial 
catchments require accurate predictions about peak rainfall rates and 
the magnitude, timing, location and impacts of flooding and require 
high spatial and temporal rainfall resolution forecasts suitable for small- 
scale urban flood modelling, which is often unavailable in data-scarce 
regions.

Further, delivering urban flood forecasts with sufficient lead times is 
challenged by uncertainties in forecasting rainfall at high spatial and 
temporal resolutions and running flood inundation models in real-time. 
Radar-based nowcasting has been used to improve the spatial and 
temporal resolution of rainfall for triggering warnings and FF 
(Schellartet al., 2011; René et al., 2013; Thorndahl et al., 2013; Iqbal, 
2017; Flack et al., 2019). However, radar-based nowcasting for FF ap
plications is provided at short lead times (< 6 h), which may be insuf
ficient for implementing actions requiring more than 6 h lead time or 
unavailable, especially in data-scarce regions where nowcasting is 
unavailable.

When initialised with global data, the Weather Research and Fore
casting Model (WRF) (Skamarock et al., 2008) forecasts rainfall at 
longer lead times and allows downscaling to smaller high-resolution 
domains. The smaller domains capture high-scale features and pro
cesses which can better simulate precipitation characteristics (Lean 
et al., 2008; Prein et al., 2015); Kendon et al., 2017). Increasing the 
simulation domain resolution alone is not enough to significantly 
improve the model performance. Care must also be given to the treat
ment of convection (Fowler et al., 2016) and the microphysics and 
planetary boundary layer (PBL) schemes (Clark et al., 2015; Kain et al., 
2008). Many studies have investigated the impacts of different model 
configurations on rainfall distribution (Jankov et al., 2007; Goswami 
et al., 2012; Wang et al., 2016. Jankov et al.,(2005) found the most 
significant variability in forecasts from changes in the choice of Cumulus 
Parametrisation Scheme (CPS) which influences the average rain rate. 
(Umer et al., 2021) evaluated different CPS schemes and demonstrated 
the potential of WRF models as a valuable asset to capture peak rainfall 
intensity for flash flood modelling in a city where high quality direct and 
remotely sensed observations of rainfall are limited. Therefore, in high 
resolution WRF modelling, the model configuration has a significant 
impact on rainfall quantities and distributions and subsequently on flood 
forecasts.

There are interdependencies between the different components of 
the flood forecasting chain; meteorological forecasting input, hazard 
estimation methodologies and decision support systems that trigger a 
warning or action (Fig. 1). The flood forecasting approach or hazard 

estimation method uses empirical methods such as rainfall threshold or 
real-time flood simulations and data-driven models to identify the crit
ical rainfall or flood depths which will trigger a warning or action. 
Physically based hydrodynamic flood forecasting models operate in real- 
time, integrating forecasted rainfall or observed flows to update condi
tions when available. The suitability of the hazard estimation approach 
is influenced by several factors: forecasting scale, quality of information 
and models available, triggering mechanism, requisite forecast variables 
and end-user needs (Henonin et al., 2013; Speight et al., 2020). Data 
driven models have the advantage of fast computational times but the 
lack of observed time series data in data scarce regions makes their 
application limited.

Using high horizontal resolution output from Numerical Weather 
Prediction models such as WRF with rainfall threshold approach or in 
real-time simulations can be valuable for forecasting urban pluvial 
floods at various lead times and has been done by other authors 
(Thorndahl et al., 2016; Brendel et al., 2020; Ming et al., 2020; Davis 
et al., 2022; Wang et al, 2022). The main problem this paper aims to 
address is whether increasing the resolution of WRF rainfall forecasts to 
satisfy urban flood modelling requirements will lead to improved 
quantification of rainfall magnitude and distribution for flood fore
casting in urban pluvial cities.

This will be done by assessing the usability and performance of high- 
resolution WRF rainfall to produce flood forecasts for implementing 
anticipatory flood management actions 12–72 h before an event. Given 
the influence of the model configurations, WRF rainfall output is eval
uated at different lead times, domain resolutions, treatments of con
vection and neighbourhood sizes. Further, the study investigates the 
influence of increasing the resolution and model configuration with two 
FF approaches: a rainfall threshold approach when urban models are 
unavailable and a real-time hydrodynamic model to forecast flood 
depths. Whereas previous research has assessed the influence of 
increased rainfall resolution with radar nowcasting or post-processing 
with observations, the novelty of this research is in jointly exploring 
the scale dependencies of both the meteorological forecasting model and 
different flood forecasting approaches, which has not been explored 
sufficiently, especially in data-scarce cities.

The research has been carried out for extreme events in the Medi
terranean coastal city of Alexandria in Egypt. Every winter, Alexandria 
experiences extreme weather events that cause significant flooding and 
disruption to lives throughout the city (Zevenbergen et al, 2016). This 
research does not aim to determine the optimal model configuration for 
the WRF model given the challenges in data-scarce cities but instead 
explores the trade-offs in model accuracy and usefulness of rainfall 
forecasts to generate flood forecasts in data-scarce regions. Evaluating 
high-resolution models and their application for rainfall and flood 

Fig. 1. Components of a pluvial flood forecasting system for early warnings and anticipatory flood management. Observations and models are used to create Global 
Numerical Weather Prediction Forecasts. Regional Downscaling is done with the WRF model combining domain variable spatial grid resolutions with different 
convection parametrisations. Hazard estimation methods using a rainfall threshold approach, real-time flood or data driven models are combined with decision 
support systems to trigger warnings and actions.
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forecasting in data-scarce cities can highlight the interdependencies of 
the flood forecast chain’s meteorological and hydrological aspects, 
which are often evaluated separately. The findings can inform the 
design, development and improvement of existing and future FF and 
early warning systems for increased preparedness by implementing 
anticipatory actions in cities similar to Alexandria.

2. Study area

Alexandria is located in the Alexandria Governorate, Nile Delta on 
the southern boundary of the Mediterranean Sea (Fig. 2). A renowned 
tourist destination, the city is known for its cultural heritage and land
marks. It is the second largest city in Egypt spanning over 2,300 km2 

with a population of approximately 5.5 million (UN, 2023) and com
prises smaller districts. Like many Middle Eastern and North African 
Region cities, it has experienced urban expansion over the years, has low 
adpative capacity(Abdrabo et al., 2023) and informal settlements ac
count for a third of Alexandria’s total population (AASTMT and Egis 
BCEOM International, 2011). The coastal city is characterised by an arid 
Mediterranean climate with rainy winters, occasional storms (from 
October to April), and long warm summer months (May to September) 
with no rain. There is high annual rainfall variability with 360 mm(max) 
and 70 mm(min), averaging 195 mm/year. In the winter months, 
Alexandria is associated with a high temporal rainfall variability which 
is a distinguishing characteristic of the Mediterranean climate 
(Hasanean, 2004). Winter storms, locally referred to as “Al-Nawat”, are 
a result of migratory cyclones and fronts, upper-level troughs (low 
pressure) accompanied by strong winds, rains and storm surges or strong 
winds only.

Alexandria City was selected as a case study given the increased 
number of flood events in recent years and the challenges faced with 
developing a flood forecasting system with limited data and resources. 
The city suffers from occasional pluvial flooding from runoff accumu
lation and surcharging of the city’s dense sewer network and these risks 
are expected to increase with a changing climate (AASTMT and Egis 
BCEOM International, 2011). For example, the El Gomork district ex
periences occasional flooding and traffic disruptions along the Corniche. 
Storm water is collected via a combined sewer system and pumped to the 
West Treatment plant via lift stations and force main pipes. Alexandria 

does not have an operational flood forecasting system and lacks reliable 
sub-daily rainfall gauge data. City officials currently use information 
from the National Meteorological Agency and historical knowledge of 
floods to issue warnings and take action. With the threat of emerging 
risk, AFMA has been proposed as a viable solution to increase pre
paredness and reduce damage (Zevenbergen et al, 2016; Bhattacharya 
et al., 2018).

This research evaluates three extreme rainfall events, on October 
25th, 2015, Dec 5th, 2018 and Nov 20th 2020 during the winter months 
which resulted in significant flooding and a state of emergency was 
declared in the governorate. Several studies using WRF have been car
ried out in Egypt using the National Center for Environmental Pre
diction’s (NCEP), Global Forecasting System (GFS) and the European 
Centre for Medium-range Weather Forecast’s ERA5 and ERA interim 
data sets. (Robaa and Wahab, 2019) and Ibrahim (2020) evaluated the 
sensitivity of WRF to convection schemes and both found there was an 
overestimation of rainfall but results improved with finer resolution. 
(Eltahan and Magooda, 2018) investigated rainfall sensitivity to 
microphysics schemes and found all schemes produced higher precipi
tation than observed. Eltahan and Magooda, (2018) found the Morrison 
double moment scheme achieved the closest to observed rainfall while 
the Thompson scheme successfully simulated the cloud pattern. El 
Afandi et al. (2020) found favourable results using a Single-Moment 
3-class WSM3 scheme and Kain-Fritsch scheme for the development of 
an early warning system in the Sinai Peninsula. Ibrahim and Afandi 
(2014) and Cools et al. (2012) previously evaluated the use of a WRF to 
predict extreme rainfall over the Sinai Peninsula and Egypt. Most 
recently, Liu et al. (2021) used a progressive multi-metric configuration 
optimisation method and ERA5 reanalysis data to find an optimal 
configuration of the WRF model for the study area. All previous studies 
evaluated different resolutions. To the best of our knowledge, no studies 
have evaluated the use of WRF with resolutions less than 3 km which are 
the resolutions suggested for flood forecasting in urban scale modelling 
(Berne et al., 2004).

3. Data and methods

This research analysed WRF rainfall for different lead times, domain 
resolutions and treatments of convection at different neighbourhood 

Fig. 2. Geographical location of Alexandria City. The El Gomork district is shown in pink. Refer to Fig. 5 for more details on the El Gomork drainage system. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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sizes and evaluated with gridded rainfall estimates. The WRF rainfall 
was then used at different scales with two flood forecasting approaches: 
a rainfall threshold approach and an urban drainage flood model to 
evaluate how well they forecasted a hazard. A summary of the research 
framework is presented in Fig. 3. The following section briefly describes 
the WRF model setup and the flood forecasting approaches used.

3.1. Data and WRF setup

The Advanced Research WRF (ARW-WRF), (Skamarock et al., 2008) 
is a convection-permitting dynamic downscaling model configured 
using grid parameterisations and physics schemes, and nested domains 
at finer resolutions. This research used 0.25◦ Global Forecast Grids 
Historical Archive ds084.1 for lateral boundary conditions, MODIS15 
land-use map and two-way nesting. Analyses were first carried out using 
three domains and then four domains to evaluate if forecast skill is 
improved by increasing the number of domains and higher spatial res
olutions. The domains used boundary conditions that were updated 
every 3 h, a nesting ratio of 1:3:3:3 and a spatial resolution for domain 1 
(D1) 10 km, domain 2 (D2) 3.3 km, domain 3 (D3) 1.1 km and domain 4 
(D4) 0.37 km (Fig. 4). The outermost domain (D1) covered Egypt and 
the wider Mediterranean. This is consistent with the mother domain 
used by the Egyptian Meteorological Agency.

All spatial domains had a vertical resolution of 45 layers and the 
model used a timestep of 60 s with adaptive timestep. The selection of 
the physics schemes (Table 1) was guided by the most recent study of 
(Liu et al., 2021) along with the consideration for convection-permitting 
scales, (1–2 km) which can run without convection schemes because the 
grid spacing is small enough to explicitly resolve convection. However, 
in the convective grey zone (3–10 km) cumulus-cloud processes become 
partially resolved and traditional closure assumptions break down and 
scale-aware schemes can be used (Grell and Freitas, 2014; Zheng et al., 
2016; Jeworrek et al., 2019). There is still some disagreement on how 
CPS should be treated in smaller domains. Paul et al. (2018) found for 
the Mumbai’s coastal areas turning the CPS on in a 1 km simulated best 
results, whereas Han and Hong, (2018) found better simulation when 
CPS in turned off in a 3 km domain. Therefore, additional sensitivity 
experiments were tested for Domain 2 and 3 in which convection was 
parameterised and cumulus was kept off in D4 (Table 1). R1, R2 and R3 
correspond to runs with 3 domains and R1_4d, R2_4d and R3_4d 
correspond to runs with 4 domains. The runs were initialised at the 72 h, 
48 h, 24 h and 12 h lead times with a spin-up time of 12 h for three 
events. The objective of this research was not to determine the optimal 
model configuration for the WRF model but to investigate if increasing 
the resolution improves rainfall forecasts and to determine the usability 
of high resolution WRF output in flood forecasts and early warning 
systems. A summary of the WRF setup and methodology used is shown 
in Fig. 4.

3.2. Flood forecasting approaches rainfall threshold approach

Thresholds for the 24 h accumulation were selected based on pre
vious analysis of critical rainfall thresholds (Young et al., 2021). These 
correspond to the severity of flooding: “No to minimal flooding” with 
rainfall within 0 to 11 mm, “Minor flooding” within 12 to 19 mm, 
“Significant flooding” within 20 to 31 mm or “Severe” with rainfall ≥ 32 
mm. Young et al. (2021) derived thresholds using observed daily rainfall 
accumulation and rainfall intensity for a 3-year training period from 

Fig. 3. Research Framework illustrating the methods for coupling WRF model to produce high resolution rainfall forecasts and hazard estimation using a rainfall 
threshold at the city scale and real time urban flood simulations for part of the city.

Table 1 
WRF model parameterisation is used, and cumulus parametrisation is used for 
the different runs. Parameterisation schemes are kept the same for all runs 
except cumulus where the Grell Freitas scheme cu = 3 is used or when no 
cumulus scheme is used cu = 0. R1, R2 and R3 correspond to runs with 3 do
mains (3d runs) and R1_4d, R2_4d and R3_4d correspond to runs with 4 domains 
(4d runs).

Physics schemes 
(Based on Lui 
et al., 2021) 
same for all runs

Name SCHEME #

Microphysics Single- 
moment 6- 
classWSM6

6 ​

Longwave 
Radiation

RRTM 1 ​

Shortwave 
Radiation

RRTM 1 ​

Boundary 
Layers

Mellor- 
Yamada- 
Janjic

2 ​

Surface Layers Eta 
Similarity 
Scheme

2

Land Surface Unified 
Noah Land 
Surface 
Model

2

Cumulus Grell Freitas ​ ​
Runs (scheme 

configuration)
​ 3d runs 4d runs
Domain R1 R2 R3 R1_4d R2_4d R3_4d
D1 3 3 3 3 3 3
D2 0 3 3 0 3 3
D3 0 0 3 0 0 3
D4 − − − 0 0 0

Table 2 
Thresholds (in mm) used to trigger warnings.

Flood Hazard Classification and Corresponding Rainfall Depth Thresholds

0–11.99 mm 12–19.99 mm 20–31.99 mm >=32 mm
No to minimal flooding Minor flooding Significant 

flooding
Severe flooding
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2012 to 2015 (using previous floods over a specific duration). Local 
drainage capacity (2-year return period) for Alexandria is reported as 26 
mm/day for 2–3 hr events and flooding assumed to occur once exceeded 
(AASTMT and Egis BCEOM International, 2011). This knowledge of the 
system drainage capacity was combined with historical flood data 
derived from social media, archived newspapers, blogs, and eyewitness 
accounts, which have proven useful in assessing evidence of flood. Only 
one daily rainfall gauge was available for the study thus spatially 
varying thresholds were not considered. The thresholds were applied to 
the spatially varying rainfall forecasts to derive hazard classes over the 

entire governorate.

3.3. Urban flood model setup

A flood model based on the 1D MIKE Plus model (from the Danish 
Hydraulic Institute), capable of real-time FF, was developed to simulate 
flood inundation. Alexandria city is a very densely urbanized area. A 
land cover GIS dataset comprising buildings, roads, and green infra
structure was used to derive imperviousness for the rainfall-runoff 
model. The model was developed and calibrated for the Gomork 

Fig. 4. Summary of data and methods used for the WRF model setup, rainfall thresholds and real-time simulation.

Fig. 5. Mike Urban plus drainage model set up for El Gomork district showing manholes, sewer pipe layout and location outlet lift stations (left) which pumps 
combined stormwater and sewage to the West Treatment Plan.
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district (~5 km2) (Mahmood, 2021) using available drainage network 
data.

In the real-time simulation, the hydrodynamic model was run with 
forecasted spatially varying gridded rainfall at 10 km, 3.3 km, 1.1 km 
and 0.37 km resolution to simulate flooding in Gomrok. The combined 
sewer and stormwater network model was used to simulate flows and 
water levels in urban storm drainage. It consists of a rainfall-runoff 
model which transforms rainfall time series to runoff hydrographs to 
be used as input into the hydraulic network model. The Gomork network 
comprises 3482 local and collector manholes connected by sewer pipes 
ranging from 300 to 2000 mm in diameter. Pipes flow via gravity to two 
sanitary lift stations; Outlet #1 (Kaytbay lift station) and Outlet #2 (El 
Meena). The combined sewage is then pumped from the lift stations and 
treated at the West Treatment plant before discharging into Lake Mar
yut.The model setup, location of the West Treatment Plant and Lake 
Maryut are shown in Fig. 5. Tides and wave action are not considered to 
be contributing to flooding in the model setup.

Outlet discharge, total volume and node flooding simulated using the 
WRF rainfall were evaluated against simulation results generated using 
MSWEP and IMERG and flood depths were compared with photos taken 
on the day of the flood. Rainstorms in Alexandria range from a duration 
of 1 to 9 h (AASTMT and Egis BCEOM International, 2011; Mahmood, 
2021) whereas the MSWEP data has a temporal resolution of 3hs. To 
simulate extreme cases, the 3 h MSWEP rainfall was assumed to occur in 
a 1 h interval. IMERG rainfall, which has a half-hourly resolution was 
aggregated to hourly temporal resolution.

3.4. WRF performance evaluation

This section discusses the methods used to evaluate the performance 
of the WRF model. Given the large-scale nature of the simulated events, 
results were evaluated at different neighbourhood sizes to understand 
the forecasting skill in relation to flood forecasting applications. 
Neighbourhood locations were determined based on past knowledge of 
weather systems. In general, rainfall quickly reduces as it moves inland. 
The larger neighbourhoods 1000 km & 500 km size cover the phe
nomenon scale, whereas the smaller sizes give coverage along the coast 
(200 km), the governorate (100 km), the city (50 km) and specific dis
tricts within the city (20 km and 10 km) Fig. 6.

In the absence of reliable sub-daily gauge data, results were 
compared with the gridded precipitation dataset: Multi-Source 

Weighted-Ensemble Precipitation MSWEP V2, which merges several 
gauge, satellite, and reanalysis-based data (Beck et al., 2019) and GPM 
IMERG Final Precipitation Products V7(Huffman et al., 2019) hence
forth referred to as IMERG or observed rainfall estimates. There is un
certainty associated with the use of gridded rainfall products, thus both 
products were compared with the observed rainfall gauge at the Nouzha 
airport (Table 3) and the forecasts were verified against the product 
which matched the observed rainfall best.

Both products have a spatial resolution of 0.1 degrees and highest 
temporal resolution of three hours and half-hour, respectively. Both 
datasets have been found suitable for detecting rainfall events in North 
Africa (Nashwan et al., 2019; Mekonnen et al., 2023).

The performance of the WRF model was evaluated on measures of 
comparison such as scatter plots, Coefficient of Variation and Pearson 
Correlation Coefficient (CC), Standard Deviation (SD) and presented in a 
Taylor diagram and the derived Centred Root Mean Square Error 
(CRSME) (Taylor, 2001). Enhancing the small-scale detail can decrease 
the precipitation forecast skill due to the double penalty of erroneous 
rainfall placement and timing, even though the representation of rainfall 
accumulation and intensity may look more realistic. To overcome this, 
the neighbourhood spatial verification Fraction skill score (FSS) 
(Roberts, 2008) was used. This method directly compares the fractional 
coverage of forecast and observed rainfall, which exceeds a specified 
threshold for a neighbourhood size. FSS is calculated for each neigh
bourhood size (Fig. 4) using Eq. (1) where Fi and Oi are the forecast 
rainfall fraction and observed rainfall fraction exceeding specified 
thresholds, respectively and N is the number of spatial grids in a 
neighbourhood size. An FSS of 1 is perfect, an FSS above 0.5 is consid
ered useful, and an FSS of 0 is not a skill. 

Fig. 6. Visual representation of the neighbourhood spatial sizes used for FSS calculations.

Table 3 
Comparison of the 72hr accumulated rainfall at Nouzha Airport gauge rainfall 
with MSWEP and IMERG precipitation products.

Nouzha Airport MSWEP GPM

​ m m/3d ays
Oct 25th, 2015 32.1 38.13 21.97
Dec 5th, 2018 56.13 33.13 59.33
Nov 20th, 2020 34.03 15.31 32.13

A. Young et al.                                                                                                                                                                                                                                  
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FSS = 1 −
1
N
∑N

i=i(Fi − Oi)
2

1
N

( ∑N
i=1(Fi)

2
+
∑N

i=1(Oi)
2) (1) 

In Eq (1), FSS was computed and evaluated for 24 h accumulations 
for Domain1 (10 km), Domain2 (3.3 km) and Domain3 (1.11 km) at the, 
72 h, 24 h and 12 h lead time for both runs with a convective scheme and 
no convective scheme in respective domains (Table1). All forecast res
olutions were aggregated to a 0.1◦ grid to match observed rainfall 
estimates.

Rainfall Threshold Performance Indices.
For the rainfall thresholds, categorical scoring was used to evaluate if 

the warning class was consistent with the observed event category. 
Categorical descriptions of a hit, miss and or false alarm are presented 
below. The Probability of Detection (POD), False Alarm Ratio (FAR) and 
Critical Success Index (CSI) or threat score takes both false alarms and 
missed events into consideration and is sensitive to hits. The metrics 
were evaluated for the 10 km, 1,1 km and 0,37 km spatial resolutions for 
all runs. 

Hit Rate (Probability of Detection) =
Hit

Hit + Miss
(2) 

False Alarm Ratio (FAR) =
FalseAlarm

Hit + FalseAlarm
(3) 

Threat Score/Critical Success Index(CSI) =
Hit

Hit + FalseAlarm + Miss
(4) 

Urban Flood model Metrics.
The Normalised Root Mean Square Error (NRMSE) and the Kling- 

Gupta Efficiency score (KGE) were used to evaluate the performance 
of the 1D flood model. NRMSE measures the average difference between 
a statistical model’s predicted values and the observed values where a 
RMSE of 0 is considered a good score. The equation NRMSE is shown as 
equation (5), where Pi is the model-predicted value, Oi is the observed 
value, Ō is the mean of the observed value, and N is the number of 
observations. KGE is a single combined expression of correlation, vari
ability and bias into one score and represents a goodness of fit score. A 
KGE of 1 is considered a perfect score. The metrics were evaluated for 
the 10 km, 1,1k m and 0,37 km spatial resolutions for all runs for the 
outlet discharge and node flooding at a known flood location. 

NRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
N
∑n

i=1(Pi − Oi)
2

√

O
(5) 

KGE = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(r − 1)2
+ (α − 1)2

+ (β − 1)2
√

(6) 

KGE = 1 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(r − 1)2
+ (

σsim

σobs
− 1)2

+ (
μsim

μobs
− 1)2

√

(7) 

where r is the Pearson correlation between observations and simula
tions, α is the variability ratio and β is the bias ratio. This is further 
expressed in equation (7) where σobs is the standard deviation in ob
servations, σsim the standard deviation in simulations, μsim the simu
lation mean, and μobs the observation mean.

4. Results

Results are presented and discussed for WRF rainfall at different 
spatial resolutions 10 km (D1), 1.1 km (D3) and 0.37 km (D4) for runs 
with different treatments of convection. Results are presented for the 
three events Oct 25th 2015, Dec 5th 2018 and Nov 20th, 2020. The 
analysis first examined how results vary with lead time and neigh
bourhood size, followed by the influence of the horizontal grid resolu
tion and cumulus configuration in each domain. The WRF rainfall is then 
evaluated using rainfall thresholds for forecasting hazard classes and for 

use in a real-time model simulation for forecasting discharge and node 
flood depths.

4.1. WRF rainfall forecast analysis

4.1.1. Leadtime and neighbourhood size analysis
Fig. 7 shows how the rainfall event on October 25th 2015 is fore

casted at the 1000 km and 50 km neighbourhood sizes for the 10 km grid 
resolution for Run2 (R2). The 50 km neighbourhood gives a closer 
snapshot of the city scale. While the event’s occurrence is captured at all 
lead times, it shows higher forecasted values at 72 h and 24 h and lower 
accumulation and extent at 12 h. Generally, the forecasts show similar 
extent and areas of high accumulation compared to MSWEP whereas the 
IMERG product showed significantly higher rainfall values offshore but 
rainfall reduced over the land, less than MSWEP.

Fig. 8 shows scatterplots of forecasted and MSWEP area average 
rainfall for the event on Oct 25th, 2015, and Dec 5th 2018 for the 72 h, 
24 h and 12 h lead time, 10 km domain resolution (D1) and different 
neighbourhood sizes for R1, R2 and R3. The 12 h lead times for all runs 
performed poorly, heavily under-forecasting rainfall for neighbourhood 
sizes smaller than 200 km. Similar trends are presented in Fig. 7. Given 
the similarity in the trend for lead times in all runs, it can be assumed 
that the poorer performance was caused by the initial and lateral 
boundary conditions used to initialise WRF.

Compared to the 12 h lead time, forecast results showed high skill at 
the 72 h and best overall performance at the 24 h lead time at all sizes, 
particularly at the smaller neighbourhood sizes. Noticeably, the rainfall 
was under-forecasted at the 10 km scale for the 72 h lead time for R1 and 
R3, but it performed well for R2. R3 showed more similarity for the 24 h 
lead time at the 10 km neighbourhood scale. Results for the event can be 
found in the Appendix.

For the spatial verification metric FSS, there were minor differences 
between the domain spatial resolutions and runs, but results varied with 
lead time, neighbourhood size and thresholds. Consistent with the pre
vious analysis, the forecasts performed best at the 24 h and 72 h lead 
time for all runs and all thresholds except for the 32 mm threshold which 
shows no skill at the 10 km neighbourhood for the 12 h lead time. This 
suggests the WRF model is over-forecasting in some grids of these 
neighbourhood sizes. Results presented for R3 in Fig. 9 also show that 
despite performing poorly for the 20 mm and 32 mm thresholds for 
smaller neighbourhood sizes, the FSS for 12 h lead time still showed skill 
at the 500 km and 1000 km. The WRF model was able to show a threat 
was imminent and could confirm the persistency of a threat, which most 
often may be good enough information for early warning and antici
patory actions for reducing disaster risk. However, the forecasts were 
not useful (<0.5) at the 10 km neighbourhood size at the 72 h lead time, 
which would be more relevant to urban scale modelling. Given the 
computational requirements of running models at higher resolutions, 
running the models at a coarser resolution and at longer lead times is 
preferential. This would allow protocols to be put in place and the model 
can run at higher resolutions for shorter lead times.

4.1.2. Influence of cumulus configuration and horizontal grid resolution
Given the favourable results at the 24 h lead time, the results are 

presented only for this lead time for all model runs, including down
scaling to a 4th domain (0.37 km) which aims to meet the requirement 
for higher-resolution rainfall for urban flood forecasting. For R1_D4, 
R2_D4 and R3_D4 run (see Table 1), the runs use the same configuration 
as the corresponding R1, R2 and R3 but the cumulus scheme was turned 
off in the 4th domain. The results are presented for the 50 km neigh
bourhood size which showed useful for the 24 h lead time will be most 
pertinent to city administration. Fig. 10 shows the spatial rainfall vari
ability for each run across the 50 km neighbourhood size for the Oct 
25th event. In general, the 24 h accumulated rainfall across grid reso
lutions varies by about 5–20 mm. Notably, there is a tendency for the 
finer grids to show areas of more intense rainfall and higher rainfall 
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accumulation than D1 of the same run.
It was found that all runs correctly predicted rainfall occurrence, but 

there was some variability in rainfall locations, magnitudes, and in
tensities across runs and domains. For the 50 km neighbourhood size, R1 
had the lowest coefficient of variation, 30 % and R3 had the closest 
coefficient of variation 40 % compared to MSWEP 43 %. This suggests 
grid points are more spread out across the rainfall mean than observa
tions with smaller variability across grid points. Moreover, in Fig. 10, 
rainfall accumulation tends to increase when the cumulus scheme is 

turned on in the smaller domains for 3 domain runs. Compared to R1 
and R2, R3 shows areas of higher rainfall accumulation in the magnitude 
of 70 mm off the coast and parts of the city, particularly on the eastern 
side of the city. There are also noticeable differences between the hor
izontal resolutions. For both R1 & R3, D1(10 km) averages the rainfall 
over larger areas detecting lower accumulated rainfall in the city 
compared to D3 which shows greater similarity. However, D3 captures 
greater rainfall variability in detail. In general, there appear to be fewer 
areas of extreme rainfall over the governorate in R1_D4 and R3_D4, 

Fig. 7. Images show how the weather phenomenon is predicted for 24 h accumulated rainfall from 21:00 Oct 24th to 21:00 Oct 25th at 72 h, 24 h and 12 h lead time 
for the 1000 km (top) and 50 km (bottom) neighbourhood at the 10 km resolution and R2. MSWEP and IMERG are shown for the same period.

Fig. 8. Comparison of 24 h rainfall accumulation from Oct 24th 21:00 to Oct 25th 21:00 showing the accumulated area averages for the 10 km resolution (D1) for 
different neighbourhoods at lead times of 12, 24,48 and 72 h for R1, R2 & R3.
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whereas R2_D4 shows areas of increased rainfall compared to R2.
The differences in the runs are further displayed using a Taylor Di

agram (Taylor, 2001) (Fig. 11) which compares and summarises the 
standard deviation (SD), and correlation coefficient (CC) of all runs and 
domains with the SD and CC of MSWEP or IMERG, which is referred to 
here as the reference data. Forecasts were re-gridded to match the 
observed resolution. In Fig. 11, overall the runs vary with events. R2 D3 
agree best with observed rainfall values since these runs are closest to 
the observed ref (dashed) line and correlation coefficients 0.65–0.95 and 
CRMSE ranging from 8-11 mm/24 h. the general pattern well with high 
correlation values (>0.8) but the spread of forecast values is larger than 
the observed data (above the dashed line). This is primarily because 
these runs produce areas of extreme rainfall offshore that skew the 
variability in the data. There is less agreement on the other runs have 
correlation values between 0 and 0.8. This indicates that while it pro
duces a range of values similar to those observed, the forecast for these 
runs does not match the precise pattern or distribution of the observed 
data, leading to a low correlation and suggesting a bias in the forecast or 
the observation. Domain 4 (D4) (0.37 km) for cumulus configurations 
runs for the three events showed lower correlation coefficients and 
higher CRMSEs for all runs for all events. The results further highlight 
that D4 runs performed poorly compared to the D3 and D1 runs for all 
cumulus configurations.

4.1.3. Rainfall temporal distribution over the Gomork area
The previous analysis focused on how rainfall varies spatially and 

with different neighbourhood scales. Further analysis examined how the 
temporal distribution varied within 10 km2, corresponding to the area 
used in the MIKE + model and immediate surrounding areas. This gives 
insight into the way node flooding might vary with intensity. Results 
were compared with 3-hourly MSWEP (MSWEP_3h), hourly MSWEP 
(MSWEP_h) and hourly IMERG (IMERG). Fig. 12 presents the rainfall 
time series for all runs. MSWEP_h was constructed as a worst-case sce
nario by assuming the 3 h accumulated rainfall fell. For the Oct 25th 
event, the worst-case scenario assumed the 3 h accumulation fell in the 
last hour of a 3 h accumulation and the first hour of the subsequent 3 h 
accumulation.

Rainfall is represented as either a single peak or a bi-modal distri
bution with two peaks. R3 and R2 show primarily single peaks similar to 
MSWEP_h which assumes a single peak distribution but R3 and R2 both 
have the highest peak intensities (above 20 mm/h) for D3 (1.1 km). 
When downscaled using a 4th domain to 0.37 km with no cumulus 
scheme (Fig. 12), the rainfall distribution is bimodal with rainfall peaks 
less than 16 mm. Similar results were analysed for the Dec 2018 event, 
where the 4th domain runs all showed lower rainfall for all domains, 
whereas for the Nov 2020 event, the D3 and D4 domains both showed 
high rainfall peak timing. Although the results show similar peak 

intensities in Dec 2018 and Nov 2020 notably, there is a mismatch in the 
peak of about 3-4hr when compared with IMERG where the WRF 
simulated rainfall matching the timing of the MSWEP but not the 
magnitude (See Appendix).

Overall, the three domain runs all matched the accumulated 
observed rainfall, whereas the D4 runs either underestimated or over
estimated in the case of Nov 2020. These results suggest that while the 
inner domains exhibit higher rainfall accumulations than the parent 
domain, the rainfall peak does not always increase with the higher 
resolution, as shown with D4. This could be explained since having no 
cumulus scheme in the smaller domains tends to decrease rainfall in 
those domains. Given two-way nesting was used, feedback between 
domains reduces the rainfall in the outer domains and perhaps in
fluences the distribution in the outer domain. Although the 4th domain 
(except for R1_4d), better matches the peak intensities of the satellite- 
derived rainfall forecasts, there is a lower total rainfall forecast 
compared to MSWEP and IMERG.

4.2. Rainfall threshold analysis

Hazards are classified as “No to minimal flooding”, “Minor Flood
ing”, “Significant flooding” and “Severe flooding” based on 24 h accu
mulated rainfall (Table 2). Analysis of thresholds showed that results 
varied with the treatment of convection for the different runs. Classifi
cations are shown for different districts in Alexandria for MSWEP and 
IMERG (Fig. 13). For the event on 25th October 2015, the forecast 
hazard classes, derived based on Table 2, varied from a significant to 
severe flood event along the coastal areas (Fig. 12). While MSWEP and 
IMERG indicated a hazard class “Significant flooding” in Montazah, 
Sharaq and Wasat districts, Gomork and parts of Almeria were predicted 
to be more extreme. There were minimal differences when comparing 
the 3.3 km, 1.1 km and 0.37 km grid sizes. Compared to the 10 km grid 
the smaller resolutions detected more spatial variability in the hazard 
classification and areas of higher rainfall. The 10 km grid size tends to 
average out the rainfall over the grid. Fig. 14 shows how the hazard 
warning class varied for the 10 km and 1.1 km for the 3-domain run and 
0.37 km for the 4-domain run for the different runs and cumulus con
figurations for a 24 h accumulation for different districts in the city. 
Most of the runs were able to predict this extreme class except R1_4d and 
R3_4d, which predicted a less severe but significant class for Gomork and 
neighbouring districts. R1, R3 and R2_4d over-predicted a more severe 
event in Montazah and neighbouring areas. Some runs showed variable 
classes compared to MSWEP and IMERG, but all runs correctly predicted 
a reduction in the total rainfall inland and different runs were able to 
distinguish different hazard classes at districts and subdistrict levels, 
which is useful when location-specific measures need to be taken. This 
will aid decision-makers in prioritising, coordinating and allocating 

Fig. 9. Fraction Skill Score (FSS) for D1 (10 km) using different thresholds and neighbourhood sizes for run R3. Neighbourhood sizes and lead times without a useful 
skill are highlighted in red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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resources to areas at most risk, combined with prior knowledge of hot 
spot areas. This could be achieved even without building a stormwater 
model of the city.

Categorical scoring was used to evaluate if the warning classes in 
Table 2 were consistent with the observed event category. A POD and 
CSI of 1 and a FAR of 0 are considered a perfect forecast whereas a POD 
and CSI above 0.75 considered useful. The results (Table 4) show that 
the D3 (1.1 km) 3 domain runs consistently had higher POD and CSI 
scores, meaning these runs were better at detecting an event and lower 
false alarms. Both runs with the 4th domain R1_D4 (10 km) and D4_4d 
(0.37 km) achieved lower scores with all the runs with all the thresholds. 
Within the 3domain runs, results vary with thresholds and cumulus 
configuration. In general, higher FAR scores were found for rainfall 
accumulations over 20 and 32 mm. However, either Run2 or R3 per
formed better when the cumulus is turned off and on in the smallest 

domain. All runs had good performance above the 50 mm threshold 
rainfall which indicates all forecasts had agreement in not predicting 
“very extreme” rainfall accumulations.

4.3. Coupled WRF and urban flood forecasting

The MIKE plus model was used to evaluate peak discharge and vol
ume at the outlet of the El Gomork district. The model was run with 
gridded forecasts rainfall at different resolutions and runs corresponding 
to different cumulus configurations: D1(10 km), D2(3.3 km),D3 1.1 km 
and D4(0.37 km), with a 24-hour lead time. In the absence of measured 
flow data, results were verified against model simulation runs with 
satellite-derived IMERG and MSWEP 1 h derived rainfall intervals and 
historical knowledge of floods. The lift station pump at outlet #1 has a 
design capacity of 0.9 m3/s therefore, it is assumed that flooding will 

Fig. 10. Rainfall accumulation from 21:00 UTC on Oct 24th to 21:00 UTC on Oct 25th 2015 for MSWEP, WRF resolutions and different cumulus treatments cu = 3 
represents the Grell Freitas Cu scheme, 0 indicates no cumulus scheme in the respective domains.
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occur once this flow is exceeded. Peak discharge reached 30mins after 
peak rainfall.

4.3.1. Discharge and volume at outlet
The results for Oct 2015 in Fig. 15 show that forecast rainfall cor

responding to R3 led to the highest simulated discharge for all 

Fig. 11. Taylor diagram for all runs and three domains/resolutions (D1 10 km, D3-1.1 km and D4 0.37 km) at the 50 km neighbourhood for all three events. R1 
(3,0,0), R3 (3,3,3), R1_D4(3,0,0,0), R2_D4(3,3,0,0) and R3_D4(3,3,3,0) for three events.

Fig. 12. Rainfall time series for all runs D1(10 km), D3(1 km) and D4 (0.37 km) from 18:00 Oct 24th to 12:00 Oct 25th 2015 at a known flood location. MSWEP is 
shown for 3 h accumulations and an extreme case 1 h accumulations. R1, R2& R3 correspond to runs with 3 domains and R1_D4, R2_D4 and R3_D4 correspond to 4 
domains runs. Cu = 3 represents the Grell Freitas Cu scheme, and 0 indicates no cumulus scheme in the respective domains. The left axis mm/h and the right axis 
shows mm/3 h corresponding to MSWEP_3h.

Fig. 13. Left: Alexandria Districts; the colours have been arbitrarily chosen to display districts. Right: Hazard classification for Alexandria districts for the 25th 
October 2015 flood event for 24 h accumulation for the Oct 25th event based on 3-hourly MSWEP and hourly IMERG data. The colour codes signifying hazard classes 
are also shown in Table 2.
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resolutions and showed higher peaks compared to MSWEP and IMERG. 
The discharge for each run followed a similar pattern of the rainfall 
distribution. The discharge at the outlet simulated with the rainfall 
forecast using R2 and R3 for the 10 km (D1) & 1.1 km(D3) showed peak 
discharges similar to that with MSWEP_h and IMERG (~1.5 m3/s). The 

simulated discharge for R1 forecasts showed a different pattern with two 
lower peaks. Simulations using rainfall forecasts based on R3 & R2 for 
D3 and D1_gave peak discharges similar to MSWEP. The runs also gave 
the highest KGE scores (0.4–0.78) and the lowest NRMSE of 0.43 when 
compared with the other runs and D4 (Table 5). The exception being Dec 

Fig. 14. Forecast of hazard classes with a lead time of 24 h for the Oct 25th, 2015 flood event for different runs based on the 24 h rainfall accumulations. Left:(10 km) 
& Middle 1.1 km grids for run downscaled to 3 domains. Right 0.37 km grids downscaled to 4 domains.

Table 4 
Average performance metrics; Probability of detection (POD). False Alarm Ratio (FAR) and Critical Score Index (CSI) for) all runs for all events for the 50 km 
neighbourhood scale. Results are presented for the inner most domains 1.1 km and 0.37 km respectively.

Avg for all events 0.1mm 12mm 20mm 32mm 50mm

R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3 R1 R2 R3

​ ​ ​ ​ ​ ​ ​ ​ POD ​ ​ ​ ​ ​ ​ ​
D1 1.00 1.00 0.95 0.73 0.68 0.72 0.70 0.57 0.66 0.63 0.64 0.72 0.91 0.93 0.81
D3 1.00 1.00 0.96 0.76 0.71 0.76 0.68 0.55 0.73 0.63 0.67 0.73 0.87 0.93 0.91
D4 0.96 0.96 0.97 0.65 0.69 0.68 0.49 0.51 0.49 0.61 0.56 0.57 0.92 0.88 0.88
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ FAR ​ ​ ​ ​ ​ ​ ​
D1 0.00 0.00 0.05 0.29 0.35 0.26 0.28 0.45 0.30 0.33 0.36 0.31 0.11 0.07 0.08
D3 0.00 0.00 0.04 0.25 0.33 0.27 0.34 0.43 0.31 0.41 0.33 0.24 0.10 0.07 0.20
D4 0.04 0.04 0.03 0.33 0.28 0.31 0.51 0.48 0.49 0.43 0.41 0.45 0.08 0.12 0.16
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​
​ ​ ​ ​ ​ ​ ​ ​ CSI ​ ​ ​ ​ ​ ​ ​
D1 1.00 1.00 0.91 0.53 0.61 0.56 0.41 0.49 0.38 0.49 0.49 0.53 0.87 0.83 0.87
D3 1.00 1.00 0.93 0.64 0.56 0.62 0.53 0.61 0.55 0.43 0.51 0.61 0.82 0.88 0.68
D4 0.93 0.93 0.95 0.54 0.61 0.57 0.35 0.37 0.36 0.41 0.43 0.39 0.86 0.79 0.73
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2018 R3_D3 which gave had a KGE of 0.02 and NRMSE of 0.98 Fig. 15
also shows discharge simulations using rainfall forecasts based on 10 
km, 1.1 km (D3) and 0.37 km (D4) resolutions, the latter which are the 
innermost domains of WRF runs. All runs underestimated the discharge 
with the rainfall forecasts using the 0.37 km resolution with NRMSE 
ranging from 0.83 to1.09. Similar results were found for the Oct 2018 
and Nov 2020 events which gave lower NRMSE values and higher KGE 
for 1 km domain and higher NRMSE values and lower KGE scores for the 
0.37 km runs. However, except for Oct 2015, all the runs and domains 
resulted in high NRMSE values, which means the models still have 
challenges predicting the timing of the rainfall but the higher KGE in
dicates some agreement in the correlations and the spread. The NRMSE 
and KGE values for the three events in shown in Table 5.

The simulation using rainfall forecasts based on the R3_D3 (1.1 km) 
grid produced the highest total volumes at the outlet. Simulated 
discharge based on R3 forecasts gave values closest to MSWEP_h, how
ever, simulated discharge with R1_D4 and R3_D4 forecasts gave 
considerably lower volumes compared to MSWEP_h and IMERG-based 
simulations (Table 6). Although IMERG resulted in a peak discharge 

similar to MSWEP_h, the total runoff volumes were higher compared to 
that with MSWEP_h simulated at the outlet because of the higher total 
accumulated rainfall.

4.3.2. Node flooding
The flood results above focused on the simulation of the entire sys

tem for El Gomork and found that the R2& R3 produced good simula
tions of the peak of flooding for the 10 km and 1.1 km. This is also 
observed when analyzing node flooding at a known flood location in the 
city. During the October 25, 2015 event, flood depths of 0.15 – 0.3 m 
(Fig. 16) were reported at this location and in the vicinity. Fig. 17 shows 
the simulated node flooding at a selected node with the rainfall forecasts 
for the 10 km, 1.1 km and 0.37 km with the hourly MSWEP and IMERG 
rainfall. The rainfall intensity and spatial distribution of grid rainfall 
used for the 10 km, 1.1 km and 0.37 km simulations are shown in 
Fig. 18. For both the R2 and R3, the 1.1 km grid shows a flood depth of 
~ 0.4 m, which is similar to the depth simulated using MSWEP but 
approximately 0.1 m above the flood depth simulated using IMERG 
derived rainfall and the reported 0.3 m flood depth. However, compared 
to the discharge for the system which showed similar peak values and 
distributions, for the 10 km and 1.1 km, higher node flooding was 
simulated at the manhole. This is because of the 1.1 km runs showed 
higher rainfall values and greater variability in the rainfall which is not 
detected in the larger 10 km grid as shown in Fig. 18. Although the 
timing of the flood was well predicted for the Oct 2015 event, there was 
a delay in the timing of the flood was also observed in the Oct 2018 and 
Nov 2020 event.

Fig. 19 shows a comparison of node flooding greater than or equal to 
0.3 m for R3 and R3_4d runs for the 1.1 km grid. R3_D3 shows a higher 
number of nodes (101 nodes) compared to MSWEP 83 flooded nodes, 
R3_D1 118 nodes, R3_D4 shows 32 nodes flooded above 0.3 m, 

Fig. 15. Simulated Discharge at outlet #2 on Oct 25th, 2015 for R1, R2 and R3 for D1 (10 km), D3 (1.1 km) and (D4) 0,37 km which corresponds to runs with 4 
domain and the cumulus scheme is turned off in the 4th domain.

Table 5 
NRMSE and KGE values for simulated discharge at outlet #2 for the three events. D1_R3 (10 km) performed the best which uses the adaptive cumulus scheme in the 
smallest domain whereas the highest error was shown the 0.37 km domain when the cumulus scheme is turned off. The best score for each run per event is highlighted.

NRMSE

​ R1_D1 R1_D3 R1_D4 R2_D1 R2_D3 R2_D4 R3_D1 R3_D3 R3_D4
2015 0.80 1.10 1.09 1.12 0.49 1.15 0.42 0.43 0.83
2018 0.97 0.97 1.04 1.01 1.01 0.99 0.98 0.98 1.05
2020 0.83 0.95 1.06 0.96 0.96 0.97 0.93 0.64 1.07
​ ​ ​ ​ ​ KGE ​ ​ ​ ​
​ R1_D1 R1_D3 R1_D4 R2_D1 R2_D3 R2_D4 R3_D1 R3_D3 R3_D4
2015 0.43 − 0.37 − 0.35 − 0.02 0.68 − 0.08 0.77 0.78 0.31
2018 0.18 0.11 0.06 0.23 0.40 − 0.09 0.22 0.02 0.09
2020 0.22 0.29 − 0.04 0.21 0.24 0.27 0.20 0.66 − 0.26

Table 6 
Total volume of water discharged at the outlet for the Oct 2015 event for the 
different WRF runs and resolutions.

Input rainfall 
/resolutions

IMERG MSWEP_h WRF 
R1

WRF 
R2

WRF 
R3

Total Volume at Outlet m3

10 km resolution 21,544 14,234 ​ ​ ​
10 km ​ ​ 10635 10103 14171
1.1 km resolution (D3) ​ ​ 10,476 10741 12374
0.37 km resolution (D4) ​ ​ 4955 10929 9206
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approximately 1/3 of nodes flooded for R3. Table 7 summarises the 
difference in the number of nodes flooded between the simulations with 
observed rainfall and the R3 forecast for the Dec 2018 and Nov 2020 
events. The findings show that D4 either under forecasted or over 
forecasted the number of flooded nodes compared to the other grid sizes. 
Knowledge of which nodes are forecasted to flood can help decision- 
makers to implement protective measures before an event and coordi
nate response during an event However, false alarms on the number and 
location of flooded nodes can lead to the misallocation of resources, 
flooding and further traffic disruptions.1D-2D models could be run to 
give a more accurate characterisation of flood inundation however there 
are still challenges in reducing computational time for real-time appli
cations and high-resolution data requirements.

5. Discussion

5.1. Trade-offs in model lead time, domain resolution, cumulus 
configuration and flood forecasting methodology

Our results reinforce different factors, can influence rainfall 

structure, magnitude, location and timing in high-resolution WRF sim
ulations, such as spatial resolution, number of domains, lead time and 
model parametrisation.

This research evaluated the forecast skill at different neighbourhood 
sizes related to the scale of the phenomena and city level. Different 
neighbourhoods were evaluated to highlight how forecasts vary with the 
neighbourhood scales being considered. The 1000 km neighbourhood 
scale detected the presence of a weather system however, this was not 
very useful for the coastline. However, the metrics vary considerably at 
scales below 200 km. Overall the 24 LT performed best and the forecasts 
showed skill up to the 72hr LT but less at the 48 h and the 12hr LT. 
Although the 72 h rainfall forecast is less accurate than the 24 h rainfall 
forecast, the FSS scores showed there is still some skill associated with 
this forecast. More variability is observed at neighbourhood scales 
below 200 km and highlights the difficulty in evaluating forecasts at 
smaller neighbourhood scales and longer and shorter lead times which 
maybe more important for flood forecasting and emergency managers.

While many urban flood forecasters may not consider the treatment 
of convection, it becomes an important factor in rainfall and flood 
forecasting given the scale dependence of cumulus schemes at high 

Fig. 16. Known flooding locations in El Gomork along the Corniche Road in Alexandria. On October 25, 2015, this location experienced flooding depths ~ 
0.15–––0.3 m.

Fig. 17. Node flooding depths ( m) at known flood location in Gomork on Oct 25th, 2015. For all runs at D1(10 km), D3(1.1.k m). and 0.37 km- 4 domains (orange). 
The horizontal dotted line indicates the observed flood depth at 0.3 m. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.)
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resolutions needed for grid-based hydrodynamic models. This was 
specially observed in modelling the flood depths. The Grell- Freitas 
convection scheme was selected given it is a scale-aware scheme suitable 
for resolutions < 10 km − 3 km. Our results indicate that turning the CPS 

on and off influenced simulated rainfall spatial and temporal patterns, 
which is in line with previous studies (Jeworrek et al., 2019). All runs 
and events forecasted the occurrence of an extreme rainfall event but 
with variability in magnitude and placement especially at 

Fig. 18. The rainfall intensity and spatial distribution of grid rainfall used in the MIKE model for 10Km, 1.1 km grid resolution for run R3 and 0.37 km R3_D4.

Fig. 19. For the Oct 2015 event. Maximum node flooding >= 0.3 m for R3. The 10 km grid (left), 1.1 km grid for runs (middle) and R3_4d(right). MSWEP simulated 
flood locations are shown in blue. More locations were detected for R3_D3 (101 flooded nodes) compared to R3_D1 (118 nodes) and R3_D4 (32 flooded nodes) and 
MSWEP (83 flooded nodes). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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neighbourhood scales less than 200 km. The effect of the parameter
isation varied with events, which is expected as effects vary with the size 
and characteristics of the event and depend on the role of convection in 
the event formation. One notable difference is the mismatch of the 
timing of the peak, which results in a delay in peak flood time. When 
comparing the 10 km and 1.1 km resolution it was shown that even 
though the inner domains are exhibiting higher rainfall accumulations 
than the parent domain, rainfall peaks do increase when the CPS in 
turned on in the smallest domains (R3). This is similar to the findings of 
Robaa and Wahab (2019) and Ibrahim (2020) who evaluated the 
sensitivity of WRF to convection schemes and found there was an 
overestimation of rainfall when cumulus schemes are turned on in the 
smaller domains.

When a 4th domain was used to capture a smaller resolution, it ap
pears the runs either under-forecasts or over forecasted. In general, 
downscaling to 0.37 km using a 4th domain did not improve the rainfall 
forecasts but instead resulted in lower or higher rainfall totals and flood 
depths when compared to MSWEP and IMERG. While the findings 
indicate using a 4th domains to achieve finer resolution did not provide 
any improvement. It was not possible to draw a definitive conclusion 
about whether R2 or R3 gave better results as the results varied ac
cording to the events and their characteristics. However, when the 
cumulus schemes are turned off in R1, forecasts intended to under 
forecasts which suggest that CPS scheme should be used for grid sizes 
less than 10 km.

5.2. Varying scales with flood forecasting approaches

Generally, in urban flood simulation and forecasting, accuracy is a 
key factor (Wang et al, 2022). The results show challenges in using WRF 
for flood forecasting, especially when trying to predict flooding at 
manholes. Although there is mismatch in the timing, there is better 
agreement on the magnitudes of the peak. Despite these differences in 
the results, the models were able to predict an extreme event which 
resulted in flooding. For both the rainfall threshold method and flood 
model, the runs were successful in detecting an extreme event but per
formed better with the 10 km and 1.1 km (D3) resolutions for the higher 
thresholds 20 mm and 32 km while the 0.3 km gave the lowest POD and 
CSI scores and higher scores for the FAR. All runs performed well above 
the 50 mm rainfall, indicating that all forecasts agreed with not pre
dicting “very extreme” rainfall accumulations. For the 1D real time 
simulated discharge, the 10 km and 1.1 km(D3) grid also performed best 
with NRMSEs of 0.42 and 0.43 and KGE above 0.4 for R2 and R3 but in 
general, the 0.37 km performed worst Our study indicated no gain in 
increasing resolution below 1 km when evaluating the flood model re
sults irrespective of the cumulus configuration for Alexandria, Egypt 
Therefore, while it is assumed that higher resolutions will improve the 
spatial extent and durations of rainfall outputs by capturing more real
istic sub-grid model dynamics, the finer spatial resolution can also 
introduce errors which does not justify the increased computational 
resources required for running such high-resolution models (Roberts, 
2008; Kain et al., 2008; Schwartz et al., 2009).

There are some challenges to overcome and improvements to gain in 
achieving the 1 km resolution. The big advantage of this resolution is 
that it is suitable for running small-scale flood simulation models and 
can capture the variability in rainfall, thereby improving the quality of 
the flood forecasts and the opportunity to increase the effectiveness of 

flood risk management actions at specific locations. However, when 
more city scale actions are to be taken, such as issuing warnings, the 
coarser 10 km is suitable. Previous studies (Liu et al., 2012; Woodhams 
et al., 2018; Goodarzi et al., 2019; Liu et al.,2021) also found good 
rainfall simulation results at 3–4 km horizontal grid spacing, but it 
should be noted these studies did not consider a hazard estimation 
method. Thorndahl et al. (2016) highlighted the limitations and trade- 
offs of using a 3 km grid NWP model vs 0.5 km radar rainfall for 
urban pluvial flood forecasting to capture the rainfall variability and 
intensity needed for accurate flood predictions in urban environments. 
While the study found the 3 km grid NWP rainfall was limited, our study 
found the 1 km grid resolved NWP rainfall had some skill in detecting 
the correct flood class, flood depths and number of flooded manholes, 
especially at lead times up to 24 hrs. Therefore, when developing a flood 
forecasting system, lead time, cumulus configuration, and domain res
olutions should also be aligned with the flood forecasting approach, the 
capability of local decision-makers, and the requirements for specific 
actions.

5.3. Making imperfect forecasts useful

The rainfall threshold method is quick, simple, and convenient, 
giving forecasted flood classes and does not require complex models. 
The 1D model, forecasted discharge, flood depths, and the number of 
flooded manholes. The analysis results indicate challenges in using WRF 
forecasts for flood forecasting at the city scale for both methods. 
Therefore, even though the results do not always match the flood classes 
per pixel or flood depths of the observed runs exactly, the forecasts have 
sufficient skill to raise alert and preparedness levels. Lead time is 
essential for forecast-based actions considered in the analysis and de
pends on the specific action. Hazard-reducing actions such as cleaning 
drains and increasing storage via pumping can range from a few days to 
a few hours, depending on the event’s severity, whereas exposure- 
reducing measures such as traffic measures and evacuations require 
hours.

Results found that although the 72 h rainfall forecast is less accurate 
than the 24 h rainfall forecast, there is still enough skill to use these 
forecasts to detect the phenomena and the city’s scale. However, below 
the 50 km scale, these other lead times are shown to be less skilful. 
Therefore, instead of using one method, the rainfall threshold and flood 
simulation results can be combined and used by decision-makers to 
make a decision especially when incorporated with predefined emer
gency preparedness protocols and triggers. Once a threat is detected in 
these forecasts, the rainfall threshold methods can be used to identify at- 
risk areas at the governorate scale. Given the skill of the 24 h lead time, 
the WRF can then be run at a higher resolution at this lead time so that 
rainfall forecasts can be used in the hydraulic model to forecast areas/ 
districts/ manholes at risk of flooding.

While our research only examined three events, further studies are 
essential to evaluate more events and the robustness of thresholds that 
capture the non-linearity of flooding. The real-time flood model requires 
more data, computational resources and model calibration and uncer
tainty in model inputs especially when physically-based modelled are 
used to represent hydrological processes. The advantage of real time 
approaches lies in their ability to directly model spatial variability and 
its impacts at city scale which is beneficial to areas that do not have high 
resolution observations (Hofmann and Schüttrumpf, 2019; Speight 
et al., 2020). Given the reliance of the peak intensity, it may be more 
useful to use peak intensity vs accumulation or timing as an indication 
for potential flooding (Umer et al., 2021). The practical value of these 
results depends on how a decision maker values forecast accuracy and 
which variables are most important to decision making: peak intensity, 
peak discharge, flood depth, total number of flooded nodes or the 
identification of a threat.

This allows decisions to be reviewed and updated in tandem which 
increases preparedness at longer lead times. This can be especially 

Table 7 
Difference in the number of flooded noted between simulated 1D runs with 
MSWEP or IMERG and R3_D1 (10 km), R3_D3(1.1 km) and R3_D4(0.37 km).

R3_D1(10 km) R3_D3(1.1 km) R3_D4(0.37 km)

2015 30 13 − 56
2018 1 34 − 8
2020 − 10 − 8 108
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valuable for complex data-scarce urban areas that lack information to 
refine models or where long lead times are needed to increase pre
paredness (Speight et al., 2020). Corral et al., 2018) compared a rainfall- 
based forecasting system using hazard level and a rainfall-runoff model 
to compute the stream flows at pixel scale and found similarities in the 
use for early warnings for flash flooding.

5.4. Limitations and future research

The unavailability of sub-daily data is one of the biggest challenges 
in performance evaluation in data scarce regions. Gauge data is only 
available at a daily resolution and the satellite-derived rainfall estimates 
and reanalysis data are at coarser resolutions than the forecasts and have 
their own bias. This was highlighted by the differences in MSWEP and 
IMERG data. Still, our results showed that MSWEP and IMERG data were 
able to corroborate the occurrence of extreme rainfall and node flooding 
for respective events. However, there was some variability in the 
severity. This further supports the use of satellite and reanalysis data in 
the absence of gauge data (Nashwan et al., 2019; Mekonnen et al., 2023) 
for the rainfall threshold approach sensitive to thresholds and in the 
absence of measured discharge data to evaluate the forecast data.

This research evaluated three events. It did not aim to make a 
conclusive statement about best model configurations and setup but 
rather to assess how hazard classes vary when high resolution precipi
tation at different scales are used with different flood forecasting ap
proaches in data-scarce regions. Post-processing and data assimilation of 
forecast precipitation are methods used to improve the accuracy, 
sharpness and reliability of the forecast by removing systematic errors 
(Verkade et al., 2013; Crochemore et al., 2016), but it is still reliant on 
the availability robust observational data at suitable resolutions which 
were not available for this study. Data assimilation and bias correction 
methods such as Kalman Filter or quantile mapping (Bárdossy et al., 
2021; Mapiam et al., 2022) should be incorporated into the flood fore
casting chain to update forecasts when real-time data is available.

Future research should consider how performance varies with rain
fall and storm characteristics. Sources of uncertainty have not been 
elaborated in this research. In particular, there is uncertainty in initial 
conditions and urban model uncertainty, which are important compo
nents. Probabilistic or ensemble approaches can be used to explore un
certainty in the placement and distribution of rainfall (Rico-Ramirez 
et al., 2015; Ravazzani et al., 2016; Yang et al., 2016; Böing et al., 2020; 
Brendel et al., 2020; Young et al., 2021). The ultimate goal will be more 
accurate, higher resolution spatial and temporal rainfall estimates 
through weather radar or an increased number of gauges and collection 
of discharge data. However, a database of historical flood hazards and 
impacts will remain invaluable and should be prioritised for verifying 
and determining expected impacts.

6. Conclusions

This research employed a limited area Weather Research and Fore
casting (WRF) model in the context of urban-scale flood forecasting for 
Alexandria, Egypt, to evaluate if increasing the spatial resolution along 
with varying treatments of convection improves flood forecasting using 
a rainfall threshold and real-time urban model. It was found that the 
WRF model effectively identified extreme weather phenomena, and the 
rainfall threshold method correctly distinguished hazard classes at the 
district level. However, rainfall magnitudes, distributions and classes 
depended on the model configuration, and cumulus scheme used, 
particularly at convection-resolving resolutions (>3km). A timing delay 
of peak flows and flood depths was observed, however, the 1.1 km grid 
resolution was found to provide the best performance, especially when 
comparing flooding at specific manholes. The rainfall threshold gave 
POV and CSI values above 0.5 for all events for the 20 mm threshold, and 
the outflow discharge KGE values ranged from 0.4 to 0.8 for the 1.1 km. 
For both the rainfall threshold and urban flood modelling approaches, 

there was no improvement in using a fourth domain at (0.37 km) over 
using the 1.1 km or 10 km grid resolution regardless of the cumulus 
configuration. POV and CSI values were below 0.5 for all events for all 
runs, and KGE values below 0.27. Both the 1.1 km and the 10 km res
olution require fewer computing resources than the 0.37 km. Therefore, 
while higher rainfall resolutions are required for urban scale modelling, 
this study highlighted that smallest resolution did not lead to improved 
hazard estimation. Additionally, the runs exhibited good skill in 
detecting extreme events at the 72LT but less skill at the 12hLT lead 
times and at various useful neighbourhood sizes, with the rainfall 
threshold method for all runs at coarser resolutions.

Despite challenges in using high resolution rainfall for flood fore
casting, the good performance of both the rainfall threshold and real- 
time simulation methods suggests the potential for their combined use 
rather than using one over the other. Cities can use real-time simulating 
methods as more data becomes available to build models. Combining 
WRF forecasts with rainfall threshold methods allows early warning and 
flood forecasting at longer lead times without having to run complex 
flood models. When flood models are available, they can be coupled 
with WRF forecasts to provide more detailed information on the specific 
flood locations and depths at shorter lead times, but these results are also 
sensitive to the WRF model configurations as smaller resolutions do not 
necessarily predict more accurate flood forecasts. Combining a rainfall 
threshold and real-time forecasting model with a suitable cumulus 
configuration capitalises on the strengths of each method, which is 
invaluable for decision-makers in coordinating resources and imple
menting location-specific measures, particularly in conjunction with 
prior knowledge of high-risk areas.

Limitations for high-resolution modelling have been focused on the 
limits of computational resources but this research highlights there are 
also limits on quality. It is best to understand how methods can com
plement each other in data-scarce regions while being mindful of lead 
time, model configurations, cumulus schemes and resolutions. Fore
casters and end-users must determine the useful resolutions and neigh
bourhood sizes that align with the specific goals of flood forecasting 
applications. As technology continues to advance and more real-time 
data becomes available, the use of high-resolution rainfall models hold 
promise for improving local forecasts and enhancing our ability to 
mitigate flood-related risks. Overall, this study advances our under
standing of urban-scale flood forecasting in data-scarce regions: it 
stresses the importance of considering lead time, neighbourhood size, 
resolution, cumulus configuration, and integration with drainage 
models. The findings offer a foundation for the development of effective 
flood forecasting methodologies for anticipatory flood management and 
decision support tools despite the challenges in data-scarce cities. 
Finally, this research reiterates the need to understand the in
dependencies and limitations of the aspects of the flood forecast chain; 
the meteorological output, the flood forecasting method and the data 
and methods used for verification with the overall goal for improved 
decision making and preparedness.
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René, J.-R., Madsen, H., Mark, O., 2013. A methodology for probabilistic real-time 
forecasting – an urban case study. Journal of Hydroinformatics 15 (3), 751–762. 
https://doi.org/10.2166/hydro.2012.031.

Rico-Ramirez, M.A., Liguori, S., Schellart, A.N.A., 2015. Quantifying radar-rainfall 
uncertainties in urban drainage flow modelling. J. Hydrol. https://doi.org/10.1016/ 
j.jhydrol.2015.05.057.

Robaa, S. M. and Wahab, M. M. A. (2019) ‘Sensitivity of WRF Model to convection 
schemes for rainfall forecast over Egypt’, pp. 12–17.

Roberts, N., 2008. Assessing the spatial and temporal variation in the skill of 
precipitation forecasts from an NWP model. Meteorol. Appl. 15 (1), 163–169. 
https://doi.org/10.1002/met.57.

Schellart, A., Ochoa, S., Simões, N., Wang, L., Rico-ramirez, M., Duncan, A., Chen, A.S., 
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