
Analytical Modelling of Fluid-Structure
Interaction
On Developing Equations to Understanding Rizos’ Experiment
(2016)

Damiete Emmanuel Briggs

Te
ch

ni
sc

he
Un

iv
er

sit
eit

D
elf

t





ANALYTICAL MODELLING OF

FLUID-STRUCTURE
INTERACTION

ON DEVELOPING EQUATIONS TO UNDERSTANDING RIZOS’
EXPERIMENT (2016)

by

Damiete Emmanuel Briggs

in partial fulfillment of the requirements for the degree of

Master of Science
in Offshore and Dredging Engineering

at the Delft University of Technology,
to be defended publicly on Wednesday August 30, 2017 at 10:00 AM.

Supervisor: Dr. ir. P. R. Wellens
Thesis committee: Prof. dr. ir. A. P. van ’t Veer, TU Delft

Dr. ir. P. R. Wellens, TU Delft
Ir. k. Visser Rear-Admiral(ME)ret, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/




Acknowledgements

I will have to say that I am simply a make-up of the giants on whose shoulders I have stood on to
help me go further in life. First of all, I would like to thank the Almighty GOD, my creator who daily
helps me and blesses my mind with inspiration. I would also like to express my sincere gratitude to
my supervisor Dr.ir. Peter Wellens, for his guidance, insightful comments and continuous support
offered during my M.Sc thesis.

Besides my supervisor, I would love to thank my colleauges: especially Femiwa Olajide, Joost
van den Bosch who were always ready to listen to me and brainstorm with me in my hiccups days,
to Ratnakar Gadi who took special interest in me and my thesis always providing solicited and unso-
licited help during my M.Sc thesis. To Emeric Descourtieux who always asked critical questions and
helped me to put finishing touches to setting-up my MAPLE model, to my favourite Nederlander,
Fabian J. Koppes who created the time to vet my MATLAB program and give insightful methods to
help. To Dan Shekwomwaza (Chief Dan) for his selfless support and critical attitude towards proof-
reading my thesis report and gave helpful feedbacks.

I want to specially thank my unsung heroes: Sahil Sharma, Alden Antony Louis(King Louis),
Semipe Oyedokun, Marcel Mbene, Dimitris Ntrou, Kostas Kiskiras, Seun Balogun and my American
Cody Owen. To my ’sheroes’: Lena Bakaloni, Charlotte Schiottz Hassings, Victoria Obayemi and
Stephanie Apochi. They were all helpful in spreading their best wishes and goodwill towards me.

Finally to my family, my aunt Soibifaa Briggs, who convinced me to come study in The Nether-
lands, My Dad, Priye Briggs (M.D) my number one fan, personal doctor turned construction engi-
neer who was always ready to listen to my victories and failures during my post-graduate studies
and always on stand-by to share life lessons with me (informal training), to my mum, Ngoba Briggs
and granny, RoseMary Briggs, for their immense support and prayers.

Damiete Emmanuel Briggs

Delft, August 2017

iii





Abstract

The activities of humans in the marine environment are on a steady rise; this trend follows the expo-
sure of offshore structures and vessels to harsh environmental conditions. On the other hand, there
is continuous demand for lighter, faster and more efficient vessels. Technological advancement in
composite materials and better design methods invariably leads to more sophisticated computa-
tional tools. In these tools, the inherent flexibility of the structure is involved in the calculation of its
loading and response – introducing the aspect of fluid-structure interaction. However, more than
fluid-structure interaction, hydroelasticity which is a subset of fluid-structure interaction allows for
deformation of the structures due to fluid. Current industry practice neglects these deformations
and all structures are designed as rigid bodies. These practices lead to overestimation of the fre-
quency – which translates to the mass and how stiff the structure is. Design based on hydroelasticity
allows for knowing the true behaviour of the structure; thus, a coupling of fluid and structure yields
a true appreciation of these designs. The objective of this study is to formulate and solve analytically
the coupling phenomenon behind fluid-structure interaction.

An experiment designed by Lampros Rizos in 2016 which modelled fluid-structure interaction
consisted of a set-up with a cylinder immersed in a larger cylindrical tank. The immersed cylinder
having a flexible circular membrane (structure) located at its bottom. The cylinders were filled with
non-viscous liquid and exhibited free surface.

The designed experiment was decoupled and a systematic build up in understanding the dy-
namics of all components – structure and fluid were solved. Firstly, the dynamics of the structure
when dry (In vacuo) was idealized in 2-D and 3-D. Secondly, the system was coupled and solved
in 2-D and 3-D when structure is located at the top and bottom of a single cylinder individually.
The use of a series solution: Fourier-Cosine and Fourier-Bessel series solutions were used for 2-D
and 3-D cases respectively. Along with these series solutions, the fluid governing equations were
employed to solve for the coupled frequencies. Lastly, the entire submerged structure was analysed
and solved.

The hydroelastic or coupled frequencies and vibration patterns are determined for lower angu-
lar and radial modes for which the influences of various parameters are investigated. A trend was
observed – that for lower modes, the hydroelastic frequencies are lower than individual membrane
natural frequencies at low frequencies. At higher frequencies, the coupling effects are larger making
the coupled frequency higher than uncoupled frequencies. There is a strong relationship between
the tension of the membrane and the hydroelastic frequencies. An increase in the tension causes
an increase in the hydroelastic frequencies. Also, the hydroelastic frequencies increase as the fluid
depth increases. More so, the increase in fluid depth tends to converge towards the uncoupled fluid
free-surface frequency. The comparison of the analytical solution with experimental and numerical
solutions does not match perfectly and thus, further works to improve this study are recommended
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1
INTRODUCTION

1.1. BACKGROUND INFORMATION
Issues regarding vibration cuts across many multidisciplinary engineering fields such as civil, ma-
rine, mechanical, acoustics and aerospace. Examples of vibration problems in these fields are: wind
loads on the cables of a suspension bridge and earthquakes, wave loading in offshore platforms and
marine vehicles, pressure waves in flexible tubes, dynamics of percussion instruments, aero-elastic
modelling of aircraft wings and wind turbine blades, to mention but a few. Human beings regard
these vibrations as uncomfortable and thus over the years, engineers have come up with solutions
to reduce these vibrations. In modern engineering, there is a growing trend towards thinner and
lighter structures, this is due to a combination of modern design methods and developments of
composite materials. This trend will invariably lead to flexible structures. As regarding the ma-
rine environment, flexibility of the structure yields to a structure-liquid interaction of an elastic
nature. No matter the size of a structure ranging from large-capacity containers for liquid storage
to medium and small sized propellant containers for missiles, space vehicles or satellite, the knowl-
edge of the natural frequencies of the elastic structure and the fluid considered individually is not
enough for proper design of the overall system. Thus, understanding the overall behaviour of the
system is needed. Fluid-Structure Interaction (FSI) is simply the coupling of solids and fluids that
share a common interface. However, hydro-elasticity is a branch of FSI concerned with the motions
of deformable bodies through liquids usually an elastic solid structure.

In current practice, in order to predict the effect of wave loads on marine structures, interaction
between structural vibrations and hydrodynamic forces are neglected. Additionally, the dynamic
properties of marine structures in coupling between motions of structure and hydrodynamic forces
are neglected. This has led to many conservative designs in the industry based on the assumptions
of rigid body motions. Hydro-elastic based design desires to incorporate this cause and effect phe-
nomenon between hydrodynamic forces on the motion and dynamics properties of marine struc-
ture in predictive response. Also, there is a growing demand for larger structures capable of carrying
more loads at a higher speed with minimum vibration level as safety, workability and environmental
criteria become stringent. In order to be able to represent these large structures as well as capture
the coupling phenomenon, Adhikari[5] suggests the use of mathematical models. However, this in-
teraction is difficult to capture as the mathematical theory of hydro-elasticity and the mathematical
methods for solving such complex theory is not easily represented. This is due to the complexity
of dynamic and kinematic properties of both domain, largely because fluid and elastic nature of
structural deformations are dependent on hydrodynamic forces and vice-versa. An example of the
push towards modern trends is the increase in dimensions of structural bodies such as floating ves-
sels, oil containers and cargo ships, which results to a decrease in overall stiffness leading to natural

1



2 1. INTRODUCTION

frequencies so low, that the vessels are near exciting frequencies of environmental forces which can
cause excessive vibrations to the vessel. More so, the approach of rigid body modelling leads to
more severe structural response due to overestimation of the water pressure Helder and Bunnik [6].

Modern problems in FSI includes:

• Slamming problems: The design of marine structures such as ships and other floating struc-
tures, its environmental loads are traditionally considered as rigid bodies. This is consider-
able to a certain motion response level. Beyond this level, the response of such structure
must account for its flexibility. Motion responses such as global springing, whipping vibra-
tory response of ship and local hydro-elastic effects relating to sloshing of Liquefied Natural
Gas (LNG) tanks are examples of FSI problems. Additionally, water entry problems on the bow
of the ship behaves like a wave impact onto a flexible wall [7].

• Hydro-elastic waves: Hydro-elastic waves generated by moving ice, ocean waves and sea-ice
interaction are problems arising from non-linearities which further research is done upon.
The scattering of waves by cylinders, vertical and floating elastic plates are a growing concern
[5].

• FSI: In other fields such as biomedical engineering, examples regarding the elastic capsules in
channel and swimming mechanics in the body. Also, the storage of CO2 at the bottom of the
ocean, negative damping in ice engineering are considerable growing concerns in FSI [7].

• FSI: In the energy industry, the use of structures such as flexible risers, marine pipelines and
electric cables in offshore wind exhibits FSI problems which on-going research is done upon
[7].

Attention is needed in this rapidly growing field of study, owing to the expansion of human activ-
ities in the marine environment. The need for less expensive vessel design and in-depth knowledge
to capture this phenomenon is important. Hence, there is a need for collaborative effort from re-
search and industry partnership.

FSI problems in the field of acoustics have been investigated extensively. For example, analytical
models of dynamics of percussion instruments such as the drum head. Flexible membrane and
plates are also commonly used in mathematical models of structures when conducting research in
FSI. Also, air and water are commonly used fluid in FSI is study.

1.2. ANALYTICAL AND NUMERICAL METHODS OF SOLVING FSI PROBLEMS
The FSI phenomenon is characterised by its complexity and multidisciplinary nature in scientific
and engineering domains. Hence, there is much need for wide development in this area. A great
deal of knowledge has been understood about the individual characteristics of this phenomenon
but not the coupling effect. The shared boundaries of the structure and fluid say a lot about how to
go about the design of these coupling effect. Considering only structure, the boundary conditions
commonly used for the flexible structure are: clamped, simply supported edges and free edges. The
boundary conditions used for fluid are known as the governing equations, consisting of Laplace
equation, free surface conditions and seabed condition. A major step in understanding these cou-
pling phenomenon is in the critical study of the fluid-structure shared boundaries. The interface
where the structure and fluid must be incorporated into the holistic design.
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In other to reduce the complexity of the problem, it is often easier to capture the effects of
clamped edges. According to Leissa[8], a clamped boundary condition has its frequencies indepen-
dent of the Poisson ratio, which is not the case for other boundary conditions such as free edges and
simply supported edges. The Poisson ratio is a property of the material and as displacement occurs,
the frequency changes accordingly but for a clamped boundary condition, the displacements are
assumed to be small. In the field of acoustics Leniowski[9] analysed the control of active vibration
of circular fluid-loaded plate. Using the acoustic wave equation of Helmholtz, it was concluded that
lengths of emitted waves are comparable with geometric size of the external source and finite baffle.
In this study, the use of the Helmholtz equation is not applicable because the fluid being considered
are incompressible, unlike in acoustics. However, the size of the structure affects the behaviour of
the waves, which is expected.

When air and structure are involved Moosrainer and Fleischer[10] suggested that Boundary El-
ement Method (BEM) be used to solve acoustic problems. Finite Element Method (FEM) is used to
measure the structural coupling matrix due to the pressure loading of the fluid. The BEM comes to
play because of the non-linear frequency dependence of the fluid matrix and it creates the so-called
added mass to the coupled system. The natural frequencies and modal damping were obtained
from the abscissas imaginary axis and real part respectively. No structural damping was considered
and it was concluded that the first mode is dominant and eigen frequencies are only dependent on
the volume of the kettle drum and not the shape. Which is strongly influenced by air loading. The
air loading will affect the natural frequency of the system as the shape of the kettle drum due to the
boundary conditions dictates how air velocity travels around the volume of the surface, the mem-
brane(drum head) is not significant in this process. This method still suggests isolated methods in
coupling the FSI.

Amabili[11] used the Rayleigh-Ritz methods that invokes kinetic and potential energy and in
a rather interesting relationship with natural frequency. This leads to an eigen-value problem as
the method suggests that coupled frequency of fluid and structure is a ratio of potential energy
of plate to sum of kinetic energy of plate and fluid considering the plate is resting on the fluid.
This is logical in the perspective that loading of pressure from the fluid can be defined by energy
methods and following conservation of energy, these energy (kinectic and potential) are frequency
dependent. Bhuta and Koval[12] worked on oscillations of a flexible plate and elastic membrane as
the bottom of a rigid cylinder with rigid walls interacting with free liquid surface and concludes that
the effect of the membrane on axisymmetric sloshing which is of interest to engineering application
is particularly small and coupled frequencies were slightly smaller than that of a completely rigid
cylinder.. The coupled natural frequency due to the flexible bottom is lower, however, an increase
in tension of the membrane makes the frequency behave like a rigid structure. This is a logical
conclusion, however, the mode shapes behaviour was difficult to comprehend.

Bauer and Chiba[13] and Bhuta and Koval[12] concluded that the effect of the coupling relies
on the ratio of the height of the cylinder and the radius of the membrane, thus when this ratio is
less than unity, the coupling effect is considerable, otherwise, the coupling is negligible. This is
simply because the diameter of the cylinder is a representative of the wavelength ensued by the
fluid where the height of the fluid column is a representative of the fluid depth. This ratio is the
so called dispersion-relationship that determines how wave particles behave with respect to fluid
depth and frequency.

In the last decade, computational tools to solving problems regarding FSI has attracted a lot of
attention from different fields such as acoustic, aerospace, civil, mechanical and offshore engineer-
ing. In offshore engineering, the effects of free surface are most important and thus the physics
that occurs must be captured in this computations. Moreover, the coupling motion and coupled
responses of both domain(fluid flow and structure) needs to be well understood. Physical experi-
ments are a means to validate the investigated processes. Generally, in FSI, three fluids used to de-
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scribe the fluid domain are acoustic fluids, incompressible Navier-Stokes and compressible Navier-
Stokes fluid Leniowska[9]. The easiest to model is the acoustic fluid since it is assumed that it is
inviscid and can only transmits pressure waves. This is mainly because the radiation field gener-
ated by structure has negligible response on the surface velocity, but not the case for denser fluids
like water. The other two types of fluids are modelled analytically with many assumptions which
makes it complex, however modern numerical computational tools such as ComMotion[6] are be-
ing developed to solve this problem.

1.3. PROBLEM STATEMENT

1.3.1. JUSTIFICATION OF THE STUDY

An experimental set-up designed to capture this FSI problem using a thin circular membrane (sim-
ilar) to a drum head[14]. The experiment is set up as: a membrane is submerged in between two
cylinders of different dimensions, the first cylinder, smaller in dimensions (height and radius) have
its bottom consisting of the clamped circular elastic membrane, with rigid side walls. The second
cylinder is larger in dimensions (height and radius) have a rigid bottom and side walls. The two
cylinders are exposed to free surface conditions. The level of the fluid is the same in both cylinders
to cancel out hydrostatic effects Rizos [1]. This is shown in figure 1.1 below. The experiment was
conducted without prior knowledge to understanding the theoretical representation of FSI. This
thesis seeks to address this problem.

Figure 1.1: Experimental setup by Rizos [1]

A membrane is chosen instead of a plate to reduce the complexities in the analytical solution.
The rationale is to reduce order of the mathematical differential equation. The non-linear charac-
teristics of FSI problems and its wide range of application in the offshore engineering field needs
further understanding for the appreciation of better designs of vessels and marine structures, also
in prediction of motion and vessel response in operational campaigns.
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1.3.2. RESEARCH OBJECTIVE

The required goal is to formulate and solve analytically the dynamics of a submerged membrane
and fluid free surface FSI coupling phenomenon of the Rizos’ experiment. To know the effects of
the frequencies on the structure due to its coupling with the fluid and vice-versa, and to understand
effect the vibration mode behaviour of the coupling frequency with respect to its properties of the
membrane such as tension and height of the fluid column exposed to free surface condition.





2
METHODOLOGY

2.1. INTRODUCTION
After several approaches reviewed for the investigation of FSI, the analytical solution to Rizos’ ex-
periment needs to be modelled. The technique was modelled in three parts, firstly, to understand
the dynamics of the natural frequencies and vibration modes of the structure (string and circular
membrane)without external excitation In vacuo (dry case). Secondly, to understand the dynamics
of the coupled (fluid-structure interaction) system with captured free surface effects in 2-D using
an elastic string as the structure and in 3-D using an elastic circular membrane. Finally, solving the
entire problem captured by Rizos’ experiment.

2.2. DYNAMICS OF A FREELY VIBRATING STRING In Vacuo
To understand the problem at hand, solving the problem is easier when broken down into bits, thus
idealising the problem into a simple 2-D case is the way forward. The structure considered is a
string.

Figure 2.1: A taut string and infinitesimal string element [2]

where ρs is the density of the string, As(x) is the cross sectional area, l is the length of the string,
T (x, t ) is tension of the string, subject to distributed forces (N/m) and w(x, t ) is the transverse dis-
placement of the string.

The equation of motion of a taut string follows the wave equation in 1-D since the dimension of
the length of the string is greater than the other dimensions.

T
∂2w

∂2x
= ρs As

∂2w

∂2t
(2.1)

With the boundary and initial conditions of the string given as

7
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w(t ) = 0 |x=0≤x≤l , (2.2)

w(x) = 0,
∂w

∂t
= 0

∣∣∣∣
t=0≤x≤l

(2.3)

For a uniform string, As(x) = As and thus, the equation (2.4)

∂2w

∂2t
− c2 ∂

2w

∂2x
= 0 (2.4)

where c =
√

T
ρs As

takes the dimension of the speed of the wave in (m/s) with boundary condition

given as w(0, t ) = 0 and w(l , t ) = 0 .
In solving equation (2.4) above, the use of variable separable terms are used thus,

w(x, t ) = ε(x)κ(t ) (2.5)

this yields to equation (2.6)

c2
d 2ε
d x2

ε
=

d 2κ
d t 2

κ
=ω2 (2.6)

solving equation (2.6) yields

T i me : κ(t ) = A cos(ωt )+B sin(ωt ) (2.7)

Space : ε(x) =C cos(ιx)+D sin(ιx) (2.8)

ι= ω

c
(2.9)

A, B, C, D represents the amplitudes of the waves and it depends on the initial and boundary
conditions.

The separation constant ω2 must be real to ensure the possibility of harmonic vibration, and
it has a physical meaning of natural frequency of the string. In solving the space related part, the
separation constant and the normal vibration modes are found.

From the space related solution, by substituting the boundary conditions shown in equation
(2.3)

ε(0) = 0, C = 0 (2.10)

ε(l ) = 0, sin(ιl ) = 0 (2.11)

Thus, the natural frequency and vibration modes are given as

ι f l = f π, ω= cι f =
f πc

l
, f = 1,2,3, ... (2.12)

ε f (x) = D f sin(ι f x) = D f sin
(

f
πx

L

)
(2.13)

By substituting the boundary conditions given in equations (2.10) and (2.11), natural frequency
and vibration modes given in equation (2.12) and (2.13), the general solution is obtained in equation
(2.14)

w(x, t ) =
∞∑

f =1
(A f sin(ω f t )+B f cos(ω f t ))si n(ι f x) (2.14)
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2.3. DYNAMICS OF FREELY VIBRATING CIRCULAR MEMBRANE In Vacuo
The dynamics of a circular membrane such as a drum head or thin elastic sheet is particularly
unique due to its geometry and boundary conditions [15]. Let the fixed coordinate axes (r,θ, z)
be attached to the membrane as shown in figure 2.2. The assumption of this membrane are such
that it has:

1. It is homogeneous which means density is constant.

2. It is subject to uniform in-plane tension force along its boundary condition.

3. It experiences small displacement in the vertical and transverse direction.

4. It is thin and flat.1

Figure 2.2: Analytical description of circular membrane [3]

It follows the wave equation as in 2-D in polar coordinates

To∇2w = mm
∂2w

∂2t
(2.15)

where

∇2 = ∂2

∂r 2 + 1

r

∂

∂r
+ 1

r 2

∂2

∂θ2 (2.16)

mm is mass of membrane
(

kg
m

)
, To is Tension on the membrane

( N
m

)
, t is time (s), w is transverse

displacement of the membrane in z-axis and r & θ are polar coordinates of the membrane.

In solving the equation (2.15) above, the equation is transformed using variable separable method
into three equations representing time, radial and azimuthal coordinates independently.

w(r,θ, t ) = R(r )θ(θ)κ(t ) (2.17)

This leads to three set of second order ordinary differential equations2.

1Membrane Assumptions;It is pertinent to note that a membrane does not account for flexure, thus no bending is ac-
counted for

2The third equation is due to the geometry of the membrane, that is a circular membrane, the equations for a rectangular
membrane or plate will yield different results
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d 2κ

d t 2 +ω2κ(t ) = 0 (2.18)

d 2θ

dθ2 +p2θ = 0 (2.19)

d 2R(r )

dr 2 + 1

r

dR(r )

dr
+

(
±λ2 − p2

r 2

)
R(r ) = 0 (2.20)

Where ω is natural frequency of the membrane ( r ad
s ) , p is arbitrary constant of variable for

azimuth representing a periodic frequency and λ =
(

m
To

)1/2
ω .

The solutions of these equations (2.21),( 2.22) and (2.23) are as follows

T (t ) = E cos(ωt )+F sin(ωt ) (2.21)

θ(θ) =G cos(pθ)+Hmm sin(pθ) (2.22)

R(r ) = In Jn(λr )+Ln Jn(iλr )+MnYn(λr )+NnYn(iλr ) (2.23)

For continuous displacement of the membrane, θ(θ) = 2π, p=n=1,2,3,4... must be periodic. It
is note worthy that from equation (2.20), the periodic displacement of the membrane suggests the
roots are complex numbers. These complex numbers are responsible for the order of the Bessel
function produced in equation (2.23). The Bessel functions3 for integers p are known as cylinder
functions or cylindrical harmonics because they appear in the solution to Laplace equation in cylin-
drical coordinates.

E, F, G, Hmm , I, L, M, N represents amplitudes and they depend on the initial and boundary
conditions.

Where Jn(λr ) is Bessel function of the first kind, n is order of the Bessel function and Yn(λr ) is
Bessel function of the second kind.

It can be seen from equation (2.23) that the solution to the radial differential equation is a linear
combination of Bessel functions of order n. This is simply due to the geometry of the membrane.

The Bessel function of the second kind gives a logarithmic singularity at zero argument, thus is
infinite for zero argument, it is important to note that if there is a hole at the center of membrane, for
example an annular membrane, the Bessel function of the second kind comes to play in the radial
equation Rosenheinrich [16]. In this study, all constant representing Bessel function of the second
kind becomes zero since displacement is a finite value. The constant Ln is zero because membrane
is being considered 4.

Considering only the time independence of the solution and combining the constants, the dis-
placement of the membrane is given as

w(r,θ) =Qn Jn(λr )cos(nθ) (2.24)

The interest is mainly on the fixed edges of the membrane as it focuses on the experimental set-
up by Rizos [1]. The boundary condition as highlighted is easier to reproduce and the experiment
was conducted to understand the fluid-structure interaction having one of its aims to have a simple
set-up.

3Bessel function arises when finding separate solutions to Laplace equation and wave equation in cylindrical or spherical
coordinate

4This is not the case for a circular plate as the boundary conditions for a membrane eliminates the constant Ln
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2.3.1. FIXED EDGE

Looking at equation (2.15), the boundary condition for a circular fixed membrane with radius, a, is

w(a,0) = 0 |r=a (2.25)

w(a,θ) =Qn Jn(λa)cos(nθ) (2.26)

Jn(λa) = 0 (2.27)

Equation (2.27) gives the frequency equation or characteristics equation of the fixed circular
edge in tension, its roots are the natural frequencies of the circular membrane.

In the understanding of the dynamics of a vibrating circular membrane, the membrane is cate-
gorized into imaginary5 orderly spaced diameters n which represents the order of the equations and
concentric nodal circles m representing the numerical rank of the root. These two factors largely de-
termines the behaviour of the vibration pattern of the membrane at a distinct frequency. It should
be mentioned that when n=0, it simply means the membrane exhibits axisymmetric modes and
when n 6= 0, the membrane exhibits unsymmetric or asymmetric modes6. Thus, if n = 3 and m =
3, it simply means it has a third root and third order which yields the nodal pattern of three nodal
circle lines and three nodal diameters respectively.

2.3.2. EQUATION OF NODAL DIAMETERS

The dynamics of a vibrating circular membrane depends on equally spaced diameters which it can
only be noticed when the membrane is excited at a certain frequency.

wm,n(r,θ) = (
En Jn(λm,nr )

)
(Gn cos(nθ)+Hn sin(nθ)) (2.28)

The Nodal diameters depends on n.

wn(nθ) =Gn (cos(nθ)+Hn sin(nθ)) (2.29)

wn(nθ) = Sn cos(nθ−α) (2.30)

Sn = Rn

√
G2

n +H 2
n (2.31)

α= arctan

(
Hn

Gn

)
(2.32)

For a specific λ and r , equation (2.29) can be written as equation (2.30) and equation (2.30)
can be rewritten as equation (2.31) where Rn is a constant representing the first term in bracket of
equation (2.28).

Equation (2.30) must be zero. Thus, w = 0, then (nθ−α) = S
(
π
2

)
where S = 1,3,5, ...

2.3.3. EQUATION OF NODAL CIRCLES

The second parameter in the dynamics of a circular membrane is the nodal circle, it can visual-
ized when the membrane is excited at a particular frequency and it is dependent on radius of the
membrane7.
5It is imaginary because it cannot be seen with the naked eyes, but can be noticed when the membrane is excited at a

distinct frequency
6The axisymmetric mode simply means that the geometry of the membrane is unaltered and asymmetric means the

geometry of the membrane is unaltered by diameters.
7The nodal circles and diameter depends solely on the mode shapes, these properties of the circular membrane, when

excited at a particular frequency, are responsible for the mode shapes
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wm,n(r ) = In Jn
(
λm,nr

)
(2.33)

Finding the radii, wm,n (r ) = 0 ; thus

In Jn (λr ) = 0 (2.34)

The non-trival solution is of common interest in understanding problems related to dynamics,
hence, the radius of the concentric circles depends on the natural frequencies.

The deflection of the circular membrane can be defined as

w(r,θ, t ) =V

(
Jn
λm,nr

a

)
cos(nθ)cos(ωt +φ) (2.35)

The first term is the Bessel function in equation (2.35) and it is responsible for the vibration
patterns of a fixed circular membrane in figure 2.3 below. For clearer visualization (this is explained
in detail in the next chapter). The figure 2.3 is used to further elaborate on the nodal circles and
diameters. 8

Figure 2.3: Vibration modes of the circular membrane in nodal circles and nodal diameter
patterns In vacuo [1]

8A better representation of the vibration modes are given in the next chapter.
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Figure 2.3 above represents the vibration pattern of eight distinct natural frequencies of a fixed
circular membrane. It is very important to understand that the vibration mode of a vibrating cir-
cular membrane is a function of two modes namely cosine and sine modes. In equation (2.29) the
cosine, sine function or a combination of both can be used to define the nodal diameter and the
physical meaning mainly due to the isotropic property 9 of the circular membrane. The origin of the
membrane is arbitrary and there can be changed in the rotational direction of the circular mem-
brane that causes modal degeneracy in only the asymmetric modes i.e. when n 6= 0. This is best seen
in figure 2.3 and from equation (2.28), looking at the Mode (1,1), when cosine is 0, at π

2 , sine is 1 at
π
2 , thus you see the nodal diameter appears, and this nodal diameter can be rotated arbitrarily since
the origin of the membrane is arbitrary. This simply means that at a distinct frequency, there are two
behaviours in the mode shapes due to the cosine and sine functions. The red and blue semicircles
clearly shows that at a certain frequency when π

2 exists, cosine is 0 and sine function is 1 from equa-
tion (2.28). This is not the case for all axisymmetric modes, there is rather a creation of the nodal
circle as seen in equation (2.35).

2.4. DYNAMIC ANALYSIS OF COUPLED FLUID-STRUCTURE INTERACTION 2-D

The problem uses a rectangular container of length b with and an elastic string at the bottom and
filled with fluid of height h. The string deflects as fluid is poured into the container and the exciting
force on the strings comes from the pressure of the fluid as shown in the figure 2.4 below.

Figure 2.4: Description of the FSI in 2-D case using a string

9Isotropy of an object simply means an object having physical property which has the same value when measured from
different direction.
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The fluid under consideration is assumed to be incompressible, irrotational and non viscous.
Linear theory is also assumed. The velocity of the fluid can be represented as the gradient of a
velocity potential φ. Hence, the fluid obeys the Laplace equation (2.36).

∂2φ

∂x2 + ∂2φ

∂z2 = 0 (2.36)

The boundary region to be satisfied are as follows

0 ≤ x ≤ b & 0 ≤ z ≤ h (2.37)

where b is the length of the rectangular container and h is the height of the fluid column.

The boundary conditions for side walls are

∂φ

∂x
= 0

∣∣∣∣
x=0≤x≤b

(2.38)

∂φ

∂z
= 0

∣∣∣∣
z=0≤z≤h

(2.39)

The free surface dynamic (pressure is constant around the surface) and kinematic condition of
the fluid is obtained from the Cauchy-Poisson relationship ofφ = η. Where, η is the surface elevation
of the free surface. The fluid particle velocity is equal to the normal velocity of the free surface. The
combination of both kinematic and dynamic free surface condition leads to

∂2φ

∂t 2 + g
∂φ

∂z
= 0

∣∣∣∣
z=h

(2.40)

Where h = height of the fluid column.

The loading of the membrane due to the fluid pressures is given by

P =−ρ∂φ
∂t

∣∣∣∣
z=0

(2.41)

Since the bottom of the container is considered to be elastic, the motion can be described as an
elastic string given by

T
∂2w

∂x2 −ms
∂2w

∂2t
= P (2.42)

Positive pressure acts on the membrane in a direction opposite to that of positive deflection.
Equation (2.43) is a condition where the deflection of the membrane is zero at the edges since it is a
fixed boundary condition

w = 0 |x=0,b z=0,h (2.43)

Particles of the fluid in contact with the membrane and the membrane itself must move with
the same velocity. This condition is the so called cavitation or compatibility condition of the fluid at
the bottom.

∂w

∂t
= ∂φ

∂z

∣∣∣∣
z=0

(2.44)
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2.4.1. FLUID DESCRIPTION

The velocity potential of the fluid is given by

φ(x, z, t ) =
∞∑

d=0
Ad e iωc t cos

dπr

b

(
cosh

dπz

b
+

(
ω2

c tanh dπh
b − gπd

b

ω2
s −ω2

c

)(
sinh

dπz

b

))
(2.45)

where

ω2
s =

gπd

b
tanh

(
πdh

b

)
(2.46)

and k = dπ
b is the wave number and Ad is amplitude of the oscillation,ωs is the natural frequency

of the liquid in a completely rigid container. ωc is the undetermined coupled frequencies of the
system. The solution must satisfy the boundary conditions of equation (2.43). Let the deflection of
the string be given as

w =
∞∑

d=0
Wd (t )sin

dπx

b
(2.47)

The kinetic (X ) and potential (Y ) energy used in the loading (pressure on the string from the
fluid) of the string is given by

X =
b∫

0

1

2υ

(
W 2

d sin
dπx

b

)2

d x (2.48)

Y =
b∫

0

1

2υ

(
W 2

d

1

2
− 1

2
cos2x

)
d x (2.49)

X = 1

4υ
b

∞∑
d=0

W 2
d (2.50)

Y = T

2

b∫
0

(
∂w

∂x

)2

d x (2.51)

Y = T

2
Wd (t )

b∫
0

(
dπ

b

)
cos

(
dπx

b

)2

d x (2.52)

Y = Wd (t )
T

2

d 2π2

b2

∣∣∣∣z=b

z=0
(2.53)

Y =
∞∑

d=0
W 2

d (t )
T

4

d 2π2

b
(2.54)

Where T is the tension of the string and υ is the representation of mass per unit area. From the
principles of virtual work,

δW =
b∫

0

P (x, t )
∞∑

d=0
δWde sin

(
dπx

b

)
d x (2.55)

where P (x, t ) is the load function representing pressure exciting force of the fluid on the string
and introducing equation (2.41) and equation (2.46) yields the Lagrange equation is given by
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Ẅd +
(
ω2

d − ρg

υ

)
Wd = 2iρωc

υπ

∞∑
k=0

e iωc t

b∫
0

∞∑
d=0

Ad cos

(
dπx

b

) ∞∑
d=0

sin

(
dπx

b

)
d x (2.56)

Considering the Fourier-sine series approximations for

cos

(
kπx

b

)
=

∞∑
d=0

α(k) sin

(
dπx

b

)
(2.57)

α(k) = 2

π

d [1− (−1)d+k ]

(d 2 −k2)
(2.58)

α(k)
k = 0 (2.59)

where the values of k = 0 and other values d +k is an odd number. Combining equation (2.42) ,
(2.43), (2.44) and (2.45) yields the differential equation and

Wd = Bd e iωc t (2.60)

Thus this yields

Bd (−ω2
c +ω2

d − ρg

υ
)− 2iρωc

υπ

∞∑
k=0

e iωc t Ad
d [1− (−1)d+k ]

(d 2 −k2)
= 0 (2.61)

Now applying equation (2.44)

ωc i Bd =
∞∑

k=0
Ak

dπ

b

2

π

d [1− (−1)d+k ]

(d 2 −k2)

(
ω2

c tanh( kπh
b )− gπk

b

ω2
s(k)

−ω2
c

)
(−ω2

c +ω2
d(d)

− ρg

υ
) (2.62)

These leads to frequency equation or characteristic equation whose coefficient determinant
yields the desired coupled frequencies.

∞∑
k=0

Ak
d [1− (−1)d+k ]

(d 2 −k2)

(
ρω2

c

υ
+ (ω2

c −ω2
d(d)

− ρg

υ
)

)
kπ

b

(
ω2

c tanh( kπh
b )− gπk

b

ω2
s(k)

−ω2
c

)
= 0 (2.63)

2.5. DYNAMIC ANALYSIS OF COUPLED FLUID-STRUCTURE INTERACTION 3-D
The section is studied in two parts, when the membrane is situated at the bottom of the smaller
cylinder and when the membrane is situated at the top of the bigger cylinder without the smaller
cylinder. This is to help understand how the dynamics of the fluid-structure interaction works with
respect to the position of the membrane.

2.5.1. MEMBRANE SITUATED AT THE BOTTOM OF CYLINDER

The dynamics of the coupled fluid-structure interaction is divided into two parts from Rizos [1],
wherein two cylinders filled with fluid to the same level, although, the smaller cylinder is partly sub-
merged inside the bigger cylinder and is driven harmonically by a motor. The bottom of the smaller
cylinder is a flexible membrane. The dynamics of the coupled fluid-structure interaction discussed
in this section captures the smaller cylinder with a flexible bottom and rigid walls as shown in figure
2.5 below.
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Figure 2.5: Illustration of the coupling phenomenon with membrane located at the
bottom of the cylinder in 3-D case

It must be said that the fluid in consideration is water, thus, the assumption made for the ana-
lytical solutions are: the fluid is assumed to be non- viscous, incompressible and irrotational. The
assumption of the linear theory is used, thus, the harmonic displacements, velocities and accelera-
tions of fluid particles will have a linear relationship with the wave surface elevation. According to
Rizos [1], the exciting motor must possess a harmonic motion also. The velocity potentialφ(r,θ, z, t )
must satisfy the so called governing equations which are continuity equation, bottom boundary
conditions, free surface dynamic and kinematic conditions.

Laplace or continuity condition for a cylindrical coordinate is given as

∂u

∂r
+ u

r
+ ∂v

∂θ
+ ∂w

∂z
= 0 (2.64)

Where

u = ∂φ

∂r
, v = 1

r

∂φ

∂θ
, w = ∂φ

∂z
(2.65)

u, v, and w are the velocities in the direction of the cylindrical axis. Combining equation (2.64)
and equation (2.65) gives

∂2φ

∂r 2 + 1

r

∂φ

∂r
+ 1

r 2

∂2φ

∂θ2 + ∂2φ

∂z2 = 0 (2.66)

The combination of dynamic and kinematic free surface condition states that pressure is con-
stant across the surface and particles on the free surface move with a velocity of the free surface.
This yields equation (2.67)

∂2φ

∂t 2 + g
∂φ

∂z
= 0

∣∣∣∣
z=h

(2.67)

Where h = height of the fluid column of the small cylinder.
Other equations include velocity potential at walls equals to zero equations (2.68) and the dy-

namic boundary condition due to fluid pressure at the bottom yields equation (2.69).
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∂φ

∂r
= 0

∣∣∣∣
r=a

(2.68)

P =−ρ∂φ
∂t

∣∣∣∣
z=0

(2.69)

From equation (2.15), the coupling conditions are as follows in the equations (2.70) and equa-
tion (2.71).

To∇2w −mm
∂2w

∂2t
= P (2.70)

Positive pressure acts on the membrane in a direction opposite to that of positive deflection.
Equation (2.71) is a condition where the deflection of the membrane is zero at the edges since it is a
fixed boundary condition

w = 0 |r=a (2.71)

Particles of the liquid in contact with the membrane and the membrane itself must move with
the same velocity. This condition is the so called cavitation or compatibility condition of the fluid at
the bottom.

∂w

∂t
= ∂φ

∂z

∣∣∣∣
z=0

(2.72)

For this condition, the non-linear terms are neglected and liquid velocity is evaluated at the
undisturbed position of the membrane. Having defined the above equations, the solution to this
coupling problem depends on the representation of the velocity potential of the fluid. Due to ge-
ometry and nature of the problem, it is not uncommon that fluid takes the shape(volume) of its
container when all external excitation is absent. The vibration modes of a fixed circular membrane
In Vacuo exhibits a Bessel function thus, the velocity potential is also represented by a Bessel func-
tion in equation (2.73). The geometry of the membrane is a circle and it is common knowledge that
a circle has infinite number of symmetric lines and can as well be considered to be asymmetric de-
pending on the manner the lines of symmetry are drawn. For the benefit of ease in understanding,
the circular membrane was separated into axisymmetric and asymmetric cases.

AXISYMMETRIC CASE

This is the case when all nodal diameter are considered absent; the solutions to this problem are
as follows and only the nodal circle is considered, thus n = 0 and m 6= 0. The velocity potential is
defined as follows:

φn = An J0(knr )(e−kn z +Bnekn z )e iωc t
∣∣∣
kn 6=0

(2.73)

Where, An , Bn and kn are wave amplitudes and wave number respectively. ωc is the unknown
coupled frequency of the membrane and the fluid. The total velocity potential is the sum of all
velocity potentials around the cylinder from φn ; n = 0...∞. This comes from the so called additive
property of angular momentum.

The geometry of the membrane is a circle and the wave particles tend to rotate relative to the
centre of the membrane. Combining these two features, the velocity potential is defined as spe-
cific relative angular momentum and conservation is of importance − angular momentum is a con-
served quantity.

The solution to equation (2.73) when kn equals zero and r = 0 is the velocity potential when the
nodal circle is zero gives the equation (2.74) which is a regular solution and fulfils equation (2.66).
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φ0 = A0(Z +B0)e iωc t
∣∣∣
kn=0

(2.74)

Applying the free surface conditions in equations (2.67), (2.73) and (2.74) yields;

Bn = (g kn +ω2
c )e−kn h

(g kn −ω2
c )ekn h

∣∣∣∣∣
kn 6=0,z=h

(2.75)

B0 =
g −hω2

c

ω2
c

∣∣∣∣
kn=0,z=h

(2.76)

Applying equation (2.68) to equation (2.73) yields

J1(kn a) = 0 |r=a (2.77)

The roots (zero-crossings) of equation (2.77) gives the value of kn in figure 2.6 below. To solve
equation (2.70), an expression for equation (2.69) when kn equals zero and non-zero is applied to
equation (2.73) which yields

0 1 2 3 4 5 6 7 8 9 10
k

n

-0.4

-0.2

0

0.2

0.4

0.6

J 1(k
na)

J
1

Figure 2.6: The wave number kn plot as a function of the Bessel function
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From equation (2.69), it yields equations (2.78) and (2.79)

−ρiωc e iωc t An J0(knr )(Bn +1) = Pn

∣∣∣
kn 6=0

(2.78)

−ρiωc e iωc t A0B0 = P0

∣∣∣
kn=0

(2.79)

Let the membrane deflection take the form

w =Wn(r )e iωc t
∣∣∣
n 6=0

(2.80)

w =W0(r )e iωc t
∣∣∣
n=0

(2.81)

In solving equation (2.70),substitute equations (2.80) and (2.81) to give

d 2Wn

dr 2 + 1

r

dWn

dr
+µ2Wn = −ρiωc

T0
An(1+Bn)J0(knr ) (2.82)

The solution to equation (2.82) yields

Wn = γ′n
(

J0(knr )− J0(µr )J0(kn a)

J0(µa)

)
(2.83)

γ′n = −ρiωc An(1+Bn)

T0(µ2 −k2
n)

(2.84)

µ2 = mmω
2
c

T0
(2.85)

Similarly, when kn equals zero

d 2W0

dr 2 + 1

r

dW0

dr
+µ2W0 = −ρiωc

T0
A0B0 (2.86)

W0 = γ′0
(
1− J0(µr )

J0(µa)

)
(2.87)

γ′0 = −ρiωc A0B0

T0(µ2)
(2.88)

Substituting equations (2.77), (2.78) and (2.79) into equations (2.80) and (2.81) respectively and
finally applying the cavitation condition in equation (2.72) yields;

iωcγ′0
(
1− J0(µr )

J0(µa)

)
e iωc t +

∞∑
n=1

iωcγn

(
J0(knr )− J0(kn a)

J0(µa)
J0(µr )

)
e iωc t

= A0e iωc t +
∞∑

n=1
kn An (Bn −1) J0(knr )e iωc t (2.89)

By comparison of equation (2.89), the coefficients of A0 and An gives the values of the coupled
natural frequency. Expanding J0(µr ) into J0(knr ) using Dini series also known as Fourier-Bessel
series [17] and equating the coefficient terms on both sides leads to equation (2.90).

J0(µr ) = 2

aµ
J1(µa)+

∞∑
m=1

2

a(µ2 −k2
m)

J1(µa)

J0(kn)
J0(kmr ) (2.90)
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Substituting equation (2.90) into equation (2.89), the solution of the constants An equation
(2.91) yields

iωcγ0′− iωcγ0′ 2J1(µa)

aµJ0(µa)
− iωcγ0′2µJ1(µa)

a J0(µa)

∞∑
m=1

1

(µ2 −k2
m)

J0(kmr )

J0(km a)
+

∞∑
n=1

iωcγn ′J0(knr )

−
∞∑

n=1
iωcγn ′ J0(kn a)

J0(µa)

2J1(µa)

aµ
−

∞∑
n=1

iωcγn ′ J0(kn a)

J0(µa)

∞∑
m=1

2µJ1(µa)J0(kmr )

a(µ2 −k2
m)J0(km a

= A0 +
∞∑

n=1
kn An (Bn −1) J0(knr ) (2.91)

In obtaining the coefficients of An , by comparison of equation (2.91),

iωcγ0′− iωcγ0′
(

2J1(µa)

aµJ0(µa)

)
= A0 (2.92)

Thus coefficients of A0 is obtained by substituting equation (2.88) into equation (2.92)

iωc

(−ρiωc A0B0

T0µ2

)
− iωc

(
ρiωc A0B0

T0µ2

)(
2J1(µa)

aµJ0(µa)

)
= A0 (2.93)

Yields

(
ρω2

c A0B0

T0µ2

)
−

(
ρω2

c A0B02J1(µa)

T0µ3a J0(µa)

)
− A0 = 0 (2.94)

Simplifying equation (2.94) by dividing through by A0 and making J0(µa)=1 and J1(µa)
µa = 0.5 be-

cause of the asymptote values are easier to approximate.

α11 =
(
ρω2

c B0

T0µ2

)
−

(
ρω2

c B02J1(µa)

T0µ3a J0(µa)

)
−1 (2.95)

Similarly, from equation (2.91) yields equation (2.96)

− iωc

(−ρiωc An(1+Bn)

T0(µ2 −k2
n)

)(
J0(kn a)

J0(µa)

)(
2J1(µa

aµ

)
= 0 (2.96)

The coefficient of α12 yields equation (2.97) when n=1

α12 =
(
−2ρω2

c (1+B1)J0(k1a)J1(µa)

T0aµ(µ2 −k2
1)J0(µa)

)
(2.97)

When equation (2.96) has n=2

α13 =
(
−2ρω2

c (1+B2)J0(k2a)J1(µa)

T0aµ(µ2 −k2
2)J0(µa)

)
(2.98)

From equation (2.91) comparing coefficients yields equation (2.99)

iωc

(−ρiωc A0B0

T0µ2

)(−2µJ1(µa)

a(J0µa)

) ∞∑
m=1

(
1

(µ2 −k2
m)

J0(kmr )

J0(km a)

)
= 0 (2.99)

when n = 1 and n =2 yields
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α21 =
−2ρω2

c B0 J1(µa)

T0µa J0(µa)(µ2 −k2
1)J0(k1a)

(2.100)

α31 =
−2ρω2

c B0 J1(µa)

T0µa J0(µa)(µ2 −k2
2)J0(k2a)

(2.101)

Following the same procedure of comparing the coefficients of A0 and An

α22 =
−2ρµω2

c (1+B1)J1(µa)

T0µa((µ2 −k2
1)2)

+ ρω2
c (1+B1)

T0(µ2 −k2
1)

−k1(B1 −1) (2.102)

α33 =
−2ρµω2

c (1+B2)J1(µa)

T0µa((µ2 −k2
2)2)

+ ρω2
c (1+B2)

T0(µ2 −k2
2)

−k1(B2 −1) (2.103)

Finally,

α23 =
−2µρω2

c (1+B2)J0(k2a)J1(µa)

T0µa(µ2 −k2
1)J0(k1a)(µ2 −k2

2)J0(µa)
(2.104)

α32 =
−2µρω2

c (1+B1)J0(k1a)J1(µa)

T0µa(µ2 −k2
1)J0(k2a)(µ2 −k2

2)J0(µa)
(2.105)

The determinant of the A matrix below gives the required coupled frequency or frequency de-
terminant obtained by solving the set of simultaneous equation(2.91).

A =

∣∣∣∣∣∣∣∣∣∣
α11 α12 α13 . . .
α21 α22 α23 . . .
α31 α32 α33 . . .

...
...

...
...

∣∣∣∣∣∣∣∣∣∣
ASYMMETRIC CASE

This is the case when all nodal circles and nodal diameters are considered, thus m 6= 0 and n 6= 0.
Just like in the axisymmmetric case, the velocity potential is:

φmn = Amn Jmn(kmnr )(e−kmn z +Bmnekmn z )e iωc t cos(mθ) (2.106)

Applying equation (2.67) to (2.106) to get equation (2.107)

Bmn = (g kmn +ω2
c )e−kmn h

(g kmn −ω2
c )ekmn h

(2.107)

Applying equation (2.68) to equation (2.106) yields equation (2.108)

J ′n(kmn) = 0 m = 1,2,3, . . . (2.108)

The prime stands for the differentiation of Bessel function with respect to the argument. From equa-
tion (2.69) the pressure is obtained by

Pmn =−ρiωc e iωc t Amn Jm(kmnr )(Bmn +1)cos(mθ) (2.109)

The membrane deflection from equations (2.70) and (2.71) gives equation (2.110)
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w =Wmn(r )cos(mθ)e iωc t (2.110)

Substituting equation (2.70) into equations (2.109) and (2.110) yields

d 2Wmn

dr 2 + 1

r

dWmn

dr
+

(
µ2 − m2

r 2

)
Wmn = −ρiωc Amn Jm(kmnr )(1+Bmn)

T0
(2.111)

Solving the differential equation in (2.111) above yields

Wmn = γ′mn

(
Jm(kmnr )− Jm(kmn a)Jm(µr )

Jm(µa)

)
(2.112)

γ′mn = −ρiωc Amn(1+Bn)

T0(µ2 −k2
mn)

;µ 6= kmn (2.113)

µ2 = mmω
2
c

T0
(2.114)

From equation (2.72) the cavitation boundary condition is;

∞∑
m=1

iωcγ′mn

(
Jm(kmnr )− Jm(kmnr )

Jm(µa)

)
Jm

(
µr

)
e iωc t

=
∞∑

n=1
kmn Amn (Bmn −1) Jm(kmnr )e iωc t m = 1,2,3, . . . (2.115)

Expanding Jm(µr ) [17] gives ;

Jmn(µr ) =
∞∑

q=1
δq Jm(kmp r ) (2.116)

where

δq =
2ak2

mq

(k2
mq a2 −m2)((Jm(k2

mq )a))2(k2
mq −µ2)

×kmq Jm(µa)Jm+1(kmq a)−µJm(kmq a)Jm+1(µa) (2.117)

Substituting equations (2.116) and (2.117) into (2.115) yields

∞∑
n=1

γmn Jm(kmnr )−
∞∑

n=1
γmn

Jm(kmn a)

Jm(µa)

∞∑
q=1

δq Jm(kmq r )

=
∞∑

n=1
kmn Amn (Bmn −1) Jm(kmnr ) m = 1,2,3, . . . where γmn = γ′mniωc (2.118)

Similarly, by comparing coefficients of equation (2.118) the following elements of the matrix B
is obtained.
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β11 =
−ρω2

c (1+Bm1)Jm(km1a)δ1

T0(µ2 −k2
m1)Jm(µa)

+ ρω2
c (1+Bm1)

T0(µ2 −k2
m1)

−km1(Bm1 −1) (2.119)

β12 =
−ρω2

c (1+Bm2)Jm(km2a)δ1

T0(µ2 −k2
m2)Jm(µa)

(2.120)

β13 =
−ρω2

c (1+Bm3)Jm(km3a)δ1

T0(µ2 −k2
m3)Jm(µa)

(2.121)

β21 =
−ρω2

c (1+Bm1)Jm(km1a)δ2

T0(µ2 −k2
m1)Jm(µa)

(2.122)

β22 =
−ρω2

c (1+Bm2)Jm(km2a)δ2

T0(µ2 −k2
m2)Jm(µa)

+ ρω2
c (1+Bm2)

T0(µ2 −k2
m2)

−km2(Bm2 −1) (2.123)

β23 =
−ρω2

c (1+Bm3)Jm(km3a)δ2

T0(µ2 −k2
m3)Jm(µa)

(2.124)

β31 =
−ρω2

c (1+Bm1)Jm(km1a)δ3

T0(µ2 −k2
m1)Jm(µa)

(2.125)

β32 =
−ρω2

c (1+Bm2)Jm(km2a)δ3

T0(µ2 −k2
m2)Jm(µa)

(2.126)

β33 =
−ρω2

c (1+Bm3 Jm(kma)δ3

T0(µ2 −k2
m3)Jm(µa)

+ ρω2
c (1+Bm3)

T0(µ2 −k2
m3)

−km3(Bm3 −1) (2.127)

Similarly, the determinant of Matrix B gives the coupled frequency or frequency determinant
obtained by solving the set of simultaneous equation obtained from equation (2.118) of the system
in the asymmetric case.

B =

∣∣∣∣∣∣∣∣∣∣
β11 β12 β13 . . .
β21 β22 β23 . . .
β31 β32 β33 . . .

...
...

...
...

∣∣∣∣∣∣∣∣∣∣
2.5.2. MEMBRANE SITUATED AT THE TOP OF CYLINDER

In this case, the membrane lies on the free surface of the bigger cylinder with radius R and height H
but not entirely. This is considered because, the free surface effect must be captured. Following the
governing equations, the following modifications are made to the membrane at the top as seen in
the figure 2.7 below.

Laplace or continuity condition for a cylindrical coordinate is given as

∂u

∂r
+ u

r
+ ∂v

∂θ
+ ∂w

∂z
= 0 (2.128)

Where

u = ∂φ

∂r
, v = 1

r

∂φ

∂θ
, w = ∂φ

∂z
(2.129)

u, v, and w are the velocities in the direction of the cylindrical axis. Combining equation (2.128)
and (2.129) gives the Laplace or continuity condition for a cylindrical coordinate.
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Figure 2.7: Description of the coupling phenomenon with membrane located at the top of
the cylinder 3-D case

∂2φ

∂r 2 + 1

r

∂φ

∂r
+ 1

r 2

∂2φ

∂θ2 + ∂2φ

∂z2 = 0 (2.130)

The combination of dynamic and kinematic free surface condition yields equation (2.131)

∂2φ

∂t 2 + g
∂φ

∂z
= 0

∣∣∣∣
z=H

a ≤ r ≤ R (2.131)

Where H = height of the fluid column of the small cylinder. 10

Other equations include velocity potential at walls equals to zero equations (2.132) and the dy-
namic boundary condition due to fluid pressure at the bottom yields equation (2.133).

∂φ

∂r
= 0

∣∣∣∣
r=R

(2.132)

P = ρ∂φ
∂t

∣∣∣∣
z=H

(2.133)

From equation (2.15), the coupling conditions are as follows in the equations (2.134) and equa-
tion (2.135).

To∇2w −mm
∂2w

∂2t
= P (2.134)

10It should be noted that for the case of the membrane covering located at the top of the cylinder, there is no free-surface
boundary condition considered in the analysis.
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Positive pressure acts on the membrane in a direction same to that of positive deflection. Equa-
tion (2.135) is a condition where the deflection of the membrane is zero at the edges since it is a
fixed boundary condition

w = 0 |r=a (2.135)

Particles of the liquid in contact with the membrane and the membrane itself must move with
the same velocity. This condition is the so called cavitation or compatibility condition of the fluid at
the bottom.

∂w

∂t
= ∂φ

∂z

∣∣∣∣
z=H

0 ≤ r ≤ a (2.136)

In this particular case, the axisymmetric case is taken into consideration, this is when all nodal
diameter are considered absent. The solution to this problem is as follows and only the nodal circle
is considered, thus n = 0 and m 6= 0.

φn = An J0

(
kn

r

R

)(
e−kn

z
R

)
+Bn

(
ekn

z
R

)
e iωc t

∣∣∣
kn 6=0

(2.137)

Where, An ,Bn and kn are wave amplitudes and wave number respectively. ωc is the unknown
coupled frequency of the membrane and the fluid.

To solve equation (2.138) when kn is not zero. The solution to kn equals zero and r =0 is the
velocity potential where nodal circles is zero gives the equation (2.138).

φ0 = A0

(
Z

R
+B0

)
e iωc t

∣∣∣∣
kn=0

(2.138)

Applying the free surface conditions in equations (2.131) and (2.137) and (2.138) yields

Bn = (g kn
R +ω2

c )e−kn
H
R

(g kn
R −ω2

c )ekn
H
R

∣∣∣∣∣
kn 6=0,z=H

(2.139)

B0 =
g
R − H

R ω
2
c

ω2
c

∣∣∣∣∣
kn=0,z=H

(2.140)

The boundary condition at the bottom where z=0 from equation (2.137)

A0e iωc t + An J0(knr )e iωc t kn(Bn −1) = 0
∣∣∣
kn=0,z=0

(2.141)

This condition is only satisfied when Bn = 1
Applying equation (2.132) to equation (2.137) yields:

J1(kn a) = 0 |r=R (2.142)

The roots of equation (2.142) follow the same values kn in figure 2.6 above but with different ra-
dius since the bigger cylinder has a bigger radius. kn equals zero and non-zero is applied to equation
(2.137) which yields

From equation (2.133), it yields equations (2.143) and (2.144)

ρiωc e iωc t An J0

(
kn

r

R

)(
Bnekn

H
R +e−kn

H
R

)
= Pn

∣∣∣
kn 6=0

(2.143)

ρiωc e iωc t A0

(
H

R
+B0

)
= P0

∣∣∣∣
kn=0

(2.144)
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Let the membrane deflection take the form

w =Wn(r )e iωc t
∣∣∣
n 6=0

(2.145)

w =W0(r )e iωc t
∣∣∣
n=0

(2.146)

In solving equation (2.134),substitute equations (2.145) and (2.146) to give;

d 2Wn

dr 2 + 1

r

dWn

dr
+µ2Wn = ρiωc

T0
An

(
e−kn

H
R +Bnekn

H
R

)
J0(knr ) (2.147)

The solution to equation (2.147) yields

Wn = δ′n
(
−J0(kn

r

R
)+ J0(kn

r
R )J0(µr )

J0(µa)

)
(2.148)

δ′n = ρiωc An(e−kn
H
R +Bnekn

H
R )

T0µ2 (2.149)

µ2 = mω2
c

T0
(2.150)

Similarly, when kn equals zero

d 2W0

dr 2 + 1

r

dW0

dr
+µ2W0 = ρiωc

T0
A0

(
B0 + H

R

)
(2.151)

W0 = δ′0
(
1− J0(µr )

J0(µa)

)
(2.152)

δ′0 =
ρiωc A0

( H
R +B0

)
T0µ2 (2.153)

Substituting equations (2.151) , (2.135), (2.147),(2.143) into equations (2.145) and (2.146) respec-
tively and finally applying the cavitation condition in equation (2.136) yields

iωcδ′0
(
1− J0(µr )

J0(µa)

)
e iωc t +

∞∑
n=1

iωcδn

(
J0(kn

r

R

)
−

(
J0(kn

r
R )J0(µr )

J0(µa)

)
e iωc t

= A0e iωc t +
∞∑

n=1

kn

R
An

(
Bnekn

H
R +e−kn

H
R

)
J0(kn

r

R
)e iωc t (2.154)

By comparison of equation (2.143), the coefficients of A0 and An gives the values of the coupled
natural frequency. Expanding J0(µr ) into J0(knr ) by Fourier-Bessel series [17] and equating the
coefficient terms on both sides leads to equation (2.90).

J0(µr ) = 2

aµ
J1(µa)+

∞∑
n=1

2

a(µ2 −k2
n)

J1(µa)

J0(kn)
J0

(
km

r

R

)
(2.155)

Substituting equation (2.155) into equation (2.154), the solution of the constants An yields equa-
tion (2.156).
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iωcδ0′− iωcδ0′
(

2J1(µa)

aµJ0(µa)

)
− iωcδ0′2µJ1(µa)

a J0(µa)

∞∑
m=1

1

(µ2 −k2
m)

J0(km
r
R )

J0(km a)
+

∞∑
n=1

iωcδn ′J0

(
kn

r

R

)
−

∞∑
n=1

iωcδn ′
J0(kn

r
R )

J0(µa)

(
2J1(µa)

aµ

)
−

∞∑
n=1

iωcδn ′
J0(kn

r
R )

J0(µa)

∞∑
m=1

2µJ1(µa)J0(km
r
R )

a(µ2 −k2
m)J0(km a)

= A0 +
∞∑

n=1
kn An

(
Bnekn

H
R +e−kn

H
R

)
J0

(
kn

r

R

)
(2.156)

In obtaining the coefficients of An , by comparison of equation (2.156)

iωcδ0′− iωcδ0′
(

2J1(µa)

aµJ0(µa)

)
= A0 (2.157)

Thus coefficients of A0 is obtained by substituting equation (2.156) into equation (2.171)

iωc

(
ρiωc A0( H

R +B0)

T0µ2

)
− iωc

(−ρiωc A0( H
R +B0)

T0µ2

)(
2J1(µa)

aµJ0(µa)

)
= A0 (2.158)

Yields (
ρω2

c A0( H
R +B0)

T0µ2

)
+

(
ρω2

c A0( H
R +B0)2J1(µa)

T0µ3a J0(µa)

)
− A0 = 0 (2.159)

Simplifying equation (2.173) by dividing through by A0 and making J0(µa)=1 and J1(µa)
µa = 0.5

because of the asymptote values are easier to approximate.

ψ11 =
(
−ρω

2
c ( H

R +B0)

T0µ2

)
+

(
ρω2

c ( H
R +B0)2J1(µa)

T0µ3a J0(µa)
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−1 (2.160)

Similarly, from equation (2.156) yields equation (4.1)

− iωc

(
ρiωc An(e−kn

H
R +Bnekn

H
R )

T0µ2

)(
J0(kn a)
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)(
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aµ

)
= 0 (2.161)

The coefficient of ψ12 yields to equation (4.2) when n=1

ψ12 =
(

2ρω2
c (e−kn

H
R +B1ekn

H
R )J0(k1a)J1(µa)

T0aµµ2 J0(µa)

)
(2.162)

When equation (4.1) has n=2

ψ13 =
(

2ρω2
c (e−kn

H
R +B2ekn

H
R )J0(k2a)J1(µa)

T0aµµ2 J0(µa)

)
(2.163)

From equation (2.156) comparing coefficients yields equation (4.4)

iωc

(
ρiωc A0( H
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)(−2µJ1(µa)

a(J0µa)

) ∞∑
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(
1
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r
R )

J0(km a)

)
= 0 (2.164)

when n = 1 and n =2 yields
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ψ21 =
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(2.165)
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(2.166)

Following the same procedure of comparing the coefficients of A0 and An
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Finally,
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ψ32 =
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H
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(2.170)

The determinant of the C matrix below gives the required coupled frequency or frequency de-
terminant obtained by solving the set of simultaneous equation 2.156.

C =

∣∣∣∣∣∣∣∣∣∣
ψ11 ψ12 ψ13 . . .
ψ21 ψ22 ψ23 . . .
ψ31 ψ32 ψ33 . . .

...
...

...
...

∣∣∣∣∣∣∣∣∣∣
2.6. ANALYSIS OF COUPLED FLUID-STRUCTURE INTERACTION (MEMBRANE

SUBMERGED)
In this section, linear theory is considered for better understanding of the fluid-structure interaction
phenomenon.Moreover, in order to fully grasp what fluid-structure interaction is in its basic form,
experimental processes such as viscosity, liquid surface tension are ignored.

The final coupled equation submerged membrane is determined by combining the coupled
equations for when the membrane is at the top and at the bottom, for the final formulation for a
submerged membrane. See figure 2.8.

From the compatibility equations from equations (2.136) and (2.72) , rewriting this yields

∂w

∂t
− ∂φ

∂z

∣∣∣∣
z=0

= ∂w

∂t
− ∂φ

∂z

∣∣∣∣
z=H

(2.171)
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Figure 2.8: Description of the coupling phenomenon with membrane located at the top of
the cylinder 3-D case
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From the above equation (2.172) by comparing coefficients, the elements of the matrix are below

iωγ0′− iωγ0′ 2J1(µa)

aµJ0(µa)
− A0 = iωδ0′− iωδ0′ 2J1(µa)

aµJ0(µa)
− A0 (2.173)

Similarly, following the equation 2.172, the elements of the matrix are as follows.
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(2.174)

The terms with a superscript of t means the membrane is at the top. Similarly, the determinant of
the matrix whose elements are highlighted above gives the required coupled frequency or frequency
determinant obtained by solving the set of simultaneous equation (2.172).

Ξ=
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3
RESULTS AND DISCUSSION

3.1. INTRODUCTION
The analysis of the model are discussed extensively in this chapter to explain the physical represen-
tation of this problem. This is of engineering interest to ease understanding. Building the model in
steps, the dynamic behaviour of the freely vibrating string and membrane In vacuo are presented
as well as the dynamics of the coupled Fluid-Structure Interaction (FSI) problem in 2-D and 3-D
case. The understanding of this coupling phenomenon are judged mainly by visual inspection and
testing of variables to see how they compares to the dry case and free surface frequencies when it is
uncoupled.

3.2. DYNAMIC BEHAVIOUR OF FREELY VIBRATING STRING In vacuo
The frequency represented as ω = f πc

l depends upon the length, tension and mass of the string.
The figure 3.1 below shows the vibration modes of a fixed-fixed string. The index f = 1,2,3... shows
that it is a continuous system having infinite number of natural frequencies1. The vibration mode
are simply displacement patterns the string will possess at a distinct frequency, in this case it is
sinusoidal in nature.
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Figure 3.1: The first three vibration modes of a fixed-fixed string In vacuo

1The natural frequencies of a system is simply the frequency at which the system oscillates without any external excitation

33
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3.3. DYNAMIC BEHAVIOUR OF FREELY VIBRATING CIRCULAR MEMBRANE In
vacuo

The frequencies of a circular fixed membrane In vacuo from equation (2.27) is shown in the figure
3.2 below. The figure 3.2 below shows both the axisymmetric and asymmetric natural frequencies
of the In Vacuo membrane. Since it is a continuous system, the natural frequency equation has
infinitely many roots.
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Figure 3.2: Plot showing the natural frequencies of a fixed circular membrane In vacuo.

Figure 3.2 above shows the natural frequencies of the membrane under fixed boundary condi-
tion from equation (2.27). The value of n = 1,2, ... means the nodes will be at the edges of the fixed
membrane and it is the order of the Bessel function which dictates the frequency of the membrane.
The difference between J0 , J1 and J2 is simply the order of the Bessel function, however, the roots
(zero-crossings) of the equation (2.27) in figure 3.2 gives the exact root or rank of the frequency.
Table 3.1 gives a summary.

Table 3.1 below presents the non-dimensional frequencies λ = ( m
To

)
1
2ω from equation (2.27) of

the fixed edges first nine frequencies2 With m = 1,2,3 and n = 0,1,2.

Thus, ωm,n = ω1,0 = 2.4048, ω1,1 = 3.8317, ω1,2 = 5.1356.

This means at order 0 of the Bessel function (axisymmetric), the first frequency is 2.4048, the
second frequency is 5.5201 and the third frequency is 8.6573.

2The natural frequency is dependent on the mass of membrane, radius of membrane and tension, the values of the
frequency below in the table assumes a tension radius and mass of unity.
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Table 3.1: The non-dimensional frequencies λ= ( m
To

)
1
2 ω of a circular fixed membrane In

vacuo

J0 J1 J2

m = 1 2.4048 3.8317 5.1356
m = 2 5.5201 7.0155 8.4172
m = 3 8.6537 10.1735 11.620
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(a) vibration modes at n = 0, m = 1 ,2 ,3
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(b) vibration modes at n = 1 , m = 1 ,2 ,3

Figure 3.3: Vibration modes of the freely vibrating circular membrane at n= 0, 1 and m = 1 ,2 ,3
respectively
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From table 3.2 and 3.3 the values of the last column shows the radius of the nodal circles formed
from the roots of the vibration modes as seen in figure 3.3 above. It is interesting to note that the
nodal circles appears at a distinct frequency. Thus, when n = 0 and m = 2, i.e. zero nodal diameter
and two nodal circles. The corresponding frequency which is 5.5202 and two nodal circles will be
formed as the membrane vibrates at radius of 0.4357 and the second radius comes from the radius
of the membrane. This corroborates the equation (2.11). More visualization is seen in figure B.1 in
the appendix B

Table 3.2: First three non-dimensional frequencies and nodal circles m = 1 2, 3, n = 0 In
vacuo

s/n Frequency Nodal circle
1 2.4048
2 5.5202 0.4357
3 8.6537 0.2757 and 0.6375

Table 3.3: First three non-dimensional frequencies and nodal circles m = 1 2, 3, n = 1 In
vacuo

s/n Frequency Nodal circle
1 3.8317
2 7.0155 0.5462
3 10.1735 0.3766 and 0.6896

Figure 3.4 below shows a better appreciation of visualisation in 3-D of the membrane of the first
two frequencies m = 1, 2 and n = 1.

Figure 3.4: Vibration modes of first two frequencies with one nodal diameter In vacuo [4]
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3.4. DYNAMIC BEHAVIOUR OF COUPLED FREQUENCY IN 2-D CASE
In understanding the behaviour of FSI, the characteristic equation in equation (2.63) is shown in
the figure 3.5 below. Dealing with a continuous system, the coupled frequency has infinitely many
frequencies. The roots of the frequency equations marked in * represents the coupled frequencies.
The numerical values used are: T = 500 N/m, ms = 1 kg/m.
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Figure 3.5: Plot of series equation as a function coupled frequencies in the 2-D case with
h
b = 0.3

Figure 3.5 above, the plot of the characteristics equations behaves in an erratic manner: The
coupled frequencies are of course as a result of the fluid-structure interaction, however, in investi-
gating the vibration modes and comparing with the In vacuo case, the marked * , coupled frequen-
cies follows the desired vibration modes which are sinusoidal as in the In vacuo caes. The other
coupled frequencies observed are simply as a result of asymptotes that occur due to the coupling
phenomenon. This doesn’t mean the unmarked roots (zero-crossings) are not correct. It is believed
that the fluid causes oscillations to occur on the membrane at lower observed frequencies. It is
believed also that these low frequencies are predominantly the frequencies of the free surface and
these lower frequency regions are roots of the denominator of equation (2.63). In table 3.4 below,
the coupled frequencies of equation (2.63) are shown.

Table 3.4: First three coupled frequencies of a string and fluid free surface with h
b = 0.3 in

2-D case.

s/n 1 2 3
Frequency (rad/s) 20.241 44.769 73.329
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From figure 3.5 above, the coupled frequencies are shown, the marked * couple frequencies
which produce a sinusoidal vibration mode are 20.241 rad/s, 44.769 rad/s and 73.329 rad/s. These
marked coupled frequencies exhibits the third, fifth and seventh mode respectively.

In an attempt to directly compare the coupled frequencies and the natural frequencies of the
In vacuo case, it was observed that the coupled frequencies are lower at the lower regions see table
3.5. This is logical because of the added mass created by the fluid. However, at higher regions, the
coupled frequency than to be larger than the In Vacuo frequency. This is simply due to stronger
coupling effect from the fluid.

Table 3.5: Comparism of coupled and In vacuo frequencies in 2-D case.

s/n 1 2 3
coupled frequency (rad/s) 20.241 44.769 73.329
In Vacuo frequency (rad/s) 21.074 35.124 49.173

The vibration of the string and free surface using the coupled frequency is shown below in fig-
ure 3.6. Figure 3.6 below represents the vibration mode of the string and it shows the behaviour of
the fluid free surface at the same frequency of ωc = 20.241 rad/s. The fluid free surface exhibits a
different vibration mode, this is mainly due to the time variable. Independent of time, the vibra-
tion modes of string and fluid free surface possess the same vibration mode shape. The reason for
this behaviour can be explained mathematically, on solving the partial differential equations of the
string coupled with the fluid, using the methods of variable separation. All variables, x, z and t are
dealt with independently. It is established that fluid takes the shape(volume) of its container when
all exciting forces are absent. When these variables are considered together, the vibration mode of
the free surface is different as seen in figure 3.6.
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(a) string modes

(b) fluid free surface modes

Figure 3.6: Vibration modes of the string and fluid free surface at 7th frequency with ωc = 20.241rad/s
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3.5. DYNAMIC BEHAVIOUR OF COUPLED FREQUENCY IN 3-D CASE
In understanding the behaviour of FSI in 3-D, two cases are considered: The first case considers
the situation where the membrane is located at the bottom of the cylinder and the second case
considers a membrane located at the top of the bigger cylinder and completely ignoring the smaller
cylinder.

3.5.1. MEMBRANE LOCATED AT THE BOTTOM OF THE SMALLER CYLINDER

The coupled frequency is a function of the determinant of A matrix from equation (2.91). The A ma-
trix captures only axisymmetric vibration modes. The parameters used are: h/a = 0.3, To = 500 N/m,
mm = 1 kg/m, a = 1 m. The coupled frequencies are the roots of the solution to the determinant of
the A matrix. It is expected that the coupled frequency consist of infinitely many values since it is
a continuous system, thus truncating the infinite determinant is advantageous, subsequently pro-
ducing a finite number of rows and columns that yields an approximate set of solutions of coupled
frequencies.

Figure 3.7: Plot of determinant as a function of coupled frequency. The zero-crossing
represents solution to |A| = 0

Figure 3.7 above, the abscissa axis is the coupled frequency (ωc ) and the ordinate axis is the
determinant of (A matrix). The roots of the equation gives the coupled frequency up to the first
four frequencies as shown in table 3.6. From the figure 3.7, the roots marked in ¦ shows the desired
coupled frequencies. From table 3.6, it should be noted that not all coupled frequency gives the
desired vibration mode, it is simply due to the nonlinear behaviour of the fluid and membrane, this
is judged by plotting the vibration modes and comparing with the In vacuo case.

Table 3.6: First four non-dimensional coupled frequencies µ2 = mm

To
ω2

c of membrane

located at the bottom of the cylinder

s/n 1 2 3
Frequency 4.984 8.086 12.232
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The amplitude of membrane and free surface are dependent on A0 and An from equation(2.91).
For better understanding of these concept, the amplitudes were ignored because they are constants
and are of little engineering importance, as it only reduces the scale of the plots. It is highly rec-
ommended that all values of the roots (coupled frequencies ωc ) be checked. For example, the value
of second frequency from figure 3.7 given as 6.967, though a root of equation (2.91) does not give
a reliable vibration mode of the membrane when compared to the In vacuo case. It was observed
that the vibration mode attached to that frequency was simply a build up of the desired vibration
mode obtained in 8.086. Hence, it is believed that the behaviour of the coupled frequencies and
vibration modes are influenced by the fluid-structure interaction coupling. This simply means that
coupled frequencies close to each other will likely exhibit similar vibration patterns. See reference
to implicit plot3 in appendix A.

Extending the abscissa axis, the next coupled frequency observed was 128.243 which is the 41st

vibration mode, high frequency regions. This is the main reason for truncating the set of solutions
for easier understanding and monitoring of the coupled frequency.

It is note worthy also, that in the coupled case, by comparing the vibration modes of In vacuo
case, the first vibration mode of the In vacuo case is absent from the coupled case. it is believed that
this vibration mode is a bulging mode of the membrane and not a sloshing mode caused solely by
the free surface. Figure 3.8 shows the vibration modes of the membrane and fluid free surface at
coupling frequencies from table 3.6.

Table 3.7: Comparison of coupled, In vacuo and fluid free surface frequencies parameters
with h/a = 0.3,To = 500N/m, mm = 1kg/m, a = 1m of a circular membrane located at the

bottom

s/n 1 2 3
Coupled frequency(ωc ) 4.984 8.086 12.232
In Vacuo frequency (ω) 5.5202 8.6537 11.790

Fluid free surface frequency (ωs) 5.543 8.1736 9.967

From table 3.7 above, the coupled frequency represented by ωc give lower frequencies than In
vacuo frequencies represented by ω and even lower frequencies compared to the fluid free surface
frequency represented by ωs .

3Implicit plots are methods employed to verify the results of the coupled frequencies
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Figure 3.8: Vibration modes of the membrane and fluid free surface at first three coupled frequencies for
axisymmetric case n= 0, m = 2,3,4 of membrane located at the bottom
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3.5.2. MEMBRANE LOCATED AT THE TOP OF BIGGER CYLINDER

The coupled frequency is a function of the determinant matrix C . The C matrix captures only ax-
isymmetric mode shapes. The coupled frequencies are the roots to the determinant of the C matrix.
As observed, the coupled frequency increased due to a higher water depth. It may also be mentioned
that a substantial mass of the membrane must be considered, (using H/a = 2.0, To = 500 N/m, mm

= 1 kg/m, a = 1 m) because the water depth is really high in magnitude, reducing this water depth,
a considerable level of oscillation was observed as vibrations reaching the membrane. Hence, this
is the most singular factor that affects the fluid-membrane interaction. In summary, increasing the
water depth yields an increase in coupled frequencies. Nevertheless, with an increase in the water
depth, wave particles tend to oscillate so much causing higher coupled frequencies. Increasing the
tension of the membrane compensates for large water depth as it reduces the coupled frequency

parameter µ2 = mm

To
ω2

c from equation(2.150). For this study, a considerable mass and tension were

used, thus, 2624.805 kg/m and 1785.82 N/m respectively. The computation used in this case, a =
R, see figure 2.7 for easy understanding of the coupled frequencies when the membrane is suited at
the top.

Figure 3.9: Plot of determinant as a function of coupled frequency. The zero-crossing
represents solution to |C | = 0

By visual inspection of figures 3.9 and figure 3.7 above, it is seen that the non-dimensional cou-
pled frequency are larger in magnitude when the membrane is located at the top than when mem-
brane is located at the bottom marked by the ¦ shape.

Table 3.8: First six non dimensional coupled frequencies µ2 = mm

To
ω2

c with membrane

located at the top

s/n 1 2 3 4 5 6
Frequency 5.786 8.392 10.99 13.586 16.18 18.774

Similarly, the undesired vibration modes was also observed, as not all the roots of the from table
3.8 above gives desired mode shape, the term "desired mode shape" refers to vibration modes that
gives similar vibration patterns observed from when the membrane is dry that is In vacuo. This is the
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major yardstick to judge the observed vibration modes observed from the coupling phenomenon of
fluid-structure interaction. Figure 3.10 below shows the vibrations patterns of the first three modes.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
r/a

-15

-10

-5

0

5

10

w

2nd
3rd
4th

(a) Membrane modes

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
r/a

-1

-0.5

0

0.5

2nd
3rd
4th

(b) Fluid free surface modes

Figure 3.10: Vibration modes of the membrane and fluid free surface at first three coupled frequencies for
axisymmetric case n = 0, m = 2,3,4 for membrane located at the top
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3.6. DYNAMIC BEHAVIOUR OF COUPLED FREQUENCY OF A SUBMERGED MEM-
BRANE 3-D CASE

The roots of the determinant matrix Ξ gives the coupled frequencies of the submerged membrane.
For this numerical result, the values of the parameters are: H/a = 2.0, h/a = 0.3, To = 1785.82N/m,
mm = 2624.805kg/m, a = 2m. Where H is height of the water column of the bigger cylinder, h is the
height of the water column of the smaller cylinder and a is the radius of the membrane.

Figure 3.11: Plot of determinant as a function of coupled frequency. The zero-crossing
represents solution to |Ξ| = 0

Figure 3.11 above,it depicts the plot of the coupled frequencies of a submerged membrane as
a function of the determinants. The roots are marked by the ¦ shape. The values of the coupled
frequency are given in the table 3.9 below.

Table 3.9: First four non dimensional coupled frequencies µ2 = mm

To
ω2

c of a submerged

circular membrane

s/n 1 2 3 4
Frequency 5.956 8.248 10.94 14.14

It should be mentioned that the free surface vibration mode is the algebraic sum of the mem-
brane situated at the top and bottom. This is because the free surface vibration mode is a function
of the height of the water column. The fluid pressure loads acting on the membrane located at the
top is opposite at the membrane located at the bottom of the cylinder. Figure 3.12 below shows the
vibration patterns of the submerged membrane and fluid free surface at coupled frequencies.
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Figure 3.12: Vibration modes of the membrane and fluid free surface at first three coupled frequencies for
axisymmetric case n = 0, m = 2,3,4 for a submerged membrane
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VERIFICATION

4.1. INTRODUCTION
This sections deals mainly with testing the equation parameters to verify if the equations solved in
chapter 2 were done rightly. This entails making modifications to the coupled equations to capture
the In vacuo case

4.2. VERIFICATION OF EQUATIONS: MEMBRANE LOCATED AT THE BOTTOM

OF CYLINDER
The verification and results in this chapter are only done using the axisymmetric case, that is the
nodal diameter are not considered to affect the coupled frequency, thus, n=0 and m = 1. The reason
for this is, to reduce the computational process and fully grasps the coupling phenomenon of fluid-
structure interaction.

From Matrix A the coupled natural frequency obtained from set of simultaneous equations in
equation (2.91) and the determinant of these equations yields the coupled frequencies. To verify
Matrix A, judging from equation (2.91), if the tension of the membrane tends to infinity and the
density of the liquid tends to zero individually, the frequency determinant becomes

J0(µa)
∞∏

n=1
kn(Bn −1) = 0 (4.1)

From equation (4.1), If J0(µa)=0: it is the same as with equation (2.27) which is the frequency
of a dry membrane. Also, if kn(Bn −1) 6= 0, however, when Bn = 1 judging from equation (2.42), a
dispersion relationship is obtained

ω2 = g kn

(
ekn h −e−kn h

e−kn h +ekn h

)
= g kn tanh(knh) (4.2)

Equation (4.1); it shows the frequency of a membrane without water see equation (2.27) and
from equation (4.2), it shows the frequency of a rigid tank i.e. tension tending towards infinity at an
infinite depth of water that eventually yield to ω2 = g kn : this is not obtainable in this case because
equation (2.72) is not obeyed. This is because the dispersion relationship is only obeyed when the
∂φ
∂z = 0 at z=0. The so called seabed boundary condition.

Judging from uncoupling of the system, the membrane natural frequency is obtained from equa-
tion (2.27). However, with additional (non-sloshing) liquid mass on the membrane, the uncoupled
natural frequencies will be

47
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ω=λ
√√√√(

T

mm + h
a

)
(4.3)

Where λ is the root of equation (2.27) indicating a decrease of the frequency due to the liquid
mass, as the water depth to radius of membrane ratio h

a increase1. The uncoupled fluid free surface
frequency is the given as

ω2
s =

g

a
kn tanh

(
kn

h

a

)
(4.4)

kn is the root of the equation (2.77)

4.3. BEHAVIOUR OF TENSION WITH RESPECT TO COUPLED FREQUENCY

Following the axisymmetric case, a very interesting behaviour was observed in the figure 4.1 and
table 4.1 below. Keeping water depth to radius of membrane ratio h

a constant, an increase in the
tension, causes an increase in the coupled frequency, as seen in table 4.1. The oscillations of wave
particle reduces as the membrane becomes stiffer, the fluid particles are not felt at the bottom.
Figure 4.1 shows that an increase in tension, the coupled frequency tends towards the uncoupled
membrane and uncoupled fluid free surface frequency.

Table 4.1: First three non dimensional coupled frequencies µ2 = mm

To
ω2

c with respect to

an increase in tension

To 250 500 750 1000
1st frequency 4.099 4.280 4.949 5.114
2st frequency 6.655 7.554 7.512 8.091
3st frequency 7.195 8.017 8.185 8.217

1The h
a ratio, that is water depth in cylinder to radius of the membrane in axisymmetric case is the representation of

water depth to wave length of the water particles respectively. This important ratio is what determines the wave particle
behaviour (frequency) this is known as called Linear or Airy Wave Theory
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Figure 4.1: Relationship between coupled frequency and Tension

4.4. BEHAVIOUR OF THE WATER DEPTH TO RADIUS OF MEMBRANE RATIO h
a

WITH RESPECT TO COUPLED FREQUENCY 3-D
Considering the axisymmetric case, in figure 4.2 below, keeping the tension of the membrane con-
stant and increasing the water depth h

a causes a corresponding increase in the coupled frequency.

The oscillation of the fluid increases because at low h
a ratios, there is less fluid-structure interaction

and at a higher h
a ratio, there is more fluid-structure interaction.
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Figure 4.2: Relationship between coupled frequency and non-dimensional fluid depth
m=1 and n=0 axisymmetric case

Figure 4.2 above, the fluid depth to radius of the membrane ratio is on the abscissa and coupled
frequency is on the ordinate axis. It shows that there is a convergence to the fluid free surface fre-
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quency as seen from table 3.7. The fluid-structure interaction introduces an inconsistent behaviour
also. With respect to uncoupled frequency of membrane and fluid, judging from equations (4.3) and
(4.4) as the h

a ratio increases the uncoupled membrane frequency reduces, however, the fluid free
surface frequency increases.

4.5. VALIDATION WITH OTHER ANALYTICAL MODELS
The results of the analytical model are compared with results from [12] when the membrane is lo-
cated at the bottom. Table 4.2 shows a comparison of the coupled frequency results To = 500 N/m,
m = 1 kg/m. There is a close agreement with both models. A comparison with the refrence [18]
when the membrane is located at top. This comparison is very difficult to consider as the equations
employed in solving the problem in the reference [18] is quite different. More so, the order of trun-
cation used for the series solution is unknown. However, the values contained in table 4.3 below
shows an agreement.

Table 4.2: Comparison of non dimensional coupled frequencies µ2 = mm

To
ω2

c with

respect fluid depth (membrane located at bottom)

h/a 1st 2nd 3rd 4th
Present study 0.3 4.984 6.967 8.086 12.232

Bhuta 0.3 4.676 7.140 8.807 10.129

Table 4.3: Comparison of non dimensional coupled frequencies µ2 = mm

To
ω2

c with

respect fluid depth(membrane located at the top)

h/a 1st 2nd 3rd
Present study 0.1 - 4.639 -

Bauer 0.1 2.857 5.000 6.786
Present study 0.3 4.199 - -

Bauer 0.3 4.108 6.071 7.857
Present study 0.5 3.821 - -

Bauer 0.5 4.286 6.428 7.857

4.6. BEHAVIOUR OF THE VIBRATION MODES WITH RESPECT TO THE COUPLED

FREQUENCY IN 3-D AT VARYING WATER DEPTH
The vibration mode is simply the vibration pattern of the structure at a particular frequency, this
is a very important engineering concept and it is used to predict behaviour of structure due to vi-
brations. Dealing with the axisymmetric case, the vibration mode of the membrane at different h

a

ratio is considered and the vibration mode of the free surfaces is also considered at different h
a ratio.

From equations (2.73), (2.83) and (2.87) the vibration modes of the membrane are obtained as seen
in figure 4.3a below, the normalized water depth to radius of the membrane ratio is on the abscissa
and the deflection of the membrane is on the ordinate axis: there is a considerable change in the
behaviour of the vibration at different h

a ratios. There is a strong increase in membrane displace-

ment with lower h
a ratio. Larger displacement indicates more flexibility of the membrane. The free

surface vibration modes are given in figure 4.3b below. In figure 4.3b below, there is no considerable
changes in the vibration mode of the fluid free surface.
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Figure 4.3: Relationship between vibration modes and changing fluid depth
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CONCLUSION AND RECOMMENDATION

5.1. CONCLUSION
The tasks described in this thesis are a part of a general effort to develop an accurate and efficient
computational tool for modelling fluid-structure interaction (FSI). This thesis was focused on the
aspect of formulating and solving analytically the coupling phenomenon experienced in an exper-
iment [1] designed to capture fluid-structure interaction modelling. It’s main objective was to give
an insight to understanding the coupled frequencies and its corresponding vibration modes of the
fluid and structure. Therefore, a series of equations were employed, the results analysed and the
conclusions reached are elaborated below.

In the 3D case, a Fourier-Bessel series solution was developed to obtain the coupled frequen-
cies. These series solution produced a truncated set of determinant matrices to approximate the
solutions in lower frequency regions. The results of the analytical solution showed a close agree-
ment when compared with journal references see tables 4.2 and 4.3. However, this is not case with
when the analytical results are compared with experimental and numerical methods developed for
modelling the coupling phenomenon of fluid-structure interaction.

5.2. RECOMMENDATIONS FOR FUTURE RESEARCH
The problems faced, related to the solving the analytical model and how to make it as accurate as
possible are outlined as followed.

• This model should be modified to be able to capture experimental processes such as: viscos-
ity, and surface tension of the fluid. Viscosity is a measure to know the natural decay rate of
the coupling phenomenon. These experimental processes if investigated shows a holistic ap-
proach to understanding all of the FSI phenomenon.

• The overall equations can be kept as it is. However, the order of the Fourier-Bessel series solu-
tion should be increased. This in turn increases the elements of the determinant matrix. This
needs to be investigated to know the behaviour of higher modes. See equations (2.91) and
(2.156).

• A comparison of the results of this study with another analytical method, for example, using
energy methods can be employed to verify the analytical solution.
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A
ANALYSIS OF FLUID-MEMBRANE

FREQUENCY IN 3D: IMPLICITPLOT

To understand how the coupling equation is formed, it is expedient to understand that the order de-
terminant matrix. With an increasing order of determinant matrix gives increasing accuracy. How-
ever, solving this determinant implicitly (when two variables do not have an expression to explain
its relationship) gives another idea of what the coupled frequencies are. An analytical software −
MAPLE was used to solve the linear equations and make implicit plots of the determinant against
the unknown coupled frequencies. These implicit plots are another way to verify the results of the
coupled frequencies. There is a close agreement with the implicit plot and the general plot and
almost the same values with higher coupled frequencies. The pairing behaviour of coupled fre-
quencies to mode shapes are as well observed and concluded that it is only a numerical problem in
finding the roots of the equation. Thus, the roots close to each other exhibits closely related mode
shapes. A noticeable problem was observed when the x-axis increases. This problem is due to how
MAPLE works and not the equations, hence, truncating the infinite number of frequencies to a finite
m by m matrix and whose determinant are easy to solve. The implicit plots of the are shown below
in the figure A.1 below.

From the figure A.1 above, the roots are seen to be one distinct(constant) value, and as such, the
coupled frequencies are clearly seen.

Table A.1: Comparison of implicit and general plot coupled frequencies with h/a = 0.3,To =500 N /m, m=1kg /m, a=1m
membrane located at the bottom

s/n 1 2 3 4 5
Implicit Frequency (rad/s) 6.142 6.964 8.066 12.242 128.243

Frequency (rad/s) 4.984 6.967 8.086 12.232 128.783
difference(%) 81.146 0.0431 0.248 0.999 0.421

It can be seen from table A.1 values with difference also close to zero shows a close agreement
and it indicates that an actual crossing is present and not an asymptotic anomaly.
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Figure A.1: Implicit plot of determinant to obtain coupled frequencies with h/a =
0.3,To =500 N /m, m=1kg /m, a=1m
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Figure A.2: Comparison of vibration modes of the membrane and free surface at first three coupled frequencies for axisymmetric case with h/a = 0.3, To =500 N /m,
m=1kg /m, a=1m for implicit solver and general solution
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SOME VISUALIZATION OF VIBRATION

MODES OF A CIRCULAR MEMBRANE In
Vacuo
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Figure B.1: Plot showing 3-D visualization of vibration modes of a circular membrane In Vacuo
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