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Abstract

In our increasingly digital society, we are making a growing amount of data available to computers, networks

and third parties. As a consequence, our sensitive data is in danger of getting exposed. The field of multi-party

computation attempts to mitigate this by studying protocols that enable parties to perform their operations

digitally, without the risk of privacy-violating data leaks. Among those operations are multi-party private set

and multiset operations. In such a scenario, multiple parties, each with their own input set or multiset, want

to collectively find the result of an operation over their inputs, without revealing these original inputs. Such

operations are the cornerstone of many complex privacy-preserving protocols. For example, a two-party

private set intersection forms the key to several privacy-preserving contact tracing protocols.

While multi-party private set and multiset operations have been studied for almost two decades, these

privacy-preserving alternatives are often impractical: one limitation is that, to the best of our knowledge, all

known protocols require several interactions between the cooperating parties. This means that rather than

simply submitting their input, each party must actively take part in the protocol. In this thesis, we propose the

first non-interactive protocols for privately computing set and multiset operations between multiple parties,

which rely on two constructions for non-interactive secret sharing. In addition, for operations that cannot be

trivially performed using our non-interactive primitives, we propose minimally-interactive alternatives that

instead rely on a homomorphic cryptosystem over elliptic curves. By using elliptic curves, this cryptosystem is

faster and requires less bandwidth than the commonly used cryptosystems over integers, while retaining the

same level of security. We provide proof-of-concept implementations of exact and more efficient approximate

protocols that take on the order of seconds to minutes to compute, depending on the number of parties and

possible inputs. Finally, we give formal proofs for the security of these protocols, so as to offer practical and

provably privacy-preserving alternatives to otherwise sensitive operations.



Preface

Thank you for reading my thesis, which was written to fulfill the requirements of the computer science master

with a specialization in cyber security at the Delft University of Technology. While the thesis is lengthy, I

have split it up into short chapters, to provide a pleasant reading experience for those who are interested in a

selection of topics or protocols.

For a reader who wants to gain a quick insight in this thesis, I would recommend reading:

I Chapter 1

I Chapter 2

I Chapter 5

I Chapter 20

Additionally, Chapters 22 & 25 present results for real-life scenarios.

1 On the cover

The image on the cover is a Venn diagram, every surface and combination of surfaces represents the result

of a valid set operation. Actually, the blue surfaces represent the symmetric difference between five sets,

which is an operation that can be expressed in terms of all primitive set operations: intersections, unions, and

complements.

2 On this thesis format

The main author of this format is Federico Marotta, and it was based on the doctoral thesis by Ken Arroyo

Ohori. The format itself is called kaobook. Although the format is perhaps unusual for a master’s thesis, I

have chosen for a format with a large margin to:

I Highlight some citations

I Include helpful sidenotes

I Provide a more pleasant reading experience for captions

I Put smaller figures and tables in the margin

I Save space for a reader’s notes

3 On the implementations

We have implemented proof of concepts for most of the ideas we put forward in this thesis.
∗
This includes

Python, C++ and Rust code. We do not provide the code to our experiments.

∗
The implementations can be found at https://github.com/jellevos/thesis-MPSO-MPMO

https://github.com/jellevos/thesis-MPSO-MPMO
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As we progress in the 21st century, we are witnessing digitalization all

around: For example, while bank transactions in the past required a great

deal of administration, they can now be done digitally from the comfort

of your own home. Moreover, we can reach out to others at everymoment

of the day via chat services, social media and video calls. We can even

search the web from the most distant places, in order to find important

information whenever we need it.

It is undeniable that this digitalization has brought with it comfort and

wealth, but there are downsides. In particular, we are producing and

sharing data at a growing rate, and this is putting our privacy-sensitive

data at a risk of being leaked. To address the issue of privacy while

embracing the benefits of digitalization; that is the ideal of the field of

multi-party computation. More specifically, multi-party computation [1]

aims at developing protocols, which enable computation of a function

with secret inputs.

Among those operations are multi-party private set and multiset opera-

tions, which form the cornerstone of several privacy-preserving protocols.

In short, a multi-party private set operation is a collaboration between

two ormore parties, eachwith a set as input, whowant to collectively find

the result of some set operations over these sets, without revealing the

inputs. Since sets are distinct collections of elements, some applications

require computations over multisets, which allow elements to appear

several times within the collection.

Sincemulti-party private set andmultiset operations serve a role in count-

less privacy-preserving protocols [2, 3], they have already been studied

for almost two decades. Still, there are factors that hinder practical use of

such protocols. In particular, while protocols have become faster over the

years, all proposed protocols, to the best of our knowledge, require sev-

eral interactions between the collaborating parties. For example, where

the privacy-less way of finding a common date between you and your

colleagues only required them to send you their availability, the current

privacy-preserving alternatives require all colleagues to communicate

in multiple rounds of a protocol. As a result, these protocols typically

require more bandwidth, and cooperating parties must be online at

several stages.

In this work we propose the first non-interactive protocols for these

purposes. Going by the previous example, these protocols only require

your colleagues to send a cryptographically-secured version of their

availability once, after which you can privately and locally compute

the result of the set or multiset operation. Still, some set operations

require a functionality that we cannot capture with our non-interactive

techniques.
1
For those operations, we provide protocols that require the

minimum number of required interactions.

While our proposed protocols generally incur a larger cost in computation

than other recent works, we pose that our protocols are fit to be deployed
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2: See Chapters 2 & 3 for more examples.

in situationswhere others are not, such aswhen a network is lossy or has a

high latency, or in situations wheremessagesmust be sent manually, such

as when a set operation must be performed only incidentally. In addition,

by using elliptic curves, we bring this extra cost down significantly; in

some settings outperforming state of the art protocols in terms of run

time. Ultimately, we deem that practicality does not only entail a short

run time, but also a low degree of interactivity.

1.1 Private contact tracing

Multi-party private set and multiset operations serve countless appli-

cations.
2
For instance, those applications where parties work with sets

containing private data of other individuals, or applications where par-

ties hold data in their sets that could damage them if it was leaked or

linked to them. As a motivating example, we examine the application

of contact tracing in the context of a pandemic. Due to the COVID-19

pandemic, there are several recent works that propose protocols based on

multi-party private set operations for this application [2, 4]. We provide

three examples of use cases in the context of private contact tracing that

rely on private set operations between two or more parties.

Private set intersection

Consider a contact tracing mobile phone application. The mobile phone

will constantly search for other phones in its vicinity to register that it

has been in close proximity, and thereby identifying a moment of disease

transmission for the individual carrying it. The registration happens by

exchanging a pseudonymous identifier that is personal to that mobile

phone, but it does not contain otherwise identifying information.

When an individual receives a positive test result for infection, the

application should notify the phones of those who have been in close

proximity to the infected individual. Let us say that this is realized by a

health agency, which registers the pseudonyms of those who are infected.

The application can then occasionally check in with the health agency to

see if any of its registered pseudonyms turn out to be infected. However,

in doing so, the health agency can form a complete graph of all phones

and who they have been in contact with.

Ideally, the health agency does not learn anything about the registered

pseudonyms on each phone, but only about the infected pseudonyms

registered on it. At the same time, the individual with a mobile phone

should not learn the entire list of pseudonyms of infected individuals.

Fortunately, this is realized by a private set intersection: The health

agency and the phone only learn about the pseudonyms that they have

in common.

Private intersection-cardinality

In the previous example, the health agency and the phone of someone

checking for risky contacts both receive the pseudonyms of infected
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individuals. One might argue that this still enables the health agency

to perform detailed statistical analysis, and the individual carrying the

phonemight comparewith close friends to identify the persons belonging

to the received pseudonyms. Instead, it should be sufficient for both the

health agency and the individual carrying a mobile phone to learn only

about the size of the intersection, rather than the pseudonyms contained

in it.

In the study of private set operations, the size of a set is called its

cardinality, so this operation is called a private set intersection-cardinality.

By performing such a two-party private set intersection-cardinality

protocol, both parties can still fulfill their purposes, but it is much harder

for them to learn any additional information, guaranteeing privacy of the

users of this application as well as the privacy of infected individuals.

Private set union-cardinality

In the previous examples, we have only considered intersection-based

operations between two parties. However, other set types of private set

operations can also play an important role in contact tracing. For example,

consider a feature that allows you to estimate the chance of exposure

in a group of people, by identifying the size of the ‘bubble’ that these

people are contained in. In other words, finding out how many different

people have been in contact with any member of the group. An operation

realizing this must extend to more than two parties, and it must return

the total set of contacted individuals rather than those that each party

has in common.

Fortunately, this operation can be achieved by a multi-party private set

union-cardinality protocol. Again, the group only strictly needs to learn

about the size of the ‘bubble’ rather than all its related pseudonyms. Note

that such a protocol also hides how many members of the group have

met each pseudonym.

In short, private set operations form the basis of multiple privacy-

preserving operations within the topic of contact tracing. Nonetheless,

private set operations servemanymore applications, such as collaborative

malicious host detection and no-fly list creation. We have also not yet

touched upon multiset operations, which extend the range of possible

applications even further.

1.2 State of the art

One of the most recent works on multi-party private set intersections is

the work by Kolesnikov et al. [5]. While this work is fast in terms of run

time for large sets, each party must communicate with every other party

in two stages of communication. Additionally, their protocol requires

significant bandwidth. In Chapter 20 we provide a non-interactive multi-

party private set intersection that requires less communication andwhich

is almost an order of magnitude faster than Kolesnikov et al. [5] for a

growing number of involved parties and a small collection of possible

encoded set elements.
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When it comes to threshold set operations, where elements are only

included in the resulting set when they appear in the sets of at least some

threshold number of parties, most works require four or more stages of

communication. The work with the least interactions is by Miyaji and

Nishida [6], which takes two stages of communication, but the protocol

reveals how often each element in the resulting appeared in the input

sets. Moreover, the protocol uses the ElGamal cryptosystem over the

integers, which requires large keys and expensive computations for the

necessary level of security. We propose a protocol with two stages of

communication that does not reveal how often each element appeared

in the input sets, and we ElGamal over elliptic curves to achieve smaller

keys, less bandwidth and faster computation.

Similarly, for multi-party private set operation-cardinality protocols,

to the best of our knowledge, all works require at least three stages

of communication. We provide a protocol that runs in just two stages

of communication, and we show experimentally that an approximate

version of the protocol runs in the order of seconds on a single thread,

even when the final set contains 20, 000 elements, and with a standard

deviation of 251.

For multi-party private multiset sums, the work by Hong et al. [7]

provides experimental results for an interactive protocol. We provide

two exact protocols that out-compete this work in terms of run time on

the same experiments, and both of these protocols are non-interactive.

We provide an extensive overview of previous works, as well as their

complexities, their required number of stages of communication and

other properties in Chapters 13 – 17.

1.3 Research questions

In this thesis we set out to create provably privacy-preserving set and

multiset protocols that are non-interactive, and otherwise require as

few interactions as possible. After all, a non-interactive protocol would

closely resemble one’s workflow when performing these operations

without preserving privacy. Specifically,we answer the following research

question:

RQ How can multiple parties collaboratively, but with minimal interac-

tions, compute set and multiset operations —such as set intersections

—without revealing their inputs?

In those cases where we cannot provide a non-interactive protocol,

we provide minimally-interactive alternatives. As such, we make a

distinction between non-interactive and minimally-interactive protocols

in the last two parts of this thesis, where we answer the corresponding

sub-questions, respectively:

I SQ1What operations can be performed non-interactively and how

can we do so?

I SQ2 What operations must be performed interactively, and how

can we do so with the minimum number of interactions?
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1.4 Contributions

The work in this thesis has lead to four publications, of which three are

still in the peer-reviewing process. Additionally, some parts contain new

work that is not yet part of any publications. Specifically, this concerns the

extension of our non-interactive protocols to the symmetric construction

described in Section 18.2, the reversible hash functions described in

Subsection 20.2 and the cardinality& threshold set operations inChapters

23 & 24. We evaluate the set cardinality protocols in Chapter 25 for the

context of ‘shopping’ for threat intelligence, which is a yet unpublished

idea by Christian Doerr and Zekeriya Erkin.

Specifically, at the time of writing, these are our publications and the

stage of the peer-reviewing process they are in.

Multi-party Private Set Intersection Protocols for Practical
Applications
Accepted at SECRYPT 2021
Aslı Bay, Zeki Erkin, Mina Alishahi, and Jelle Vos

In this work, we describe and implement exact multi-party private set

operations using bitsets, which is a fast encoding for small universes.

We demonstrate how run time of the protocol scales linearly with the

number of parties, which is more efficient than the state of the art, which

scales quadratically.

Practical Multi-party Private Set Intersection Protocols
Under review at IEEE Trans. on Information Forensics and Security
Aslı Bay, Zekeriya Erkin, Jaap-Henk Hoepman, Simona Samardjiska, and

Jelle Vos

Using the threshold Paillier cryptosystem and a secure comparison pro-

tocol, we describe and implement protocols for approximate multi-party

private set intersections and threshold set intersections. This protocol,

too, scales linearly with the number of parties. Additionally, since we use

Bloom filters to encode the sets, the protocols are fast, regardless of the

size of the universe.

Non-interactive Multi-party Private Set and Multiset Op-
erations for Collaborative Malicious Host Detection
Second round at IEEE Security & Privacy 2022
Jelle Vos and Zekeriya Erkin

This work contains many findings that we present in this thesis. Specifi-

cally, we describe and implement exact non-interactive protocols for set

intersections, set unions, multiset intersections, multiset unions and mul-

tiset sums that scale with the size of the universe. In addition, we propose

approximate non-interactive protocols for set intersections and multiset

intersections, and we provide a straw man proposal for extending this to

perform approximate unions and multiset sums. The protocols rely on

secure AND and OR protocols that may be of independent interest.
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Practical Multi-party Private Multiset Sums using Single-
Share Multiset Encodings
Under review at ESORICS 2021
Jelle Vos, Martin Koster, and Zekeriya Erkin

In this work, we propose and implement an exact protocol for multiset

sums, where each party’s set encoding fits entirely in a single secret share.

As such, the protocol requires minimal bandwidth. The protocol relies

on the fact that each integer has a unique prime factorization, which we

exploit to encode sets as a single integer. We decode this integer using

the elliptic curve factorization method.

Summary

Our contributions can be summarized as follows:

I The first non-interactive protocols for set intersections, set unions,

multiset intersections, multiset unions, and multiset sums, based

on non-interactive AND and OR protocols using multiplicative secret

sharing that may be of independent interest.

I A comprehensive analysis of previously proposed schemes for set

and multiset operations, and a comparison of their asymptotic

complexities and security among others.

I Minimally-interactive protocols for threshold set operations and

set operation-cardinalities based on the threshold ElGamal cryp-

tosystem over elliptic curves using a simultaneous shuffle-decrypt

protocol that may also be of independent interest.

I Both exact and more efficient approximate versions of all proposed

protocols that enable operations over large domains such as the

IPv4 address space.

I An implementation of all proposed protocols, which we evaluate in

practical scenarioswithin the cyber security domain anddepending

on the parameters demonstrate to be faster than implementations

of previous multi-party set intersection andmultiset sum protocols.

1.5 Outline

The rest of this thesis is split into several parts that each contain a number

of short chapters. The parts ‘Non-interactive protocols’ and ‘Interactive

protocols’ discuss our own contributions. Table 1.1 shows in what chapter

we discuss which protocol. In the final part, we discuss our findings

and conclude. The parts before that can be divided into the following

categories.

Preliminaries

We split the preliminaries into three parts. In ‘Private set & multiset

operations’ we introduce sets and multisets, as well as their respective

operations, and we put it in the context of multi-party private operations.

In the next part ‘Set &multiset representations’ we discuss the underlying

representations that are commonly used to encode sets, ofwhich ourwork
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specifically considers bitsets andBloomfilters. Thepart on ‘Cryptographic

building blocks’ puts forward the cryptographic primitives and protocols

that form the basis of many previous works including ours, as well as the

security assumptions that multi-party private set and multiset protocols

often rely on.

Related work

Our related work contains one part: In ‘Previous work’ we give a com-

prehensive overview of the prevalent works in multi-party private set

and multiset protocols. This part contains the work related to the new

protocols that we introduce.

Our work & results

We have two parts that discuss our own contributions. In ‘Non-interactive

protocols’ we put forward all our non-interactive protocols, and in

‘Interactive protocols’ we put forward minimally-interactive protocols

that are based on the same techniques.

Short Operation Previous work Our work

MPSI Set intersection Chp. 13 Chp. 20

MPSU Set union Chp. 15 Chp. 20

MPMI Multiset intersection Chp. 17 Chp. 20

MPMU Multiset union Chp. 17 Chp. 20

MPMS Multiset sum Chp. 17 Chp. 20 & 21

MPSI-CA Set intersection-cardinality Chp. 16 Chp. 23

MPSU-CA Set union-cardinality Chp. 16 Chp. 23

T-MPSI Threshold set intersection Chp. 14 Chp. 24

T-MPSU Threshold set union Chp. 14 Chp. 24

Table 1.1: Overview of common multi-

party private set & multiset operations

and in which chapters they are discussed.
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2.3 Applications for set operations11

A set is an unordered collection of distinct elements. These structures

arise in many problems. For example, when you want to find a suitable

meeting date with multiple colleagues, each colleague has a collection

of different available dates in no particular order. The suitable meeting

dates are the set of those dates that are in each colleague’s set, which is

an example of a set operation. Specifically, a set intersection.

2.1 Sets

The notation for a set containing elements Tuesday, Wednesday and

Friday is {Tuesday,Wednesday, Friday}. We say that the universe U is

the set of all possible elements; in this case that is the set containing every

day of the week. In this work, though, we are only concerned about sets

of integers. This is without loss of generality, given that one can devise

a mapping from every element in U to an integer. For example, we can

devise a mapping where Monday→ 0, . . . , Sunday→ 6, so that our

original set becomes {1, 2, 4}.

While in theory a set can contain infinitely many elements, for practical

applications, we typically consider finite sets. The number of elements

contained in a set - is referred to as its cardinality, and it is denoted by

|- |. Since a set can only contain as many elements as the universe U, the

cardinality of any set is bound by 0 ≤ |- | ≤ |U|. For this reason we also

refer to |U| as the domain size. In practical applications we can often

provide a bound for the maximum number of elements in a set that is

tighter than the domain size. We denote this bound by :, and we refer to

it as the maximum set size. In our previous example, the domain size

|U| is 7 as it contains every day of the week. The maximum set size :

could be 5 if we know that every colleague has their weekends planned

full already.

2.2 Set operations

Sets by themselves are simple structures, but when combined with other

sets using set operations, they can capture complex behavior. In our

example of finding a suitable meeting date between several colleagues

we have already hinted about one such operation: the set intersection. In

this thesis, we are only concerned about set operations that are extensible

to an arbitrary number of input sets, and we formulate them as such.

Note, however, that there exist different formulations for some of these

operations, and that there exist other operations that only apply to a

specific number of sets.
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Basic operations

The result of a set intersection is the set of elements that were contained

in each of the original sets. In the context of our example, given the sets

of available dates of = colleagues, -1 , . . . , -= , the set intersection, and

thereby the set of suitable dates, is formally defined as:

Definition 2.1 (Set intersection) Given = sets -1 , . . . , -= , their intersec-
tion / is defined as:

/ = {G | ∀=8=1
G ∈ -8} =

=⋂
8=1

-8

Note that the cardinality of the resulting set/ is atmost |/ | ≤ :, since this
set cannot contain more elements than any of the original sets -1 , . . . , -= .

Suppose now that wewish to find the set of elements that were submitted

in any of the original sets, this is equivalent to the set union operation,

which is formally defined as:

Definition 2.2 (Set union) Given = sets -1 , . . . , -= , their union / is
defined as:

/ = {G | ∃=8=1
G ∈ -8} =

=⋃
8=1

-8

This time, the resulting set can contain at most =: elements.

Algebra of sets

While the purpose of intersections and unions may be immediately

apparent, this may not be the case for the complement operation, which

is an important operation in the algebra of sets. The complement of a set

- is the set - that contains all elements from the universe U that are not

in set -. In that sense, it is the exact opposite of set -. The operation is

formally defined as:

Definition 2.3 (Set complement) Given a set -, its complement - is
defined as:

- = {G ∉ - | G ∈ U}

The set intersection and set union are actually related to each other

through the set complement under DeMorgan’s law. Through this prop-

erty, it is possible to express a set intersection in terms of a set union

and vice versa. In fact, this law holds both in set theory and in Boolean

algebra, where it is possible to express an AND operation in terms of an

OR operation. DeMorgan’s law is formally defined as:

Definition 2.4 (DeMorgan’s law) Given = sets -1 , . . . , -= , the following
identities hold:

=⋂
8=1

-8 =
=⋃
8=1

-8 and
=⋃
8=1

-8 =
=⋂
8=1

-8
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Compound operations

We can describe richer set operations by combining the basic operations

defined before. Threshold unions, for instance, contain those elements

which appear in at least a certain number of the original sets. This number

is given by a threshold �. The threshold union is a compound operation

because we can write it in terms of intersections and unions.

Example 2.1 Given = = 3 sets -1, -2 and -3, and a threshold � = 2,

the threshold union / can be written as:

/ = (-1 ∩ -2) ∪ (-2 ∩ -3) ∪ (-1 ∩ -3)

Indeed, there is also a threshold intersection operation. This operation

is defined as the intersection between one of the original sets and the

result of the threshold union. This operation has favourable properties in

practical applications, because the resulting set is guaranteed to contain

at most : elements. In this thesis, we focus on operations where the

number of elements exceeds a threshold.

Of course, any composition of the aforementioned set operations makes

for a valid compound operation. Some of them have special names. For

example, the set difference of sets � and � defined by �− � is equivalent

to the intersection with the complement of �: � ∩ �. A similar operation,

called the symmetric difference �4�, returns the elements that are in

one of the sets, but not in their intersection. In other words, it can be

written as (� ∪ �) − (� ∩ �). In this thesis we do not explicitly discuss

these operations, but note that it is possible to perform these operations

by expressing them in terms of intersections, unions and complements.

2.3 Applications for set operations

Set operations form the solution to many real-life problems. We provide

three examples:

I Set intersection: In this chapterwe introduced set operations based

on the example of finding a suitable date between colleagues. In this

example, the sets contain suitable dates and the result is computed

using the set intersection.

I Set unions: One use case for set unions is the creation of no-fly

lists. Several agencies can prevent people from flying, but it would

leak information if an agency knew which individuals the other

agencies were investigating. Considering that all agencies have a

set of personal identifiers, the corresponding set union will contain

all identifiers, without reference to what sets they originated from

or how often they occurred.

I Identifying profiteers: Consider multiple charities that financially

support individuals, then these charities can identify profiteers

among them who are benefiting from multiple charities at once

using a threshold intersection. So, each charity has a set of personal

identifiers of those individuals they support, and the resulting set

will contain the identifiers of those who are benefiting from at least

� charities at once.



Multisets & multiset operations 3
3.1 Multisets . . . . . . . . . . . . 12
3.2 Multiset operations . . . . . . 12
3.3 Multisets as sets . . . . . . . . 13
3.4 Multiset applications . . . . 14

Multisets are an extension of sets in which element can appear multiple

times. So, a multiset is an unordered collection of elements that are not

necessarily distinct. For this reason, a multiset is also referred to as a ‘bag’

in natural language.

3.1 Multisets

Other than sets, multisets capture the concept of multiplicity. That is

to say, for a multiset - there is a formal multiplicity function M-(G)
that returns how often element G is contained in -. The notation for a

multiset containing three 1s and two 2s is [1, 1, 1, 2, 2]. For this multiset,

M-(1) = 3 and M-(2) = 2, and it is zero for all other elements in the

universe U.

In practical applications, we typically consider finite multisets, so the

multiplicity function has some upper bound " that we refer to as the

maximum multiplicity. In addition, it is useful to define an upper bound

for the maximum number of distinct elements in a multiset. To prevent

confusion with the maximum set size : we denote this number by  .

3.2 Multiset operations

Like for sets, multisets can be combined using intersections and unions.

However, there is some nuance when it comes to these operations. For

simplicity we define the operations in terms of the multiplicity function.

The multiset intersection is as follows:

Definition 3.1 (Multiset intersection) Given = multisets -1 , . . . , -= ,
their intersection / is defined as:

/ =
=⋂
8=1

-8 where M/(I) = min

8=1,...,=
M-8 (I) for I ∈ U

In otherwords, themultiset intersection contains the elements that appear

in every input multiset, and exactly as often as these elements appeared

in the multiset that contained the fewest of that specific element.

Example 3.1 Given multisets -1 = [1, 2, 3, 3], -2 = [2, 2, 3, 3] and
-3 = [1, 2, 3, 3, 3], the intersection is:

/ = -1 ∩ -2 ∩ -3 = [2, 3, 3]

The union is the opposite of the intersection in that the multiplicity of

each element in the union is the maximum multiplicity of the element in
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1: We exploit this property to encode mul-

tisets as natural numbers in Chapter 21.

the original multisets, rather than the minimum. Formally it is defined

as follows:

Definition 3.2 (Multiset union) Given = multisets -1 , . . . , -= , their
union / is defined as:

/ =
=⋃
8=1

-8 where M/(I) = max

8=1,...,=
M-8 (I) for I ∈ U

Using the same multisets as in Example 3.1, the union is as follows:

Example 3.2 Given multisets -1 = [1, 2, 3, 3], -2 = [2, 2, 3, 3] and
-3 = [1, 2, 3, 3, 3], the union is:

/ = -1 ∪ -2 ∪ -3 = [1, 2, 2, 3, 3, 3]

Apart from the intersection and union, another multiset operation is the

multiset sum. In literature [7, 8] [8]: Huang et al. (2012), ‘Privacy-

preserving multi-set operations’

[7]: Hong et al. (2013), ‘Constant-Round

Privacy Preserving Multiset Union’

, this operation has been mistaken as the

multiset union, but there is a strict difference. The multiset sum is the

total collection of all elements contained in the original multisets, so each

element’s multiplicity is summed:

Definition 3.3 (Multiset sum) Given = multisets -1 , . . . , -= , their sum
/ is defined as:

/ =
=⊎
8=1

-8 where M/(I) =
∑

8=1,...,=

M-8 (I) for I ∈ U

The multiset sum for the same multisets as in Examples 3.1 and 3.2 is:

Example 3.3 Given multisets -1 = [1, 2, 3, 3], -2 = [2, 2, 3, 3] and
-3 = [1, 2, 3, 3, 3], their sum is:

/ = -1 ] -2 ] -3 = [1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3]

Interestingly, the natural numbers are also examples of multisets, since

each has a unique prime factorization.
1

As a result, multiplication

between natural numbers is equivalent to the multiset sum of their

respective prime factorizations. Moreover, the greatest common divisor

is equivalent to the multiset intersection, and the least common multiple

is equivalent to the multiset union.

Finally, the threshold operations as described in the previous chapter

work similarly for multisets.

3.3 Multisets as sets

Although multisets are fundamentally different from sets in that they

capture the concept of multiplicity, there is a simple transformation from

multisets to sets in the case where the universe and the multiplicity

domain are finite [9] [9]: Blanton et al. (2016), ‘Private and

oblivious set and multiset operations’

. Consider a multiset [1, 2, 2, 3]. For simplicity, let us
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write it as [11 , 22 , 31], where GH denotes that element G is contained in the

multiset with multiplicity H. Then we can transform this multiset to the

following equivalent set {11 , 21 , 22 , 31}. The idea behind the transform is

that since 2 is contained twice in the multiset, it is also contained once.

Formally, the transform is as follows:

{G8 | G ∈ U, 1 ≤ 8 ≤ M(G)}

Due to the existence of this transformation, the majority of this thesis

discusses operations on sets rather than multisets, as these are applicable

tomultisets aswell after the transformation. One exception is our protocol

for multiset sums as described in Chapter 21, which strictly applies to

multisets.

3.4 Multiset applications

Like sets, multisets serve several real-life applications, including:

I Web traffic analysis: Let us say that a group of web users track the

websites they visit by keeping a multiset containing their URLs.

Then, we can perform web traffic analysis using multiset inter-

sections, unions and sums to identify how often certain websites

were visited by all users, by any user and by all users collectively,

respectively.

I Counting rare diseases: For scientific or medical purposes it is

interesting to know how many cases of rare diseases exist in a

country, but it might risk patient privacy if hospitals would publish

this highly sparse information. Instead, the multiset sum provides

more anonymization, as it is unknown which hospitals treat which

and how many patients.



Figure 4.1: Star topology with six parties,

the leader is the center node.

Figure 4.2: ‘Wheel’ topology with six par-

ties, the leader is the center node.
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The field of private multi-party computation offers privacy-preserving

alternatives to standard computational operations performed bymultiple

parties. In the previous two chapters, we explained several operations

that can be performed over arbitrary numbers of sets and multisets. In

this chapter, we discuss the requirements for protocols to perform such

operations in a privacy-preserving manner, where every cooperating

party submits a set or multiset.

4.1 Setup

In this thesis, we are concerned about a group of = parties P1 , . . . ,P= .

Each party P8 has a set or multiset -8 , and the goal is to collaboratively

compute / = -1 � · · · � -= , where � denotes some operation that is

defined over sets or multisets.

In our setup we differentiate between a leader and assistants. The leader

is the party that receives the result /, while the other parties are assistants

that only take part in the protocol to facilitate this result. Without loss of

generality, we assign the first partyP1 to be the leader, and the remaining

parties P8 for 8 = 2, . . . , = are assistants.

Security model

All parties in the protocols are considered to act according to the semi-

honest model. That is to say, they follow the protocol at all times, but

whenever they can they will try to deduce as much as possible with the

information that is available to them. We choose this model over the

malicious mode, which considers parties that do not honestly follow the

protocol and try to disrupt it. The semi-honest model can be seen as a

starting point towards creating protocols that are secure in the malicious

model.

Other works might be interested in a setup where every party receives

the final result /, rather than only the leader. In the semi-honest model,

this is easy to realize: the leader can simply provide the assistants with

the final result. In some cases, and assuming a broadcast medium exists,

parties might broadcast the messages that were otherwise sent to the

leader to put all assistants in the position to produce the final result for

themselves.

Network topology

As mentioned before, a privacy-preserving protocol would limit commu-

nication as much as possible. To that end, we characterize a protocol’s

communication setup by examining which parties must communicate
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1: For example, those that are based on

Bloom filters, as discussed in Chapter 6.

with each other. Ideally, each assistant would only have to communicate

with the leader. This is realized by star-shaped network topology, as seen

in Figure 4.1. In the worst case, every party would have to communicate

with every other party, which is called a full mesh.

In this thesis we distinguish one more topology that is an extension of

the star topology. A ‘wheel’ topology is a star topology, but in addition,

there are one-way communication channels between the outer nodes

so that they form a ring. An example of such a topology can be seen in

Figure 4.2.

4.2 Correctness requirements

For a semi-honest protocol to be provably privacy-preserving, it must

satisfy correctness and privacy requirements [10] [10]: Lindell (2017), ‘How to Simulate

It - A Tutorial on the Simulation Proof

Technique’

. The idea behind

the correctness requirement is that the protocol should fail only with

negligible probability.

Exact operations

According to our setup, an exact multi-party private set or multiset

protocol � is a functionality that receives = party’s inputs and outputs

the result of the set or multiset operation only to the first party, who is

the leader. Formally, the protocol aims to realize the functionality given

by 5 : (-1 , . . . , -=) → ((-1 � · · · � -=),Λ, . . . ,Λ), where Λ is the empty

string. For such a protocol to be correct, the probability that its output is

different from the result of functionality 5 is lower than some negligible

function �(�), where � is the computational security parameter:

Definition 4.1 (Correctness) Protocol � satisfies correctness when:

Pr

[
output

�(-1 , . . . , -= , �) ≠ 5 (-1 , . . . , -=)
]
≤ �(�)

Additionally, some exact protocols for computing the cardinality of the

set resulting from a set operation realize the functionality given by

5 : (-1 , . . . , -=) → (|-1 � · · · � -= | ,Λ, . . . ,Λ).

Approximate operations

An approximate multi-party private set or multiset protocol computes a

given set or multiset operation probabilistically, so that there is a high

probability that the result is ‘close’ to the exact result. Still, such a protocol

should satisfy the correctness requirement. Its functionality 5 is different,

though.
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2: For example, those that are based on

Bloom filters or sketches, as discussed in

Chapters 6 & 8.

Superset approximation

Some approximate protocols
1
output a superset of the exact result. In

other words, the resulting set or multiset can contain false positives.

On the contrary, the result is guaranteed not to contain false negatives.

This kind of approximate protocol realizes the functionality given by

5 : (-1 , . . . , -=) → (/,Λ, . . . ,Λ), where / ⊇ -1 � · · · � -= .

Cardinality estimation

Some approximate protocols
2
for computing the cardinality of the set

resulting from a set operation output an estimate of the cardinality, rather

than an exact answer. These protocols realize the functionality given by

5 : (-1 , . . . , -=) → (/,Λ, . . . ,Λ), where / is a stochastic variable for

which it holds that the expected value E [/] = |-1 � · · · � -= |.

4.3 Privacy requirements

Different private set operations protocols satisfy different privacy criteria.

All works discussed in this thesis satisfy the correctness requirements

above, so parties do not learn anything about elements that do not appear

in the protocol’s output, such as a party’s input. However, some protocols

allow for auxiliary information to be known, such as the size of the input

sets. To qualify the privacy of a scheme,we use the labels ‘size-hiding’ and

‘count-hiding’, where the latter only applies to threshold operations.

Cerulli, Cristofaro, and Soriente [11] also defines the concept of ‘reactive

privacy’ for set intersections, which inhibits parties from enumerating

over all possible elements to discover another party’s set. However, this

concept is restrictive and to the best of our knowledge, there are no multi-

party protocols that satisfy this criterion. For the protocols proposed in

this thesis, we guarantee both the count-hiding and size-hiding criteria

when they are applicable.

Size-hiding

Size-hiding protocols hide the number of elements in each party’s set. To

be precise, for a maximum input set size :, it is unknown to all parties

how many elements were in other parties’ input sets. Again, there are

exceptional circumstances where it is possible to tell this simply from the

result of an operation, for example when a private set intersection returns

: elements, meaning that each party also provided those : elements. The

term was introduced by Bradley, Faber, and Tsudik [12] [12]: Bradley et al. (2016), ‘Bounded

Size-Hiding Private Set Intersection’

. We use the

size-hiding tag to denote size-hiding protocols.
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Count-hiding

A count-hiding protocols hides the number of input sets that contain

each element. We only use this term when comparing threshold set

intersections and unions. For set unions, for example, this is already

asserted by the correctness requirements. We use the count-hiding tag

to denote count-hiding protocols.

Collusion resistance

While the stated privacy requirements give a provable indication of a

protocol’s privacy, they do not cover the full picture.Most notably, they do

not take into account colluding parties. Let us consider again the scenario

where colleagues want to find a suitable date: Planning a meeting for 10

participants, it is likely that at least some of them are capable of colluding.

It is problematic if the protocol’s privacy requirements would not hold

in that case. For this reason we also emphasize each protocol’s collusion

resistance, which gives an upper bound for the number of parties that

can safely collude, without breaking other party’s guarantee for privacy.

In this thesis we work with the following definition:

Definition 4.2 (Collusion resistance) The collusion resistance of an =-
party protocol is the maximum number of colluding parties that does not
break the protocol’s privacy requirements.

4.4 Terminology

In this thesis we discuss nine common set and multiset operations, based

on the operations discussed in the previous two chapters. One of themost

studied type of protocols is a Multi-party Private Set Intersection, which

is abbreviated as MPSI. If one only wishes to find out the cardinality of

the set intersection, one would append the abbreviation to get MPSI-CA.

If one is interested in the threshold intersection, one would prepend the

abbreviation to get T-MPSI. Table 1.1 contains an overview of the types of

protocols discussed in this thesis and their abbreviations.



Set & multiset representations

In the previous part we introduced notation for sets and multisets. While this
notation is suitable for reading, cryptographic protocols typically represent their
sets and multisets differently in order to perform computations on them. In this
part we discuss the most common set representations used in previous works and
in our work and how operations can be performed on them.



1: In fact, in a paper by Aslı Bay, Zekeriya

Erkin, Mina Alishahi and Jelle Vos pub-

lished at SECRYPT 2021, the authors use

these operations on bitsets to realize ex-

act multi-party private set operations that

scale linearly with the number of parties.

1 01 0 1

0 1 1 0 1

0 1 0 0 1

∧

Figure 5.1: The logical AND operation ap-

plied bit-wise between bitsets results in

the bitset encoding of the intersection.
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A bitset is a vector containing a bit for every element in the universe,

which is set to 1 if the element is contained in the set, and 0 otherwise.

For this reason, bitsets are also referred to as bit vectors.

5.1 Creating bitsets

We denote the encoding of a set - by -̂. For a bitset, this encoding is

constructed as follows:

Definition 5.1 (Bitset) For a set - ⊂ U, the 8th bit of its corresponding
bitset -̂ is given by:

-̂[8] =
{

1 if U8 ∈ -
0 otherwise

for 8 = 1, . . . , |U|

Here, we write U8 to denote the 8th element of the universe U.

5.2 Operations on bitsets

The set operations discussed in Chapter 2 translate directly to bitsets

using logical operators such as AND and OR. As a result, a protocol that

can privately execute these logical operators can privately compute set

operations on bitsets.
1

Intersections & unions

To perform a set intersection between = encoded sets from the same

universe, one simply performs the logical AND operation between each

bit of their bitsets. This is illustrated in Figure 5.1. The union operation

follows similarly: Instead, one performs the logical OR operation in the

same fashion.

Cardinality

To compute the cardinality of a set encoded as a bitset, one must count

the number of bits that are set to 1. Since these bits are either 0 or 1,

one can sum the vector to achieve this result. We define the function

cardinality(�) = �, which takes the number of ones � and outputs

the cardinality corresponding to the set represented by the bitset. This

function is useful in defining the protocols in Chapter 23.
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Complement

Since the complement of set- is the set of elements that are not contained

in- , the complement of a bitset is simply the negation of each bit. Suppose

that we have an MPSI protocol over bitsets, then using DeMorgan’s law,

one can use the set complement to implement anMPSU protocol in terms

of said MPSI protocol.

Threshold operations

To compute threshold operations on multiple bitsets, the simplest ap-

proach is to sum the bitsets together in a bit-wise fashion to get a count

vector, as discussed in the next section. Then, one sets every bit in the

resulting bitset to 1 if the count is greater or equal to some threshold �,
and 0 otherwise.

5.3 Count vectors

Count vectors are an extension of bitsets to encode multisets. Instead of

bits storing 0 or 1, a count vector contains bins storing the multiplicity

of its corresponding element. Then, multiset intersections and multiset

unions can be realized by taking the minimum value or the maximum

value bin-wise between multiple count vectors, respectively. The multiset

sum is simply the bin-wise addition of multiple count vectors.
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Where bitsets store an exact copy of a set that scales with the number

of elements in the universe, Bloom filters store an approximate copy of

an arbitrary size. Specifically, Bloom filters distribute elements over a

given number of bins that can be significantly smaller. As a consequence,

elements might be falsely included in the set, so Bloom filters have a

chance of returning false positives.

6.1 Creating Bloom filters

Suppose we have a collection of< bins that can be ’set’ when they contain

a value such as 1, or ’not set’ when they are 0. We can map elements to

these bins using a hash function that reduces any element to an index

of one of the bins. The idea of a Bloom filter is to insert an element by

setting the mapped bin of the hash function to 1. The membership of

an element can then be queried by checking if its corresponding bin is

indeed set. Instead of using one hash function, the Bloom filter is often

more accurate when using ℎ hash functions side-by-side; membership of

an element then requires all mapped bins to be set.

Probabilities

Assuming that the probability that a bin is set is independent from other

bins and ℎ perfect hash functions, so they perfectly distribute elements

over the < bins, we express the expected number of false positives when

performing : membership queries. We provide two lemmas:

Lemma 6.1 The probability that a given bin in the Bloom filter is still 0 after
# inserted elements is:

Pr [bin is 0] ≈ exp

(
− ℎ#
<

)
Proof. The probability that a bin is not set to 1 after an element is

inserted is

(
1 − 1

<

) ℎ
, since any of the ℎ hashes have a

1

< probability

of selecting that bin. Using the identity:

exp(−1) = lim

<→∞

(
1 − 1

<

)<After inserting # elements, that probability is(
1 − 1

<

) ℎ# ≈ exp

(
− ℎ#<

)
.

What follows, is the Bloom filter’s false positive rate �# :

Lemma 6.2 The probability �# that a random element is included in the set
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encoded by a Bloom filter is:

�# ≈
(
1 − exp

(
− ℎ#
<

)) ℎ
Proof. For a membership query to falsely report a positive result, all

ℎ hashes must point to bins containing a 1. Since Pr [bin is 1] = 1 −
Pr [bin is 0], the probability that ℎ uniformly random bins are still set to

1, in other words the false positive rate, is given by

(
1 − exp

(
− ℎ#<

) ) ℎ
.

We can now approximate the accuracy of the Bloom filter:

Theorem 6.3 The expected number of false positives after : membership
queries on a Bloom filter containing # elements is bounded by:

E [F] ≈ :�#

Proof. Let . = {H1 , . . . , H:} be the set of all elements that for which we

check membership in the Bloom filter. In the worst case, the Bloom filter

falsely claims all of these elements to be contained within it, when none

of them are, so the number of false positives F≤ :. Let us say that �8 is

a random variable that is 1 when H8 is falsely said to be in the original

set, and 0 otherwise. Then, F=
∑:
8=1
�8 . The expected value E [�8] ≈ �# ,

so by linearity of expectation, E [F] ≈ :�# .

Parameter selection

As specified before, a Bloom filter has < bins and ℎ hash functions. To

decide on the values of these parameters, it is customary to specify a

maximum number of inserted elements # . To ensure that the Bloom

filter is practically usable, we need to keep the number of false elements

in the filter Fsmall and at the same time keep the number of bins < as

low as possible.

Accordingly, given an expected number of false elements E [F], we use

Algorithm 1 to select the minimum numbers of bins < for which this

expected value is an upper bound, and a corresponding number of hashes

ℎ. The algorithm works by counting up, starting from one hash function,

and checking which number of hash functions results in the smallest

Bloom filter while satisfying the maximum false positive rate �. One can

show that < = $(:) for a fixed �. We use the upper bound for � by Goel

and Gupta [13]:

� ≤
(
1 − 4−

ℎ(#+0.5)
<−1

) ℎ
. (6.1)

Hash functions

Noneof theprotocols in this thesis requireBloomfilters touse cryptographically-

secure hash functions, since security is provided by cryptographically

hiding the bins of the filter. This allows for faster hash functions to be
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Algorithm 1 Compact Bloom filter parameters

1: procedure CompactBF(#, �)
2: ℎ ← 1

3: <prev ←∞
4: while true do
5: ⊲ Compute required filter size < given ℎ using Equation 6.1

6: < ←
⌈
exp

(
− ℎ(#+0.5)

ln(1−�ℎ−1 )

)⌉
+ 1

7: if <prev < < then
8: ⊲ This is the lowest < for any ℎ
9: return (ℎ, <prev)
10: ℎ ← ℎ + 1

11: <prev ← <

1: In our implementations we use both

mmh3 and xxh3, without preference.

2: For example, for |U| = 10
6
and ℎ =

1, the naive approach would require a

decoder to compute 10
6
calls to the hash

function.

used, so long as they are ‘sufficiently’ uniform. That is to say, the hash

function distributes elements from the universe evenly and without

obvious patterns. Many practical systems choose for MurmurHash3 [14]

or xxHash3 [15], mmh3 and xxh3 in short.
1

6.2 Operations on Bloom filters

As studied in other works [6, 16], set operations on Bloom filters can be

performed similarly to bitsets, with some limitations.

Unions

To perform a set union between = Bloom filters, one applies the logical OR

operation between respective bins. For this to hold, all Bloom filters must

use the same hash functions and must have the same number of bins <.

Since the resulting Bloom filter can contain at most =: elements, the false

positive rate is given by �=: . Interestingly, while it is straight-forward to

form the Bloom filter encoding the union of = other Bloom filters, it is

not straight-forward to decode it when the universe is large.
2
To do so,

we need to reverse the Bloom filter. In Chapter 20 we propose a solution

to this problem.

Intersections

To perform a set intersection between = Bloom filters, one applies the

logical AND operation between respective bins. Again, all Bloom filters

must use the same hash functions and must have the same number of

bins <. While the resulting Bloom filter indeed encodes a superset of

the intersection, it is not necessarily the same Bloom filter that would be

created if one encodes the actual intersection as a Bloom filter. This is

the case, because different elements mapping to the same bins would

falsely be included in the resulting Bloom filter [17]. However, since the

number of bins that are set to true in the resulting Bloom filter is less than

or equal to the number of set bins in any of the input Bloom filters, the

resulting false positive rate is still at most �: . Decoding the intersection
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is not a problem, since the intersection is always a subset of any of the

input sets.

Cardinality

Since Bloom filters are approximations, it is only possible to estimate the

number of elements that one encodes, rather than exactly. It suffices to

count the number of set (filled) bins � and to know the Bloom filter’s

parameters. Note that the distribution of the number of filled bins given

the number of inserted elements # is binomial, following the probability

from Lemma 6.2:

Pr [F = � | N = #] ∼ B

(
<,

(
1 − exp

(
− ℎ#
<

)))
(6.2)

Theorem 6.4 The expected number of elements encoded by a Bloom filter
with � filled bins is given by:

E [#] ≈ −<
ℎ

ln

(
1 − �

<

)
Proof. Assuming that the hash functions are uniform and independent,

the probability for a bin to be 1 is expected to be equal to the ratio of

filled bins Pr [bin is 1] = �
< . It follows that:

�

<
≈ 1 − exp

(
− ℎ#
<

)
# ≈ log

exp(− ℎ
< )

(
1 − �

<

)
≈

ln

(
1 − �

<

)
ln

(
exp

(
− ℎ
<

) )
≈ −<

ℎ
ln

(
1 − �

<

)
For use later, we define the cardinality function for Bloom filters as

cardinality(�) ≈ �[#]. Unfortunately it is hard to give guarantees about

this estimation because the reversed conditional probability of Equation

6.2 is not a binomial. In fact, as seen in Figure 6.1, the distribution is

asymmetric. The probability is proportional to:

Pr [N = # | F = �] ∝ Pr [bin is 1]� Pr [bin is 0]<−� (6.3)
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Figure 6.1: Probabilities for estimating the

cardinality of a Bloom filter given its ac-

tual cardinality. Note that the probability

distribution is narrow for lower cardinali-

ties, and wide and more asymmetric for

larger cardinalities.

6.3 Counting Bloom filters

We can extend Bloom filters to encode multisets rather than sets. Such a

Bloom filter is called a counting Bloom filter. Instead of a Boolean, every

bin now stores a multiplicity. All the bins start at 0. When inserting an

element,the bins selected by the hash functions are increased, but never

decreased, to themultiplicity of said element. Then, to checkmembership

of an element, we find the bins that this element is mapped to by the

hash functions and return their minimum multiplicity. This means that

when at least one of the bins that is mapped to contains 0, the element is

not part of the encoded multiset.
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While bitsets and Bloom filters consist of bins and are based on logic

operations, one can also encode sets in the roots of polynomials, on

which operations are defined by arithmetic. Actually, polynomials encode

multisets. To prevent confusion with the polynomial variable G, in this

chapter we denote sets and multisets by ( rather than -.

7.1 Polynomial multiset encoding

One can encode a set of integers ( in the roots of a polynomial (̂[G] using:

(̂[G] =
∏
B∈(
(G − B) (7.1)

The roots of a polynomial form a multiset. So, we can generalize the state-

ment above by interpreting sets as multisets to the following definition

of the polynomial encoding:

Definition 7.1 (Polynomial encoding) The polynomial encoding multiset
( with multiplicity function M((B) is given by:

(̂[G] =
∏
B∈(
(G − B)M((B)

7.2 Operations on polynomials

Because polynomials are not made up of bins, and since they are actually

encoding multisets, the intersection, union and other operations follow

differently than for bitsets and Bloom filters. In our work, we do not use

this encoding, but it forms the basis of many previous works.

Intersections

The intersection between = sets encoded as polynomial roots (̂1 , . . . , (̂=
is formally given by the polynomial equivalent of the greatest common

divisor gcd

(
(̂1 , . . . , (̂=

)
. However, Kissner and Song [18] prove that it

is sufficient to randomize the polynomials by multiplying them with

random polynomials and then summing them, without revealing more

information than what would be known from the greatest common

divisor. More specifically, they show that:

A1(̂1 + · · · + A= (̂= = D gcd

(
(̂1 , . . . , (̂=

)
(7.2)
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Here, A1 , . . . , A= are the aforementioned random polynomials and D is

some uniformly random polynomial. The roots contained in D are false

positives, but since they are uniformly distributed over the entire space

of the roots, there is a negligible probability that the roots also appear in

one of the input sets (8 , so it is unlikely they will be wrongly interpreted

as being part of the intersection. This operations works on encoded sets

and multisets alike.

Unions

The union between = sets encoded as polynomial roots can be realized

using the least common multiple lcm

(
(̂1 , . . . , (̂=

)
. Seo, Cheon, and

Katz [19] show that this operation too can be achieved through addition

when using a rational polynomial representation
A8

(̂8
, for a random poly-

nomial A8 without leaking any more information than when computing

the least common multiple. Specifically, they show that:

A1

(̂1

+ · · · + A=

(̂=
=

D

lcm

(
(̂1 , . . . , (̂=

) (7.3)

The authors show that rational polynomials can be efficiently manip-

ulated using reversed Laurent series. Similarly to intersections, with

overwhelming probability the numerator and denominator do not have

any roots in common, so the randomization is unlikely to affect the final

result. This operation also works on multisets.

Multiset sums

By the definition of multiset sums and the polynomial encoding, the

multiset sum between = polynomial set encodings (̂1 , . . . , (̂= is simply

their product:∏
B∈(1

(G − B)M(
1
(B)· · ·

∏
B∈(=
(G − B)M(= (B) =

∏
B∈(1]···](=

(G − B)M(
1
]···](= (B) (7.4)

Reduce by one

It is possible to reduce themultiplicity of all roots by one by computing the

polynomial’s derivative. This operation is useful for computing threshold

operations. For example, by taking the derivative three times, we are left

with a polynomial encoding of the elements that appeared at least four

times in the multiset.

Extracting elements

Differently from integers, polynomials can be factored in polynomial

time, after which one can easily extract the roots and their corresponding

multiplicity. One common algorithm for polynomial factoring is the

algorithm by Cantor and Zassenhaus [20].
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While the three previously discussed set and multiset representations

are common in multi-party private set operations, many other types of

representations were used in previous works. Note how the previously

discussed representations were versatile in that there are simple ways to

perform intersections, unions and other operations on between encoded

sets or multisets. In this chapter we highlight two other representations

that generally only serve one purpose. Additionally, some works [21] do

not use a specific set encoding. Instead, the elements are individually

encoded.

8.1 Garbled Bloom filters

Dong, Chen, and Wen [22] introduced garbled Bloom filters. While in a

regular Bloom filter we check if the bins selected by the hash functions are

set, in a garbled Bloom filter we perform an XOR operation between those

bins to examine if the result is some well-formed value. Instead of storing

1 or 0, every bin contains a �-bit value. Specifically, a garbled Bloom

filter can encode a mapping between key-value pairs (G, H). Kolesnikov
et al. [5] describe how to construct the filter as follows:

1. Initialize all bins to ⊥.
2. For each key-value pair (G, H), fill the bins selected by the hash

functions H1(G), . . . ,Hℎ(G) that still contain⊥with random values

so that GBF[H1(G)] ⊕ · · · ⊕ GBF[Hℎ(G)] = H.
3. Replace bins that still contain ⊥with a random value.

One can compute intersections using garbled Bloom filters by encoding

each set, so that the when queried for an element from the set, the result

is 0. Then, when the garbled Bloom filters are combined using an XOR

operation, the resulting filter will return 0with overwhelming probability

for only those elements in the intersection. The values of the filter appear

to be randomly distributed.

8.2 Min-max sketches

DongandLoukides [23] propose aprotocol basedonmin-max sketches [24].

A min-max sketch works using ℎ functions and two vectors of ℎ bins. For

each bin in the first vector, a party computes the hash of all elements in

the input set using the corresponding hash function, and fills the bin with

the element with the lowest hash. For the second vector, the party fills

each bin with the element with the highest hash. Then, the probability

that a bin in two min-max sketches for sets (1 and (2 contains the same

element is equal to the Jaccard index, defined as
|(1∩(2 |
|(1∪(2 | . By doing this

for all bins, the min-max sketch is an unbiased estimator for the Jaccard

index. By knowing the intersection-cardinality, one can estimate the

union-cardinality, and vice versa.



Cryptographic building blocks

In the previous part we discussed the most common set and multiset represen-
tations, and how we can perform operations on them. However, typically these
operations cannot be performed privately without the use of cryptographic build-
ing blocks. In this chapter we go through common cryptographic building blocks
used in previous works, as well as those that form the basis of our proposed pro-
tocols. We also discuss what hardness assumptions they rely on. At the end of
the chapter we provide an overview of the notation used in the remainder of this
thesis.
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In our proposed protocols we make heavy use of elliptic curves and

some rely on forms of the decisional Diffie-Hellman assumption. In this

chapter we present a high-level introduction to these topics.

9.1 Decisional Diffie-Hellman

Consider a cyclic group G and a generator 6. We use the multiplicative

notation for this group, so the entire group can be generated by 6 8 for

8 = 1, . . . , |G|. Now, let us say we are given an element that corresponds

to 6A ∈ G, for some randomly chosen but unknown A, and we are

tasked to find this A. From studying the real numbers we might be

tempted to say that this problem is easily solved by taking the logarithm.

However, for some sufficiently large cyclic groups, this problem turns

out to be exceedingly hard. In fact, for this reason, this problem is called

the Discrete Log Problem (DLP), and it forms the basis of countless

cryptographic techniques:

Definition 9.1 (Discrete Log Problem) The DLP states that it is computa-
tionally infeasible to determine some random A given only 6 and 6A .

The Decision Diffie-Hellman (DDH) is a stronger assumption than the

DLP because it implies the DLP. Since these assumptions are used for

cryptographic purposes, they are also referred to as hardness assumptions.

Multiple protocols for multi-party private set operations are based on

this assumption [6, 25]:

Definition 9.2 (Decisional Diffie-Hellman) The DDH assumption states
that given 60 and 61 for some random 0, 1 ∈ ℤ|G| , 601 is computationally
indistinguishable from some random A ∈R G.

9.2 Elliptic curve groups

Among such groups where the DDH assumption holds are cyclic sub-

groups of elliptic curves over finite fields. These elliptic curves form the

basis of many modern cryptographic protocols that are at the core of the

internet, such as for key agreement schemes and digital signatures [26].

The reason for this is that elliptic curve groups can be significantly smaller

for the same level of security, which typically allows for smaller key sizes

and depending on the operation, for faster computations. Specifically, to

achieve 128 bits of security, NIST recommends 3072 bit keys for factoring

modulus-based public key cryptosystems such as Paillier, and only 256

bit keys for elliptic curve-based cryptography [26].
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Efficient elliptic curves

Much research has gone into finding types of elliptic curves that allow

for efficient arithmetic on computers. One of the most efficient types of

curves is the Montgomery curve [27] [27]: Bernstein et al. (2021), Genus-1 curves
over large-characteristic fields

. A Montgomery curve over a finite

field � is given by the following equation:

�H2 = G3 + �G2 + G (9.1)

That is, any point that lies on this curve parameterized by �, � ∈ � is an

element of the elliptic curve group G. The curve describes an operation

that we usually denote in additive notation, which is called the group

law or the group operation. This operation takes two curve points % and

&, and returns a curve point % + & = '. The implementation differs

per type of curve group, but in essence, the idea behind the operation is

to ‘draw a line’ through % and &, where ' is the point where this line

crosses the curve again. If the line does not cross the curve again, we

say that ' is the point at infinity O, which is the identity of the curve

group.

It is also possible to perform the group operation on a point % with

itself, which is commonly referred to as point doubling. The slope of

the line through % is in this case the derivative of the curve equation

at %. This methods allows us to compute % + % = 2%. As such, by

carefully choosing which points to double, we can efficiently perform the

equivalent of multiplication using repeated addition. For example, we

can compute 12% = 6% + 6%, where 6% = 2% + 2% + 2% and 2% = % + %,
using just four calls to the group operation, rather than twelve.

Note that in this work we use the additive notation in some places, and

the multiplicative notation in others. In the multiplicative notation, the

group operation is denoted by %& = ', and point doubling is denoted

using an exponent, such as %12
.

Elliptic curve co-factors

In this work, we use the Montgomery curve called Curve25519 [28]. This

curve has a co-factor of 8, which means that the prime order subgroup

that we actually use in cryptographic applications is one eight of the

size of the total group. However, when implementing protocols, it is

possible to introduce bugs related to these co-factors. For this reason, we

use a highly-optimized abstraction that allows us to use a curve with a

co-factor to realize a prime-order group [29, 30], so there is no co-factor.

Additionally, this technique allows for faster equality checks.
∗

9.3 Pairing-based cryptography

Pairing-based cryptography concerns three groups G1, G2, and G) , so

that there exists an efficiently-computable bilinear mapping function

e : G1×G2 → G) , which is also called the pairing function. Here, groups

∗ https://ristretto.group/details/equality.html

https://ristretto.group/details/equality.html
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G1 are G2 written in additive notation, while we write group G) in

multiplicative notation.

Pairing function

For two generators % ∈ G1 and & ∈ G2, and two numbers 0 and 1 it

must hold that e(0%, 1&) = e(%, &)01 . Additionally, the pairing function

can never evaluate to 1. This is a powerful functionality that allows us to

essentially performmultiplication of the numbers 0 and 1 in the exponent

of the generator e(%, &) in group G) . In Section 18.3 we explain its use

in non-interactive secret sharing.

Hardness assumptions

Note that using the pairing function, we can break the DDH assumption:

If we have 0% ∈ G1, 1& ∈ G2 and we can decide whether an element

is either 601 ∈ G) or a random element. Instead, there is the Bilinear

Diffie-Hellman (BDDH) assumption, which says that when we add one

more tuple, such as 2% or 2& resulting, 6012 is indeed computationally

indistinguishable from randomness.

Currently bilinear pairings are only realized using specifically-chosen

elliptic curves that we refer to as pairing-friendly curves. For several

well-studied elliptic curves such as the Tate pairing it is believed that the

Decisional Bilinear Diffie-Hellman (BDDH) assumption holds [31].

Implementations

In this work, we use the Barreto-Naehrig curve [32]. Without going into

detail, there are parameters for this curve that satisfy 128 bits of security.

Additionally, there exist hash-to-curve schemes [33] that allows us to

hash arbitrary strings to curve points, in our case to group G2, without

revealing the discrete logarithm of that element. This allows us to use

bilinear pairings as a pseudo-random function using a nonce; a number

used only once. We explain this in more detail in Chapter 18.
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In the previous chapter we discussed elliptic curve groups that relied

on certain hardness assumptions for their security. In this chapter, we

describe secret sharing methods, which are information-theoretically

secure. That is, provided that private information stays private, the

secret shares are unconditionally secure: the best attack that exists is to

randomly guess. Tomake sure that the probability of guessing correctly is

negligible, it is customary to retain at least 40 bits of statistical security [5].

As a result, the probability of guessing correctly is less than 2
−40

.

Consider a party who wants to share a password with three friends, so

that if necessary, the friends can work together to retrieve the password,

but otherwise it stays hidden. This is the premise behind secret sharing.

In this case, we say that the secret password is 3-shared: It is split into

three shares that each reveal nothing about the secret until they are

combined. In this chapter we discuss schemes where a secret is shared

among all = parties so that they all have to collaborate to recover the

secret, and those where a secret is shared among all = parties but only a

subset of C parties is required to recover it.

10.1 (=, =)-secret sharing

In an (=, =)-secret sharing setup, we have = parties who all need to

cooperate to recover a shared secret. In this section we discuss the most

commonly used additive and multiplicative secret sharing schemes over

the integers. In Chapter 18 we discuss another (=, =)- secret sharing setup

that is particularly suited to our applications.

Integers modulo G

The integers modulo an integer G form a group that is closed under

addition, containing all integers [0, G). Suppose that we want to share

the secret value 0 among the = parties using this group. Then, we can

choose = uniformly chosen values that collectively sum to 0.

Example 10.1 Consider a group with G = 256 and = = 3 parties, then

the secret 0 could be shared like:

E1 + E2 + E3 ≡ 0 (mod 256)
169 + 4 + 83 ≡ 0 (mod 256)

Clearly, E1 and E2 can be chosen completely at random, and only E3

is specifically chosen. As such, = − 1 secret shares do not reveal any

information.
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Coprimes modulo G

The coprimesmodulo an integer G also forma group, but it is closed under

multiplication rather than addition. Importantly, while the previous

group contained all numbers from 0 until G − 1, the group of coprimes

does not satisfy this property. Rather, the number of elements in this

group is decided by Euler’s totient function )(_). For a prime number ?,

)(?) = ? − 1, so when G is prime, the multiplicative group contains the

elements [1, G − 1). One can check that these are indeed all coprime to

G.

Example 10.2 Let us take G = 41 and = = 3, and we wish to share 1,

then it could be shared like:

E1 · E2 · E3 ≡ 1 (mod 41)
15 · 8 · 27 ≡ 1 (mod 41)

10.2 (C , =)-secret sharing

In a (C , =)-secret sharing scheme, it suffices for C parties to cooperate to

recover the secret. One of the most common schemes is Shamir’s secret

sharing [34] [34]: Shamir (1979), ‘How to Share a Secret’. This scheme works by generating a C-degree polynomial,

so that when it is evaluated at its origin 0, it returns the secret. As such,

the polynomial has the form B + 0G + 1G2 + . . . , where B is the secret

and 0 and 1 are random coefficients. The key behind this scheme is that

when a party has C points of the polynomial, they can perform Lagrange

interpolation [35] to recover the polynomial’s coefficients, and thereby

the encoded secret.

Example 10.3 Consider a modulus modulus G = 40, a (2, 3)-setup
and a secret 5. One realization of a random 2-degree polynomial for

Shamir’s secret sharing is:

5 + 31G + 16G2

Let us evaluate this polynomial at G = 8 for E8 , then E1 = 12, E2 = 11

and E3 = 2. One can check that for two of these secret shares, there is

only one 2-degree polynomial that fits these points.
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Public Key Encryption (PKE) is a tool that allows any party to encrypt

data with a public key so that it can only be decrypted by the private key

holder. We refer to such encrypted data as a ciphertext. However, some

situations require that no one party can decrypt a ciphertext alone; instead

they require a given number of parties to do so collaboratively. Threshold

cryptosystems realize such behavior. Specifically, a (C , =)-cryptosystem
requires C out of = parties to collaborate in order to decrypt a ciphertext.

The data that is encoded by a ciphertext is called a plaintext. Some

cryptosystems create ciphertexts that are malleable; users canmanipulate

such a ciphertext to achieve another valid ciphertext that relates in some

way to the original plaintext. In this thesis we are particularly concerned

about partially homomorphic cryptosystems, which permit users to

perform either addition or multiplication on the encrypted plaintexts,

by exploiting the ciphertexts’ malleability. We will refer to a threshold

cryptosystem that is also partially homomorphic as a homomorphic

threshold cryptosystem.

11.1 ElGamal cryptosystem

The ElGamal cryptosystem allows the use of any group G in which the

DDH assumption holds [36] [36]: ElGamal (1984), ‘A Public Key

Cryptosystem and a Signature Scheme

Based on Discrete Logarithms’

. Depending on how the group operation

is defined, the cryptosystem is either additive or multiplicative, but we

choose to write it in multiplicative notation here. The four standard

methods for the ElGamal cryptosystem are:

I Setup: An authority chooses a group G of order @ and a generator

6 in G.

I KeyGen: The dealer chooses a secret key sk ∈R ℤ@ . The public key

is pk = 6G .

I Encrypt: To encrypt an element" ∈ G, a party computes 〈, �〉 =
〈6H , " pkH〉 using randomness H ∈R ℤ@ .

I Decrypt: To decrypt 〈, �〉, party P8 computes" = �−sk
.

Here, Setup is a method to select the high-level cryptosystem parameters.

After that, a dealer can use KeyGen to generate keys. Then, for any

message encrypted by Encrypt, Decrypt returns the original message

corresponding to the ciphertext.

When we perform ElGamal over a multiplicative group of integers, the

scheme is multiplicatively homomorphic. That is, multiplying two cipher-

texts 〈1 , �1〉 and 〈2 , �2〉 together, we get a new ciphertext 〈12 , �1�2〉
encoding the product of the original messages. This property also allows

a user to re-randomize a ciphertext. To do so, they multiply the original

ciphertext with a fresh ciphertext of the identity element.
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Exponential ElGamal

Exponential ElGamal is a variant of ElGamal that enables additive homo-

morphism in an otherwise multiplicative group. Instead of encrypting a

message" directly, we encrypt 6" . The product of two such elements

6"1
and 6"2

results in 6"1+"2
. On the downside, finding the resulting

message in the exponent requires computing the discrete logarithm.

Fortunately, if we know that this message is in a small range, we can

pre-compute a lookup table and traverse it.

ElGamal over elliptic curves

Since ElGamal is secure for any group for which the DDH assumption

holds, we can use elliptic curves to more efficiently implement this

cryptosystem. However, this means that the messages we encrypt are also

elliptic curve points. In that sense, if we want to encrypt integer messages,

we arrive at a similar setup as exponential ElGamal. We provide more

details about this construction in Chapter 23.

Threshold ElGamal

One canuse Shamir’s secret sharing to transformElGamal into a threshold

cryptosystem. This technique can be used to transform some other

cryptosystems as well, such as Paillier, which we discuss in the next

section. We demonstrate this technique for ElGamal:

I Setup: An authority chooses a group G of order @ and a generator

6 in G.

I KeyGen: The dealer chooses a polynomial 5 (G) = mk + 01G + · · · +
0C−1G

C−1 ∈ ℤ@[G], where mk ∈R ℤ@ is the master key. The public

key is pk = 6G . The dealer generates partial secret keys sk8 = 5 (8)
for 8 = 1, . . . , =.

I Encrypt: To encrypt an element" ∈ G, a party computes 〈, �〉 =
〈6H , " pkH〉 using randomness H ∈R ℤ@ .

I Decrypt: To partially decrypt 〈, �〉, party P8 computes �8 ← sk8
.

I Combine: To complete decryption of 〈, �〉, a party combines

partial decryptions �8 of at least C parties through Lagrange inter-

polation [35].

In the threshold cryptosystem, the Decrypt method changes and we gain

the Combine method. Decrypt now performs partial decryptions. After

all, a single party cannot decrypt. The Combine method is used for the

final user to combine C partial decryptions into the original message.

(=, =)-key generation

Debnath et al. [37] use a threshold version of ElGamalwhere the threshold

is =, so every party must be involved to decrypt. The benefit of their

setup is that they do not use Lagrange interpolation, and the keys can be

generated in a distributed fashion, without the need of a trusted dealer

and without expensive computations.
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11.2 Paillier cryptosystem

The Paillier cryptosystem [38] [38]: Paillier (1999), ‘Public-Key Cryp-

tosystems Based on Composite Degree

Residuosity Classes’

is an additively-homomorphic public key

encryption scheme based on theDecisional Composite Residuosity (DCR)

assumption over integers. While the original scheme generates one secret

key and one public key, the scheme can be altered using the principal

behind Shamir’s secret sharing in the same way as above to form an

additive threshold cryptosystem.

Paillier ciphertexts are additively homomorphic, so one can add en-

crypted integers together and multiply them with constants. As a conse-

quence, we can use Paillier to obliviously evaluate encrypted polynomials

by their coefficients, among others. Generally, generating Paillier keys

requires a trusted dealer or an expensive distributed key generation

protocol that lowers collusion resistance to at most b =
2
c [39].

11.3 Decryption to zero

Regular decryption of a ciphertext returns the message encoded within

it. However there are cases where we do not want to learn the actual

message, but only whether it contains the identity element or not. Since

in Paillier and exponential ElGamal this element is 0, such a protocol

is called a decrypt-to-zero protocol. Typically, in such a protocol, all

decrypting parties multiply the ciphertext with a random number, so

that when combined, the result is either 0 or a random number based on

all parties’ random numbers. Importantly, parties can do so in parallel,

rather than sequentially, so it can be merged into the partial decryption

operation in a threshold cryptosystem.
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12.1 Notation

In Table 12.1 we give a summary of the notation used throughout this

thesis. The list does not contain all symbols, but it does contain those that

we use consistently. We prevent duplicate symbols as much as possible,

but in some cases the meaning of a symbol is different depending on its

context.

Symbol Description

Sets

= Number of parties

P8 Party 8
G8 Party 8’s input bit
-8 Party 8’s input set or multiset

: Maximum set size, so : ≥ |G8 |
U Universe of elements

� Threshold of threshold operations

-̂8[9] Bin 9 of party 8’s set representation
� Number of filled bins

Multisets

M(_) Multiplicity function

,′ Maximum multiset size, so,′ ≥ |G8 |
"′ Maximum multiplicity

, Maximum resulting multiset size

" Maximum resulting multiplicity

Bloom Filters

# Number of elements in a Bloom filter

< Number of bins in a Bloom filter

ℎ Number of hashes in a Bloom filter

H Some hash function

� Error rate of a membership query

F Number of false positives

Pairing-based Cryptography

pk8 Public key of party 8
sk8 Secret key of party 8

H2(_) Hash onto a random point in G2

e(_, _) Pairing function

Security

� A protocol

2≡ Computationally indistinguishable

� Computational security parameter

� Statistical security parameter

Λ Empty string

Interactive protocols

# Number of communication stages

�8 Party 8’s permutation function

〈, �〉 ElGamal ciphertext components

�8 Party 8’s partial decryption

Table 12.1: Description of a selection of

symbols in this work.
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12.2 Hardness assumptions

In our previous work chapters, we abbreviate the hardness assump-

tions on which protocols rely. Table 12.2 contains a summary of those

abbreviations that appear in this work.

Short Name Application

DCR Decisional Composite Residuosity Paillier cryptosystem

QDR Quadratic Residuosity Assumption Goldwasser-Micali cryptosystem

TDP Trapdoor Permutations Oblivious transfer

DDH Decisional Diffie-Hellman ElGamal cryptosystem

SI-DDH Short Interval DDH Polynomial ElGamal [7]

BDDH Bilinear DDH Asymmetric construction

PRF Pseudo-Random Function Symmetric construction

PRP Pseudo-Random Permutations Feather protocol [40]

CKHF Commutative Keyed-Hash Function Vaidya and Clifton [21]

Table 12.2: Descriptions and abbrevia-

tions of relevant hardness assumptions.
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In this part we provide a comprehensive comparison between numerous works on
multi-party private set and multiset operations. Even still, there exist many more
papers discussing variants of the aforementioned operations. However, we aim to
cover the most common operations and include important works as well as recent
work. We do not claim to give an exhaustive overview.
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Compared to other operations, multi-party private set intersection proto-

cols make up the majority of MPSO works. In this chapter we give an

overview of prevalent works in this area. It turns out that many works

fulfill the same objective, but using different means. For example, some

use secret sharing while others use homomorphic cryptosystems, but

the operations are generally the same. For this reason we go through

the protocols based on their set representation and which objective they

fulfill. Note that in this thesis we only consider multi-party protocols,

so we omit two-party protocols from the comparison. The protocols

discussed here are all exact or they are superset approximations.

In addition, Table 13.1 gives a summary of these protocol’s properties.

Under topology, the table refers to those network topologies discussed in

Chapter 4. By # we refer to the number of stages that a protocol requires,

where we define a stage as a part of the protocol where every party

should be online at some point to be able to proceed to the next stage.

The parameters � and � are the computational and statistical security

parameters, respectively, so they depend on the security assumptions of

each scheme. The asymptotic complexities marked with * are ones that

we adapted from the original works, see Appendix A. To conclude, at

the end of this chapter we summarize our general findings in comparing

these works.

Table 13.1: Overview of prevalent works proposing MPSI protocols, including asymptotic complexities and security properties.

Work Communication Computation Security Privacy
Ref. Year Topology Leader Assistant # Leader Assistant Collusion Assumption Mal? Size

General MPC Mesh $̃(=:�)* $̃(=:�)* - - - = − 1 - - -

[41] 2004 Mesh $(=:�)* $(=:�)* 3 $(=:�)* $(=:�)* = − 1 DCR

[18] 2005 Wheel $(=:�)* $(C:�)* 4 $(C:2�)* $(C:2�)* = − 1 DCR X X
[42] 2007 Mesh $(=2:2�)* $(=2:2�)* 3 $(=:2�)* $(=:2�)* b 2

3
=c none X X

[43] 2012 Star $(=C<�)* $(=<�)* 3 $(=<�)* $(=<�)* = − 1 QDR X X
[25] 2012 Mesh $(=2:�)* $(=2:�)* 3 $(=:�)* $(=:�)* b 1

2
=c DDH X X

[6] 2015 Star $(C<�)* $(<�)* 2 $(=<�)* $(<�)* = − 1 DDH X
[44] 2017 Star $(=:�) $(:�) 2 $(=:2�) * $(:�)* = − 1 DCR X
[5] 2017 Mesh $(=:�) $(C:�) 2 $(=�) $(C�) = − 1 TDP

[45] 2018 Mesh $(=<�)* $(=<�)* 2 $(=<�)* $(=<�)* = − 1 TDP X
[40] 2020 Star $(=:�)* $(:�)* 2 $(=:�)* $(:�)* 1 PRP X
[37] 2021 Star $(=:�)* $(:�)* 2 $(=:ℎ�)* $(:�)* = − 1 DDH

Exact (Ours) Star none $(|U|�) 1 $(=:�) $(|U|: + =:�) = − 2 PRF X
Approx. (Ours) Star none $(:�) 1 $(=:�) $(=:�) = − 2 PRF X

13.1 Polynomial roots-based MPSI

We first consider those protocols that encode elements as the roots of

polynomials. Since polynomials can be factored in polynomial time, all

these protocols either encrypt or use other methods to hide each party’s

polynomial until all polynomials are combined.
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Randomized polynomial sum

Objective: Let parties P1 , . . . ,P= encode their sets as polyno-

mials (1(G), . . . , (=(G) and pick uniformly random polynomials

A1(G), . . . , A=(G) from the same degree to compute (1(G)A1(G)+ · · ·+
(=(G)A=(G).

Kissner and Song [18] published one of the first work describing an

MPSI protocol. The key idea is to sum the polynomials that encode sets

to compute the intersection as in Equation 7.2, and to randomize each

polynomial to lower the probability of false positives and simultaneously

hide the original encoding. The protocol uses an additively homomorphic

threshold cryptosystem to privately aggregate the polynomials; the

authors recommend the threshold Paillier cryptosystem.

Similarly, Li and Wu [42] use Shamir’s secret sharing scheme to fulfill the

same objective, which allows to disregard the hardness assumptions that

homomorphic cryptosystems make at the cost of efficiency.

The later work by Cheon, Jarecki, and Seo [25] uses exponential ElGamal

rather than Paillier, which allows for distributed key generation. While

the decryption algorithm does not return the actual message <, but

rather an element 6< , this is not a problem because for every element G8
in their set, a party can check if 6G8 corresponds to 6< .

Due to the properties of polynomials, these protocols should also be able

to function as multiset intersections.

Oblivious evaluation

Objective: Let parties P1 , . . . ,P= encode their sets as polynomial

(1(G), . . . , (=(G) and let P1 obliviously evaluate them, computing

A%8(G) + H with randomness A to decrypt to payload H when G was

included in the set.

Hazay and Venkitasubramaniam [44] describe an approach in which the

leader performs a two-party PSI with each other party and concludes

the intersection by aggregating the results. In more detail, the other

parties encode their sets as encrypted polynomials using an additively

homomorphic threshold cryptosystem and the leader evaluates it for

each of its elements and multiplies the results with randomness. This

means that the two-party intersection returns an encrypted result to the

leader for each of its elements, encoding 0 when the considered element

is in the intersection and randomness otherwise. Finally the leader can

collaborate with the other parties to decrypt-to-zero and find which

elements are indeed in the intersection. In this case the payload H in the

objective is 0 because the leader can map the ciphertexts to its elements

using their index and this makes it possible to decrypt-to-zero.

The work by Freedman, Nissim, and Pinkas [41] from 2004 describes a

different scheme that uses the same payload-encoding private matching

technique. Apart from the leader all parties again encode their sets

as encrypted polynomial roots, after which the leader performs the

private matching payload-embedding to insert a payload H8 for each
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other party so that they sum to the element G = ⊕8H8 . The parties decrypt
this ciphertext. To prevent the leader from recognizing which party has

which elements they mask the results so that the masks XOR to 0 when

fully aggregated. After aggregation the leader can tell which elements

were in the intersection by checking if the resulting H equals the original

element G.

Sang and Shen [46] propose a protocol that fulfills the same objective,

but as randomness they compute a hash of the encrypted values. The

polynomial that is evaluated is the randomizedpolynomial sumdescribed

in the previous objective. The authors do not choose a specific additively

homomorphic cryptosystem for the semi-honest model, since the work

focuses on a scheme that is secure in the universal composability model,

which means that it can be used provably securely in any combination of

protocols. For this reason we do not mention this work in Table 13.1.

By default, all of these protocols do not hide the size of the leader’s set as

described in Section 4.3. This fact does make them more communication

efficient, since there is only one encryption per item in the leader’s set

and communication is strictly in a star topology.

13.2 Bitset-based MPSI

Logical operations on bitsets

Objective: Let parties P1 , ...,P= encode their sets as encrypted

bitsets and compute the logical AND between all of them.

In Multi-party Private Set Intersection Protocols for Practical Applications,
Bay et al. propose an MPSI protocol using bitsets. To encrypt the bits,

they use the threshold Paillier cryptosystem. Since bitsets are exact set

encodings, the result is exact, but when the universe grows too large the

operations become too long to be practical.

13.3 Bloom filter-based MPSI

Since Bloom filters store an approximate copy of a set, they reduce

communicational complexity by limiting the number of transmitted

elements. However, protocols must typically encrypt the filters, because

one can trivially check if it contains a specific element. Encrypting each bin

separately, though, means that there is a trade-off between the accuracy

of the filter and the runtime and bandwidth of the protocol.

Logical operations on filters

Objective: Let parties P1 , ...,P= encode their sets as encrypted

Bloom filters and compute the logical AND between all of them.
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1: The malicious protocol is ambiguously

called MPSI, but it is a 2-party protocol.

Kerschbaum [43] shows how to use the Goldwasser-Micali (GM) cryp-

tosystem to aggregate BloomFilters into a single BloomFilter representing

the intersection. While the homomorphic property of the GM cryptosys-

tem only allows evaluation of the XOR operation in the plaintext domain,

the protocol uses the Sander Young Yung (SYY) technique [47] to extend

it to perform a probabilistic AND operation as well. The authors also show

how to outsource the protocol so to obliviously evaluate the resulting

Bloom Filter. For this they use the Boneh-Gos-Nissim cryptosystem in-

stead, because the SYY technique cannot be used to perform both the

Bloom Filter intersection and evaluation due to the required multiplica-

tive depth. Actually, this paper proposes a 2-party protocol
1
but we pose

that it can be extended to a multi-party protocol by using a threshold

version of the GM scheme [35].

Counting Bloom filters

Objective: Aggregate the sets into a counting Bloom filter repre-

senting the multiset sum and extract a Bloom filter for elements

with multiplicity =.

Miyaji and Nishida [6] use the exponential ElGamal cryptosystem to sum

up the separate Bloom Filters into one Counting Bloom Filter. For each

bin, they then subtract the number = and decrypt-to-zero, which results

in an instance of a Bloom filter with a 1 where one would expect it and

random values for all the other positions.

In Practical Multi-party Private Set Intersection Protocols, Bay et al. propose

a similar construction that uses Paillier rather than exponential ElGamal,

and which inverts the Bloom filter so not to have to subtract = from each

ciphertext. The authors also provide an open source implementation.

Debnath et al. [37] provide an exponential ElGamal-based protocol as

well, which functions more like the protocol by Bay et al. Importantly,

their protocol saves bandwidth by having the leader aggregate the bins

pertaining to its set elements anddecrypting those, rather than submitting

all those bins for decryption. However, this does reveal the size of the

leader’s set.

13.4 Other MPSI

We identified two oblivious transfer-based protocols that rely on different

set representations. Both protocols use symmetric key techniques rather

than expensive homomorphic asymmetric cryptography. However, be-

cause of that, both of these schemes require messages to be sent between

all parties.
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Garbled Bloom filters

Objective: Let partiesP1 , ...,P= encode their sets as garbled Bloom

Filters and compute the logical XOR between all of them to compute

the aggregated garbled Bloom filter of the intersection.

Inbar, Omri, and Pinkas [45] propose a multi-party version of a similar

2-party garbled Bloom filter-based approach [22]. In this protocol, each

party first creates a regular Bloom filter as well as a garbled Bloom filter

(GBF) and C secret shares for each bin, for which the authors use XOR

secret sharing. Then each party performs multiple oblivious transfer

interactions with each other party: For each bin the sender requests a

random string where their regular Bloom Filter is 0 and the receiver’s

GBF contents when it is 1. Finally each party computes the logical XOR

over these results per bin and sends the resulting shares to the leader

to combine the shares. The leader can check which of its elements are

contained in aggregated GBF.

Individual element encodings

Kolesnikov et al. [5] proposed another protocol a year before, which

is also based on symmetric key techniques. The authors introduce a

new oblivious transfer primitive that they call Oblivious Programmable

Pseudo-Random Functions (OPPRFs). In short, a programmable PRF

is a pseudo-random function that returns a pre-programmed result

for certain inputs, and an OPPRF allows to evaluate such a function

obliviously.

There are two phases to this protocol: First, each party programs =

OPPRFs so that they output a secret share when they inputs an element

that is in this party’s set. When these secret shares are combined using an

XOR operation, the result is 0. The parties then query each others OPPRF

with the elements in their own sets. In the second phase, the leader

combines the secret shares by having each assistant XOR the resulting

shares that they received, and then using an OPPRF again to access those

results.

The authors have implemented and open-sourced this protocol. In their

work, they show that the protocol takes approximately 70 seconds for

5 parties to find the intersection of sets with one million items each,

which makes it faster than all known previous works for large sets. For

this reason we consider this protocol to be the state of the art in MPSI

protocols. Unfortunately, like the previously discussed protocol, this

scheme does suffer from a high degree of interactivity.

13.5 Summary

Looking at Table 13.1, itmay seem that the generalMPC solution compares

well to the other protocols. However, the asymptotic complexities do not

capture that this protocol has a large constant factor when it computes to

computation, as well as the (poly)logarithmic terms. Moreover, the table

shows how over time, protocols have required less stages of interaction.



13 Multi-party private set intersections 47

Currently, the fastest protocol for large sets is that by Kolesnikov et al. [5],

but it does suffer from a high communication cost and a high degree

of interaction. In general, symmetric key technique-based protocols are

experimentally faster for large sets than techniques relying on more

expensive asymmetric key techniques. Particularly, those based on ho-

momorphic threshold cryptosystems over integers such as Paillier and

exponential ElGamal.
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Threshold operations come in many variants. For example, there are

threshold intersections and thresholds unions, where the intersection

only reveals the elements that are in at least � sets as well as the lead-

ers set. Moreover, there are threshold operations and over-threshold

operations, where unlike for threshold operations, the over-threshold

operations reveal the multiplicity of elements in the resulting set. In other

words, over-threshold operations are not count-hiding. Do note that the

‘threshold’ in threshold operations is not related to the term in threshold

cryptosystems.

Apart from these variants, there are recent works [48–50] that propose

protocols named threshold intersections, but they achieve a different

functionality than the threshold intersections explained in Chapter 2.

Specifically, rather than returning the elements that appear at least �
times, they return the intersection, if and only if the cardinality of the

intersection exceeds a threshold �. In that sense, they are conditional
set intersections. We do not take these protocols into account in our

comparison. Table 14.1 gives an overview of the threshold intersection

and threshold union protocols discussed in this chapter.

Table 14.1: Overview of prevalent works proposing T-MPSO protocols, including asymptotic complexities and security properties.

Work Communication Computation Security Privacy
Ref. Year Topology Leader Assistant # Leader Assistant Collusion Assumption Mal? Size Count

General MPC Mesh $̃(=:�)* $̃(=:�)* - - - = − 1 - - -

[18] 2005 Wheel $(=2:�)* $(=2:�)* 4 $(=C:� + :2�)* $(=C:� + :2�)* = − 1 DCR X
[18] 2005 Wheel $(=2:�)* $(=2:�)* 4 $(=C:� + :2�)* $(=C:� + :2�)* = − 1 DCR X
[51] 2007 Mesh $(=:�)* $(=:�)* 8 $(=:2�)* $(=:2�)* = − 1 DCR

[6] 2015 Star $(=2:�)* $(=:�)* 2 $(=:�)* $(=:�)* = − 1 DDH X
Exact (Ours) Wheel none $(|U|=2�) 2 $(|U|=2�) $(|U|=2�) = − 2 PRF X X
Approx. (Ours) Wheel none $(=2:�) 2 $(=2:�) $(=2:�) = − 2 PRF X X

14.1 Polynomial roots-based T-MPSO

Polynomial roots are suitable for performing threshold operations, be-

cause we can reduce the multiplicity of the roots by one for every time

we compute its derivative.

Multiply-then-derive

Objective: Let parties P1 , . . . ,P= encode their sets as polynomials

(1(G), . . . , (=(G) to compute their product (1(G) . . . (=(G), then
compute its � − 1th derivative.

To the best of our knowledge, Kissner and Song [18] proposed the first

multi-party private threshold protocols. Similar to their other protocols,
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the authors propose to use the threshold Paillier cryptosystem to manip-

ulate encrypted polynomials by their coefficients. The protocol works by

passing around an encrypted polynomial and having each party multiply

their polynomial set encoding with it. Then, the parties compute the

derivative of this polynomial, randomize it, multiply it with a fixed

polynomial containing no roots from the universe U and add it to their

original but randomized encoding. This results in a polynomial encoding

the over-threshold set union, without leaking information about the

elements in the input sets.

While the polynomial can be factored in polynomial time, the authors

suggest that the parties evaluate the polynomial for each element in their

set, multiply it with a random number and add that element to it. When

such a ciphertext is decrypted, it is a random number when the element

does not belong in the threshold union, and otherwise it is the decryption

of the corresponding element. The authors also propose a threshold set

union protocol that does not reveal the final counts.

Sang and Shen [46] propose a protocol that fulfills the same objective.

Instead of randomizing using random numbers, they randomize using

a hash of the encrypted values, and instead of factoring the final result,

they let a party evaluate the polynomial for the elements in their set

and collaboratively decrypt the ciphertext to show whether or not that

element was indeed in the resulting set. For this reason, this protocol

implements a threshold set intersection rather than a threshold set union.

We exclude this protocol from the table, since it does not provide concrete

choices for its cryptographic primitives.

Frikken [51] propose an over-threshold union protocol that is an extension

from their set union protocol that we discuss in the next chapter. Like

the other protocols, each party submits an encrypted polynomial and

the parties multiply these together, after which they take the � − 1th

derivative. This time, instead of hiding the elements’ multiplicities the

parties simply evaluate the resulting polynomial for each element in their

sets and randomize the results, after which they proceed with the MPSU

protocol. For this reason the protocol requires many stages in which each

party must be online. The protocol uses a bulletin board to post messages

to but we replace this by broadcasts in our comparison.

14.2 Bloom filter-based T-MPSO

Counting Bloom filters

Objective: Aggregate the sets into a counting Bloom filter repre-

senting the multiset sum and extract a Bloom filter for elements

with multiplicity ≥ �.

Following their set intersection protocol, Miyaji and Nishida [6] show

how to extend it to a threshold set intersection. As before, they compute

a counting Bloom filter that encodes the multiset sum of the input sets,

by performing addition on encrypted Bloom filters that encode the input

sets using exponential ElGamal. To extract a Bloom filter only encoding

the threshold set intersection, they create = − � ciphertexts of each bin,
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by subtracting a number G from each, where G = �, . . . , =. As a result,

when the ciphertexts are decrypted-to-zero, if one ciphertext relating to

a bin is zero, that bin is included in the resulting counting Bloom filter.

Which ciphertext is zero, reveals the count. The resulting counting Bloom

filter can be evaluated by the leader. So, this protocol implements an

over-threshold set intersection.

14.3 Other T-MPSO

Exhaustive search

Mahdavi et al. [52] propose a protocol that is based on a new method

that the authors call oblivious pseudo-random secret sharing (OPR-SS).

From a high level, the protocol works by having each party engage with

the key holder in an OPR-SS protocol to generate some secret shares that

depend on the elements in their sets. The parties then send these shares

to a reconstructor as part of a hash table, after which the reconstructor

exhaustively tries all combinations of parties’ sets to check if the shares

combine to form a pre fixed secret, which is 0 in their example. Differently

from other threshold protocols, this protocol not only leaks the count but

also which parties’ had this element in their input sets. For this reason

we do not include this protocol in our comparison table.

14.4 Summary

Generally, threshold operations require a high degree of interaction.

Only the protocol by Miyaji and Nishida [6] required two stages of

communication, but the protocol is not count-hiding. So far, there were no

works that are count-hiding and only require two stages of interaction.
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Multi-party private set unions are in some ways harder to realize than

multi-party private set intersections because they require it to be feasible

to extract all the elements contained in a set representation. We pose

that for this reason, fewer works propose MPSU protocols. On the other

hand, note that a threshold set union protocol with threshold � = 1 can

also take the place of an MPSU protocol, such as those discussed in

the previous chapter. Table 15.1 compares the works discussed in this

chapter.

Table 15.1: Overview of prevalent works proposing MPSU protocols, including asymptotic complexities and security properties.

Work Communication Computation Security Privacy
Ref. Year Topology Leader Assistant # Leader Assistant Collusion Assumption Mal? Size

General MPC Mesh $̃(=:�)* $̃(=:�)* - - - = − 1 - - -

[51] 2007 Mesh $(=:�)* $(=:�)* 6 $(=:2�)* $(=:2�)* = − 1 DCR X
[19] 2012 Mesh $(=3:2�)* $(=3:2�)* 2 $(=4:2�)* $(=4:2�)* b =

2
c none X X

Exact (Ours) Star none $(|U|�) 1 $(|U|=�) $(|U|=�) = − 2 PRF X
Approx. (Ours) Star none $(:�) 1 $(=2:� + |U|) $(=2:�) = − 2 PRF X

15.1 Polynomial roots-based MPSU

Oblivious evaluation

Objective: Let parties P1 , . . . ,P= encode their sets as

polynomial (1(G), . . . , (=(G) and let each set of parties

{P1}, {P1 ,P2}, . . . , {P1 , . . . ,P=} in turn obliviously evaluate

their multiset sum, privately reporting which elements were not

contained in the previous set.

The idea of the protocol by Frikken [51] is to use the multiset sum

operation for polynomials as described in Section 7.2, and to evaluate it

obliviously not to get a sense of an element’smultiplicity. Specifically, each

party creates an encrypted polynomial set encoding of their input and

broadcast it. Then, in turn, each party receives an encrypted polynomial

set encoding, multiplies it with their polynomial, and evaluate it for

their elements. This returns ciphertexts that decrypt to 0 when the

corresponding element was indeed contained in the encoding. The party

does not yet decrypt, and broadcasts a tuple containing this ciphertext

multiplied with the corresponding element, as well as an encrypted

copy of the element. After all parties are done, they randomize and

securely shuffle all ciphertext tuples and decrypt them. They discard any

zeroes, and otherwise recover an encrypted element that is part of the

set union.
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Randomized polynomial sum

Objective: Let parties P1 , . . . ,P= encode their sets as polyno-

mial %1(G), . . . , %=(G) and pick uniformly random polynomi-

als A1(G), . . . , A=(G) to find some
D′(G)
!(G) =

∑
8
A8 (G)
%8 (G) so to extract

!(G) = lcm(%1(G), . . . , %=(G)).

Seo, Cheon, and Katz [19] propose an MPSU protocol that works by

computing the least common multiple of sets encoded as polynomials,

which they factor to complete the protocol. While polynomial factoring

over a finite field can be done in polynomial time, it is an expensive

operation. Fortunately, the authors encode the polynomials in such a

way that they are more easily factored using Reversed Laurent Series.

The protocol revolves around arithmetic on the rational randomized

polynomials
A8 (G)
%8 (G) , which are shared using Shamir’s secret sharing. How-

ever, this requires the use of a collaborative multiplication protocol,

which results in interaction and communication overhead. The protocol

is information-theoretically secure.

15.2 Summary

The work by Frikken [51] has small asymptotic complexities, but it

requires six stages of communication. On the other hand, the work by

Seo, Cheon, and Katz [19] requires just two stages of communication, but

its complexities scale poorly with the number of parties involved. While

the general MPC solution seems to perform just as good as Frikken [51],

this protocol incurs a large constant factor in terms of communication

and run time.



Multi-party private set
operation-cardinality protocols 16

16.1 Polynomial roots-based MPSO-
CA . . . . . . . . . . . . . . . . . . 53

Oblivious evaluation . . . . . 53
16.2 Bitset-based MPSO-CA . . . 54

Logical operations on bitsets 54
16.3 Bloom filter-based MPSO-CA54

Shuffling Bloom filters . . . 54
16.4 Other MPSO-CA . . . . . . . 54

Garbled Bloom filters . . . . 54
Min-max sketches . . . . . . . 55
Individual element encodings55

16.5 Summary . . . . . . . . . . . . 56

In this chapter we discuss two kinds of multi-party private set operation-

cardinality protocol: set intersection-cardinality and set union-cardinality

protocols. There are many different ways to realize such an operation,

such as estimating it using sketches, or shuffling bitsets or Bloom filters

to allow a party to simply count the number of filled bins. Some of the

protocols we discuss here are simple extensions of MPSI and MPSU

operations, but do note that there is not always a trivial way to extend a

pre-existing protocol in such a way.

Work Communication Computation Security Privacy
Ref. Year Operation Topology Leader Assistant # Leader Assistant Collusion Assumption Mal? Size

General MPC MPSI-CA Mesh $̃(=:�)* $̃(=:�)* - - - = − 1 - - -

[21] 2005 MPSI-CA Mesh $(=:�)* $(=:�)* 3 $(=:�)* $(=:�)* 1 CKHF X
[18] 2005 MPSI-CA Wheel $(=2:�)* $(=2:�)* 4 $(=C:� + :2�)* $(=C:� + :2�)* = − 1 DCR X
[51] 2007 MPSU-CA Mesh $(=:�)* $(=:�)* 6 $(=:2�)* $(=:2�)* = − 1 DCR

[53] 2010 MPSU-CA Mesh $(=C:2�)* $(=C:2�)* - $(=C:2�)* $(=C:2�)* b =
2
c none X

[37] 2021 MPSI-CA Wheel $(=:�)* $(:�)* 3 $(=:ℎ�)* $(:�)* = − 1 DDH

Exact (Ours) MPSO-CA Wheel none $(|U|=�) 2 $(|U|=�) $(|U|=�) = − 1 DDH X
Approx. (Ours) MPSO-CA Wheel none $(=:�) 2 $(=:�) $(=:�) = − 1 DDH X

16.1 Polynomial roots-based MPSO-CA

Oblivious evaluation

Objective: Let parties P1 , . . . ,P= encode their sets as polynomial

(1(G), . . . , (=(G) and let each party in turn obliviously evaluate

their multiset sum, privately reporting how many elements are in

the final set.

Kissner and Song [18] propose a protocol that is similar to their MPSI

protocol that we discuss in Chapter 13. Instead of revealing the elements

after obliviously evaluating the aggregated polynomial, the parties

randomize the ciphertexts and shuffle them, after which they count the

number of 0s.

The protocol by Frikken [51] that we discussed in Chapter 15 can be

extended to perform set union-cardinalities, simply by changing the way

a party creates a tuple. Instead of decrypting to the result set item, the

tuples’ ciphertexts will then decrypt to 0 when it is a duplicate, and a

random number otherwise, so it should be counted.
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16.2 Bitset-based MPSO-CA

Logical operations on bitsets

Objective: Let parties P1 , . . . ,P= encode their sets as encrypted

bitsets and compute the logical AND between all of them, then

compute their sum 2 and return |U| − 2.

Burkhart et al. [53] propose SEPIA, which is a library for securely

aggregatingmulti-domain network data using Shamir’s secret sharing. In

this work they provide a protocol for the distinct-count problem, which

is identical to a set union-cardinality. The operation is simple: Encode

each party’s set as a bitset, invert it, compute the AND operation between

them, and return the size of the universe minus the total sum of the

aggregated inverted bitset. To do so securely, the AND and sum operations

are executed using secret sharing. Due to the AND operation, the number

of rounds of interaction in the protocol scales logarithmically with the

number of parties =.

16.3 Bloom filter-based MPSO-CA

Shuffling Bloom filters

Objective: Aggregate the sets into a counting Bloom filter repre-

senting the multiset sum and extract a Bloom filter for elements

with multiplicity =, then shuffle its bins.

Debnath et al. [37] propose a protocol using (=, =)-exponential ElGamal,

so the parties can generate a public key without a trusted dealer. From

a high level, the protocol has every party encode their sets as a Bloom

filter, then aggregate these to get the Bloom filter corresponding to

the intersection. At this point, the leader selects those encrypted bins

corresponding to the elements in its set and aggregates them. The parties

then take turns shuffling the ciphertexts, after which they collaboratively

decrypt. The leader can then simply count the number of bins that were

0. This protocol leaks the size of the leader’s set because it only submits

those bins corresponding to the leader’s elements to shuffle and decrypt.

Also, while the authors give an argument for how to make the protocol

secure in the malicious model, they do not prove that it is indeed.

16.4 Other MPSO-CA

Garbled Bloom filters

Objective: Let parties P1 , . . . ,P= encode their sets as garbled

Bloom filters, then securely aggregate and shuffle the bins, to count

the number of filled bins without revealing the resulting set.
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Egert et al. [16] propose a protocol based on garbled Bloom filters to

outsource the aggregation and evaluation of set intersection and union-

cardinalities. The oblivious aggregation takes the shape of C layers of

accumulating parties that receive additive secret shares from each party

for every bin in the Bloom Filter: All bins that contained a 1 are turned

into a random number, while 0s remain 0, and these are shared. For

an intersection the Bloom Filters are inverted. The accumulators sum

the shares and forward the aggregated shares to the final evaluator in

a permutation that they decided collectively. The evaluator counts the

number of zeroes to determine an estimate of the resulting set cardinality.

The collusion resistance in this protocol comes from external parties: In

a non-outsourced setting the protocol would not be collusion resistant,

since any party would know the permutation used, which reveals the

Bloom filter representing the resulting set. Due to the requirement of

having multiple layers of accumulating parties, the protocol requires a

high degree of interaction. We exclude this protocol from the table for

its dependence on outsourcing, since we cannot define complexities for

each party or express its interactivity.

Min-max sketches

Objective: Let parties P1 , . . . ,P= encode their sets as min-max

sketches, then securely aggregate and count how many bins are

identical, to estimate the Jaccard index.

Dong and Loukides [23] propose an approximate protocol that uses

min-max sketches to estimate the Jaccard index of a set, which in turn

allows to compute the set intersection-cardinality. To do so, however, the

parties must already have an estimate of their sets’ union-cardinality.

The authors do give a description about how to construct an MPSU-CA

protocol, but they do not describe it in detail. Their MPSI-CA protocol

is as follows. Each party encodes their set as a min-max sketch. Then

the parties evaluate each bin of the sketches using a secure equality

protocol, and count in how many cases the bins were indeed equal.

Finally, they compute the estimate. We exclude this work from the table

as the authors do not propose concrete choices for the secure equality

test, multiplication and floating point division protocols. In any case, all

these protocols require some form of interaction when done over additive

secret shares.

Individual element encodings

Objective: Let parties P1 , . . . ,P= compute a keyed commutative

one-way hash function on the elements of every party’s set, and

then count how many hashes are identical.

The protocol by Vaidya and Clifton [21] relies on a commutative one-

way hash function to compute the set intersection-cardinality. In short,

such a hash satisfies all the requirements of a cryptographic keyed hash

function, but in addition it holds for hash function H that H:1
(H:2
(G)) =

H:2
(H:1
(G)) for two keys :1 and :2 and an element G. The idea behind
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this technique is that when two elements are hashed by each party with

their own key, nomatter the order in which this happened, their hashwill

be identical. Unfortunately, together, two parties can launch a probing

attack, meaning that the protocol is not collusion resistant.

16.5 Summary

No previous work so far manages to take less than three stages of

communication. This seems to be because these protocols are split

into three stages: aggregation, shuffling and decryption. The smallest

asymptotic complexities are achieved by Debnath et al. [37], but this work

does not hide the size of the leader’s set.
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We have already discussed several protocols that support multiset op-

erations. In fact, we can realize multiset sums with an over-threshold

threshold union with � = 1. And next to that, many polynomial-based

protocols extend naturally to multisets as well. In this chapter we shortly

address those multi-party private multiset operation protocols that we

have not examined before.

17.1 Polynomial roots-based MPMO

Multiply polynomials

Objective: Let parties P1 , . . . ,P= encode their sets as polynomial

(1(G), . . . , (=(G) and compute the multiset sum

∏=
8=1
(8(G).

The work by Hong et al. [7] studies the problem of multiset sums under

the misnomer of ‘multiset unions’. In [54] they provide experimental

results. In their protocol, the authors adapt the ElGamal cryptosystem

to encrypt whole polynomials rather than integers, of which security

relies on the Short-Interval DDH assumption (SI-DDH). Like Kissner

and Song [18], they encode multisets as polynomials and multiply them

homomorphically, this time within a single ciphertext, to obtain the

polynomial encoding the multiset sum. After decryption, the polynomial

must still be factored, which is possible in polynomial time [20]. The

protocol’s communication is a constant factor lower than the protocol by

Kissner and Song [18] in the size of the universe |U|. Computation for

the leader takes $(=2.6:1.6)* operations, while assistants only perform

$(=1.6:1.6)* operations.

17.2 Bloom filter-based MPMO

Counting Bloom filters

Objective: Aggregate the sets into a Counting Bloom Filter repre-

senting themultiset and extract all possible elements in the universe

U.

The multiset union protocol by Shishido and Miyaji [39] uses a definition

of Counting Bloom Filters that is different from the definition we give.

The goal for this protocol is to return as accurately as possible the

multiplicities of the elements in the resulting union. Every assistant in

the protocol actually uses two Bloom Filters alongside each other that

are constructed differently so that one represents an upper bound for the

multiplicity and the other a lower bound, and they send it to the leader,
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who simply aggregates both Bloom Filters separately by summing them.

Finally, the leader goes through all possible elements in the universe U

and checks if they are contained in the Bloom Filters. By using the upper

and lower bound they can make a best-effort multiset union. It seems

that the order of traversal changes the outcome of this multiset union

and because we are exhaustively checking each element in the universe,

the protocol is either inefficient or inaccurate for large universes.

17.3 Other MPMO

The work by Blanton & Aguiar [9] proposes interactive protocols for

several types of set and multiset operations based on secret sharing and

some sub-protocols, including oblivious sorting and secure comparisons.

They do so using the multiset-to-set transformation that we discussed

in Chapter 3, but they also provide specialized protocols for multiset

operations. The multiset sum operation is realized by their ‘multiset

union’ protocol. While the authors leave the round complexity as a

variable depending on the choice of sub-protocols, it must scale at least

linearly with the number of input elements :.

17.4 Summary

As for the other works, no previous works seem to offer a non-interactive

solution, but this not necessarily mean that these protocols require large

bandwidth. For example, the protocol by Hong et al. [7] fit the whole

multiset encoding within one ciphertext. Apart from these work, there

are recent works [55, 56] that propose specialized multiset intersection-

cardinality protocols in the two-party case.



Non-interactive protocols

So far there were no known protocols for private set operations between multi-
ple parties that required no interactions. In this part we propose the first non-
interactive protocols for this task, which is our own contribution. We discuss two
constructions: In the first construction, every party must have some shared secret
with other parties beforehand, after which they can execute our protocols non-
interactively. In the second construction, parties only have to share a public key
beforehand, after which the protocols are non-interactive.
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Several of the works in multi-party private set operations use threshold

cryptosystems to securely transmit elements of a set encoding to another

party [6, 18], including our earlier bitset-based and Bloom filter-based

works. However, as discussed in Chapter 11, such a threshold cryptosys-

tem necessarily introduces interactivity when decrypting a ciphertext:

Several parties must receive the ciphertext, partially decrypt it and trans-

mit the resulting decryption shares so they can be combined. For this

reason, all our non-interactive protocols rely on secret sharing methods

instead, which is discussed in Chapter 18.

In this chapter we introduce two constructions for multiplicative secret

sharing. In the first construction, a party must have some pre-shared

secret key with several other parties. In the second construction, it is only

necessary for a party to share their public key. These constructions are

analogous to symmetric (private-key) and asymmetric (public-key) cryp-

tosystems, respectively, and they enjoy similar benefits: The symmetric

construction is significantly faster than the asymmetric construction, but

it is harder to deploy in practice. That is, it does not require expensive

pairing operations, but it requires a setup phase between all pairs of

parties.

18.1 Outline

Recall from Chapter 18 that for a multiplicative secret sharing scheme,

the secret is revealed after multiplying all shares together. Consider the

case where we have shares F8 for 8 = 1, . . . , = that we call masks, since

they multiply to the identity:

=∏
8=1

F8 = 1

We describe constructions for generating shares F8 that abide to this

equation. The intuition behind both non-interactive secret sharing setups

is the following: Let each party P8 generate 8 − 1 unknown numbers D8 , 9
for 9 = 1, . . . , 8 − 1. Now, let each party P8 compute:

F8 =
8−1∏
9=1

D8 , 9

=∏
9=8+1

D−1

9 ,8 (18.1)

In other words, let party P8 multiply together all its unknown numbers,

and the inverse of the 8th random numbers of parties with a higher index
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8. Then, the product of F8 for 8 = 1, . . . , = is indeed the identity:

The 8th unknown numbers of parties P9

with 9 = 8 + 1, . . . , = are the same as the

8th unknown numbers of all partiesP9 for

8 = 1, . . . , 9 − 1.

=∏
8=1

F8 =
=∏
8=1

(
8−1∏
9=1

D8 , 9

=∏
9=8+1

D−1

9 ,8

)
(18.2)

=

(
=∏
8=1

8−1∏
9=1

D8 , 9

) (
=∏
8=1

=∏
9=8+1

D−1

9 ,8

)
(18.3)

=

(
=∏
8=1

8−1∏
9=1

D8 , 9

) (
=∏
9=1

9−1∏
8=1

D−1

9 ,8

)
(18.4)

=

=∏
8=1

8−1∏
9=1

D8 , 9D
−1

8 , 9 (18.5)

= 1 (18.6)

In the coming sectionswediscuss how to construct the unknownnumbers

so that F8 can be used as a secure mask for multiplicative secret sharing.

Note that when we say unknown, we mean that this number is only

known to those parties who need it to compute their mask. In the coming

sections we provide a formal security proof for these constructions, to

prove that the constructions are secure against up to = − 2 colluding

parties and to clarify what it means for these numbers to be unknown.

To ease notation we assume D8 , 9 = D9 ,8 in the remainder of this work.

18.2 Symmetric construction

The outline of our scheme relied on some ‘unknown’ numbers D8 , 9 but we

did not specify in what way they are unknown. In this section we discuss

a symmetric construction where these unknown numbers are chosen by

a pseudo-random function, and number D8 , 9 is only known to parties

P8 and P9 . This construction was discussed by Erkin and Tsudik [57].

The reason that we call this construction symmetric is that each pair

of parties share a secret key sk8 , 9 . This is analogous to symmetric-key

cryptography, where parties share the same secret key, rather than a

practically irreversible public key.

In the remainder of ourworkwe assume that the secret keys are already in

place. So for example, each pair of parties has previously communicated

a truly random secret key over a secure channel, or each pair of parties

has executed a secure key exchange. The security of this symmetric setup

relies on a cryptographically-secure Pseudo-Random Function (PRF).

In addition, we prove information-theoretic security under the random

oracle model.

Mask generation

We denote a PRF by the function PRF

(
sk8 , 9 , C

)
, which represents the Cth

output of the PRF that is seeded with sk8 , 9 . We shall denote the group of

the mask by G) , to be consistent with the asymmetric construction. The
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mask F8 of party P8 for run C of a protocol is then given by:

F8 =
8−1∏
9=1

PRF

(
sk8 , 9 , C

) =∏
9=8+1

PRF

(
sk8 , 9 , C

)−1 ∈ G) (18.7)

Note that every C must be used only once.

Implementation choices

The description of this construction does not consider any particular

group. For our purposes we are not restricted to a group over the integers,

except for our specialized multiset sum protocol described in Chapter 21.

So, for the other parts of this thesis we use more efficient groups over

elliptic curves. The reason such a group is more efficient is that there

exist specialized attacks to find the discrete logarithm in integer-based

groups. As such, an elliptic curve group can be significantly smaller for

the same level of security. Note that this construction does not require

the use of pairing-friendly curves. Hence, we use the Ristretto version of

Curve25519.

To realize the pseudo-random function, we choose to implement this

using a cryptographically-secure hash function. This allows us to use the

hash-to-curve functionality for Ristretto curves, to efficiently generate

a corresponding point on the curve without performing point multipli-

cation. We call the hash function with the seed sk8 , 9 , appended by the

nonce C. Importantly, the hash function should be secure against length-

extension attacks, to prevent an adversary from reducing the search

space when attempting to recover the seed. One such hash function is

SHA3-512 [58] [58]: Dworkin (2015), SHA-3 Standard:
Permutation-Based Hash and Extendable-
Output Functions

.

Security

Let us replace the cryptographically-secure PRF with a random oracle.

Instead of generating the pseudo-random element PRF

(
sk8 , 9 , C

)
, party 8

supplies the random oracle with the seed sk8 , 9 , appended by the index

of this run of the protocol C. Then, clearly mask F8 is indistinguishable

from randomness for any party that does not know sk8 , 9 . By extension,

since our group is cyclic, the entire secret share is indistinguishable

from randomness. In other words, as long as there is a seed sk8 , 9 that
remains unknown to a group of colluding parties, the secret shares are

indistinguishable from randomness. This is always the case when at

least two honest parties remain, so the secret sharing scheme is collusion

resistant for up to = − 2 colluding parties under the random oracle

model.

18.3 Asymmetric construction

Our asymmetric construction is entirely based on the secret shares in the

secure aggregation protocol by Kursawe, Danezis, and Kohlweiss [59],

and as further studied by Patsakis, Clear, and Laird [60]. In fact, for

multiset sums between bitsets we use their protocol without adaptations.
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The key takeaway of this protocol is the asymmetric construction that

enables parties to non-interactively generate masks for a group of parties

only by knowing their public keys. As a consequence, parties only have

to secure one secret key and the total number of keys in the setup grows

linearly rather than quadratically when compared to the symmetric

setup.

Mask generation

Recall from Section 9.3 that using bilinear pairings we can compute

multiplications in the exponent of multiplicative elements in a group G) .

Specifically, this is achieved by the pairing function e : G1 ×G2 → G) . In

addition, we can hash objects to curve points in the elliptic curve group

G2 using a hash function that we denote by H2 : ℤ→ G2. Importantly,

this hash function has the property that it is infeasible to know the

discrete logarithm of the curve point in terms of the generator base. It is

this property that allows us to replace the PRF from the symmetric setup.

Note that C must be a nonce.

First, all parties once execute the one-time setup:

One-time setup

1. The leader P1 broadcasts the public parameters: % ∈ G1,

& ∈ G2 and generator 6 = 4(%, &) ∈ G) . We denote the

order of these groups as @.
2. Every party P8 for 8 = 1, . . . , = generates their public key

pk8 ← sk8% ∈ G1 from a secret key sk8 ∈' ℤ@ and broadcasts

this public key.

The one-time setup requires a party to perform a single pairing and an

elliptic point multiplication in G1. This should take at most $(�) time. It

is possible to extend the setup with a step to pre-compute the inverse of

all 8′ > 8 public keys pk8′ for a constant time speedup of the remainder of

the protocol.

The mask F8 of party P8 for run C of a protocol is then given by:

F8 =
8−1∏
9=1

e

(
pk9 ,H2(C)

) sk8 =∏
9=8+1

(
e

(
pk9 ,H2(C)

) sk8
)−1

∈ G) (18.8)

It is clear that in this setup, D8 , 9 = e

(
pk9 ,H2(C)

) sk8
. We provide the

equation in this form to adhere to the format of Equation 18.1, but in

practice, it is more efficient for each party P8 to compute the inverse of

pk9 for 9 = 8 + 1, . . . , = in advance and perform the exponentiation with

sk8 once after completing the products.

Implementation choices

In this thesis we use a Barreto-Naehrig curve that satisfies 128-bit security

in terms of AES security, as explained in Section 9.3. The reason for this
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choice is that it is implemented in the MIRACL C++ library, and that it is

used in other proof of concept implementations of research work [59].

Security

We give a proof that to show that the secret shares in the asymmetric

construction are computationally indistinguishable from random. Note

that our proof relies on the BDDH assumption as discussed in Section

9.2. For this scheme to be secure it should be infeasible for an adversary

to find the discrete log for an output of the hash function H2 to group

G2.

Corollary 18.1 Following the Bilinear Decisional Diffie-Hellman (BDDH)
assumption it holds that:

(%, &, 0%, 1%, 2&, 4(%, &)012) 2≡ (%, &, 0%, 1%, 2&, A)

for generators % ∈ G1 and & ∈ G2, numbers 0, 1, 2 ∈ ℤ@ and random point
A ∈' G) .

The BDDH assumption in turn implies the infeasibility of the Elliptic

Curve Discrete Log Problem (ECDLP), which is the task of retrieving 0

given only tuple (%, 0%)with generator % and a number 0. The adversary

is constrained as follows:

I The adversary will only form collusions of = − 2 parties.

I The adversary cannot compute the discrete logarithm for an output

of the hash function to group G2.

I The adversary does not know the secret key sk8 of a non-colluding

party P8 .

Theorem 18.2 For all 8 ∈ {1, . . . , =} share F8 is computationally indistin-
guishable from randomness under the BDDH assumption: F8

2≡ A′
8
for some

random point A′
8
∈' G) , given the aforementioned constraints.

Proof. We give a proof by contradiction: Let us assume that there exists a

distinguisher D that can tell apart F8 from A′
8
. We show that D solves the

Decisional Bilinear Diffie-Hellman problem. Consider the tuple of pub-

lic information pertaining to party P8 : (%, &, sk1%, . . . , sk=%, ℎ;&, F8),
where H2(;) = ℎ;& for some known ;.

1. D can write the sum of all public keys except for pk8 as B8% =∑8−1

8′=1
sk8′% +

∑=
8′=8+1

sk8′%.
2. D can expand F8 = 4(%, &)B8 ℎ;ski

.

3. Note that after substituting pki = ski%, distinguisher D can create

tuple

) = (%, &, B8%, sk8%, ℎ;&, 4(%, &)B8 ℎ;ski)

4. D can create another tuple

' = (%, &, B8%, sk8%, ℎ;&, A′8 )
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sk8 is chosen uniformly at random and ℎ; is uniformly chosen under the

statistical properties of a strong hash function. Furthermore, since at

least one term in B8 is chosen uniformly at random and unknown to D,

B8 is also a uniformly random element in G1. As a consequence, tuple )

should be computationally indistinguishable from ' under Corollary 18.1.

However, since D can distinguish between F8 = 4(%, &)B8 ℎ;ski
and A′

8
, the

distinguisher breaks the Decisional Bilinear Diffie-Hellman assumption.



Table 19.1: Truth table of an OR operation.

0 1 0 ∨ 1
0 0 0

1 0 1

0 1 1

1 1 1

Table 19.2: Truth table of a multiplicative

secret sharing-based OR operation.

0 1 01

F0 F1 1

A0 F1 A0F1
F0 A1 F0A1
A0 A1 A0A1
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At the core of our non-interactive multi-party private set and multi-

set protocols are secure, non-interactive OR and AND protocols. These

protocols can also be of independent interest. In this chapter we give

a description of these protocols, we prove their correctness, provide a

formal simulation-based security proof and state their efficiency. Actually,

we demonstrate correctness and security for the OR protocol, and we pose

that by DeMorgan’s law, the AND protocol should inherit these properties

as we can express it in terms of the OR protocol.

19.1 Protocol description

The intuition behind these protocols is that we can implement the OR

operation using any group, which we show in Tables 19.1 & 19.2 for a

multiplicative group. Let us map an input of 0 to the identity element,

and an input of 1 to a random group element. Then, we can perform

an OR operation by applying the group operation between all inputs. If

the result is the identity element, depending on the size of the group,

there is an overwhelming probability that all the inputs were the identity

element, so the result should be 0. Otherwise, the result should be 1,

because at least one input must not have been 0. Formally, the protocol is

as follows:

Secure OR protocol

1. All parties P8 for 8 = 1, . . . , = set

E8 ←
{
F8 ∈ G) if G8 = 0

A8 ∈R G) if G8 = 1

, whereF8 is the generated mask

2. All assistants P8 for 8 = 2, . . . , = send their supposed share

E8 to P1.

3. The leader P1 determines the operation’s result:

I ←
{

0 if

∏=
8=1
E8 ≡ 1

1 otherwise Protocol 19.1: Protocol for securely com-

puting an ORbetween several parties’ input

bits.

Note that due to the randomness, it is not possible to know how many

parties submitted 0 or 1. Also note that this protocol can be computed

many times inparallel,meaning that parties cannon-interactivelyperform

multiple OR operations without requiring additional interactions.

Now we can describe the AND protocol in terms of the OR protocol, which

allows the AND protocol to inherit its properties. Of course, it is also

possible to describe a stand-alone version of the protocol. The protocol is

as follows:
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Secure AND protocol

1. All parties P8 for 8 = 1, . . . , = invert their input G′
8
= ¬G8 .

2. All parties P8 for 8 = 1, . . . , = take part in the secure OR
protocol on G′

8
, and the leader P1 outputs I

′
.

3. The leader P1 determines the operation’s result through

inversion: I = ¬I′. Protocol 19.2: Protocol for securely com-

puting an AND between several parties’ in-

put bits.

19.2 Correctness

The secure OR operation can output 0 or 1. We show that the protocol

outputs the correct result with overwhelming probability. In the previous

chapter we demonstrated that:

=∏
8=1

F8 ≡ 1 (19.1)

Now, let us prove that the protocol performs the functionality expected

of an OR operation. First, the result should be 0 when all parties’ input bit

is 0:

Theorem 19.1When ∀8 ∈ {1, . . . , =} it holds that G8 = 0, then I = 0.

Proof. Note that it suffices to prove that

∏=
8=1
E8 ≡ 1 following the last

step of the protocol. At the start of our protocol, if G8 = 0 then E8 = F8 .

This is the case for all 8 = 1, . . . , =. By Equation 19.1 we have

∏=
8=1
E8 ≡ 1.

So I = 0.

Secondly, the result should be 1 when at least one party’s input bit is

1:

Theorem 19.2When ∃8 ∈ {1, . . . , =} so that party P8 has G8 = 1, then
I = 0 with negligible probability.

Proof. It suffices to prove that

∏=
8=1
E8 ≡ 1 with a negligible probability.

There are some 8 for which G8 = 1, let us say that these form a set �1
and �0 = �1. We will give a proof by contradiction. To satisfy Equation

19.1 it must hold that

∏
8∈�1 E8 ≡

∏
9∈�0 F 9 . Since E8 for 8 ∈ �1 are random

elements ofG) we can say that the product of all but one of these random

elements is some other seemingly random element A′ ∈ G) . So we have∏
8∈�1\{G} E8 = A

′
. Now the probability that a random E8′ ∈' G) satisfies

A′E8′ ≡
∏

9∈�0 F 9 is only
1

|G) | , which is negligible for a large enough group

G) . So with negligible probability I = 0.

19.3 Security

We now provide simulation-based proofs for the secure OR protocol.

Specifically, we prove that there is no inadvertent leakage of information,
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using the proofs from the previous chapter that demonstrate that the

shares are computationally indistinguishable from randomness.

To prove that there is no inadvertent leakage of information in our proto-

col, we follow the formulation of security for deterministic functionalities

from Lindell [10]. Since we have already demonstrated correctness, we

proceed with a proof for the privacy requirement. We show that (1)

a collusion of at most = − 2 assistants will learn no more than what

they knew collectively before colluding, and (2) a collusion of at most

= − 2 parties that includes the leader will only leak the result of the

operation. Consequently, an honest party’s input stays private for col-

lusions up to = − 2 parties. We do so by showing that there exists a

probabilistic-polynomial time simulator S8 for each party 8 ∈ {1, . . . , =}
so that S8(1� , G8 , 58 ,OR(G1 , . . . , G=)) is computationally equivalent to the

actual view of the party view
�OR

8
(G1 , . . . , G= , �), where functionality

58 ,OR : (G1 , . . . , G=) ↦→ (G1 ∨ · · · ∨ G= ,Λ, . . . ,Λ) and �OR is the protocol

that performs this functionality. In other words, the leader retrieves the

logical OR of all inputs, while the other parties receive the empty string

Λ. Additionally, the parties receive nonce ; as auxiliary information. To

demonstrate security over the entire protocol, the �OR protocol encom-

passes both the one-time setup and a finite number of OR operations.

Collusion of assistants

We proceed to prove case (1), where a collusion is made up of a group

of at most = − 2 assistants. We denote the set of colluding parties as

�(1) ⊆ {2, . . . , =} and its complement as �(1). The goal of this proof is to
show a distinguisher cannot confidently tell apart the simulated view

from the actual view of the collusion.

Theorem 19.3 For a collusion of parties P8 where 8 ∈ �(1), there exists a
probabilistic-polynomial time simulator:

S(1)(1� , G8 , 58 ,OR(G1 , . . . , G=))
2≡

⋃
8∈�(1)

view
�OR

8
(G1 , . . . , G= , �)

Proof. We can construct simulator S(1) for corrupted assistants:

1. S(1) simulates % ∈' G1, & ∈' G2 and 6 = 4(%, &).
2. S(1) generates a secret and public key pair (sk8 , pk8) for each 8 ∈ �(1)

as usual.

3. S(1) generates a random public key pk9 ∈' G1 for each 9 ∈ �(1),
which the collusion would normally receive.

4. S(1) computes E8 for each 8 ∈ �(1) as usual.
5. S(1) outputs G8 , sk8 and E8 for each 8 ∈ �(1), as well as pk9 for each
9 ∈ {1, . . . , =}.

Outputs %, &, pk9 and sk8 are indistinguishable from what a party would

receive ordinarily since they are generated in the same process as they

would be in a normal run of the protocol.
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Collusion with the leader

In case (2) the leader is part of the collusion, which requires an extension

of the simulator from case (1). This is because the leader also receives

each assistant’s share E8 , where 8 ∈ {2, . . . , =}. The goal of this proof is
again to demonstrate that a distinguisher cannot confidently tell apart

the simulated view from the actual view of the collusion.

Theorem 19.4 For a collusion of parties P8 where 8 ∈ �(2), there exists a
probabilistic-polynomial time simulator:

S(2)(1� , G8 , 58 ,OR(G1 , . . . , G=))
2≡

⋃
8∈�(2)

view
�OR

8
(G1 , . . . , G= , �)

Proof. We can construct simulator S(2) for corrupted leaders and assis-

tants:

1. S(2) chooses % ∈ G1, & ∈ G2 and 6 = 4(%, &) as the leader usually
would.

2. S(2) generates a secret and public key pair (sk8 , pk8) for each 8 ∈ �(2)
as usual.

3. S(2) generates a random public key pk9 ∈' G1 for each 9 ∈ �(2),
which the collusion would normally receive.

4. S(2) computes E8 for each 8 ∈ �(1) as usual.
5. S(2) randomly chooses G 9 for each assistant 9 ∈ �(2) and computes

E 9 as usual, which the collusion would normally receive.

6. S(2) computes I as usual.

7. S(2) outputs G8 and sk8 for each 8 ∈ �(1), pk9 and E 9 for each

9 ∈ {1, . . . , =} and finally I.

Again, the outputs %, &, pk9 and sk8 are indistinguishable from what

a party would receive ordinarily since they are generated in the same

process as they would be in a normal run of the protocol. Furthermore,

outputs E 9 and I are generated in the same way as before, but G8 is

random this time. A distinguisher could tell apart the simulated view

if they could determine what G8 was, but this is infeasible following

Theorem 18.2.

Efficiency

The efficiency of this protocol is based on a party’s input. In fact, we

show that when the input bit is 0, regardless of the construction, the

computation required scales like $(=�), while an input bit of 1 only

requires $(�). This means that in the worst case over the whole protocol,

computation for every party requires $(=�) time. In the best case an

assistant P8 for 8 = 2, . . . , = has G8 = 1, so their computation only takes

$(�) time.

Communication in this scheme is limited to the assistants. Each assistant

only has to send a single element from G) to the leader, which requires

$(�) bits.
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Symmetric construction

For an input bit that is 1 it is enough for a party to select a random element,

which takes at most$(�) computations. This can be donemore efficiently

than generating a random number and performing point multiplication.

When the input bit is 0, a party must perform = − 1 PRF calls, which

takes $(=�). In the final step the leader performs = point additions in

G) , which takes $(=�).

Asymmetric construction

For an input bit that is 0, a party must perform = − 1 pairings, as well

as = − 1 multiplications and 1 exponentiation in G) . This takes $(=�).
For an input bit that is 1, a party only has to choose a random number

to compute a random point. This takes $(�). In the final step the leader

performs = multiplications in G) , which takes $(=�).
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In this chapter we discuss one of our main contributions: Non-interactive

protocols for MPSI, MPSU, MPMI, MPMU and MPMS, in both exact

and approximate variants. For the exact variants we use bitsets, while

the approximate variants are based on Bloom filters. Since both these

set representations allow for intersections and unions to be computed

using bit-wise or bin-wise OR and AND operations respectively, we present

the protocols in a generic fashion, calling those elements that need to

be combined using logical operations bins. Note that in all protocols we

assume party P1 is the leader, without loss of generality.

For each operation we describe its protocol and state its efficiency. We

rely on Chapters 5 & 6 to argue for these protocols’ correctness, and we

rely on the security proofs of the secret sharing scheme and the OR and

AND protocols from the previous chapter. We also evaluate the protocols

on small instances and compare them against available implementation

of previous works. In Chapter 22 we evaluate the protocols on real-life

data. We summarize our protocols in Chapter 26.

20.1 Set intersections

To perform set intersections, parties encode their sets and aggregate the

encodings using an AND operation:

MPSI protocol size-hiding

1. All parties P8 for 8 = 1, . . . , = encode their set -8 as a bitset

or a Bloom filter -̂8 .
2. All parties P8 for 8 = 1, . . . , = partake in a Secure AND

protocol for each bin 9 of their set encoding -̂8[9], in parallel.

The leader only finishes the protocol for the bins of its

encoding that are filled.

3. The leader P1 determines the operation’s result by check-

ing which of its elements are indeed in the resulting set

encoding. Protocol 20.1: Protocol for securely and

non-interactively performing multi-party

private set intersections.

Efficiency

The leader only has to perform computations on the elements that are in

its set. Recall that in the AND protocol the computation complexity for a

party depends on its input bit, for both the symmetric and asymmetric

construction. Specifically, a 1 requires $(=�) operations, and a 0 only

$(�).
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Bitset-based

Since each party’s input to the secure AND protocols contains at most : 1s,

the asymptotic computation complexity for an assistant is$(|U|�+ :=�)
when : � |U|, and only $(:=�) for the leader. Communication-wise,

each assistant sends $(|U|�) bits.

Bloom filter-based

We assume the worst-case scenario, which is that all < bins of the Bloom

filter are set to 1, although this should never happen in practice. As

a consequence, the parties will perform < runs of the AND protocol

with an input of 1, which leads to a computation complexity of $(:=�)
for a single party because < is bounded by $(:). The communication

complexity for an assistant is $(:�).

Results

We implement the exact MPSI protocol for both the symmetric and

asymmetric construction. We compare their runtime to the runtime of

two other exact MPSI protocols that had an implementation available in

Figure 20.1. We performed 5 runs of each protocol and measured its total

runtime, ignoring its setup, for an increasing number of parties =. For

every experiment we generated sets with : elements randomly drawn

from a universe |U| = 256.
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Figure 20.1:Runtime comparison between

our exact MPSI protocols and the MPSI

protocols of Kolesnikov et al. [5] and

Abadi, Terzis, and Dong [40]. The shaded

area represents the standard deviation.

20.2 Set unions

To perform set unions, parties again encode their sets but they aggregate

the encodings using an OR operation:
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MPSU protocol size-hiding

1. All parties P8 for 8 = 1, . . . , = encode their set -8 as a bitset

or a Bloom filter -̂8 .
2. All parties P8 for 8 = 1, . . . , = partake in a Secure OR proto-

col for each bin 9 of their set encoding -̂8[9], in parallel.

3. The leaderP1 determines the operation’s result by extracting

all elements contained in the resulting set encoding. Protocol 20.2: Protocol for securely and

non-interactively performing multi-party

private set unions.

H1

L1 R1

L2 R2

Hd

Rd Ld
Figure 20.2: Our feistel-structure based

reversible hash function with 3 rounds.

Approximation

For set intersections it is straight-forward how to extract the resulting

elements from a Bloom filter, but for a set union we must extract all

elements encoded within it. Naively, one would query every element in

the universe, but this requires ℎ |U| calls to hash functions. Instead, we

propose reversible Bloom filters, which use hashes that can be efficiently

reversed to significantly decrease the number of calls to hash functions.

Reversible hash function

Our reversible Bloomfilter is based on efficiently reversible hash functions.

That is, for the hash function H there should exist some efficient function

H−1 to find the set of preimages of an element H from the codomain:

H−1(H) = {G ∈ U | H(G)} (20.1)

At the same time, the hash function must uniformly distribute its inputs

over the codomain. To this end, we define a reversible hash function that

exploits the uniformity pre-existing hash functions in a Feistel structure,

see Figure 20.2. The round function of the Feistel structure is a pre-

existing hash function, where every round uses a different seed. There

are 3 rounds.

As a first step to ensure that the hash function is indeed uniform, we

perform the "2
test [61]. This test gives an indication of the ‘goodness of

fit’, which is in our case with regards to the uniform distribution. We use

the pre-existing hashes mmh3 [14] and xxh3 [15] to both implement and

compare our reversible hash function. We define six hash functions: fm1,

fm2 and fm3 are based on mmh3 and their number denotes the number of

rounds 3. In the same way we define fx1, fx2 and fx3 for xxh3.

We perform the test as follows. We let each hash function compute

the hash of 600 inputs and divide them over 31 bins using a modulus

operation, where the inputs are 0, 12, 22, . . . , 5992. We repeat this process

75 times for increasing 2. We use the "2
test to evaluate if the inputs were

indeed equally distributed over the bins. A bad hash function might for

example cause all inputs to be placed into one bin when 2 = 31. Given

that the number of bins < = 31, the number of inputs # = 600 and |�[9]|
is the number of elements placed in bin 9, we compute the "2

as follows:
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Figure 20.3: "2
test results for our re-

versible hash functions (blue) and refer-

ence functions (gray). For example, fm2

denotes an mmh3-based Feistel structure

of 2 rounds.

"2 =

∑<−1

9=0

1

2
|�[9]|(|�[9]| + 1)

#
2< (# + 2< − 1)

(20.2)

Figure 20.3 shows a violin plot displaying the min, max, median and

densities of the 75 tests performed on each hash function. A perfectly

uniform hash function would always achieve "2 = 1. Clearly, if the

number of rounds 3 = 1, the hash functions perform less uniformly than

the reference hash functions, while two or three rounds seem to achieve

a similar uniformity in our experiment.

Reversible Bloom filter

The reversible Bloom filter we propose is in all ways identical to a regular

Bloom filter, except that it uses reversible hash functions and it supports a

fast extraction operation. Algorithm 2 uses the reversible hash functions

H8 with their corresponding H−1

8
for 8 = 1, . . . , ℎ to efficiently implement

this operation. That is, it computes the elements contained in Bloom filter

BF. To check whether element G is contained in BF, we use a function

Contains(BF, G).

Assuming that the hash functions are perfectly uniform, in the average

case H−1

8
(9) returns a set of

|U|
< elements, as the elements are equally

spread out over the bins. The set of candidates �8 corresponding to

the hash function with index 8 = 1, . . . , ℎ then contains at most �
|U|
<

elements, where � denotes the number of filled bins. The probability

that an element is contained in each �8 is then at most

(
�
<

) ℎ
. As a result,

we expect the final set of candidates � to contain |U|
(
�
<

) ℎ
elements, so

the number of candidates reduces drastically with the number of hash

functions ℎ, although it does increase the number of filled bins �.

Considering that we have reversible hash functions that in turn call 3

pre-existing hash functions, the candidate finding stage requires �ℎ3

calls to such hash functions. Then, in the average case, we must perform

at most |U|ℎ3
(
�
<

) ℎ
more calls in the stage where we check membership

of the candidates. Recall that the naive method of checking membership

of every element in the universe requires ℎ |U| calls to hash functions. So,

while the naive method scales directly with the size of the universe, the
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Algorithm 2 Efficient extraction of Bloom filter elements

1: procedure Extract(BF,H8 ,H
−1

8
)

2: ⊲ Create sets of candidates for each hash

3: for 8 = 1, . . . , ℎ do
4: �8 ← {}
5: for 9 = 1, . . . , < do
6: for 8 = 1, . . . , ℎ do
7: if BF[9] = 1 then
8: �8 ← �8 ∪H−1

8
(9)

9:

10: ⊲ Create final set of candidates
11: � ← �1 ∩ · · · ∩ �ℎ
12:

13: ⊲ Check membership of the candidates

14: result = {}
15: for 2 ∈ � do
16: if Contains(BF, 2) then
17: result← result ∪ {2}
18:

19: return result

Table 20.1: Machine specifications.

Component Specification

CPU Intel i7-1065G7

Cores 8 × 1.30 GHz

OS 64-bit Unix

Memory 16 GB

first stage of our method scales with the number of elements in the Bloom

filter, and the second stage reduces computation by a factor 3
(
�
<

) ℎ
.

To evaluate whether this extraction technique is indeed faster than the

naive solution, we implement the reversible Bloom filter in Python

for the mmh3 and fm3 hash functions. We choose a Bloom filter with

< = 8192 bins, ℎ = 4 hash functions and # = 10 inserted elements. We

perform 10 experiments with randomly chosen elements from a growing

universe |U| = 2
14 , 216 , . . . , 226

. The results are in Figure 20.4. Note that

the hatched bars are projected, since these take long to compute. The

experiments were executed on the machine described in Table 20.1. We

believe that the fm3 hash is faster than the mmh3 hash in this experiment

because it processes only half the number of bits in the Feistel structure.

Note that when executed on the IPv4 space, which contains 2
32

IP

addresses, we project the naive approach using fm3 to take almost 5

hours to extract the elements from a Bloom filter with the parameters

mentioned before, while our approach would take roughly 50 minutes.

Efficiency

Bitset-based

In the first step, every party generates a bitset, the cost of which is

negligible. All parties perform the secure OR protocol over the whole

universe, of which each party has at most : 1s as input and |U| 0s.

Consequently, for a fixed universe U, the more elements an assistant

has in their set, the faster the protocol. However, assuming : � |U|, the
asymptotic computation complexity for any party comes out to$(|U|=�).
In the final step, the leader can extract the resulting set in $(:) time.

So the MPSU protocol requires $(|U|=�) computations for each party,

as it is dominated by the runs of the secure OR protocol. As a small
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Figure 20.4:Runtime comparison between

the naive approach to extract all elements

from a Bloom filter and our reversible

Bloom filter. Note that the y-axis is loga-

rithmic. The error barsdenote the standard

deviation.

optimization, the leader can skip elements that are in their own set and

add these to the result immediately.

Communication for the MPSU protocol is limited to the number of runs

of the secure OR protocol: Each assistant has to send $(|U|�) bits.

Bloom filter-based

Bloom filters allow for significantly less bins than those required for

bitsets. For example, when 5 parties each have 100 elements, the total

number of elements in the Bloom filter is at most 500. Consider a universe

|U| = 1,000,000 and that we accept an expected number of false positives

E [F] = 5, then using Algorithm 1 we find that the most compact Bloom

filter to satisfy � ≤ 5

1,000,000
has ℎ = 18 hash functions and < = 12, 719

bins, which is almost two orders of magnitude less than the number of

bits required in a bitset representation for the same universe.

When we determine asymptotic complexities in terms of a constant false

positive rate �, the cryptographic computations for a Bloom filter-based

MPSU scale with the set size :, rather than the size of the universe |U|.
As mentioned previously, though, extracting the final set does scale with

|U|, but these computations do not involve cryptographic operations.

In the worst case, all elements in the Bloom filter are mapped to one

bin. Then, we must perform the secure OR protocol over < − 1 zeroes,

which scales with =:, so the protocol requires $(=2:�) operations for
each assistant, and $(=2:� + |U|) for the leader. Communication-wise,

each assistant sends $(=:�) bits.

20.3 Multiset intersection & union

For multiset intersections and unions we apply the transformation as

described in Section 3.3 to turn any multiset into a valid set. Next, we

can use the set intersection and set union protocols to perform multiset

intersections and unions. The protocol for multiset unions is as follows:
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MPMU protocol size-hiding

1. All parties P8 for 8 = 1, . . . , = compute the multiset-to-set

transformation on their input -8 to form set -′
8
.

2. All parties P8 for 8 = 1, . . . , = partake in a secure MPSU
protocol on their input -′

8
, so that the leader receives the

resulting set /′.
3. The leader P1 determines the operation’s multiset result /

where the multiplicity M(9) is the maximum multiplicity

for each element 9 ∈ /′.
Protocol 20.3: Protocol for securely and

non-interactively performing multi-party

private multiset unions, which can be

transformed easily to perform multiset

intersections as well.

The protocol for multiset intersections follows similarly, but the protocol

uses an MPSI protocol and the result contains the element with the

minimum multiplicity.

Optimizations

Based on the leader’s set, we can make some optimizations in how the

leader aggregates the assistants’ encoded sets within theMPSI andMPSU

protocols. For multiset intersections, as before, the leader only has to

aggregate those bins corresponding to its encoding, and given an element,

the leader only has to check multiplicity up to the multiplicity of that

item in its own multiset. Similarly, for multiset unions, it is sufficient for

the leader to check multiplicity starting from the multiplicity that an

element has in its multiset.

Efficiency

Bitset-based

Efficiency for the MPMU and MPMI protocols is similar to the MPSU

and MPSI protocols, but we execute them with a larger domain and a

larger number of elements. Let us define an upper bound for an element’s

multiplicity "′ of one party. Also, let, ′ ≥ max(|G1 |, . . . , |G= |) denote
the maximum cardinality of the input multisets, so the total sum of their

multiplicities, then the number of a party’s submitted elements is at most

, ′ and the domain size is "′ |U|. Note that generally : ≤ , ′ ≤ "′:.
Assuming : � |U|, the asymptotic computation complexity for any party

in the MPMU protocol comes out to $("′ |U|=�). Following the same

assumption, the asymptotic computation complexity for an assistant in

the MPMI protocol is $("′ |U|� +, ′=�), and $(, ′=�) for the leader.
When it comes to communication, each assistant sends $("′ |U|�) bits
in both protocols.

Bloom filter-based

Similarly, the approximate MPMU and MPMI protocols use the Bloom-

filter based MPSU and MPSI protocols, but with a larger domain. In

the MPMU protocol, this comes out to a computational complexity of
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$(=2, ′�) for an assistant and $(=2, ′� +"′ |U|) for the leader. In the

MPMI protocol, the computations for any party has a complexity of

$(=, ′�). The communication complexity for each assistant is $(, ′�)
bits in both protocols.

20.4 Multiset sums

The multiset sum is a simple operation to perform in the count vector

representation: Instead of storing 1s and 0s, we let each bin in the bins of

a bitset denote the multiplicity of the corresponding element as a count

vector. After that, we can sum the count vector together bin-by-bin using

a non-interactive secure aggregation scheme such as that by Kursawe,

Danezis, and Kohlweiss [59], on which we based the non-interactive logic

operations. Instead of using a group over the integers, we use the elliptic

curve group that we also used for the other protocols. As such, to decrypt

the counts in each bin, the leader creates a lookup table with all possible

total counts. Additionally, we can approximate the multiset sum using a

counting Bloom filter.

MPMS protocol size-hiding

1. All parties P8 for 8 = 1, . . . , = encode their set -8 as a count

or a counting Bloom filter -̂8 .

2. All partiesP8 for 8 = 1, . . . , = compute E8[9] = F8[9] + -̂8[9]
to P1 for 9 = 1, . . . , |-̂8 |, where F8[9] is the generated mask.

3. All assistants P8 for 8 = 2, . . . , = send their shares E8[9] for
9 = 1, . . . , |-̂8 | to the leader P1.

4. The leaderP1 determines each bin’s result -̂[9] = ∏=
8=1
E8[9]

and computes the discrete logarithm using a lookup table

for 9 = 1, . . . , |-̂8 |, and extracts the resulting set /. Protocol 20.4: Protocol for securely and

non-interactively performing multi-party

private multiset sums.

Count vectors

For a count vector, we exclude the encoding and extraction steps from

the complexities because they do not require cryptographic operations.

Creating the shares requires $(|U|=�) operations for each party. In

addition, the leader must aggregate and compare the received curve

points to a lookup table, if done linearly this takes at most $("′ |U|=�)
operations. Each assistant sends $(|U|�) bits to the leader.

Counting Bloom filters

The complexities for counting Bloom filters are similar to those for the

MPSU protocol where every bin requires a party to create a share. For the

complexities,we assume a constant false positive rate �. Then, the protocol
requires $(=2:�) operations for each assistant, and $("′=2:� + |U|)
operations for the leader. Communication-wise, each assistant sends

$(=:�) bits.
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In the case of a symmetric setupwe realize a multiset sum protocol where

each party only has to send one share. As such, a party only has to perform

the expensive mask generation algorithm once. The intuition behind our

protocol is a multiset encoding that is multiplicatively homomorphic, so

that when two encodings are multiplied they produce the encoding of

the corresponding multiset sum. To fit such an encoding within a single

share, the share must be thousands of orders larger than regular shares.

However, we demonstrate that by choosing a particular multiplicative

group we can perform all the necessary operations in the order of

milliseconds, without compromising security. In fact, the protocol is

information-theoretically secure in the random oracle model.

While this protocol works in the symmetric setup, we cannot execute

it in the asymmetric setup as that would require solving the discrete

logarithm problem in the underlying elliptic curve. However, if the

number of possible outcomes is limited to the point where the receiving

party can iterate over them and a pairing-friendly curve exists that fits

the encoding, then this setup is feasible. The receiving party can extract

the result simply by comparing if the received encoding is the same as

one of the possible inputs.

This researchwas done in collaborationwithMartinKoster, a fellow thesis

student, under the supervision of Zekeriya Erkin. Martin’s thesis [62]

[62]: Koster (2021), ‘Multi-Functional

Privacy-Preserving Data Aggregation’

revolves aroundusing superincreasing sequences to count elements using

additive secret sharing and additively homomorphic cryptosystems,

within a single ciphertext. In this work, however, we use a multiplicative

encoding that scales more efficiently for larger universes.

21.1 Prime factors as multisets

In this section, we present a technique for encoding multisets in a

single group element using prime factors. To limit the size of the group

required, we consider two parameters:" is the maximummultiplicity of

any element in the universe and  is the maximum number of different

elements that are present in a multiset. In other words, for any element G

in multiset -, the multiplicity is bounded: M-(G) ≤ ", and there are

only  distinct elements for which it holds that M-(G) ≥ 1.

Encoding

The prime factor-based encoding is based on the notion that each number

has a unique prime factorization. In fact, the prime factors of a number

form a multiset. We exploit this by mapping the elements from the
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universe to the first |U| primes U ↦→ {?0 , . . . , ? |U|−1
}. Specifically, the

encoding -̂ of multiset - is as follows:

-̂ =

|U|∏
8=0

?
M- (8)
8

. (21.1)

Homomorphism

As a result, the encoding ismultiplicatively homomorphic. Consider three

multisets -1, -2 and -3, then the multiplication of multiple encoded

multisets results in the encoding of the multiset sum:

- = -1 ] -2 ] -3 (21.2)

-̂ =

|U|∏
8=0

?
M-

1
(8)

8

|U|∏
8=0

?
M-

2
(8)

8

|U|∏
8=0

?
M-

3
(8)

8
(21.3)

=

|U|∏
8=0

?
M-

1
(8)+M-

2
(8)+M-

3
(8)

8
(21.4)

To use this encoding in a finite field we must select a modulus that will

never be surpassed. The modulus required to store such a multiset is

decided by the largest possible encoding. Such an encoding happens

when the top  coefficients appear " times. Every modulus < that

satisfies < ≥ (? |U|−1
)" 

satisfies this constraint.

From the prime number theorem it follows that there is an upper bound

of the Gth prime: ?G < G(ln G + ln ln G) = $(G ln G) [63], which holds for

6 ≤ G. For this reason, the modulus scales with $((|U| ln |U|)" ). In
addition, these first G primes can be efficiently generated using the Sieve

of Eratosthenes, which requires $(G log log G) operations [64].

Decoding

To find the multiset encoded in -̂ we must factor it. The most efficient

special-purpose factoring algorithm for numberswith small prime factors

is the Elliptic Curve factorization Method (ECM) [65]. This method’s

complexity is proportional to the smallest prime factor ? of the integer it

is factoring. Specifically, it requires !?[ 1
2
,
√

2] operations in the L-notation,

which is analogous to a complexity of:

$

(
exp

√
(ln ? ln ln ?)(1 + $(1))

)
(21.5)

ECMconsists of two stages that require parameters�1 and�2, respectively.

Ideally, these parameterswould be chosen based on the size of the smallest

prime factor ?. The higher �1 is, the longer the stage takes, and the same

applies to the second stage for �2. Specifically for our case, we apply the

algorithm to composites that only contain primes that are in the order

of several digits. For this reason, we start with �1 ← 10 and increase

�1 by 100 for every unsuccessful application of the algorithm. ECM

libraries have built-in functionalities to select values for �2 that result in

both stages taking approximately the same amount of time. Algorithm 3
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shows how we apply ECM to find factors in composites with many small

prime factors.

Algorithm 3 Method for finding a factor in composite number =

1: procedure FindFactor(=)
2: �1 ← 10

3: while true do
4: 5 ← ECM(=, �1)
5: if 5 then
6: return 5

7: �1 ← �1 + 100

We present our actual routine for extracting the multiset encoded in -̂ in

Algorithm 4. After running the algorithm, the resulting multiset contains

the prime factors and their multiplicity, which can be mapped directly

back to the original universe Uusing the prime sieve.

On a high level, the decoding algorithm works as follows: First, we create

an empty multiset. We then apply the FindFactor algorithm to find one

factor 5 of the encoding. If the factor is small enough to be factored by the

sieve, we do so, otherwise the algorithm calls Decode on it again. After

this, � contains the prime factorization of 5 . For each of those primes we

check how often they occur in the encoding -̂ . We then add these factors

and their multiplicity to the multiset, while removing these factors from

the encoding. If the remainder is now small enough to factor using the

sieve, we do so, otherwise we do a recursive call again. After this step,

" contains all prime factors of -̂ and their multiplicity.

Algorithm 4 Recursively decode -̂ using sieve ( into prime factors

1: procedure Decode(-̂ , ()
2: " ← {} ⊲ Create an empty multiset

3: if -̂ = 1 then
4: return"
5: 5 ← FindFactor(-̂) ⊲ Call to Algorithm 3

6: if (.CanFactor(f) then ⊲ If 5 is small enough to use the sieve

7: �← (.Factor( 5 )
8: else
9: �←Decode( 5 , ()

10: A = -̂ ⊲ the remaining encoding that is left to decode

11: for ? ∈ � do ⊲ For each prime ?
12: 2 ← 0

13: while A ≡ 0 (mod ?) do ⊲While remainder A is divisible by ?
14: 2 ← 2 + 1

15: A ← A
?

16: " ← " ] {?2} ⊲ Prime ? occurred 2 times

17: if (.CanFactor(r) then ⊲ If A is small enough to use the sieve

18: " ← " ] (.Factor(A)
19: else
20: " ← "] Decode(A, ()

21: return"
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21.2 Multiset sum protocol

Now, we present our protocol that outputs the sum of multisets non-

interactively. There are = parties that want to compute the multiset-sum

of their private multisets. There is a known maximum multiplicity "

and maximum number of elements  that apply to the resulting multiset.

During the protocol, each party sends one message to an aggregator

who aggregates the received messages to privately retrieve the resulting

multiset.

Group selection

Rather than using the group discussed in Section 18.2, this protocol

requires a multiplicative group over the integers. Preferably, the modulus

contains few prime factors, since any prime factor in the modulus is

one that we cannot use for the multiset encoding. For this reason, we

describe our protocols for the multiplicative group of integers modulo

2
G
, for some G > 40 to ensure that the group is large enough to provide

at least 40 bits of statistical security. The elements in this group are the

coprimes of its modulus, which are the odd numbers.

Unless G = 2, a group with modulus 2
G
is not cyclic [66], but this is not

strictly necessary for our purposes. The choice of this group has several

other favorable properties, though:

I The modulus reduction on a computer can be achieved by discard-

ing all but the least significant G bits.

I All outputs from the PRNG can be coerced to group elements by

setting their least significant bit to 1.

I There exist efficient special-purpose algorithms for computing the

multiplicative inverse in groups of this form [67]
[67]: Dumas (2014), ‘On Newton-Raphson

Iteration for Multiplicative Inverses

Modulo Prime Powers’

.

I The only prime factor in the modulus is 2: We can use all primes

apart from the first.

Protocol description

Our protocol consists of a setup, which is performed only once, followed

by four stages, namely encoding, masking, aggregation and decoding.

The latter four stages are performed for every run of the protocol. During

this protocol, we assume the aggregator and each party acts according to

the honest-but-curious security model.

During setup, the parties sieve the first |U| prime factors as required for

the encoding scheme. The initialization of the encoding scheme returns

the list of coefficients and a modulus. The final modulus used in the

protocol is set to 2
G
, where G is the lowest value for which 2

G
is larger

than the required modulus. Additionally, to ensure a statistical security

of 40 bits, G > 40.

All parties also have access to a PRF. We force every output of this

PRF to be an element of ℤ×< by setting the least significant bit to 1.

To realize a non-interactive secret-sharing setup, every pair of parties

shares a common seed, denoted with (8 , 9 = ( 9 ,8 for parties 8 and 9. In the
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MPMS protocol size-hiding

1. Encoding: EachpartyP8 for 8 = 1, . . . , = encodes itsmultiset

-8 according to the encoding scheme as -̂8 .
2. Masking: Each party P8 for 8 = 1, . . . , = generates a mask

F8 using nonce C, and uses it to create share 28 = -̂8 + F8 ,
and each assistant P8 for 8 = 2, . . . , = sends it to the leader

P1.

3. Aggregation: The leader P1 aggregates the shares into the

final encoded multiset -̂C =
∏=

8=1
28 ,C .

4. Decoding: The leader P1 decodes -̂ using Decode and

returns the result.
Protocol 21.1: Protocol for securely and

non-interactively performing multi-party

private multiset sums.

remainder of this work we assume the parties have successfully executed

the setup stage.

Security

The security is given by the security of the symmetric non-interactive

secret sharing construction that we discuss in Section 18.2.

Efficiency

Next, we describe the efficiency of our protocol. We assume that the

one-time setup has been executed so that every pair of parties has a

shared seed and they have executed the prime sieve. We specify the total

complexity of all parties, collectively.

Encoding In the encoding stage, the parties collectively encode  

elements at most" times. This is synonymous to" multiplications of

prime factors in the multiplicative group.

Masking To compute the masks, each party performs = − 1 multi-

plications on numbers in the multiplicative group. These numbers are

generated by =(=−1) calls to the PRF, and half of themmust be inverted.

Aggregation The aggregation is performed by multiplying the = secret

shares together in the multiplicative group.

Decoding The recursive algorithm makes  calls to FindFactor to

factor out each prime factor. To eliminate every factor from the encoding,

this requires dividing out each prime factor at most " times, so in

addition," division are necessary.

The computation complexity of each stage in our protocol is summarized

in Table 21.1. While the operations in the table scale linearly, one should

note that the operations themselves are not strictly linear. In particular,
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Encoding Masking Aggregation Decoding

Multiply / divide $(" ) $(=) $(=) $(" )
Modular inverses - $(=) - -

PRNG calls - $(=) - -

FindFactor calls - - - $( )

Table 21.1: Total computation complexity

of our protocol, = is the number of parties.

the FindFactor algorithm scales sub-exponentially with the lowest prime

factor ?, for which it holds that ? ≤ |U| ln |U|. We denote the complexity

of finding a factor by 5 (D), which is the complexity of ECMon a composite

number with smallest prime factor ? = D ln D for a large enough �1.

Moreover, the multiplications scale with the size of the modulus < of

the multiplicative group, which is bounded by $((|D | ln |D |)" ).

We can write the final computational complexity for the encoding and

masking steps combined as $(" + =), and the computational complex-

ity for aggregation and decoding as$(=+ 5 (|U|)). If we substitute  for

the worst-case scenario where each party has a disjoint set of : elements,

then  = =: so the complexities becomes $("=:) and $(=: 5 (|U|)),
respectively.

With respect to the communication complexity, every run, $(=)masked

encoded multisets are sent. The size of a masked encoded multiset

depends on the aforementioned modulus <. The size of a masked en-

coded multiset is log
2
(<) bits, which we denote by a function �", (D) =

$(log
2
(|D | ln |D |)" ). Every run, therefore requires $(=�", (|U|) bits

of communication.

21.3 Results

We have implemented the prime factor-based protocol in Rust using

bindings for the C libraries GMP
∗
provided by rug

†
, and GMP-EMC

‡
,

which provide the arbitrary-length modular arithmetic and the elliptic

curve factoring method respectively. Our implementation uses a single

thread to execute all parties sequentially, but in practice these parties

could perform computation in parallel

Note that this implementation uses a pseudo-random number generator

(PRNG) to implement the pseudo-random function, in this case the

Mersenne twister. Unfortunately, this PRNG is not cryptographically

secure [68]. We believe that it is sufficient for a proof of concept because

we only call the PRNG once, but for an actual implementation that reuses

the setup multiple times, the PRF should be cryptographically secure,

such as the one discussed in Section 18.2.

Run time

We perform two experiments to measure the run time of our protocol.

In the first experiment we set  = 10 and " = 50, and in the second

experiment  = 25 and" = 50. We measure the run time of three stages

∗ https://gmplib.org/
† https://gitlab.com/tspiteri/rug
‡ http://ecm.gforge.inria.fr/

https://gmplib.org/
https://gitlab.com/tspiteri/rug
http://ecm.gforge.inria.fr/
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in our protocol. The setup stage contains both the setup of each party’s

seeds as well as a prime sieve. Then, the encryption stage lets each party

encode their multiset and form a secret share. Finally, the decryption

stage consists of a party who aggregates the shares and decodes the

result by factoring it. Our experiments were performed on a the machine

described in Table 20.1. The results are in Figure 21.1.
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Figure 21.1: Run time for = = 5, = = 20

and = = 50 parties, averaged over 50 runs.

Communication

The size of the secret share is entirely dependent on the size of the

modulus required for the encoding scheme, and each party sends exactly

one secret share. Table 21.2 shows the size of such a secret share for

the same parameters as in our run time experiments. At least for these

instances, the communication cost for each party is limited to several

kilobytes. Note that while the modulus grows rapidly for a growing

universe, the size of the modulus in bits grows significantly slower.

|U| = 10
3 |U| = 10

4 |U| = 10
5 |U| = 10

6 |U| = 10
7 |U| = 10

8

 = 10, " = 50 6,473 8,339 10,155 11,943 13,710 15,463

 = 25, " = 10 3,233 4,169 5,078 5,972 6,855 7,732

Table 21.2:Number of communicated bits

per party for a growing universe U.
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Cybercrime continues to grow every year due to an increase in the number

of Internet users, the number of connected devices, and digitalization

[69]. Damage to the world economy caused by cybercrime is expected

to reach 6 trillion US dollars per year in 2021 [69]. These crimes affect

a large number of organizations, but those same organizations may be

discouraged from collaboratively addressing them out of concerns over

privacy, a lack of trust and reputation [70].

Specifically, cybercrime often involves malware: Adware, ransomware,

trojans, and botnets are among the most popular [69]. These types

of malware can be commanded to perform malicious tasks externally

through so-called Command & Control (C2) servers. If the IP address of

a C2 server is known, organizations can blacklist it [71], and even though

devices stay infected, they might stop sending spam or taking part in

DDoS attacks, for example. However, identifying these C2 servers among

benign network traffic can be a daunting task for one organization alone,

especially considering the evasion techniques that modern malware

employs [69].

One way for organizations to work together to identify C2 servers

and other malicious hosts is by sharing the sets of IP addresses that

were communicated with from their network. However, these sets of

IP addresses contain sensitive information: The IP addresses reveal the

websites that users have visited, details about the network architecture

and even location information of peers through IP geolocation. Besides,

if the information could reveal that an organization was indeed infected

by malware, the organization may be reluctant in sharing it in the first

place, for the sake of their reputation [70]. For this reason we employ our

MPSI, MPSU, MPMI, MPMU and MPMS to privately perform statistical

analyses on this IPv4 data. We evaluate them on real-life data.

22.1 Dataset

The Stratosphere Lab creates real long-term malware captures that

consist not only of malicious behavior but importantly also of benign

user behavior. For this reason, we choose to run our protocols on the

Mixed Captures dataset from Stratosphere [72] [72]: Stratosphere (2015), Stratosphere
Laboratory Datasets

, which contains five

malware captures of adware, ransomware, and trojans, each spanning

one or four days. From these captures, we extract the IP addresses of

outgoing packets usingWireshark andwe record the multiplicity of these

IP addresses as the number of packets to create multisets. We refer to the

resulting data as IP/32-real. Depending on the application, one could

instead extract only incoming packets.
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Dataset generation

The IP/32-real dataset contains real data but it only features five parties.

To evaluate our protocols on instances with more cooperating organiza-

tions with longer captures we designed a simple procedure to generate

similar looking data for larger problem sizes. The procedure inputs

the number of IP addresses per party �, the number of parties =, the

maximum bias of a party �max that is used to distribute the addresses

over the parties, the ratio of the intersection size versus the total size

'intersection and the ratio of the union 'union. The procedure builds = sets

denoted by (8 for 8 ∈ {1, . . . , =}:

1. Select a random union (∪ ⊂' {0, . . . , 256
4} of size |(∪ | = �='union.

2. Select a random intersection (∩ ⊂' (∪ of size |(∩ | = �='intersection.

3. Select a random bias for each party �8 ∈' {1, . . . , �max}. We always

assign �max to the leader and 1 to the last assistant.

4. Assign intersection (∩ to each party’s set (8 .

5. Distribute the elements in union (∪ over the party’s sets with

weighted random chance �8 .

6. Conclude the sets bydistributing randomelements from (∪ over the
partieswith aweighted random chance �8 until |(1 |+· · ·+|(= | = �=.

The previous procedure generates sets, but not multiplicities. To do so,

we sample from a Pareto distribution, which has become popular in

internet traffic modeling due to its ability to capture the heavy tail of

internet traffic count data distributions [73] [73]: Chen et al. (2015), ‘Performance

Evaluation of a Queue Fed by a Poisson

Lomax Burst Process’

. In our implementation

we use a Pareto type I distribution with parameter  = 0.55. We then

sample the desired number of multiplicities from this distribution until

the samples lie within 10% of a desired mean �. We use these methods

to generate another small, medium, and large-sized dataset. The small

dataset is intended to closely resemble the real dataset to demonstrate

the effectiveness of the described generator.

In the final datasets, we use the order of magnitude of packet counts

rather than the precise multiplicity. To ensure that a multiplicity of 1 does

not result in an order of magnitude of 0 we define the order of magnitude

as OM(G) = blog Gc + 1. The parameters of the final datasets can be seen

in Table 22.1, the parameters marked with (*) cannot be higher given the

domain size.

Subnet datasets

In some cases, it suffices to analyze subnets rather than full IP addresses,

for example for entities higher up in the internet hierarchy. Another

reason for considering IP ranges is to preserve privacy through lower

granularity. For example, when the goal is to collaboratively identify

malicious servers through set and multiset operations, then it could

be enough to limit the search space to a set of suspicious IP ranges,

rather than intending to immediately blacklist the IP addresses resulting

from an operation. These subnet IP addresses reduce the domain size by

several orders of magnitude. We use the CIDR block representation of

appending a slash character after the IP address followed by the number

of prefix bits that we consider. To generate datasets for IP/12 subnets we
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Table 22.2: Compact Bloom filter parame-

ters, where we chose # and computed ℎ
and< using Algorithm 1 to satisfy � ≈ 1%.

# ℎ <

IP/32-small 5500 7 52768

IP/32-medium 5000 7 47941

Table 22.3: Machine specifications.

Component Specification

CPU Intel Xeon

Cores 30 × 3100 MHz

OS 64-bit Unix

Memory 120 GB

changed the generation parameters so the subnet data has roughly the

same total count as the full IP data. Moreover, instead of sampling from

{0, . . . , 256
4} we sampled the possible values from {0, . . . , 212}.

Table 22.1: High-level parameters of the datasets. "OM and,OM indicate the maximum multiplicity and the maximum total multiplicity

for one party after applying the order of magnitude operation.

Dataset � = �max 'union 'intersection � Smallest set Largest set "
OM

,
OM
|union| |intersection|

IP/32-real 975.4 5 9.5 79% 1.4% 539 280 2659 6 5028 3842 69

IP/32-small 975 5 10 79% 1.4% 543 266 2057 6 2862 3919 68

IP/32-medium 1500 20 12 85% 0.7% 4114 440 2968 8 4133 25710 210

IP/32-large 2500 50 15 90% 0.2% 10305 514 4410 8 6193 112750 250

IP/12-real 230.2 5 6.7 61% 3.2% 2285 84 563 6 1180 706 37

IP/12-small 230 5 7 61% 3.2% 2187 86 372 6 517 686 36

IP/12-medium 375 20 9 20%* 1.5% 16339 167 583 8 811 1394 108

IP/12-large 625 50 12 5%* 0.5% 40637 217 893 8 1268 1497 146

22.2 Results

We developed a reference implementation for our protocols in the asym-

metric construction in C++ using the MIRACL library, and we evaluated

their runtime and bandwidth. For the symmetric construction, we built

an implementation in Rust. Our test setup is as follows: Each party is

assigned a single thread to run on, so the parties are single-threaded

but they are executed in parallel. We measure the runtime of the share

creation part until the last assistant finishes and proceed to measure

the set extraction part separately. We do not simulate a communication

delay. In our implementations we have counted the full size of the curve

points for bandwidth, but in practice the bandwidth can be halved by

compressing curve points before transmitting them. For the Bloom filters

we choose the mmh3 hash.

For the exact protocols, we use the 12-bit subnets resulting in a domain

size |U| = 4096. Had we used the full IP addresses of 32-bits this would

result in domain size |U| ≈ 4.3 × 10
9
. Since our approximate protocols

do not scale with the domain size we used the full 32-bit IP addresses

to evaluate them. Table 22.2 contains the parameters selected using

Algorithm 1.

Asymmetric construction

The experiments were executed once on the machine described in Table

22.3, and the results can be found in Table 22.4. Headers Cshr and Cextr
indicate the share-creation time of the slowest assistant and the leader’s

extraction time in seconds, respectively. Header 1tot denotes the total

bandwidth required in megabytes.

For the real and small datasets, the MPSI protocol takes less than half a

minute to compute, but other operations take in the order of minutes to

hours. Still, we believe the asymmetric construction can be useful in cases

where deploying the symmetric construction would be infeasible, or

where the keys are already in place. This may be the case when multiple

parties want to compute such an operation incidentally.
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Table 22.4: Runtime and bandwidth for the multi-party private set and multiset operations on real as well as synthetic malicious host data

for the asymmetric construction, written in C++. We omit experiments that would take several hours to compute.

real small medium large

Cshr[s] Cextr [s] 1tot [MB] Cshr[s] Cextr [s] 1tot [MB] Cshr[s] Cextr [s] 1tot [MB] Cshr[s] Cextr [s] 1tot [MB]

Exact operations on IP/12

MPSI 15 9 0.5 17 6 0.5 76 47 2.4 581 172 6.1

MPSU 96 61 0.5 95 65 0.5 574 281 2.4 2869 602 6.1

MPMI 84 68 3.0 68 43 3.0 208 485 19.0 1037 1626 49.0

MPMU 577 602 3.0 577 550 3.0 - - - - - -

MPMS 98 77 0.5 98 77 0.5 614 328 2.4 3344 775 6.1

Approximate operations on IP/32

MPSI 357 395 3.5 308 322 3.5 1775 2415 16.7 - - -

MPMI 672 808 6.4 477 640 6.4 2550 4091 27.8 - - -

Table 22.5: Runtime and bandwidth for the multi-party private set and multiset operations on real as well as synthetic malicious host data

for the symmetric construction, written in Rust. We omit experiments that would take several hours to compute.

real small medium large

Cshr[s] Cextr [s] 1tot [MB] Cshr[s] Cextr [s] 1tot [MB] Cshr[s] Cextr [s] 1tot [MB] Cshr[s] Cextr [s] 1tot [MB]

Exact operations on IP/12

MPSI 0.07 0.00 0.6 0.07 0.00 0.6 0.20 0.00 2.5 0.68 0.01 6.3

MPSU 0.12 0.01 0.6 0.11 0.01 0.6 0.49 0.02 2.5 2.21 0.05 6.3

MPMI 0.43 0.00 3.8 0.42 0.00 3.8 1.82 0.01 20.0 4.92 0.02 50.0

MPMU 0.80 0.01 3.8 0.79 0.01 3.8 5.99 0.06 20.0 26.1 0.15 50.0

MPMS 0.13 0.04 0.6 0.13 0.04 0.6 0.71 0.20 2.5 3.29 0.44 6.3

Approximate operations on IP/32

MPSI 0.56 0.01 4.4 0.57 0.01 4.4 2.65 0.04 17.6 15.08 0.12 65.9

MPMI 1.05 0.01 8.1 0.99 0.01 8.1 4.16 0.04 29.3 20.64 0.12 87.8

Symmetric construction

We also evaluate the performance in the symmetric construction, albeit on

a less powerful machine. The specifications of this machine are described

in Table 20.1. We repeated the experiments 5 times and report the means.

The results can be seen in Table 22.5. The symmetric construction runs

almost two orders of magnitude faster than the asymmetric construction.

We believe that this is the case for several reasons. First, the symmetric

construction does not require the computation of expensive pairing func-

tions. Secondly, theMontgomery curve is extremely fast onmodern CPUs.

Finally, there may be a difference in the amount of optimizations that the

C compiler and the Rust compiler can make to the implementations.



Interactive protocols

While non-interactive protocols are simplest to deploy, we cannot perform all oper-
ations non-interactively. In this part we propose interactive protocols for common
operations that still require less interactions than state-of-the-art protocols. We
demonstrate their effectiveness in comparing ‘threat intelligence providers’. This
part contains our own contributions.
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In the previous part we proposed the first non-interactive protocols for

operations such as set intersections and set unions. However, in Chapter

1 we also discussed applications where parties may only find out the

cardinality of set intersections and unions. It turns out that it is not trivial

to alter our previously proposed protocols to hide the resulting set and

return only its size. A simple solution would be to shuffle the bits in the

resulting bitset, or the bins in the resulting Bloom filter to estimate the

cardinality without being able to identify the resulting elements, but this

leads to a contradiction: the leader must receive the bins in their original

order to aggregate them, but the bins must be shuffled before they are

aggregated or the elements would be revealed.

Instead, we propose a protocol using an asymmetric construction that

is based on a threshold cryptosystem, so we can covertly shuffle the

encrypted bins, which is similar to the protocol by Debnath et al. [37].

As a consequence, the resulting protocol requires interaction, since the

ciphertexts must be decrypted. Fortunately, we propose a shuffle-decrypt

protocol to simultaneously shuffle and decrypt, so each party only has

to come online once in this stage. To the best of our knowledge, this is

a novel protocol that may also be of independent interest. We provide

results based on practical scenarios in Chapter 25.

23.1 Shuffle-decrypt protocol

When shuffling and decryption are performed separately using a thresh-

old cryptosystem, the shuffling requires each party to sequentially per-

mute the ciphertexts and re-randomize them, then thedecryption requires

each party to partially decrypt in parallel. If a party is unavailable in

any of those two stages, the protocol cannot progress. By shuffling and

decrypting in one pass, we require parties to be online for only one stage

and we save the parties from sending unnecessary messages.

For our shuffle-decrypt protocol we adapt the classic ElGamal cryptosys-

tem to behave like an (=, =)-cryptosystem. The intuition behind this

protocol is to let each party in turn shuffle the ciphertexts and ‘peel

back’ one layer of encryption. At the same time, such a party must

re-randomize the ciphertexts to ensure that the ciphertexts that they

received are indistinguishable from those that they send to the next

party.

Actually, this protocol is more like an aggregate-shuffle-decrypt protocol,

since the first step homomorphically aggregates the submitted ciphertexts.

To use it as a shuffle-decrypt protocol, the leader submits a ciphertext

corresponding to the message to be recovered, and the assistants all

submit an encryption of the identity, for example.
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Protocol description

Weproceedwith a description of the protocol, wherewe use a notation for

indexing vector to ease interpretation. So, for a vector G, G[8] denotes the
8th element of G. Additionally, @ is the order of the cyclic group G of the

ElGamal cryptosystem. Finally, each party P8 has a secure permutation

function �8(_) that takes a vector like G and returns a permuted vector of

the same length. We assume that each party has a private key :8 ∈R ℤ@

and all parties known its corresponding public key ℎ8 .

Aggregate-shuffle-decrypt protocol

1. Each party P8 for 8 = 1, . . . , = sends < ciphertexts of mes-

sages"8 to the leader P1, encrypted with their own public

key ℎ8 using randomness H ∈R ℤ@ , and for 9 = 1, . . . , <:

〈8[9], �8[9]〉 = 〈H8[9]6, "8[9] + H8[9]ℎ8〉

2. Leader P1 constructs a vector of tuples [9] =〈
1[9], . . . , =[9]

〉
and �[9] = ∑=

8=1
�8[9], and sends them to

party P= .

3. In turn, each party P8 for 8 = =, . . . , 2 shuffles and partially

decrypts the ciphertexts, sending the results to the next

party P8−1:

I Party P8 uses permutation function �8 to permute

← �8() and �← �8(�).
I Party P8 removes its corresponding entry from each

tuple in  and randomizes it like:

[9] ←
〈
1[9] + H′8 ,1[9]6, . . . , 8−1[9] + H′8 ,8−1

[9]6
〉
,

for 9 = 1, . . . , <, using randomness H′
8
[8′] ∈R ℤ@ .

I PartyP8 partially decrypts each �[9] and uses the same

randomness H′
8
[8′] to compute:

�[9] ← �[9] − :88[9] +
8−1∑
8′=1

H′8 ,8′[9]ℎ8′

4. Leader P1 decrypts" = �[9] − :11[9] for 9 = 1, . . . , <. Protocol 23.1: Protocol to aggregate <
messages of = parties using ElGamal, and

both shuffle and decrypt them in one pass.

Using a threshold C

To save on bandwidth, one can reduce the collusion resistance of the

protocol to a certain threshold C. As such, the parties choose C parties that

perform the shuffle-decrypt protocol. For those parties, the protocol is as

described above, but the other parties must encrypt their messages with

the public keys of each decrypting party to achieve collusion threshold C.

To stay consistent with our other proposed protocols, we do not use this

alteration in our evaluation. Instead, the protocol is secure against = − 1

colluding parties.
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Correctness

Let us denote the composition of permutations as ◦, and the final

permutation as � = �1 ◦ · · · ◦ �= . To prevent complicated notation,

we say that when these permutation functions are supplied with an

index, that index is mapped to the permuted index. Then, the protocol

is considered correct when it holds that"[�(9)] = "1[9] + · · · +"=[9]
for all 9 = 1, . . . , <. Since the permutation functions shuffle both  and

� according to the same permutation, their elements are not shuffled

relative to each other. For this reasonweprovide a correctness proofwhere

all permutation functions are the identity function, to ease notation.

Theorem 23.1 When all permutation functions are the identity, it holds that
"[9] = ∑=

8=1
"8[9] for every 9 = 1, . . . , <.

Proof. After step 4, we can express 08[9] as:

8[9] = H8[9]6 +
=∑

8′=8+1

H′8′ ,8[9]6 (23.1)

Combining steps 3 and 4, and substituting �[9] = ∑=
8=1

�8[9], we get:

"[9] =
=∑
8=1

�8[9] −
=∑
8=1

:88[9] +
=∑
8=1

8−1∑
8′=1

H′8 ,8′[9]ℎ8′ (23.2)

=

=∑
8=1

"8[9] +
=∑
8=1

H8[9]ℎ8 −
=∑
8=1

H8[9]ℎ8 −
=∑
8=1

=∑
8′=8+1

H′8′ ,8[9]ℎ8+

=∑
8=1

8−1∑
8′=1

H′8 ,8′[9]ℎ8′ (23.3)

=

=∑
8=1

"8[9] −
=∑
8=1

=∑
8′=8+1

H′8′ ,8[9]ℎ8 +
=∑
8=1

=∑
8′=8+1

H′8′ ,8[9]ℎ8 (23.4)

=

=∑
8=1

"8[9]

Security

To underline the security of the aggregate-shuffle-decrypt protocol, we

prove that even with = − 1 colluding parties, at least for one honest party

its outputs are computationally indistinguishable from randomness. As

a result, none of the other parties can learn how the inputs were shuffled.

For an argument about the confidentiality of the ciphertexts we refer the

reader to the paper by ElGamal [36] [36]: ElGamal (1984), ‘A Public Key

Cryptosystem and a Signature Scheme

Based on Discrete Logarithms’

. In our proof, we denote the inputs

 and � for an honest party as in
and �in, and its outputs as out

and

�out. We leave a simulation-based proof as future work.

Theorem 23.2 For an honest and non-colluding party P8 , for each index
9 = 1, . . . , < it holds that out[9] 2≡ A and �out[9] 2≡ A′ where A, A′ ∈R ℤ@ .
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Proof. We express a the outputs of party P8 in terms of its inputs:

out[9] ← in[9] + H′8 ,8′[9]6 (23.5)

�out[9] ← �in[9] − :88[9] + . . . (23.6)

Since H′
8 ,8′[9] ∈R ℤ@ and is only known to this party, H′

8 ,8′[9]6 is statistically
indistinguishable from randomness. Thereby, out[9] 2≡ A. Moreover,

since :8 ∈ ℤ@ and is only known to this party, for any other party :88
is computationally indistinguishable from randomness by the DDH

assumption. So, �out[9] 2≡ A′.

Efficiency

We denote the number of ciphertexts by <. In the first step, each party

performs < ElGamal encryptions, which takes $(<�) operations. Then,
in step 2, the leader sums <= curve points, which takes <=� operations.

In step 3, each party performs a permutation, which we deem to be

negligible in terms of its runtime. Additionally, assistant P8 randomizes

<(8−1) curve points, which takes atmost$(<=�), and partially decrypts,

which also takes atmost$(<=�) operations. The same goes for the leader

in step 4. So, each party performs $(<=�) operations asymptotically.

Additionally, each party sends at most $(<=�) bits during steps 2 & 3.

23.2 MPSO-CA protocol

Give example of bitsets Correctness and security is mostly given by the

previous proofs and the methods discussed in Chapter 5 To denote the

identity we use O, as it denotes the point at infinity of an elliptic curve

group. Note however, that the protocol is not restricted to EC-ElGamal.

MPSU-CA protocol size-hiding

1. All parties P8 for 8 = 1, . . . , = encode their set -8 to form

encoding -̂8 .

2. All parties P8 for 8 = 1, . . . , = take part in the aggregate-
shuffle-decrypt protocol with the bins of -̂8 , where:

"8[9] =
{
O ∈ G) if -̂8[9] = 0

A ∈R G) if -̂8[9] = 1

3. The leader P1 extracts ", counts the points for which it

holds that"[9] ≠ O as �, and returns I ←cardinality(�).
Protocol 23.2: Protocol for securely com-

puting the cardinality of the union be-

tween several parties’ input sets, without

revealing which items are in the union.

Rather than encrypting a randomly generated element, a party can

just choose two random elements for alpha and beta. An intersection-

cardinality protocol follows similarly, by submitting the identity O only

when -̂8 = 1 and counting the number of points which are the identity.
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Approximation

To limit the number of bins, one can use Bloom filters rather than bitsets.

However, the probability distribution of the possible cardinality estimates

for a Bloom filter becomes widewhen the number of filled bins is large, as

seen in Figure 6.1. As a result, the standard deviation of the approximation

increases when the cardinality is large. To alleviate this, we introduce the

concept of selectivity, which is inspired by sketches, see Section 8.2.

Instead of encoding every element from a party’s set in the Bloom filter,

we only insert an element with a specific probability ?, which we call

the selectivity ratio. Importantly, this is not a coin toss, but rather it

is deterministically decided by a public hash function. For example, a

simple way to achieve ? = 50% is to only insert element of which the

hash starts with a 0 bit. In the case where ? = 100%, the Bloom filter

functions like a regular Bloom filter.

We need to accommodate for this selectivity in the final estimate. As for

the regular Bloom filter, we use the E [#] as our estimate. We derive the

expected value in the same way as we did in Chapter 6.

Theorem 23.3 The expected number of elements encoded by a Bloom filter
with � filled bins and a selectivity ratio ? is given by:

E [#] ≈ −
?<

ℎ
ln

(
1 − �

<

)
Proof. The probability that a bin is 0 after # inserted elements is(
1 − ?

<

) ℎ#
, which we can approximate using:

lim

<→∞

(
1 −

?

<

) :=
= exp

(
− ℎ#
?<

)
(23.7)

What follows, is that the posterior probability of the number of filled bins

� given the number of inserted elements # is binomially distributed:

Pr [F = � | N = #] ∼ B

(
<,

(
1 − exp

(
− ℎ#
?<

)))
(23.8)

Using the same derivation as in Chapter 6, it follows that:

�

<
≈

(
1 − exp

(
− ℎ#
?<

))
(23.9)

# ≈ −
?<

ℎ
ln

(
1 − �

<

)
Efficiency

The computation of this protocol is based on the aggregate-shuffle-

decrypt protocol, since we deem the operations performed in step 1 and 3

to be negligible. As such, each party computes $(|-̂ |=�) operations, and
sends $(|-̂ |=�) bits. In the case of bitsets, |-̂ | = |U|, while for Bloom

filters, |-̂ | = <. We can write < as $(:) for a constant approximation

quality, since the false positive rate scales with $(:).
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After Kissner and Song [18] proposed threshold set operations, many

works have since followed with increasingly efficient protocols. However,

to the best of our knowledge, all works that do not reveal the number of

times an element appears in the resulting set require at least three stages

of communication, demanding each party to be online. In this chapter

we propose a protocol for threshold set operations that requires only two

stages of communication. We highlight the special case of count-hiding

threshold set intersections, and we extend our earlier shuffle-decrypt

protocol to a shuffle-decrypt-to-zero.

24.1 Shuffle-decrypt-to-zero

Similar to a decrypt-to-zero protocol in other threshold cryptosystems,

as discussed in Section 11.3, we can extend our shuffle-decrypt protocol

from the previous chapter to perform a decrypt-to-identity rather than

revealing the true values in the ciphertexts. To do so, in each round of

step 3 of the shuffle-decrypt protocol, choose a random number and

multiply each [9] and � with it, for 9 = 1, . . . , <. We do not give a

formal proof, but note that GO = O for any G ∈ G) , and by ElGamal’s

well-studied homomorphism, the decrypted result is only the identity

Owith overwhelming probability when the ciphertext was indeed the

encryption of the identity. The additional operation does not change the

asymptotic complexity of the shuffle-decrypt protocol.

24.2 Threshold set intersections

In this section, we propose a protocol for threshold set intersections,

but the same technique can be used to construct a threshold set union

protocol, among others.

Protocol description

The intuition behind our protocol is to let each party encode their input set

as a bitset or a Bloom filter, after which they encrypt each bin separately,

where for a 0 they submit an encryption of the identity O, and for a 1 an

encryption of the generator 6. The leader then sums these ciphertexts to

arrive at the total count of each bin. To find the threshold intersection,

we wish to identify those bins where the total count surpasses threshold

�, which we do using a subset query.

The subset query is based on the work byMiyaji andNishida [6]. Suppose

we have a ciphertext representing 76, then we can test if that is indeed

the case by homomorphically subtracting 76 and decrypting-to-identity

to check if the result is the identity. This is effectively a secure equality
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1: Multi-party Private Set Intersection
by Aslı Bay, Zeki Erkin, Mina Alishahi,

and Jelle Vos

Practical Multi-party Private Set In-
tersection Protocols by Aslı Bay, Zek-

eriya Erkin, Jaap-Henk Hoepman, Simona

Samardjiska, and Jelle Vos

protocol. To transform it into a subset query we perform a secure equality

for each number that is greater or equal to the threshold �, and shuffle the

results. We realize this using the aforementioned shuffle-decrypt-to-zero

protocol. Rather than a subset query, in some of our previous works
1
we

use secure comparison protocols. However, those secure comparisons

require an additional stage of interaction, while we can perform our

subset query next to decryption as part of the shuffle-decrypt protocol.

Using these primitives, we propose the following multi-party private

threshold set intersection protocol:

T-MPSI protocol count-hiding size-hiding

1. All parties P8 for 8 = 1, . . . , = encode their set -8 to form

encoding -̂8 .

2. All parties P8 for 8 = 1, . . . , = encrypt each bin 9 =

1, . . . , |-̂8 | of the encoding -̂8 using their own public key ℎ8
and with H ∈R ℤ@ and send it to the leader P1:

〈8[9], �8[9]〉 = 〈H8[9]6, "8[9] + H8[9]ℎ8〉,

where message"8[9]
3. All parties P8 for 8 = 1, . . . , = take part in |-̂ | aggregate-

shuffle-decrypt-to-zero protocols at the same time for

9 = 1, . . . , |-̂ |, starting from step 2 using [@] =〈
1[9], . . . , =[9]

〉
and �[@] = ∑=

8=1
�8[9] − @6, with @ =

�, . . . , =.

4. The leader P1 determines the resulting encoding by check-

ing for each bin 9 = 1, . . . , < if at least one ciphertext was

decrypted to the identity, and setting those bins to 1, while

keeping the others at 0. The leader extracts the result by

checking which of its set elements are contained in the

encoding.

Protocol 24.1: Protocol for multi-party pri-

vate threshold set intersections, where

none of the parties find out how often

an element appears in the input sets nor

howmany elements each party submitted.

It is possible to use the same principle to build an interactive, count-

revealing over-threshold scheme, where we do not shuffle the ciphertexts,

and only decrypt. Moreover, by changing how the leader creates the

ciphertexts after aggregating each party’s encryption bins, it is possible

to construct a below-threshold set operation protocol. Actually, in that

sense it is even possible to define other complex operations, such as to

identify elements that appear only an even number of times.

Efficiency

Since the encoding step of the protocol requires no cryptographic opera-

tions, we do not consider it in our asymptotic complexities. Step 2 of the

protocol requires $(|-̂8 |=�) operations. In the worst case, step 3 of the

protocol requires a shuffle-decrypt-to-zero on = ciphertexts per bin. As a

result, a party must perform |-̂ | shuffle-decrypt-to-zero protocols that

each takes $(=2�) operations. So, the computational complexity of step

3 is $(|-̂ |=2�) for each party. The final step does not require any crypto-

graphic operations, so the total computation complexity is $(|-̂ |=2�).
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The worst-case communication complexity follows similarly: $(|-̂ |=2�)
bits. In the case of bitsets, |-̂ | = |U|, while for Bloom filters, |-̂ | = $(:)
for threshold set intersections and |-̂ | = $(=:) for threshold set unions.

Note that threshold set unions incur additional computations.



Privacy-preserving selection of
threat intelligence providers 25

25.1 Setup . . . . . . . . . . . . . . . 99
25.2Results of scenario A . . . . . 100
25.3Results of scenario B . . . . . 100
25.4Use in practice . . . . . . . . . 101

Cyber criminals reuse the same resources multiple times in an effort to

get the most out of their investments. Such a resource can be C2 servers,

for example, as we discuss in Chapter 22. As a result, organizations can

protect themselves from such criminal activities by keeping a list of the IP

addresses associated with such C2 servers, and prevent communication

with them. In this case, the IP address is called an indicator of compromise

(IoC), and finding them is the goal of cyber threat intelligence (CTI).

Since finding IoCs is a time-consuming task, organizations commonly

buy them from CTI providers.

In a previous, unpublished paper titled "Compare Before You Buy",

Christian Doerr and Zekeriya Erkin found that for organizations to shop

around with multiple CTI providers, they want to know how many

unique IoCs they are buying, rather than the total number. For example,

three CTI providers who are selling 10,000 IoCs may actually only be

selling 20,000 unique ones. However, an organization may not find out

the actual IoCs, or they would not have to buy them anymore. As such,

we can use an MPSU-CA protocol to determine only the cardinality of

the resulting union of IoCs.

In this chapter we evaluate the performance of our approximate MPSU-

CA protocol on sets of IP addresses in the context of buying cyber

threat intelligence. We show that for the earlier example where three CTI

providers have 10,000 IoCs each, the total runtime of our protocol takes

less than 6 seconds to get an approximation of the union cardinality with

a standard deviation of just 250. Additionally, we show how to trade off

a longer run time for a more accurate approximation.

25.1 Setup

We evaluate the practical performance of the MPSU-CA protocol de-

scribed in Chapter 23. In our experiments we perform 20 repetitions and

report the means. We measure the time it takes to encrypt, the time it

takes to perform the shuffle-decrypt protocol and we keep track of the

estimated cardinalities. We executed all experiments on the machine

described in Table 20.1. As of yet the implementation runs all parties se-

quentially on a single core. This is not detrimental to performance, though,

since the shuffle-decrypt must be performed sequentially anyways. It

does affect the encryption stage.

In our evaluations we analyze two scenarios:

I Scenario A: Three parties with 10, 000 elements each whose sets

form a union of 20, 000 elements, see Table 25.1.

I Scenario B: Five parties with 20, 000 elements each whose sets

form a union of 50, 000 elements, see Table 25.2.
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For each of the scenarios we evaluate the performance using a lower

accuracy Bloom filter with< = 10, 000 bins, and a higher accuracy Bloom

filter with < = 50, 000 bins. For each combination of parameters we

also vary the selectivity ratio ? between 100%, 50% and 25%, and adjust

the number of bins accordingly. We set the number of hash functions

ℎ = 1 to make the probability distributions for higher cardinalities as

narrow as possible, see Figure 6.1. In all of our experiments, the setup

and aggregation stages took at most 100 milliseconds together. For this

reason we omit them from the tables.

25.2 Results of scenario A

We present the results of scenario A in Table 25.1. Clearly, in the higher

accuracy case with a larger Bloom filter, run time increases but the

standard deviation decreases. Moreover, the run time of the shuffle-

decrypt stage scales roughly linearly with the number of bins <. As a

sign of validation, the estimated mean is indeed centered around 20,000.

Lower accuracy Higher accuracy
? = 100% ? = 50% ? = 25% ? = 100% ? = 50% ? = 25%

Bins < 10,000 5,000 2,500 50,000 25,000 12,500

Encryption [s] 1.4 0.7 0.4 12.2 6.0 3.0

Shuffle-decrypt [s] 4.4 2.3 1.1 21.8 11.0 5.4

Estimate mean 19,986 19,925 20,069 19,995 20,011 20,061

Standard deviation ±251 ±386 ±418 ±62 ±136 ±285

Table 25.1: Runtime and estimation re-

sults over 20 experiments for scenario A,

where 3 parties with 10,000 elements each,

estimate a union-cardinality of 20,000 ele-

ments. The difference between ‘lower’ and

‘higher’ accuracy is a higher number of

bins in the Bloom filter.

25.3 Results of scenario B

We present the results of scenario A in Table 25.2. Again, we see the

trade-off between runtime and accuracy. While runtime for ? = 100%

in the higher accuracy case takes more than a minute to compute, we

see that the selectivity ratio ? = 25% with < = 12,500 brings that time

down to less than 20 seconds, while retaining a standard deviation of

only 490, which is significantly better than the case where < = 10,000

and ? = 100%. We think that this is because as the number of filled bins

increases, the probability distribution widens, as seen in Figure 6.1. As

such, by using a selectivity ratio, we reduce the number of filled bins in

the Bloom filter.

Lower accuracy Higher accuracy
? = 100% ? = 50% ? = 25% ? = 100% ? = 50% ? = 25%

Bins < 10,000 5,000 2,500 50,000 25,000 12,500

Encryption [s] 1.5 0.8 0.4 17.5 8.7 4.4

Shuffle-decrypt [s] 12.0 6.1 3.0 60.0 30.4 15.0

Estimate mean 49,539 49,510 50,771 50,066 50,081 50,065

Standard deviation ±1,284 ±1,364 ±2,381 ±165 ±307 ±490

Table 25.2: Runtime and estimation re-

sults over 20 experiments for scenario B,

where 5 parties with 20,000 elements each,

estimate a union-cardinality of 50,000 ele-

ments. The difference between ‘lower’ and

‘higher’ accuracy is a higher number of

bins in the Bloom filter.
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25.4 Use in practice

Since the underlying shuffle-decrypt protocol only requires a party to

send ciphertexts encryptedwith their own public key, a company only has

to perform encryption once for one set of IoCs and one set of Bloom filter

parameters, after which the leader can initiate comparisons between any

organizations in the future. If the company agrees with the computation,

it takes part in the shuffle-decrypt protocol, which only requires one

action.
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In this thesis we proposed the first non-interactive protocols for multi-

party private set and multiset operations, and we decreased the number

of communication stages of more complex set operations to a new low

of two stages. Table 26.1 gives a summary of all these protocol and their

properties. We provide implementations for all non-interactive exact

protocols and some approximate protocols. We believe that the protocols

evaluated in Chapters 22 & 25 can be used in practice because our

experiments verify that they take in the order of seconds to compute

on realistic data. In addition, our approximate MPSU-CA allows threat

intelligence providers to submit their ciphertexts once, after which every

run requires them to only perform one action.

Table 26.1: All of our proposed protocols and their properties. See the respective chapters for a derivation of these protocols’ complexities.

Operation Communication Computation Security
Short Type Topology Assistant # Leader Assistant Collusion

MPSI
Exact

Star

$(|U|�)
1

$(=:�) $(|U|� + =:�)
= − 2

Approx. $(:�) $(=:�) $(=:�)

MPSU
Exact

Star

$(U|�)
1

$(|U|=�) $(|U|=�)
= − 2

Approx. $(=:�) $(=2:� + |U|) $(=2:�)

MPMI
Exact

Star

$("′ |U|�)
1

$(, ′=�) $("′ |U|� +, ′=�)
= − 2

Approx. $(, ′�) $(=, ′�) $(=, ′�)

MPMU
Exact

Star

$("′ |U|�)
1

$("′ |U|=�) $("′ |U|=�)
= − 2

Approx. $(, ′�) $(=2, ′� +"′ |U|) $(=2, ′�)

MPMS
(two)

Exact

Star

$(|U|�)
1

$("′ |U|=:� + |U|) $(|U|=�)
= − 2Exact $(=�", (|U|)) $(=: 5 (|U|)�) $("=:)

Approx. $(=:�) $("′=2:� + |U|) $(=2:�)

MPSU-CA
Exact

Wheel

$(|U|=�)
2

$(|U|=�) $(|U|=�)
= − 1

Approx. $(=:�) $(=:�) $(=:�)

T-MPSI
Exact

Wheel

$(|U|=2�)
2

$(|U|=2�) $(|U|=2�)
= − 1

Approx. $(=2:�) $(=2:�) $(=2:�)

26.1 Discussion

In this work we attempted to answer the question: How can multiple
parties collaboratively, but with minimal interactions, compute set and multiset
operations —such as set intersections —without revealing their inputs?. To
do so properly, we compared numerous protocols for all different types

of set and multiset operations. We used this comparison to identify set

encodings that we can aggregate non-interactively and to find the degree

of interaction required for the current state of the art. We set out to design

protocols that require less interactions than the state of the art.

We select bitsets and Bloom filters, because these can be aggregated

to compute intersections and unions using AND and OR operations, re-
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1: For example, the works by Bay et al.

spectively. To do so securely, we propose novel non-interactive secure

protocols for the aforementioned logical operations.

Apart from these set encodings, many other protocols encode sets and

multisets as polynomial roots [18, 51]. However, so far we are not aware

of a non-interactive secret sharing-based method to perform arithmetic

on encrypted polynomials. There are solutions using homomorphic

cryptosystems [7, 18], but these are interactive.

While it is possible to base our secure AND and OR protocols on groups

of integers, we use an elliptic curve group to significantly speed up

computation and lower communication. As a drawback, we cannot

perform secure aggregation over such a group, because it is infeasible

to compute the discrete logarithm. However, in our secure AND and OR

protocols we are only interested in whether the element is the identity

or not. Moreover, for the secure aggregation required in our MPMS

protocols, we measure run times in the order of seconds using a lookup

table.

Non-interactive protocols

In the part about non-interactive protocols we answered the question:

What operations can be performed non-interactively and how can we do so?

We answered this question extensively by proposing both exact and

approximate protocols for each of the primitive set and multiset op-

erations. We designed these protocols so they can be instantiated in

both a symmetric or asymmetric secret sharing construction. Due to

these constructions, the asymptotic complexity for every party in our

protocol necessarily scales linearly with the number of parties =, while

complexities for assistants in some other protocols do not scale with =

at all.
1
We argue that this is an acceptable overhead, considering that

an assisting party only has to perform computations once due to the

non-interactivity, rather than actively participate in a protocol.

To verify that our non-interactive protocols are indeed practical, we test

their performance on real-looking malware capture data in Chapter 22.

While the asymmetric construction can take minutes or hours to compute

for certain operations, the symmetric construction requires just seconds.

We argue that the asymmetric construction is suitable in cases where the

key infrastructure for the symmetric construction would take long to set

up. Like the symmetric construction, there are also other works [5] that

require every pair of parties to share keys. Note that once the construction

has been set up, the parties can take part in all different types of set and

multiset operations, without having to set up again.

One limitation of our proposed protocols is that our exact protocols nec-

essarily scale with the size of the universe. Of course, for a small universe

this is not limiting, but for large universes such as the IPv4 address space,

this becomes infeasible. Our approximate protocols, fortunately, scale

with the set size : rather than the size of the universe. Other works [5,

51] do propose exact alternatives that do not scale with the size of the

universe. However, they require several interactions.
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Minimally-interactive protocols

In the part about interactive protocols we answered the question:What
operations must be performed interactively, and how can we do so with the
minimum number of interactions?

Unfortunately, we have not provenwhich operations cannot be performed

non-interactively. However, we have demonstrated that at least for the

techniques that we used for non-interactive protocols, using the same

techniques for MPSO-CA and T-MPSO protocols leads to a contradiction.

Instead, we propose protocols that require one additional interaction,

while hiding the size of each party’s set and not leaking the counts of the

resulting elements in threshold operations.

Both the MPSA-CA and T-MPSO protocols allow a party to encrypt

their sets once in the first steps of the protocol, after which they can be

combined with those of any other party without the original party to be

involved. Then, finishing the protocol requires only one interaction from

the party. This is different to other works, such as the work by Debnath

et al. [37], which requires a separate key to be generated for each group of

parties, and thereby require the parties to encrypt their sets again using

this new key.

26.2 Future work

In the future, we want to perform more tests on the reversible hash

functions. In addition, it remains an open problem if it is possible to

design a reversible hash function that does not internally rely on calling

multiple other hash functions.

OurMPMI andMPMUprotocols are actually generalizations of theMPSI

andMPSU protocols that we propose, since each party first converts their

multiset into a set representation before taking part in the protocol. As

such, it stands to reason that there may be more efficient, specialized

protocols for performing these multiset operations.

Security-wise, it remains an open problem how to or if it is possible

to extend our protocols into the malicious model. Since we use a non-

standard shuffling protocol in our interactive protocols, it may not be

possible to do so using the current building blocks for maliciously-secure

protocols.

Implementation-wise, the proof of concept code is now spread over

Python, C++ and Rust. Considering that the Rust code is the fastest so far,

we encourage an official implementation in Rust. Specifically, one that

is implemented over actual networks, rather than simulating multiple

parties in threads on one machine.

Finally, since our protocols require none or minimal interactions, a logical

next step would be to examine whether new practical applications can

benefit from this. So far, we only evaluate the protocols on real-looking

data, but we pose that much can be learned from deploying the protocols

in real-life problems, such as private contact tracing.
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In this chapter we present derivations for the adapted complexities in

the tables from the part about ‘previous works’. Note that whenever we

use the number of bins < in the context of Bloom filters, we can replace

this by $(:), as discussed in Chapter 6.

A.1 MPSI protocols

Communication complexity general MPC

The communication complexity of a general multi-party computation

scheme was given by Kissner and Song [18]. Since then, better general

schemes might have been proposed but for the purpose of demonstrating

an upper bound we do compare against this general MPC. Because the

authors do not explain what the circuit looks like we have only assumed

how to rewrite this complexity. Because Kissner and Song [18] mention

the total communication complexity rather than the communication per

party we divide their complexity by = and include a statistical security

parameter �. This results in $(=: polylog(:) log(|* |))�. We choose to

denote it using a version of the big-oh notation that omits logarithmic

terms: $̃(=:�).

Communication complexity Freedman, Nissim, and Pinkas [41]

The communication complexity was missing for the multi-party case.

1. Each assistant sends their encrypted polynomial to the leader,

which takes $(:�) bits.
2. Each assistant also sends = − 1 encrypted :-shares to the leader,

which takes $(=:�) bits.
3. The leader sends : tuples of = − 1 encrypted items each, which

takes $(=:�) bits.
4. The leader also forwards the encrypted shares, which takes$(=:�)

bits.

5. Each assistant sends the XOR of the received items and their

generated shares, which takes $(�) bits.

In this protocol the dominating communication is$(=:�) for an assistant

and the leader alike.

Computation complexity Freedman, Nissim, and Pinkas [41]

The computation complexity was missing for the multi-party case.

1. Each assistant generates an encrypted polynomial, which takes

$(:�).
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2. Each assistant also generates = − 1 encrypted :-shares, which takes

$(=:�).
3. The leader evaluates = polynomials (and performs some other

operations on them), which takes $(=:�).
4. Each assistant decrypts = ciphertexts, which takes $(=�).

We have ignored some share operations because they are negligible in

computationwhen comparedwith the public-key operations. This results

in a computational cost of $(=:�) for both the leader and an assistant.

Communication complexity Kissner and Song [18]

Kissner and Song [18] already give a computation and communication

complexity but we want to know the complexity per party (as opposed

to the total complexity).

1. Each party sends their encrypted polynomial to C other parties,

which takes $(C:�) bits.
2. Each party sends another encrypted polynomial to one other party,

which takes $(:�) bits.
3. The leader sends the final encrypted polynomial to all other parties,

which takes $(=:�) bits.
4. Each party participates in a group decryption (for each coefficient)

by sending the their decrypted shares to C other parties, which

takes $(C:�) bits.

The final communication complexity is$(=:�) for the leader and$(C:�)
for an assistant.

Computation complexity Kissner and Song [18]

1. Each party generates an encrypted polynomial, which takes $(:�).
2. Each party homomorphically multiplies C + 1 polynomials, which

takes $(C:2�).
3. Each assistant adds two encrypted polynomials together, which

takes $(:�).
4. Each party participates in a group decryption (for each coefficient),

which takes $(C:�).

This leads to a computation complexity of $(C:2�) for both the leader

and an assistant.

Communication complexity Li and Wu [42]

This paper only gives the communication complexity for the full protocol.

It is hard to deduce the complexity per party, but we assume that it is

$(=2:2�) since the whole communication complexity is $(=3:2�).
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Computation complexity Li and Wu [42]

The paper does not give the computation complexity and the complexity

is hard to deduce. We think the dominating operation is the first step

of the computation phase. This means the computation complexity per

party is approximately $(=:2�), since a party multiplies = secret-shared

polynomials with : coefficients of length �.

Communication complexity Kerschbaum [43]

1. Each assistant sends their encrypted Bloom filter to the leader,

which takes $(<�) bits.
2. The leader sends several ciphertexts for all < bins per party to C

assistants to perform a decrypt-to-zero, which takes $(=C<�) bits.
3. The assistants each send $(=<�) bits back.
4. The leader sends the aggregated ciphertexts to C assistants to

decrypt, which takes $(C<�) bits.
5. The assistants each send $(<�) bits back.

This results in$(=<�) communicated bits for an assistant and$(=C<�)
for the leader.

Computation complexity Kerschbaum [43]

1. Each assistant generates an encrypted Bloom filter, which takes

$(:ℎ + <�).
2. Some parties perform several decrypts-to-zero per party per bin,

which takes $(=<�).
3. The leader aggregates the results using homomorphic addition,

which takes $(=<�).
4. Some parties perform a decryption per aggregated bin, which takes

$(<�).
5. The leader extracts the elements, which takes $(:ℎ).

This results in a computational complexity of $(=<�) for all parties,
assuming that this complexity dominates $(:ℎ).

Complexities Cheon, Jarecki, and Seo [25]

For both the communication and computation complexity we have added

the security parameters. Furthermore, the title of the work calls for a

quasi-linear complexity, which can be misleading as the computation and

communication is only linear in : and not in the number of parties.

Communication complexity Cheon, Jarecki, and Seo [25]

1. Each assistant sends their encrypted Bloom Filter to the leader,

which takes $(<�) bits.
2. The leader sends the encrypted aggregated Bloom Filter to C parties

to jointly decrypt, which takes $(C<�) bits.
3. The assistants reply with $(<�) bits.

This results in a communicational complexity of $(<� for an assistant

and $(C<�) for the leader.
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Computation complexity Miyaji and Nishida [6]

1. Each party generates an encrypted Bloom filter, which takes $(: +
<�).

2. The leader aggregates the results using homomorphic addition,

which takes $(=<�).
3. Some parties perform a decryption per aggregated bin, which takes

$(<�).
4. The leader extracts the elements, which takes $(:ℎ).

This results in a computation complexity of $(=<�) for the leader

and $(<�) for an assistant, assuming that this complexity dominates

$(:ℎ).

Computation complexity Hazay and Venkitasubramaniam [44]

1. Each assistant encodes their set as encrypted polynomial coeffi-

cients, which takes $(:�).
2. The leader evaluates the = − 1 encrypted polynomials with its :

elements, which takes $(=:2�).
3. The leader sums up the = − 1 ciphertexts per element, which takes

$(=:�).
4. Several assistants help in the decrypt-to-zero of : ciphertexts, which

takes $(:�).
5. The leader combines the resulting shares to compute the final

intersection, which takes $(:�).

So the computation complexity for the leader is$(=:2�) and for an assis-

tant is$(:�). At the cost of bandwidth the authors also propose a compu-

tation optimization which seems to take the leader only $(=: log
2
:�).

Communication complexity Inbar, Omri, and Pinkas [45]

1. Each party performs an OT interaction with each other party to

share an XOR-secret share, receiving � bits for each bin in the

Bloom Filter, which takes approximately $(=<�) bits.
2. Each assistant sends its share of the final aggregatedGarbled Bloom

Filter to the leader, which takes $(<�) bits.

This results in a communication complexity of $(=<�) for assistants
and the leader alike. The original paper reports a complexity of$(=ℎ:�),
where we think $(ℎ:)might have been a substitution for $(<).

Computation complexity Inbar, Omri, and Pinkas [45]

1. Each party builds a Bloom Filter and a t-shared Garbled Bloom

Filter, which takes $(=<�).
2. Each party performs an OT interaction with each other party for

every bin in the Bloom Filter, which takes approximately $(=<�).
3. Each party XORs their received secret shares from the OT interac-

tion, which takes $(=<�).
4. The leader XORs their received secret shares, which takes $(=<�).

This results in a computation complexity that is also $(=<�) for every
party.
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Communication complexity of Abadi, Terzis, and Dong [40]

The querying party sends a total of $(=:) messages of � bits, and the

cloud server sends $(:)messages of � bits, totalling $(=:) transmitted

bits for the leader. The assistants each send $(:) times � bits, which

results in $(:�) bits.

Computation complexity of Abadi, Terzis, and Dong [40]

Since the paper by Abadi, Terzis, and Dong [40] fixes the capacity of each

bin, the querying party’s computation takes $(=:)modular additions in

a field of size �, so $(=:�) in total. The cloud’s computation cost has the

same asymptotic complexity, so combining these results in a complexity

of$(=:�) for the leader. An assistant only has to compute$(:)modular

operations in a field of size �, so the complexity is $(:�).

Communication complexity Debnath et al. [37]

1. Each assistant sends an encrypted Bloom filter, which takes $(<�)
bits.

2. The leader sends all assistants at most : aggregated bins, which

takes $(:�) bits.
3. Each assistant partially decrypts at most : aggregated bins, which

takes $(:�) bits.

This results in a communication complexity of $(=:�) for the leader and
$(:�) for an assistant.

Computation complexity of Debnath et al. [37]

1. Each assistant generates an encrypted Bloom filter, which takes

$(: + <�).
2. The leader aggregates the results using homomorphic addition for

the bins corresponding to its set elements, which takes $(=:ℎ�).
3. Each assistant partially decrypts at most : aggregated bins, which

takes $(:�).

As a result, the leader performs$(=:ℎ�) operations, while the assistants

perform (:�) operations.

A.2 T-MPSO protocols

Communication complexity general MPC

This is the same as in Section A.3: $̃(=:�).

Complexities Kissner and Song [18]

The threshold and over-threshold protocols are very similar to the MPSI-

CA protocol of Kissner and Song [18] as described in Section A.4. So,

we believe the computation complexity is $(=C:� + :2�) for each party,

while the communication complexity is $(=2:�) for each party.
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Communication complexity of Frikken [51]

1. Each party sends their encrypted polynomial to the other parties,

which takes $(=:�) bits.
2. Each party broadcasts the evaluated polynomial for each element

in their set, which takes $(=:�) bits.
3. Each party broadcasts a randomized version of at most =: tuples,

which takes $(=:�) bits.
4. Each party takes part in a joint decryption with scales linearly with

= and :.

5. The parties take part in the MPSU protocol, which takes $(=:�)
bits of communication per party.

The final communication complexity is $(=:�) for each party.

Computation complexity of Frikken [51]

Since the protocol relies on their MPSU protocol, overall computation

complexity is $(=:2�) for each party, see Section A.3.

Communication complexity Miyaji and Nishida [6]

1. Each assistant sends an encrypted Bloom filter, which takes $(<�)
bits.

2. The leader sends =< subtracted aggregated bins to each party,

which takes $(=2<�) bits.
3. Some assistants take part in decryption and send back $(=<�)

bits.

The leader sends out at most $(=2<�) bits, while an assistant sends out

at most $(=<�) bits.

Computation complexity Miyaji and Nishida [6]

1. Each party generates an encrypted Bloom filter, which takes $(: +
<�).

2. The leader aggregates the results using homomorphic addition,

which takes $(=<�).
3. The leader creates at most =< ciphertexts by subtracting and

re-randomizing, which takes $(=<�).
4. Some parties perform a decryption per subtracted aggregated bin,

which takes $(=<�).
5. The leader extracts the elements, which takes $(:ℎ).

This results in a computation complexity of $(=<�) for the leader and
an assistant alike, assuming that this complexity dominates $(:ℎ).

A.3 MPSU protocols

Communication complexity general MPC

Weuse the generalMPCas reported byKissner andSong [18] for threshold

set unions, which are a generalization of set unions, where we add a sta-
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tistical security parameter �. This results in $(=: polylog(=:) log(|* |))�
for each party. We choose to denote it using a version of the big-oh

notation that omits logarithmic terms: $̃(=:�).

Communication complexity of Frikken [51]

Following the author’s complexity analysis, the parties each share $(=:)
tuples with two ciphertexts in step 2b of the protocol, so the communi-

cation complexity for each individual party is $(=:�) bits. Each party

must be online at least once in steps 1a, 1b, 1c, 2b, 3 and 4, so the protocol

requires at least 6 stages.

Computation complexity of Frikken [51]

1. Each party encodes their set as encrypted polynomial coefficients,

which takes $(:�).
2. Each party P8 homomorphically multiplies 8 encrypted polynomi-

als together, which takes at most $(=:2�).
3. Each party P8 encrypts 2: values and homomorphically multiplies

8−1 encrypted polynomials together, which takes at most$(=:2�).
4. Each party P8 homomorphically multiplies 8 ciphertexts together,

which takes at most $(=:�).
5. Each party takes part in a secure shuffle protocol with at most =:

tuples, which we assume to be linear with the number of parties

and tuples.

6. All parties work together to decrypt at most =: tuples, which scales

linearly with = and :.

So, the overall computation complexity is $(=:2�) for each party.

Complexities of Seo, Cheon, and Katz [19]

In this work, the parties choose a value ? that forms the modulus of

the secret shares. We replace ? with the statistical security parameter

�. Additionally, we add this security parameters to each term in the

complexities. We omit the logarithmic term =2:2
log� as it is dominated

by the term =4:2�.

A.4 MPSO-CA protocols

Communication complexity general MPC

This is the same as in Section A.1: $̃(=:�).
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Communication complexity Vaidya and Clifton [21]

1. Each party sends : hashed elements to their neighbor, which takes

$(:�) bits.
2. Each party sends a set to almost all other parties, which takes

$(=:�) bits.
3. Each party sends at most : hashed elements to almost all other

parties, which takes $(=:�) bits.

This results in a communication complexity of $(=:�) for every single

party.

Computation complexity Vaidya and Clifton [21]

The encryptions outweigh in the first stage outweigh the simple com-

parison operations in the remainder of the protocol. Each party hashes

every element of all parties. This results in a computation complexity of

at most $(=:�) for every party.

Communication complexity Kissner and Song [18]

Kissner and Song [18] already give a computation and communication

complexity but we want to know the complexity per party (as opposed

to the total complexity).

1. Each party sends their encrypted polynomial to C other parties,

which takes $(C:�) bits.
2. Each party sends another encrypted polynomial to one other party,

which takes $(:�) bits.
3. The leader sends the final encrypted polynomial to all other parties,

which takes $(=:�) bits.
4. Each party takes part in the shuffle protocol, which takes $(=2:�)

bits.

5. Each party participates in a group decryption by sending the their

decrypted shares to C other parties, which takes $(=C:�) bits.

The final communication complexity is $(=2:�) for each party.

Computation complexity Kissner and Song [18]

1. Each party generates an encrypted polynomial, which takes $(:�).
2. Each party homomorphically multiplies C + 1 polynomials, which

takes $(C:2�).
3. Each assistant adds two encrypted polynomials together, which

takes $(:�).
4. Each party evaluates and randomizes : elements in the encrypted

polynomial, which takes $(:2�).
5. Each party takes part in the shuffle protocol, which we believe does

not require expensive cryptographic operations.

6. Each party participates in a group decryption of all =: elements,

which takes $(=C:�).

This leads to a computation complexity of $(=C:� + :2�) for both the

leader and an assistant.
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Complexities of Burkhart et al. [53]

The authors mention that the protocol requires (= − 1): multiplications.

The secure multiplication protocol by Gennaro, Rabin, and Rabin [74],

requires each party to perform $(C:�) operations and send $(C:�) bits.
As such, the computation complexity of the protocol would be $(=C:2�)
operations, and the communication complexity would be $(=C:2�)
bits.

Communication complexity Debnath et al. [37]

1. Each assistant sends an encrypted Bloom filter, which takes $(<�)
bits.

2. The leader sends the first assistant at most : aggregated bins, which

takes $(:�) bits.
3. Each assistant forwards at most : aggregated bins, which takes

$(:�) bits.
4. The leader sends all assistants at most : aggregated bins, which

takes $(=:�) bits.
5. The assistants each send back at most $(:�) bits.

This results in a communication complexity of $(=:�) for the leader and
$(:�) for an assistant.

Computation complexity of Debnath et al. [37]

1. Each assistant generates an encrypted Bloom filter, which takes

$(: + <�).
2. The leader aggregates the results using homomorphic addition for

the bins corresponding to its set elements, which takes $(=:ℎ�).
3. Each party shuffles the ciphertexts and randomizes them, which

takes $(:�).
4. Each party perform a decryption per ciphertext, which takes$(:�).
5. The leader extracts the elements, which takes $(:ℎ).

As a result, the leader performs$(=:ℎ�) operations, while the assistants

perform (:�) operations.

A.5 MPMO protocols

Computation complexity of Shishido and Miyaji [39]

1. Each party encodes their set as two encrypted Bloom filters, which

takes $(<�).
2. The leader (or outsourced partner) homomorphically adds the

Bloom filters together, which takes $(=<�).
3. Each assistant helps in the decryption of the Bloom filters, which

takes $(<�).
4. The leader combines the resulting shares to finish the decryptions,

which takes $(<�).
5. The leader attempts to extract each element in the universe, which

takes $(|U|).
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Assuming that the domain size |U| is limited, the leader’s computation

complexity is $(=<�). The assistants’ complexity is $(<�).

Communication complexity of Shishido and Miyaji [39]

1. Each assistant sends their Bloom filters to the leader (or outsourced

partner), which requires $(<�) bits.
2. The leader (or outsourcedpartner) sends the aggregated ciphertexts

to the assistants, which takes $(=<�) bits.
3. Each assistant sends thedecryption shares back,which takes$(<�)

bits.

This results in a communication complexity of$(<�) bits for an assistant

and $(=<�) bits for the leader.

Complexities of Hong et al. [7]

The per-party communication of this paper is the same as for Kissner and

Song [18] although there is a constant time improvement: It is $(=:�)
bits. The asymptotic computation cost is dominated by the encryption

according to the authors, which takes requires each party to perform

two exponentiations in a special field. According to the authors it takes

approximately $(=1.6:1.6�) per party after adding the computational

security parameter �, since log
2
(3) ≈ 1.6.
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