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Evaluating the Effectiveness of Meta Llama3 70B for Unit Test
Generation

Reinier Schep
Delft University of Technology
Delft, The Netherlands

Abstract

The automated generation of test suites is crucial for enhancing
software quality and efficiency. Manually writing tests is time-
consuming and accounts for about 15% of project time while tests
generated by automated tools like EvoSuite and Pynguin often lack
readability and comprehensibility. Recent research suggests that
Large Language Models (LLMs) might offer a promising alternative.
This paper investigates the effectiveness of Llama3 70B in gener-
ating unit test cases for Java and Python projects. We compared
Llama3 against EvoSuite and Pynguin by measuring the mutation
score of test suites generated for a corpus of 20 Java and 20 Python
classes. Our findings reveal that EvoSuite significantly outperforms
Llama3 in terms of mutation score, achieving an average muta-
tion score of 81.05% versus Llama3’s 66.26%. Conversely, Llama3
surpasses Pynguin, with scores of 51.95% and 42.73% respectively.
These results highlight that while Llama3 is not superior to EvoSuite,
it shows potential as a viable tool for test generation, especially
for dynamically typed languages like Python. Further, empirical
observations indicate that Llama3 requires significantly more time
to generate tests compared to EvoSuite and Pynguin. This study
underscores the need for continued research to optimize LLMs for
software testing and improve their efficiency and accuracy.

Keywords
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1 Introduction

The automated generation of test suites plays a crucial role in soft-
ware development, facilitating the detection of bugs and improving
code quality. Tests can be manually written but this is time intensive
in general [7] and takes up about 15% of the project on average [3].
Search Based Software Testing (SBST) tools are meant to alleviate
this by automatically generating tests, but they are often not used
in projects because they are less readable and meaningful than
manually written tests [1]. In other words, humans are struggling
to comprehend what behaviour these automated tests are asserting.
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This paper has examined how effective the "meta/meta-llama-
3-70b-instruct"! model is at generating unit test cases. The effec-
tiveness of Llama3 has been measured by acquiring a Java and
Python corpus of 20 classes each and letting Llama3 generate 12
test suites for each class. Then for the Java corpus, EvoSuite is used
to generate corresponding test suites and Pynguin fulfills the same
role for the Python corpus. Then for each test suite, we measured
its quality by calculating the mutation score. Then, this resulted in
having 12 mutation scores per class per tool. Then, we compared
the different tools using statistical analysis, namely the Wilcoxon
signed-rank test?. It is used to determine if these samples come from
a significantly different distribution and the Vargha-Delaney A;;
standarized effect size is used to measure how big this difference is.
The Java corpus is obtained from SF110% and the Python corpus is
a subset of the corpus used in a study by Stephan Lukasczyk and
Gordon Fraser [10] which also involved Pynguin. The EvoSuite tool
is run for 120s per class per test suite since research by Panichella
et al. [14] supports the hypothesis that this is sufficient. Pynguin
is run for 30s per class per test suite due to time constraints under
the hypothesis that this is sufficient time, a small experiment in the
result section confirms this. A large scale study by Panichella et al.
[15] and another study by Stephan Lukasczyk et al. [12] found that
DynaMOSA was the best performing search algorithm for EvoSuite,
therefore both EvoSuite and Pynguin will be run with this search
algorithm. Llama3 is used to generate 8 passing test cases per class
per test suite.

Our results show that EvoSuite significantly outperforms Llama3
for 13 out of the 20 Java classes and Llama3 outperforms EvoSuite
for only 3 out of 20 Java classes. Also, if the average over all Java
classes and all 12 independent runs is considered, EvoSuite attains
an average mutation score of 81.05% and Llama3 attains 66.26%.
The average difference in mutation score between the two is thus
14.79%. For the majority of Java classes, 8 test cases is sufficient as
they have converged in mutation score after 8 tests. Our results also
show that Pynguin outperforms Llama3 for 4 out of the 20 Python
classes and Llama3 outperforms Pynguin for 9 out of 20 Python
classes. For the majority of Python classes, 8 test cases are sufficient
as mutation score has converged after 8 tests. Our experiment has
shown that running Pynguin for 30s is not worse than running it for
90s in terms of mutation score, and both outperform Pynguin when
it runs for 60s. The average mutation score for Pynguin over all
classes and over all 12 runs was 42.73%. Llama3 achieved an average
mutation score of 51.95%, thus a difference of roughly 9.22%.

These results back up the hypothesis that EvoSuite is better than
Llama3 at generating test suites with regard to mutation score. It

!https://github.com/meta-llama/llama3
2https://en.wikipedia.org/wiki/Wilcoxon_signed-rank_test
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also supports the hypothesis that it is easier to generate test suites
with high mutation score for statically typed languages rather than
dynamically typed ones since Llama3 achieved a higher mutation
score for the Java corpus than for the Python corpus. Thus, Llama3
is not more effective than EvoSuite at generating unit tests with
regards to mutation score, but it does outperform Pynguin.

One limitation of generating unit tests with Llama3 is that it
takes significantly longer compared to EvoSuite and Pynguin. In the
best case, Llama3 will take around a minute to generate 8 passing
unit tests for some class, but in a bad case this process could take
10 minutes or more.

The rest of the paper is structured as follows. Directly after this
section follows section 2 which explains the background of this re-
search and discusses related work. Section 3 contains the approach
which outlines how the main research question will be answered, it
also explains certain decisions in the research process. Thereafter,
section 4 specifies the setup of the experiment based on the ap-
proach chosen in section 3 and it is followed up by section 5 which
shows the results of this experiment. Section 6 then discusses the
ethical considerations of this research. This is followed by section
7 which reasons about the results, the threats to the validity of
the research as well as the limitations of the approach used. Then,
section 8 concludes the research and gives a definitive answer to the
research question. Finally, section 9 shares ideas for future research
in this field.

2 Background & related work
2.1 Mutation testing

Mutation testing is a way of measuring the quality of a test suite
by calculating the mutation score. It involves injecting artificial
faults (mutations) in the source code of the program for which the
test suite is made and them measure how many of these remain
undetected when running the test suite.

2.2 Use of LLMs in testing

This section discusses multiple papers which suggest that LLMs are
a promising way of generating tests. Research by Tang et al. [20]
have compared ChatGPT with EvoSuite for unit test generation for
Java projects. They found that EvoSuite outperforms ChatGPT by
18.8% for code coverage and by 5% for bug detection. Ryan et al.
[17] has used the ’SymPrompt’ approach to provide guidance to
LLMs for test generation. The SymPrompt approach entails that
for each method in a class under test, and then for each execution
path possible in that method, they construct a prompt which asks
the LLM to generate a test for that execution path. They found that
code coverage improved by a factor of 2x over baseline prompting
strategies when applied to GPT-4 and to Python projects. Liu et
al. [9] used the ’AID’ approach which consists of using an LLM
and differential testing. They found that the recall, precision, and
F1 score of AID outperforms the best existing method by up to
1.80x, 2.65%, and 1.66x respectively. Yuan at el. [22] has investi-
gated ChatGPT’s capability to generate unit tests with regard to
correctness, sufficiency, readability, and usability. They found that
some tests had compilation errors and assertion errors, but the ones
that passed had comparable coverage to manually written tests.

Consequently, they concluded that it’s a promising way of gener-
ating tests if the correctness would be improved. Wang et al. [21]
found that current techniques for automated unit test generation
(excluding LLM techniques since those are largely unexplored) are
far from satisfactory. In their paper, they analysed 102 other papers
which used LLMs for software testing.

According to Johnsson [5], the Llama2 7B model is useful for
generating tests, this makes the Llama3 70B model an interesting
LLM to research. To the best of our knowledge, no prior research
has investigated Llama3 70B with regard to test generation. This
paper will try to fill that knowledge gap.

3 Approach

This study aims to evaluate the effectiveness of Llama3* at generat-
ing unit tests. To determine the effectiveness of Llama3, we need
to quantify the performance of the test suites it generates. Various
metrics exist to measure this, some examples include: code cover-
age, mutation score and test execution time. Out of these metrics,
mutation score is the best metric since it directly measures the test
suite’s ability to catch bugs in the program under test. Having high
code coverage is good, but technically one could have 100% code
coverage without being able to catch a single bug if bad assertions
are made, with 100% mutation score this cannot happen. A high
mutation score gives high confidence that good assertions are made
in the test suite.

Now we are able to quantify the performance of the test suites
generated by Llama3 but to determine how effective it is it should
be compared against a benchmark. One approach would be to
take a large sample of classes with high cyclomatic complexity
and corresponding manually written test cases and compare those
(in terms of mutation score) with the ones the Llama3 generates.
However, finding classes which adhere to both requirements might
be hard which would reduce the available classes for this research
and that could hurt the validity of this research. Another approach
is to use a state-of-the-art SBST tool to generate a test suite for
some arbitrary class. These automatically generated test suites are
also often more effective than manually written ones and have
fewer test smells [16]. This widens the possible classes that can be
chosen for this research which potentially improves the validity of
this research. A class with high cyclomatic complexity and without
manually written test cases can now be included. Now for those
classes we can generate a test suite by the SBST tool and a test suite
generated by Llama3 and compare mutation scores of these test
suites to determine which one is more effective.

The generation of tests by both Llama3 and SBST tools is a
non-deterministic process. This means that the non-deterministic
process of generating tests should be repeated multiple times with
the calculation of their corresponding mutation scores. Then statis-
tical tests can be employed to judge if the two samples of mutation
scores come from the same distribution or not. A total of 12 test
suites per class with corresponding mutation score for both Llama3
and the SBST tool will be generated and then the Wilcoxon signed-
rank test® will be used to determine the probability of observing
both samples under the null hypothesis that they were drawn from

“https://github.com/meta-llama/Llama3
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the same distribution. In total, there are 12 mutation scores per class
for both Llama3 and the SBST tool. The Wilcoxon test is preferred
over other methods since it does not assume normality of data
and because it has been used in related papers [2] [19]. As recom-
mended by existing guidelines in empirical software engineering,
if this probability (p-value) is less than 5% (@ = 0.05) we will reject
the null hypothesis with at least 95% confidence. If a significant
difference in distribution for a certain class is observed, the Vargha-
Delaney A12 standarized effect size will be used to quantify how
large this difference is which is also used in related papers [13] [2].

Obviously, at least one programming language which has a SBST
tool available needs to be included in this research. Including two
programming languages would be even better since results can be
compared across languages. Now it would also be interesting to
pick two languages which differ from each other in some funda-
mental aspect, i.e. functional vs. imperative or statically typed vs
dynamically typed. Java is a good language to include because it
has the best performing SBST tool available, namely EvoSuite. A
paper by Panichella et al. [14] found that EvoSuite scored best in
a unit testing competition with other SBST tools. Java is statically
typed and imperative, so now it would be interesting to include
either a functional language or a dynamically typed language. It
turns out that the only programming languages that have an SBST
tool available are: Java (EvoSuite), Python (Pynguin), C# (Randoop)
, C++ (KLEE/CBCMC). None of these languages are purely func-
tional and Python is the only dynamically typed one. Thus, Python
is the second language of choice with Pynguin as the SBST tool
since it is the only tool which can generate tests in a completely
automatic way for Python [10].

Both programming languages need a corpus of classes for evalu-
ation. For Java this will be a subset of the SF110° corpus since these
classes are not on GitHub which means Llama3 is likely not trained
on these classes. This matters because Llama3 likely performs much
better for classes it is trained on. SF110 has also been commonly
used for benchmarking and is used in various related papers [6] [4]
[8]. 20 Java classes from SF110 with a cyclomatic complexity’ of at
least 4 and with few dependencies will be used as the Java corpus.
A subset of 20 Python classes will be chosen from the corpus used
in the paper by Stephan Lukasczyk and Gordon Fraser [10] their
results can potentially be compared against the results of this paper.
In short, the corpus for this research contains 20 Java classes and
20 Python classes.

SBST tools generate some finite amount of tests within their
time limit. For Llama3 however, we could theoretically ask for an
infinite amount of test cases. However, at some point the mutation
score will just converge because it is either maxed out at 100% or
because of the limited capability of Llama3 to generate test cases
which further improve mutation score. We will generate exactly 8
passing test cases for each class in the corpus per run (there will be
12 runs in total per class per tool as stated earlier). The number 8 is
based on empirical evidence observed during preliminary research.
To support this hypothesis that 8 tests are indeed sufficient, an
experiment will be conducted where the mutation score is measured
for each test added to a test suite for any class in the corpus. The

Shttps://www.evosuite.org/experimental-data/sf110/
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convergence or divergence of this data will support or refute this
hypothesis.

To elicit test cases from Llama3, prompts are needed which
contain the source code of the class under test. Figure 1 shows the
flow of prompts. It starts off by sending the source code of the class
under test without any dependencies. The reason dependencies are
not sent is because it has been observed from preliminary research
that this does not improve performance.

In Figure 1, there are some placeholders between curly brackets
and they will be briefly explained here. The placeholder {code} for
the source code of the class under test, {imports} means the imports
used in the class under test plus any additional needed imports
related to the testing framework used. Placeholder {extra} means
any additional language specific instructions needed to get working
tests. The exact contents of this {extra} placeholder is also shown
in Figure 1 and have been obtained through preliminary research.
Placeholder {error} is to be filled with the error message of why
the test case failed. The depicted cycle in Figure 1 is continued per
class until 8 passing test cases have been obtained.

4 Study Design

This section details the experiment that has been conducted to
assess the effectiveness of Llama3 for generating unit tests. This
experiment is steered by the following research question:

RQ1 How effective is Llama3 70B at generating unit tests with
regards to mutation score?

4.1 Corpus

The Java corpus used in this experiment is listed in Figure 2. The
metrics have been defined and computed by CK®. PITest’ in com-
bination with Gradle!® is used to calculate mutation score for the
Java corpus.

The Python corpus that will also be used in this experiment is
listed in Figure 3, it also includes the version of the project. This was
not applicable for the Java classes since they come from the SF110!!
corpus. All metrics in Figure 3 have been defined and computed by
Radon!2. All Python classes can be found on PyPI'® by their project
name from Figure 3. The tool mut.py'* will be used to calculate
mutation scores for the Python corpus. The replication package is
publicly available on Github® to ensure reproducibility.

4.2 Llama3 provider

For this research, we will use the "meta/meta-llama-3-70b-instruct"
instance hosted by Replicate!®. Conversations with this model are
not directly supported, so they have been simulated by wrapping
a user request in ’[INST] [/INST] block since this worked for
"meta/llama-2-70b-chat" as shown by an example in Figure 4. So

8https://github.com/mauricioaniche/ck
https://pitest.org/

WOhttps://gradle.org/
Uhttps://www.evosuite.org/experimental-data/sf110/
2https://radon.readthedocs.io/

Bhttps:/pypi.org/

Yhttps://github.com/mutpy/mutpy
Dhttps://github.com/flazedd/bug-busters
16https://replicate.com/meta/meta-llama-3-70b-instruct
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{code}

use these imports only, no
other imports allowed
{imports}
1 single test case with 1
assertion!!!
{extra}

£,
java
extra = no unicode chars!! example response:
\n@Test\npublic void exampleTestName()
{\nassertEquals(0, 0};\n}n

A

extra = example response: import {class_name} as
module_0° " *\ndef test_example():\n
assert1==1\n""" only use module_0 in your
test case. insert any newly defined functions inside the
test case or access it like module_0.function!

Waiting for
rept

No test case found

This did not work. Remember
what | said: 1 test case, 1
assertion

No Unicode character
|

Unicode character

{error} Change the test case
you sent

Test passes .
P no unicode character

please in the test case

It passed. Now give anaother
completely new test case.

Figure 1: Flowchart illustrating how the agent communicates with Llama3 to elicit test cases. Blue boxes are messages sent.
Purple boxes are results of local computations based on replies from Llama3.

Figure 2: Overview of all the Python classes included in the
experiment. Cyclomatic complexity (CC) is the total cyclo-
matic complexity of all methods. LOC is defined as lines of
code excluding empty lines and comments. Dependency is
defined as any dependency which is not included in standard
libraries.

every time the entire conversation is sent back to the model with
the addition of the user request.

4.3 Settings SBST tools

EvoSuite and Pynguin are the SBST tools used in this study. This
section specifies the settings and hardware on which they will run.
Arguably the two most important settings for the SBST tools are the
search algorithm used for generating test cases and the time con-
straint imposed on this algorithm. A bad algorithm or little time will
obviously lead to bad test cases. To get a good benchmark we should
strive to use the optimal settings. A large scale study by Panichella
et al. [15] compared different search algorithms for automated test

Project Class CC| Largest CC of a method  |LOC| Method count | Dependency Project Version Class CC | Largest CC of a method [LOC| Method count | Dependency
o T tullibee com.ib client.Utl___[22 T[4 7 No -
1 Uuumeg com.ib. (h.En( Contract 26 23 90| a Yes g dala(s::j;zg ;'g‘s Etm:‘;::z ﬁ ; 1;; 1; ﬁz
2 5_templateit org.templateit.OpMatcher 27 8 | 90 5 Yes -
3 7 _simis Com. . Sfm Crypt.Base6d 22 9 [103 9 No 2 | docstring parser 0.16 common | 49 5 |228 14 No
4 11_imsmart com.imsmart.serviet HTMLFilter B 8 | 27 1 No 3 | docstring_parser 016 epydoc | 56 39 |268 4 No
5 T5_beanbin | et beanbin.search. 1T 0|4z 2 No 4 | docstring_parser | 0.16 google | 84 27408 11 No
B 24 saxpath — ogsapathAxis |26 14 189 2 No 5 | docstring parser | 0.16 numpydoc_|123 368|532 21 No
v o e et enErcodr gD : o | docsitng parser | 016 porser |1 s 15 E o
BT 5 o et Naboratsort a7 B 87 B No 7 | docstring parser | 0.6 rest | 59 25 [259 4 No
10 35_corina Corina.utilsort |20 T |78 B No 8 flutils 0.7 xtutils | 66 31 [424 15 Yes
1]] 35_corina ‘corina.util.string Comparator 7 6 | 20 2 No. 9 flutils 07 validators | 10 10 82 1 No
12 35_corina corina.util StringUtils |26 T [ 7 No 10 hitpie | 3.2.2 status | 6 5 | 40 1 No
& 73 fimL 053.0ra server.utils StringEncoder6d |38 10_|139] E] No 11 ot | 5.13.2 comments |7 5 [ 32 2 No
o S S 1 e i T 5 12 ymonet | 012.0 | immutable fit | 36 s fiee u to
16 52_lagoon nu.staldal.utilLutls 25 1 |6 B No 13 pyutils | 0.0.14 bst 123 2 |32 3 Yes
17] 66_openjms ‘org.exolab jms. util CommandLine 21 8 | 80 10 No 14 pyutils | 0.0.14 centcount | 63 8 |373 20 No
i 68_biblestudy bible.util.Queue 28 7|13 3 No 15| pyutils_| 0.0.14] logical_search | 86 22 |306 18 Yes
19 72_battlecry berybeWord |27 0 |76 9 No 16| pyutils_| 0.0.14 money | 70 9 _[370 21 No
17) pyutils_| 0.0.14 rate | 26 6 |131 16 No
18] pyutils_| 0.0.14 trie | 48 9 [398 16 No
19| typesystem | 0.4.1 unique | 17 5 | 60 4 No

Figure 3: Overview of all the Python classes included in the
experiment. Cyclomatic complexity (CC) is the total cyclo-
matic complexity of all methods. LOC is defined as lines of
code excluding empty lines and comments. Dependency is
defined as any dependency which is not included in standard
libraries.

prompt = """\

[INST] Hi! [/INST]

Hello! How are you?

[INST] I'm great, thanks for asking. Could you help me with a task? [/INSTI]"

>

Figure 4: Example dialog of a user with Llama2.

case generation for Java classes. They did this for over 180 Java
classes and found that the algorithm DynaMOSA outperformed
the rest in terms of effectiveness and efficiency where only branch
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coverage was measured. Another paper by Stephan Lukasczyk et
al [12] found that DynaMOSA performed best for Pynguin out of
all algorithms available for Pynguin at that time. Therefore, the
DynaMOSA algorithm will be used for both EvoSuite and Pynguin.
In another paper by Panichella et al. [14], where mutation score
was measured on test suites generated by EvoSuite, it is empirically
observed that little to no classes improve in mutation score if run
for 60s compared to 180s. Therefore, a search budget of 120s for
EvoSuite to generate a single test suite for a single class is deemed
adequate. The EvoSuite test suites are generated by running it on
two AMD EPYC 7H12 64-Core processors which equates to 128
cores 512 threads since hyperthreading is enabled. The frequency of
this CPU is between 1.5Ghz and 2.6Ghz. The CPU is accompanied
by 256GB of RAM and the operating system is Ubuntu 22.04.

Pynguin will be run for 30s per class per test suite since this
is deemed adequate through preliminary research. Preliminary re-
search concluded that there was a lack of evidence that the mutation
score of the test suites generated by Pynguin would increase if ran
for longer than 30s even though numerous papers [10] [12] [11]
have run Pynguin for 600s. We include an experiment to support
this hypothesis in the results where the median mutation score per
class is taken where all runs have used 30s. Then, Pynguin will be
ran a single time with 60s and a single time with 90s and mutation
scores are compared. Pynguin is run on an AMD Ryzen 5 3600
6-core processor with 12 threads since hyperthreading is enabled,
16GB of RAM and on Windows 11.

4.4 Statistical analysis

For each of the 20 classes in the Java corpus, 12 test suites have
been generated by EvoSuite and 12 test suites by Llama3. For each
test suite the mutation score has been computed, resulting in 12
mutation scores per tool (EvoSuite and Llama3). Then the Wilcoxon
signed-rank test'” has been used to compute the probability of
observing the obtained data under the null hypothesis that two
related paired samples come from the same distribution. If this
probability (p-value) is less than 0.05 we reject the null hypothesis
because we are at least 95% confident that the observed difference
between the samples is not due to random variation alone, but
because of a true difference in the distributions being compared.
Then, if the distributions differ significantly, Vargha and Delaney
A8 is used to quantify how big this difference is. The output domain
of this function is [0, 1] where a value of less than 0.50 indicates the
second group (Llama3) dominates the first group (EvoSuite) and a
score larger than 0.50 means the exact opposite of this. A score of
0.5 means there’s stochastic equality between the two groups. This
approach is repeated for the 20 Python classes except that EvoSuite
is swapped out for Pynguin.

5 Results

Figure 5 shows the median mutation scores of both EvoSuite and
Llama3 with their corresponding p-values from the Wilcoxon test
and Vargha and Delaney A, score. Whenever the p-value is be-
low 0.05 the cell is colored red with its corresponding Vargha and
Delaney Alz score if the EvoSuite mutation scores are larger than

Thttps://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wilcoxon.html
Bhttps://gist.github.com/jacksonpradolima/fob19d65b7f16603c837024d5f8c8a65
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the Llama3 mutation scores. The cells are colored green for the
opposite cases. Our statistical analysis reveals that EvoSuite statis-
tically outperforms Llama3 for 13 out of 20 Java classes. Llama3
outperforms EvoSuite for only 3 out of 20 Java classes.

Profect dass Evosuite Meta_Llama_3_70B_Instruct | p-value | Vargha-Delaney
) Median Mutation Score Median Mutation Score Wilcoxon | effect size

0 battlecry 72 beWord 750 €30 | 00049 L{0.8438)
T beanbin 15 | WildcardSearch 56.0 620 | 0.0005 L {0.9896)
2] biblestudy 66 Queue 620 74.0 | 00342 M(0.7118)
3 corina_35 Naturalsort 750 130 0,001 L(0.9722)
7 corina_35 Sort 290 710 | 00005 L(0.0]
5 Corina_35 | StringComparator 100.0 815 | 00005 L(10)
O corina_35 Stringutils 675 78.0 0.064 M (0.7326)
7 fiml_73 | _Stingencoderod 755 630 00005 T(L0)
B imsmart_11 FTMLFilter 100.0 100.0 10 (0.5
9 | Javaviewcontrol 33 Baseb4Coder 540 945 | 03804 5(0.3993)
10 i 133 HtmiEncoder 69.5 78.0 00342 L {0.2326)
11 jiprof 51 Bytevector 310 17.0 0.0005 L(1.0]

] Tagoon_52 Utils 530 760 | 00005 T(10

&) openjms_66 CommandLine 8.0 675 | 00005 L(10

i) Saxpath 28 s 100.0 500 | 00005 L(10

15 schemaspy_36 Version 810 56.0 0.0005 L(L0

16 sfmis_7 Baseod 775 92.0 0.001 [{0.0625)
7 Templateii_5 OpMatcher 720 60 | 03013 M (0.6875)
8 Tulibee_T Contract 100.0 720 | 00005 T(L0]
5 tllibee_T [ 160.0 430 | 0.0005 L{L0

Figure 5: Median mutation score achieved by our approach
of generating tests with Llama3 and the baseline EvoSuite
over 12 independent runs. Furthermore, we show the p-value
(Wilcoxon test) and the Vargha-Delaney effect size A;,. We
labeled the effect size with S, M or L to denote small, medium
and large effect size. Colored cells indicate that the p-value is
significant (o = 0.05). Green indicates that Llama3 performed
better and red indicates that EvoSuite performed better.

The same statistics have been obtained for the Python corpus
in Figure 6 where Pynguin is used instead of EvoSuite. In Figure 6,
our statistical analysis reveals that Llama3 statistically outperforms
Pynguin for 9 out of 20 Python classes. Pynguin outperforms Llama3
for only 4 out of 20 Java classes.

Project Gass Pynguin Meta_Llama_3_70B_Instruct | pvalue | Vargha-Delaney
Median Mutation Score Median Mutation Score | Wilcoxon | effect size
o codetiming timers 39.45 42.1 0.6221 - (0.4688)
[T [ dataclasses json stringcase 100.0 1000 | 07334 —(05347)
2 | docstring_parser common 50.0 27.1 | 00161 L10.7639)
5 | docstring_parser epydoc 16.75 572 | 00024 L(0.1597)
4 | docstring_parser google 14.9 42.0 0.0005 L (0.0)
5 | docstring_parser numpydoc 1305 7.2 | 00015 [(0.1181)
6 | docstring_parser parser 50.0 42.9 0.9697 M (0.6875)
7 | docstring_parser Test 5.2 5105 | 0.0005 (0.0104]
g flutils etufils 1555 413 | 0.0068 L(0.7647)
g futils validators 65.85 700 | 06772 S (0.3889)
[10] hitpie status 64.7 7355 0.001 L(0.0972)
[ ort comments 375 750 | 00034 L(0.1606)
12} pymonet [ immutable_list 333 63.7 0.0015 L (0.0556)
IE] pyutils bst, 12.9 2795 | 0.0342 L(0.1111)
i pyutils Centcount 505 2755 | 0.0005 L(L.0)
5 pyutils | Togical search 0.0 1000 | 0.0034 [{0.1285]
[16] pyutils money 572 265 | 0.0005 L(1.0]
7] pyutils rate 1765 1765 | 07334 - (05417
18| pyutils trie 40.9 50.0 0.5186 -(0.5)
m unique 8165 9165 0.064 ™M (0.2986]

Figure 6: Median mutation score achieved by our approach
of generating tests with Llama3 and the baseline Pynguin
over 12 independent runs. Furthermore, we show the p-value
(Wilcoxon test) and the Vargha-Delaney effect size Aj5. We
labeled the effect size with S, M or L to denote small, medium
and large effect size. Colored cells indicate that the p-value is
significant (¢ = 0.05). Green indicates that Llama3 performed
better and red indicates that Pynguin performed better.

For this research, we made the decision to generate 8 compiling
and passing test cases with Llama3 for each class in the corpus. The
hypothesis was that for most classes the addition of any further test
cases will likely not increase mutation score by much if at all. In


https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wilcoxon.html
https://gist.github.com/jacksonpradolima/f9b19d65b7f16603c837024d5f8c8a65
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Figure 7 and in Figure 8, we show that most classes have converged
in mutation score or are slowly improving which supports this hy-
pothesis. From empirical inspection, there is a negative correlation
for classes in Figure 2 between their cyclomatic complexity and
mutation score in Figure 7 and 8.

Java corpus first 10 classes

100 - Classes under test

—— bcword
WildcardSearch

—— Queue

—— NaturalSort

—— Sort

—— StringComparator

60 StringUtils

—— StringEncoder64
HTMLFilter

—— Base64Coder

80 + /_

40

Mutation Score %

20 4

o4
-
]
w
S
v
o
~
@

Amount of tests enabled

Figure 7: Improvement in mutation score when more tests
are added to the test suite for the first 10 classes of the Java
corpus

Java corpus last 10 classes

Classes under test
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ByteVector
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CommandLine
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util
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Figure 8: Improvement in mutation score when more tests
are added to the test suite for the last 10 classes of the Java
corpus

For the Python corpus in Figure9 and 10, we observe that the
mutation score has converged or is slowly improving for most
classes. From empirical inspection, there is a negative correlation
for classes in Figure 3 between their cyclomatic complexity and
mutation score in Figure 9 and 10.

Figure 11 shows the median mutation score of the 12 runs used
in the research and the mutation score for a single run of 60s and
90s. The highest mutations scores per class are marked in green,
in the case of a tie, multiple boxes are colored green. We observe

Python corpus first 10 classes

100 Classes under test
—— timers
stringcase
—— common
—— epydoc
—— google
—— numpydoc
60 parser
— rest
xtutils
—— validators

80 1

40 4

Mutatien Score %

20 4

Amount of tests enabled
Figure 9: Improvement in mutation score when more tests
are added to the test suite for the first 10 classes of the Python

corpus
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5 trie
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5 40

=
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Amount of tests enabled

Figure 10: Improvement in mutation score when more tests
are added to the test suite for the last 10 classes of the Java
corpus

that performance does not strictly improve when running Pynguin
for a longer duration. This supports the hypothesis that running
Pynguin for 30s is not worse than 60s or 90s.

Figure 12 shows the average mutation score over all Java classes
over all 12 independent runs. We observe that EvoSuite attains a
higher mutation score (81.05%) than Llama3 (66.26%). In Figure 13,
the same statistic is calculated for the Python corpus with Pynguin,
but here Llama3 (51.95%) performs better on average than Pynguin
(42.73%).

6 Responsible Research

LLMs are nondeterministic and are known to make mistakes. An
ethical concern is that if tests are automatically generated by an
LLM for critical software, then one should not blindly trust these
generated tests and conclude that the software works as intended
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Pynguin 30s. Pynguin 60s Pynguin 90s

Project Class Med\ar{Mgutatmn Score Mu)\,a?ion Scare Mu!a‘g\on Scare
0 codetiming timers 39.45 47.4 42.1
1 | dataclasses_json stringcase 100.0 90.0 100.0
2 | docstring_parser common 50.0 44.0 38.5
3 | docstring_parser epydoc 16.75 18.1 53.9
4 | docstring_parser google 149 142 156
5 | docstring_parser numpydoc 13.05 148 15.6
6 | docstring_parser parser 50.0 16.7 16.7
7 | docstring_parser rest 15.2 218 37.0
8 flutils txtutils 49.55 43.1 68.0
9 flutils validators 65.85 75.0 70.6
10| httpie status 64.7 76.5 58.8
11| isort comments 37.5 70.0 70.0
12| pymonet | immutable_list 33.3 219 25.8
13| pyutils bst 12.9 100.0 99.2
14 pyutils centcount 54.5 50.0 48.6
15| pyutils | logical_search 0.0 0.0 0.0
16| pyutils money 57.2 51.4 53.5
17| pyutils rate 47.65 39.5 32.6
18| pyutils trie 40.9 96.1 18.2
19 typesystem unique 81.65 60.0 5.7

Figure 11: Mutation score achieved by Pynguin for different
durations (30s, 60s, 90s)

Average mutation score over all Java classes over all runs
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Figure 12: Arithmetic average of mutation score over all 20
Java classes over all 12 independent runs for EvoSuite and

Llama3

Average mutation score over all Python classes over all runs

50 4
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Mutation score %
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Figure 13: Arithmetic average of mutation score over all 20
Python classes over all 12 independent runs for Pynguin and
Llama3
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because the tests from the LLM passed. A human should always
validate test cases generated by LLMs to ensure they are asserting
the intended behaviour. If a test from an LLM is accepted, a human
should be held accountable if the software still fails and/or the test
is not asserting the right behaviour.

7 Discussion
7.1 Results

In the results, we observed that there was a negative correlation
between the cyclomatic complexity (CC) of a class and the mutation
score. This makes sense because classes with a higher CC can have
more mutants to be killed and thus mutation score is usually lower
when the same amount of tests are used.

Another interesting observation is that the entire Java corpus
is not available on GitHub but the entire Python corpus is. Re-
markable discrepancies have been shown between performance of
LLMs on datasets that are available on GitHub compared to ones
that are not available on GitHub [18]. So, we expected that Llama3
would perform better on the Java corpus. Contrary to our expec-
tation, Llama3 achieved a higher mutation score (66.26%) on the
Java corpus than on the Python corpus (51.95%). We believe this
difference in performance is caused by the statically typed nature
of Java compared to the dynamically typed nature of Python. We
believe that the reason for this is that static typing is providing
extra information in the code which is helpful to Llama3.

An interesting observation made during the generation of tests
is that when the LLM has a passing test it will quickly produce
more passing tests since it knows what already works. So, 5 failures
followed by a passing test case is usually followed by mostly passing
test cases.

7.2 Threats to validity

One threat to the validity of the research is that Llama3 is closed-
source and therefore it is unknown if Llama3 has been trained on
the Java and Python corpus used in this research. If Llama3 was
trained on those classes it would perform better in this experiment
than if it had not been. However, it is unlikely that Llama3 has been
trained on the Java corpus since it does not exist on GitHub which
mitigates this risk.

Another threat to the validity is the randomness of Llama3, since
it will not always produce the same output for the same input
(nondeterminism). This is mitigated though by taking 12 samples
per class per tool.

7.3 Limitations

A limitation of generating tests with Llama3 is that it is quite time
consuming compared to generating tests with either EvoSuite or
Pynguin. Generating 8 compiling and passing test cases with Llama3
takes slightly under a minute if everything passes instantly. It takes
slightly over a minute if there are some failures (i.e. 4 failures and 8
passing ones and thus 12 total). For some classes the LLM is strug-
gling to generate passing cases and then it could take 10 minutes
of restarting the agent before 8 passing tests are achieved. Difficult
classes are apparently classes which need a defined function or
class inside the test case to run. The LLM first assumes the function
exists which is not the case, then it does generate the function but
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not inside the test case. After some tries it does put the function
inside and the test case passes.

8 Conclusion

In this paper, we have gathered a corpus of 20 Java and 20 Python
classes and generated test suites with EvoSuite and Pynguin, re-
spectively. Then for each class in the corpus we also generated
a test suite of 8 unit tests with Llama3 and thereafter measured
mutation scores of all obtained test suites. The results showed that
EvoSuite outperforms Llama3 in terms of mutation score since Evo-
Suite performed significantly better than Llama3 for 13 out of 20
Java classes and Llama3 only performed significantly better than
EvoSuite for 3 Java classes. Considering all the Java classes over
all 12 independent runs, the average mutation score for EvoSuite
was 81.05% while that of Llama3 was 66.26%. Both these findings
support the hypothesis that EvoSuite is more effective than Llama3
for test suite generation in terms of mutation score. The results also
showed that Llama3 performs significantly better than Pynguin
for 9 out of 20 Python classes and that Pynguin also performed
better than Llama3 for 4 Python classes. Considering all the Python
classes over all 12 independent runs, the average mutation score for
Pynguin was 42.73% while that of Llama3 was 51.95%. Both findings
indicate that Llama3 is more effective than Pynguin for test suite
generation in terms of mutation score.

9 Future work

In future work, different LLMs can be explored such as ChatGPT-
40 and then results could be compared to this paper. Also, more
and different programming languages could be considered to see if
results generalize to different languages. Java and Python are the
two most popular languages'® which means there is likely more
training data available for those languages than for less popular
languages. This means that LLMs would have more training data
for Java and Python and thus perform better than for less popular
languages. This hypothesis remains to be verified by future work.

Another interesting approach would be to research a functional
language like Haskell to see how results generalize across different
programming paradigms. Furthermore, a topic which needs atten-
tion is to figure out how to optimally prompt an LLM to achieve
optimal performance. In this research, a simple prompt was chosen
that seemed to work from preliminary research, but it would be
interesting to see what prompting techniques lead to the optimal
desired response. We hypothesize this will be different for different
LLMs based on the findings in this research.
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