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Abstract

The Delft Center for Systems and Control (DCSC) ’Smart Optics’ aim to achieve higher resolu-
tion imaging through Adaptive Optics (AO). Adaptive optics is a modern technique for detecting
and correcting real-time wavefront aberrations and is widely used in biomedical imaging and as-
tronomical imaging. Wavefront sensing lies at the core of Adaptive Optics and is known to pose
some challenges. Measurement of the wavefront cannot be done directly and has to be estimated
through an intensity distribution on a detector. One approach to wavefront sensing is by using
a Shack-Hartmann (SH) sensor. A Shack-Hartmann sensor (a pupil-plane sensor) subdivides the
wavefront into N spatial areas using sub-apertures. The individual slopes across all sub-apertures
are integrated to reconstruct the wavefront. The major advantage of using a Shack-Hartmann sen-
sor is its fast operation speed, caused by the linear relationship between local slopes and original
wavefront. This enables real-time wavefront reconstruction. The Shack-Hartmann sensor however,
has some limitations. Its ability to reconstruct higher-order aberrations is restricted by the amount
of lenses within the micro-lens array. Furthermore, a centroiding algorithm is used to compute the
local slopes. Going from spots to centroids decreases the amount of informative pixels and greatly
limits its wavefront reconstruction potential. Moreover, these centroiding algorithms often add a
measure of uncertainty since spots can have irregular shapes or cross-over/overlap.

In this Master Thesis a novel approach to phase reconstruction from the raw SH measurement
is proposed. Here, we show that Deep Learning techniques in combination with a micro-lens array
can surpass traditional SH phase reconstruction methods and alleviate their current limitations.
The proposed method uses the entire Shack-Hartmann Pattern (HP) as input to a neural network,
supplying the network with more information than existing Deep Learning SHWR methods, which
still rely on centroids. Using this approach, we can combine the accuracy of sensor-less techniques
with the speed of a Shack-Hartmann sensor. Three different neural network architectures are con-
sidered in this thesis. Two of these neural networks (Alex-Net and Xception) are adapted to output
a series of Zernike coefficients. Using these estimated Zernike coefficients, a wavefront can be
reconstructed. The remaining neural network, U-Net, performs a direct pixel-wise estimation of
the phase-map. The input Shack-Hartmann patterns are created using different micro-lens array
(MLA) geometries, consisting of 25-, 256- or 900 lenses. The networks are evaluated on their
ability to reconstruct a combination of 32- or 100- Zernike coefficients.
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During this Master Thesis, we have reached our three set goals. Firstly, proving the viability of
the Shack-Hartmann sensor as preconditioner inside a Deep Learning AO framework. The Shack-
Hartmann sensor is still widely used in telescopes and microscopes and introducing a method of
improved accuracy for these devices is of great interest to many fields of research. Secondly, we
have compared the wavefront reconstruction accuracy for multiple state-of-the-art neural networks.
Hereby showing that the Xception network excels in recognizing optical patterns, like raw Shack-
Hartmann images, Lastly, we have shown that neural networks are less restricted by the amount of
lenses within the MLA, in their ability to estimate a certain amount Zernike coefficients. Traditional
wavefront reconstruction methods struggle to reliable estimate more Zernike coefficients than the
used amount of lenses in the MLA (e.g. estimating 25+ Zernike coefficients using 25 lenses). Via
our approach, a wavefront generated through a combination of the first 100-Zernike can reliably
be reconstructed using a MLA consisting of 25-lenses, at least in simulation. Thus, the proposed
tool not only relaxes the hardware restrictions, but also enables for higher-order Zernike estimation
at high speeds.
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Chapter 1

Introduction

As light propagates from source to detector inside a homogeneous medium, it travels along a
straight path. However, when light propagates into a turbulent media, its direction gets altered
due to inhomogeneities. As a result, the shape of the wavefront is changed and no sharp focus
is formed. Optical instruments suffer from these aberrations (distortions), since they deteriorating
the quality of the image. To counter these aberrations, a control method has been developed
(1950) called Adaptive Optics (AO, see Chapter 2). AO systems aim to minimize these abbera-
tions through a feed-back loop in which a corrective element reshapes the distorted wavefront back
to its original shape [2]. The role of AO is first to acquire information about the distortions and
then adjust a deformable mirror to compensate these optical aberrations. The phase profile of the
wave is typically estimated with a wavefront sensor. The retrieved information is then passed to a
control system which maintains the mirror shape as close as possible to the optimal configuration.
A key component of AO systems is the measurement of the phase. This cannot be done directly
due to the rapid oscillations of an Electro-Magnetic (EM) wave [6]. The wavefront phase has to be
estimated from intensity distributions on a detector. This poses challenges since the relationship
between intensity distribution on the detector and wavefront phase is non-linear. For this reason,
multiple wavefront sensors and wavefront reconstruction techniques have been developed, in which
a trade-off is made between reconstruction accuracy and operation speed.

The general approach to wavefront sensing is through image-based AO systems or wavefront sensor-
based systems. Image-based AO systems are sensor-less and make use of a science camera and
intensity-based techniques. Here, a specific image property is optimized, like Strehl ratio, to re-
construct the wavefront. Often, the sum of all pixel values is an appropriate optimization metric
since the maximum value is related to zero aberrations [7]. Wavefront sensor-based systems often
make use of a Shack-Hartmann sensor. A Shack-Hartmann sensor subdivides the wavefront using
a micro-lens array (MLA) and creates a focal spot pattern. The first moment of this intensity
distribution gives an approximation of the local averaged slopes. From these local slopes, recon-
struction techniques can be applied to infer a wavefront [8]. A drawback of the Shack-Hartmann
sensor is that its ability to reconstruct higher-order aberrations is inherently limited by the amount
of lenses within the micro-lens array. Furthermore, due to the piece-wise linear estimation of the
non-linear phase, high frequency content within the wavefront is unavoidably filtered. This causes
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Shack-Hartmann based systems to have lower resolution capabilities than image-based AO systems.
However, the linear property established between slopes and phase enables linear regression. As
a result, very fast operation speeds are achieved which enable real-time wavefront reconstruction.
Although image-based techniques have more accurate wavefront reconstruction capabilities, they
are limited by their slow operation speeds. The slow operation speeds of these algorithms are due
to non-linear relation between intensity image and wavefront phase. This renders them unable to
perform real-time reconstruction (≈ 10 ms) which is vital for certain instruments like telescopes.
Atmospheric turbulence changes constantly and the shape of the mirror within telescopes is based
on the correlation of each frame.

Machine learning, including Deep Learning (DL, see Chapter 3), have been introduced to the
field of AO [9, 10] around 1990 and has been an ongoing field of research ever since. It was
recognized that Artificial Neural Networks (ANN) could be used as an alternative to the tradi-
tional algorithms. ANN are information processing systems which are capable of learning complex
non-linear input/output relationships, like intensity images to wavefront phase. Computational
limitation caused that only shallow structured ANN could be used for AO pipeline, which deemed
insufficient to completely remove the conventional algorithms. These shallow-structures have poor
generalization and cause over-fitting. However, with the recent introduction of Convolutional Neu-
ral Networks (CNN, see section 3-2) to the field, significant improvements could be made. Due
to the strong generalization capabilities of CNN’s, DL methods are now able to compete with the
traditional AO methods.

Regarding image-based AO systems, DL networks are often trained to map Point-Spread-Function
(PSF, see Section A-1-5) to Zernike coefficients (see Section A-1-6) or directly to a phase-map
[11, 12]. The drawback of these methods is that they require multiple images to infer a unique
solution. In [13], preconditioners are proposed to enhance the amount of informative pixels, such
that a single intensity image could be sufficient. Deep Learning Shack-Hartmann Wavefront Recon-
struction (DL SHWR) on the other hand, has been utilized to map slope displacements to Zernike
coefficients or directly to phase-map, at least for lower-order aberrations [14, 15]. The drawback
of these methods is that a centroid algorithm is still required to compute the spot centers. Going
from spots to centroids decreases the amount of informative pixels and greatly limits its wavefront
reconstruction potential. Furthermore, these algorithms often add a layer of uncertainty since spots
can have irregular shapes or cross-over and overlap.

In this Master Thesis a novel approach to phase reconstruction from the raw SH measurement
is proposed. This approach involves state-of-the-art Deep Learning techniques. In [13], precon-
ditioners (e.g. overexposure) are used within a DL sensor-less AO framework. These precondi-
tioners increase the amount of informative pixels within the input images. We propose to use the
micro-lens array as preconditioner for DL SHWR. Hence, our proposed method will use the entire
Shack-Hartmann Pattern (HP) as input to a neural network, which should supply the network
with more information than previously mentioned DL SHWR methods. The research question is
formulated as:

• Is the micro-lens array as effective as the preconditioners mentioned in [13]?

Neural networks vary in size and complexity, and all search for patterns via different structures.
Finding the optimal network structure is to some degree trail and error based. Hence, for this
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thesis, three different state-of-the-art neural network architectures are considered: Xception, U-
Net and Alex-Net. Xception and Alex-Net output a vector, containing the Zernike coefficients.
U-Net however, is build for pixel-wise classification, such that it can directly output a phase-map.
The next research question is formulated as:

• How do the considered neural networks compare in wavefront reconstruction accuracy and
speed?

Traditional methods struggle to reliable estimate more Zernike indexes than the used amount of
lenses in the MLA (e.g. estimating 25+ Zernike coefficients using 25 lenses). The corresponding
research question is formulated as:

• Can neural networks reliably estimate more Zernike coefficients than the amount of lenses
used in the MLA?

To answer these questions multiple Deep Learning models will be trained, using HP’s emerging
from different MLA geometries and wavefront aberrations.

1-1 Thesis Outline

The structure of this thesis is as follows.

Chapter 2 presents an introduction to the field of AO, which includes wavefront sensing, pupil-plane-
and focal-plane sensors. Comparisons and trade-offs will be discussed regarding these sensors. The
final section of this chapter is about Deep Learning Wavefront Sensing, which combines the two
fields of interest, AO and DL. Chapter 3 is about Deep Learning, where each consecutive section
takes the reader through the evolution of Neural Networks.

Chapter 4 outlines the first stage of our numerical experiments, generating data for the neural
networks. To train a DL model, we need a vast amount of input/output data pairs. The more
examples we show the model during training, the better it will adapt/generalize. Our input data
will consist of HP and the output data will be the corresponding Zernike coefficients or phase map.
The chapter starts with a general description of the proposed HP’s. The different HP’s emerge
from two types of wavefront aberrations (32- or 100-Zernike polynomials) in combination with
three MLA settings. These MLA settings differ in the total amount of lenses within the array. The
consecutive sections indicate our method of simulating a HP within Python, taking noise and phys-
ical parameters into consideration. Chapter 5 outlines the second and final stage of our numerical
experiments, using the data pairs to train and evaluate the proposed Deep Learning models. First,
our neural network adaptations and training protocols are discussed. Then, the achieved results
using the three neural networks (Xception, U-Net and Alex-Net) are reviewed. Finally, the best
achieving model will be subjected to a noise robustness analysis. Chapter 6 is the final chapter,
concluding on the project and discussing future work.
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Chapter 2

Adaptive Optics

Adaptive optics is a modern technique for detecting and correcting wavefront aberrations and
is widely used in biomedical imaging and astronomical imaging. It involves a wavefront sensor,
providing essential information for reconstructing a wavefront. The reconstructed wavefront is
used by an adaptive mirror to compensate for the induced aberrations. This thesis revolves around
wavefront reconstruction. In sections 2-1 and 2-2, an introduction to AO and wavefront sensing
is presented. The next two consecutive sections, 2-2-3 and 2-2-1, are about two essential sensors:
focal-plane- and pupil-plane sensors. The former measures the wavefront in the focal-plane using
a science camera, and is therefore known as a wavefront sensor-less method. In the last section,
the pros and cons of each sensor will be discussed and the subject of Deep Learning Wavefront
Sensing will be introduced.

2-1 Background

Horace Babcock was the first to propose the use of a deformable optical element in combination with
a wavefront sensor, to correct for atmospheric aberrations (1953). Optical aberrations (i.e optical
distortions) are harmful to an optical system and degrading the quality of the image. Figure 2-1
illustrates how much optical aberrations can affect the image formation and how effective Adaptive
Optics can be to counter them.
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6 Adaptive Optics

Figure 2-1: Neptune with- and without Adaptive Optics. [1]

Since 1953, research has been ongoing into this topic, mainly focusing on telescopes and military
development. In the twenty-first century, AO technology was introduced to microscopy and made
its rise in the commercial- and biomedical sector. The introduction of AO in these different sectors
yielded lower costs due to a rise in volume and simplifications. AO provides a method to enhance
the performance of an optical system by controlling the wavefront. Optical systems demand a very
high degree of precision since even the smallest distortions can have a large impact on the quality of
an image. Distortions which influence the shape of a wavefront include temperature, atmospheric
turbulence, mechanical actions or manufacturing errors in optical instruments.
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2-1 Background 7

2-1-1 The Principles of Adaptive Optics

Light traveling from source to detector can be represented as a wave, which depends on spatial
coordinates x ∈ R2 and time t. A wavefront is defined as a surface perpendicular to the energy
propagation. For a source of monochromatic light, this is related to its complex amplitude

w(x) = A(x)e−iϕ(x), (2-1)

where A(x) is the amplitude and ϕ(x) the phase. Often a paraxial approximation is considered for
the wavefront, equating it to the phase distribution ϕ(x). The deviation of the wavefront from its
diffraction-limited form (flat or spherical) causes a decrease in resolution in the image formation.

Figure 2-2: Illustration of a wavefront aberration. If the reference wavefront has a spherical
shape (e.g. from a point source), the wavefront will form a perfect focus at the center of the
sphere (R), and produce a perfect image. If the spherical wavefront is affected by optical
aberrations, some of the rays will not pass through the center (W) and a blurry image is
formed.

An AO systems can compensate for aberrations until the inherit diffraction-limited resolution of the
optical system is reached. This resolution is defined by the Rayleigh resolution criterion (Section
A-1-5). A wavefront from a distant star has an diffraction-limited flat wavefront (i.e. ϕ(x) =
0) when it reaches the outer surface of the earths atmosphere. Inside the earths atmosphere,
turbulence causes time and space varying Optical Path Length (OPL, Section A-1-2) differences
in the wavefront. As a result, an aberrated wavefront enters the optical system (e.g. a telescope).
The AO loop tries to counter these aberrations by introducing the exact opposite OPL, in an
attempt to flatten the wave. Figure 2-3 shows the principle behind AO systems [16].
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8 Adaptive Optics

Figure 2-3: Principle of Adaptive Optics closed-loop system. In this schematic, we see
a Shack-Hartmann sensor (Section 2-2-1), which is a type wavefront sensor. The Shack-
Hartmann sensor consists of a micro-lens array and a detector (often a Charged Coupled
Device). The micro-lens array subdivides the wavefront and as a consequence, multiple
focused spots on the CCD are created. The position of each individual spot compared to
a reference position and is used by the control system to approximate a wavefront. The
adaptive mirror takes the form of the inverted estimated wavefront, such that the incoming
wavefront is flattened. [17]

There are four main components to an AO system: the image detector, the adaptive mirror, the
wavefront sensor and the control system. A beam splitter is placed in the optical path such that
part of the incident wave is reflected onto the wavefront sensor, a Shack-Hartmann in Figure 2-3.
The information obtained from this sensor is used by the control system to generate a control
matrix which determines the shape of the adaptive mirror. The surface of this mirror is deformable
such that it can influence the OPL of an EM-wave. After correction, the wave propagates to the
image-detector, often a CCD, which will generate the final image.

2-1-2 Closed-Loop Control

In closed-loop AO systems, the wavefront sensor detects the wavefront after it has been corrected
by the adaptive mirror. Figure 2-4 illustrates the block diagram of a closed-loop AO system. In
this diagram, ϕi(x, y, t) indicates the original incoming wavefront at spatial point (x, y), at time
t. Often, this wavefront is not static and changes over time due to noise and turbulence. The
correction calculated by the control system and wavefront corrector is denoted by ϕc(x, y, t). As
a result, the residual wavefront is calculated as:

ϕr(x, y, t) = ϕi(x, y, t)− ϕc(x, y, t) (2-2)

In such an AO feedback system, the goal is to minimize the residual wavefront (see Section 2-2-1).
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The effectiveness of an AO system is thus heavily dependent on the accuracy of the wavefront
sensor and control algorithm.

Figure 2-4: Block diagram of an simplified closed-loop AO system correcting an incoming
wave aberration.

2-2 Wavefront Sensing

Wavefront sensing plays a key role in AO systems, it provides a method of (indirectly) measuring
the shape of an optical wavefront. In closed-loop AO systems, this is used to measure how much
a wavefront deviates from the diffraction limited case. The shape of deviated wavefront is used
to generate a signal, which is sent to a corrective element. In AO-systems, one aims to minimize
the error signal between these two wavefronts, diffraction limited and aberrated. Measurement of
the phase of a light wave cannot be done directly [6]. The problem with directly measuring the
phase is that optical sensors convert photons to an electric current. The electromagnetic field in
the visual spectrum oscillates at frequencies (≈ 1015 Hz) no electronic based optical device can
follow. The general approach to wavefront sensing is through a focal-plane sensor or a pupil-plane
sensor.

A focal-plane sensor (section 2-2-3) is a science camera (often a CCD) used for imaging. The
relationship between recorded image and wavefront ϕ is given by the convolution between Point
Spread Function (PSF, section A-2) and object intensity distribution. In such a sensor-less system
a specific image quality metric is optimized, like image brightness or Strehl-ratio (see Section A-1-
5), to reconstruct the wavefront. One advantage of image-based techniques is that the detected
aberrations correspond to the aberrations affecting the image. This is not always true for wavefront
sensor-based AO systems as different optical paths between imaging and sensing could be subjected
to different aberrations (different optical properties/misalignment) [7].

Pupil-plane sensors (see Section 2-2-1) make use of a detector, such as a Shack-Hartmann sensor
[2], located in a plane conjugated to the pupil-plane of the imaging instrument. A Shack-Hartmann
sensor subdivides the wavefront and uses local gradients to approximate the original wavefront. The
major advantage of sensor-based system is that only one measurement is required to infer a wave-
front, whereas image-based systems need multiple. Single measurements is not only useful for
telescopes, but also microscopes, where the to-be investigated sample would be less exposed to
light. A drawback of pupil-plane sensors is their complexity and hardware costs.
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10 Adaptive Optics

2-2-1 Pupil-plane Sensor

The most widely used pupil-plane sensor is the Shack-Hartmann (SH) sensor [18]. A SH sensor
subdivides the wavefront across N small spatial areas, using sub-apertures. As N −→ ∞ the
wavefront can perfectly be represented. The aberrations at the location of each sub-aperture will
be approximated as a tilt (i.e. a flat tilted wavefront). The individual tilts across all sub-apertures
are integrated to reconstruct the full wavefront. This is done through either Zonal- or Modal
reconstruction. Modal algorithms represent the wavefront by decomposition into a set of poly-
nomials. The most widely used set for modal algorithms are the Zernike Polynomials (Section
A-1-6) because they form an orthogonal set across circular apertures and because they are related
to common optical aberrations [19]. Zonal algorithms build a phase field closest to the measured
slopes using Least-Squares for example.

Using a lenslet array, a wavefront is sub-divided and every division is focused at different spots
on a detection array behind it, often a CCD. This provides multiple slope measurements of the
input wavefront.

Figure 2-5: Schematic of the principle behind a SH sensor. A plane wavefronts cause
unshifted focal spots on the detector array. Distorted wavefronts cause the focal-spots to
shift depending on the local tilt. The change in focal spot locations is used to approximate
a wavefront. [20]

When a plane wave goes through the lenslet array, a focused spot will appear in the centre of
each sub-area of the detector array. If however, a distorted wavefront goes through the lenslet,
the focused spots will be shifted in x- and y-directions. The reconstruction algorithms relate the
change of focal spot centroid (i.e. first moment of intensity) to a local gradient at the center
of a sub-aperture. This relation is build on the assumption that the part of the wavefront which
goes into a sub-aperture is locally tilted. Although high-frequency content could be lost in this
approximation, the linear property established between slopes and phase enables linear regression.

The Shack-Hartmann reconstruction process follows three basic steps: calculation of the centroid
positions, conversion to wavefront slope, and wavefront reconstruction.

J.M. Bekendam Master of Science Thesis
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Centroid Positions

The location of each centroid is determined by the light intensity distribution on the CCD. With
measured pixel intensity Iij , the spot positions xc,k and yc,k are commonly determined by their
first moments:

xc,k =
∑
i,j∈AOIk xi,jIi,j∑
i,j∈AOIk Ii,j

and yc,k =
∑
i,j∈AOIk yi,jIi,j∑
i,j∈AOIk Ii,j

, (2-3)

where k is the lenslet number and the summation is taken over AOIk which are all pixels assigned
to lenslet k. This centroiding process is one of the main contributors to a SH sensors inaccuracy.
Often, it is not evident where the precise center of a spot is or which AOIk a spot belongs to (see
Figure 2-6).

Figure 2-6: Limitations accuracy Shack-Hartmann sensor due to overlapping spots and
spot-crossover.

The uncertainty in center spot location is due to the irregular shapes of the spots, which are
enhanced by the discretization and noise (see Figure 2-7).
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Figure 2-7: Spot on the detector array, (a) original, (b) discretized and quantized, (c) with
noise. [21]

Wavefront slopes

The localized wavefront slopes are determined by the location of the wavefront slopes in comparison
to a reference wavefront. For measured centroids (xc, yc)k and reference centroids (xr, yr)k, the
wavefront slopes are:

(
〈∂w/∂x〉
〈∂w/∂y〉

)
k

=
(
sx
sy

)
k

≈ 1
LH

(
xc − xr
yc − yr

)
k

+
(
ηx
ηy

)
k

, (2-4)

where LH is the distance between the micro-lens array and the CCD, normally this is the micro-
lens array focal length. The noise term is represented by η, which also includes the higher-order
aberrations simplified by tilt.

Wavefront reconstruction

Having calculated the center locations and wavefront slopes s, the wavefront can be reconstructed
either via a zonal- or modal approach. Modal reconstruction will briefly be described in this section.
Modal reconstruction approximates the wavefront W using a finite sum of known basis functions
(e.g. Zernike polynomials Z). These basis functions are weighted by a set of coefficients c and
used to minimize the difference between estimated wavefront Zc and unknown actual wavefront
W.

Zc−W ∼= 0. (2-5)

We can solve for c using the slope measurements s

c = Z†s, (2-6)
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c1
c2
c3
· · ·
cJ

 =


z′11 z′12 z′13 . . . z′1(2K)
z′21 z′22 z′23 . . . z′2(2K)
z′31 z′32 z′33 . . . z′3(2K)

· · ·
z′J1 z′J2 z′J3 . . . z′J(2K)




s1
s2
s3
· · ·

s(2K),

 (2-7)

where z′ of matrix Z are the derivatives of the basis functions, Z, the cross indicates the pseudo-
inverse operation. The desired Zernike coefficients c are the result of the above multiplication.
The index J denotes the amount of rows and indicates how many Zernike coefficients we want to
recover. There are 2K columns for two times the amount of lenses used, since every lens yields a
derivative with respect to x and y,
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14 Adaptive Optics

2-2-2 Performance Shack-Hartmann Sensor

The performance of a Shack-Hartmann sensor is influenced by four main parameters: the number
of lenslets inside the micro-lens array, the dynamic range, the sensor sensitivity and the MLA focal
length.

Lenslets Versus Zernike Coefficients

As was be discussed in this Chapter, wavefront reconstruction can be done using Zernike polynomi-
als (see A-1-6). Using these polynomials, the abberated wavefront consists of the first derivatives
of individual Zernike polynomials, which respect to the x,y-displacements at each lenslet location.
In general, Singular Value Decomposition (SVD) is then used to to calculate its inverse matrix.
However, if the reconstruction algorithm attempts to calculate too many Polynomials with respect
to the number of lenslets used inside the MLA, aliasing arises in the reconstructed wavefront [22].

(a) The maximum number of modes which can reliably be reconstructed given a number
of sampling points (e.g lenslets). Dashed line represents a slope of 1. [22]

(b) Demonstration of different wavefront representations emerging from different
amount of lenslets used. More lenslet yield a more precise wavefront.

Figure 2-8: Relationships between the number of lenslets used for reconstruction and reliable
wavefront representation. [2]
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As Figure 2-8 indicates, the minimum number of Shack-Hartmann spots required to fit a wavefront
to a Zernike polynomial roughly equals to the number of Zernike modes to be fit.

Sensitivity

The sensor sensitivity (θmin) and the dynamic range (θmax) of the sensor bound the minimum and
maximum phase detectable. Using the small angle approximation, we can define these parameters
as:

θmin = δymin
fML

, (2-8)

θmax = δymax
fML

= d/2
fML

, (2-9)

where θmin is the smallest wavefront slope detectable and δymin smallest spot displacement de-
tectable. δymin is determined by pixel size of the photo detector, accuracy of the centroiding
algorithm and SNR ratio of the sensor. θmax is the largest wavefront slope detectable. fML and
d are the focal length and diameter of the micro-lens respectively. The trade-off between dynamic
range and measurement sensitivity can be described as

θmin = 2δyminθmax
d

. (2-10)

Figure 2-9: Imaging example through a single micro-lens. In case of a planar incident wave,
parallel to the lenslet plane, a spot (green) will be created on the optical axis behind the lens.
A distorted wavefront however, will cause a shift in spot (red) position along the x,y-axis
with an angle θ. [22]

The minimum wavefront slope detectable depends on how accurate the spot displacements can be
measured with respect to a reference position. This accuracy is limited due to the requirement of
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a centroiding algorithm for the wavefront reconstruction process (see Section 2-2-1). The dynamic
range can be increased by a shorter focal length or larger lenslet diameter. However, increasing
the lenslet diameter yields a decrease in number of Zernike coefficients available. Furthermore, a
shorter focal length decreases the sensor sensitivity.

2-2-3 Focal-Plane Sensor

Sensor-less wavefront sensing techniques use iterative algorithms to retrieve the wavefront phase
ϕ from multiple intensity images [2]. Most common, these type of algorithms aim to retrieve
the entrance pupil phase distortion through PSF’s. A PSF is the impulse response of the optical
system. The image of the focal plane can be written as the following:

I(x, y) = o(x, y)⊗ PSF (x, y), (2-11)

where I(x, y) is the image of the focal plane, o(x, y) the ideal intensity distribution, ⊗ is the
convolution operator. Based on Fourier imaging principles (see Section A-2), the PSF can be
defined as:

PSF(x, y) = |F(w(x, y))|2, (2-12)

and,
w(x, y) = Ap(x, y)ejϕ(x,y), (2-13)

where F is the Fourier transform, Ap the transmittance function of the pupil and ϕ(x, y) the
wavefront phase over the entrance pupil.

Phase retrieval methods aim to finding this phase through model-based or model-free algorithms
[23]. Model-free methods use a control signal as optimization variable and light intensity as per-
formance function. Model-based methods aims to model a function based on the optical system
to determine a input/output relationship.

Image-based AO systems have to deal with stagnation- and non-uniqueness problems when re-
trieving the wavefront from image information. As mentioned above, focal-plane sensors aim to
retrieve the wavefront directly from an image of a blurred object. The non-uniqueness issue be-
comes evident when looking at the PSF formulation for a given wavefront φ(α) and constant
pupil-function Ap,

p(φ) =
∣∣∣F [Apejφ]∣∣∣2 , (2-14)

and an alternative wavefront φ′ = −φ(−α),

p′(φ) =
∣∣∣F [Apejφ′(α)

]∣∣∣2 =
∣∣∣F [Ape−jφ(−α)

]∣∣∣2 =
∣∣∣F [Apejφ(α)

]∣∣∣2 . (2-15)

Equation 2-14 and equation 2-15 show that multiple wavefronts yield the same image of the
same object [24]. Therefore, alternative methods are required to solve this non-unique problem
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formulation. A well known method is called phase-diversity, in which multiple images of the
same object are recorded under equal imaging conditions but with a known additional wavefront
aberration [25].

2-3 Sensor drawbacks and comparisons

As described in Section 2-2, the most widely used wavefront sensing techniques are image-based or
gradient-based (Shack-Hartmann). The SH wavefront sensor does pose some issues. As wavefront
abberations increase, the spots are imaged further from their local optical axis. The dynamic range
is thus limited to aberrations which sub-images are placed within their own respective sub-array.
Therefore, the dynamic range is limited by the size of the detector array. Another drawback is
the precision required in alignment and calibration of the sensor. System aberrations generated
by optical components (i.e abberations due to lenses, beam splitters or manufacturing errors in
MLA) lead to shifts in spot positions, which may cause incorrect measurements. Furthermore,
the resolution of the restored phase is limited by the centroiding algorithm (as discussed in 2-2-
1) and the piece-wise linear estimation of the non-linear physical phase. The advantages of the
SH-sensor are its wide dynamic range, high optical efficiency and operation speed. The linear re-
lationship between the sensor output and corresponding wavefront enables real-time reconstruction.

The advantages of image-based techniques are low requirement for optical hardware, no spe-
cial need for calibration and high resolution of the restored phase. However, focal-plane sensors
rely heavily on computationally expensive algorithms and suffer from non-unique solutions. These
expensive algorithms cause stagnation problems. The non-linear optimization routines suffer from
a large number of local minima [26]. Inadequate initialization may cause stagnation in one of these
local minima. Since these algorithms depend on ill-posed deconvolution, a regularization term is
required to prevent noise amplifcation [27]. This leads to (often) unavoidable loss of information.
This loss of information can only be retrieved using a priori information about the true image. This
is problematic for certain applications where unknown phenomena are investigated. Due the speed
of correction (which increases the temporal correction error) and the above mentioned drawbacks,
focal-plane WFS is incapable of real-time WF reconstruction.

Table 2-1: Pros and cons pupil-plane- vs. focal-plane sensors. The + indicates a pro, the -
indicates a con.

Quantity Pupil-plane sensor Focal-plane sensor
Operation Speed + -
Resolution Restored Phase - +
Optical Efficiency + -
Complexity Setup - +
Hardware Cost - +

With the introduction of Deep Learning to the field of AO some of the drawbacks mentioned in
Table 2-1 might be negated. Deep Learning has is an efficient information processing system which
can learn the complicated non-linear relationships between detector read-out and incident wavefront
phase. This learning process might take several hours and a great deal of data but post training
no iterative algorithm is required. As a result, higher operational speeds can be achieved for focal-
plane sensors. Deep Learning might also offer pupil-plane sensors higher resolution capabilities
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since linear estimations are no longer used. Furthermore, our work shows that a DL approach
decreases hardware restrictions.

2-3-1 Deep Learning Wavefront Sensing

Conventional imaged-based wavefront sensing techniques require computationally expensive algo-
rithms and their optimization routine depend on initial values which cause stagnation problems.
This is not only time-consuming, but may also reduces the stability of the system. Wavefront
sensor-based systems often rely on a Shack-Hartmann sensor, which capabilities are inherently lim-
ited by the number of lenslets and the centroiding algorithms. Deep learning offers an alternative
to conventional methods. The idea of combining Adaptive Optics and Deep Learning was first
to introduced in a 1990 paper [28] by Angel, applying a neural network to measure optical phase
distortion caused by air turbulence. In 1993 neural networks were applied for the wavefront recon-
struction for the Hubble Space Telescope [9]. At this time, the development of neural networks
was still at an early stage and only one-hidden-layer models (Section 3-1) were used. These shallow
models deemed insufficient for large input sizes, like PSF-type data. Due to the lack of convolu-
tional filters, these models had poor generalization and caused overfitting.

With the introduction of Convolutional Neural Networks (CNN’s, see Section 3-2), Deep Learning
techniques have become more feasible within the field of AO. Recently, several studies successfully
utilized and implemented Deep Learning techniques within image-based AO pipelines. [11, 12, 13].
In [11], Xu et al. used tested multiple state-of-the-art CNN’s to map PSF-images to Zernike poly-
nomials (4th-64th). In [12], Guo et al. used a CNN to map PSF-images directly to corresponding
phase-map. Both [11, 12] employ methods which still require multiple PSF’s as input. In [13],
Nishizaki et al. present a method of estimating the first 32-Zernike through a single intensity image
and showed feasibility for overexposed, defocused, or scattered images.

Regarding (Shack-Hartmann) sensor-based AO systems, neural networks have also been applied
to boost AO performances. In [15], Guo et al. applied artificial neural networks (not convolutional)
to predict Zernike indexes from centroid displacements. They showed that even simple neural net-
works outperform traditional methods, at least for low-order Zernike. More recently, [29], Li et al.
applied a neural network to calculate the centroids in extreme situations. In [14], Swanson et al.
propose using x- and y slopes to estimate a phase-map directly using a state-of-the-art CNN.

All of the previous mentioned Shack-Hartmann wavefront sensing methods are still reliant on the
accuracy of the centroiding algorithm to estimate Zernike coefficients from the spot displacements.
Using spot displacements is computationally more efficient than using raw SH images (since an en-
tire SH image contains more data points than multiple spot displacements). However, going from
spot to centroid decrease the amount of available information inside the input data. Furthermore,
the centroiding algorithm introduces a level of uncertainty due to the possibility of irregular spot
shapes and the crossover/overlapping of spots.

Recent state-of-the-art networks, like Xception or UNET, now allow for fast inference of com-
plex images. Such networks are now able to learn from raw Shack-Hartmann patterns, supplying
the networks with more information than using local slopes and negate the centroiding uncertainty.
The irregular shapes and overlapping spots can now be used to our advantage since they will
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related directly to the incident wavefront. Such a model would combine the best of two worlds,
a wavefront reconstruction model with the operation speed of a Shack-Hartmann sensor and the
resolution capabilities of sensor-less methods.
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Chapter 3

Deep Learning

Artificial Intelligence (AI) is a field of research that studies methods to build intelligent programs
and machines. Machine Learning is a subset of AI that uses algorithms (e.g. Deep Learning)
to provide systems the ability to learn and improve from a training routines. In this chapter the
subject of Deep Learning will be discussed. Section 3-1 is about Artificial Neural Networks (ANN).
An ANN is a nonlinear, adaptive information processing system. This system contains multiple
interconnected processing units (neurons) which can be trained to learn non-linear relationships
between an input and output. ANN lie at the core of Deep Learning and have proven to be
a very powerful tool for complex visual tasks and offer an alternative to conventional Machine
Learning solutions. Then, two more recently developed architectures will be discussed, named the
Convolutional Neural Network and Fully Convolutional Network. Sections 3-4-1,3-4-2 and 3-4-3
are about the three custom neural networks considered in this thesis.

3-1 Artificial Neural Networks

A neural network can be defined as a mathematical function f that takes in an input (X) and
produces an output (Y)

f : X → Y. (3-1)

This network function is composed of other functions h(x,w) called neurons, which can be con-
veniently represented in a network structure (see Figure 3-1b). Neurons can be grouped to form a
layer [30]. A single neuron takes a set of inputs xi, computes the weighted sum, and produces a
single output. The output of a single neurons is defined as:

h(x,w) = ϕ

(
N∑
i=0

wixi

)
, (3-2)
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where each input connection xi is associated with a weight wi. Furthermore, an activation function
φ (see Figure 3-1a) is applied. Activation functions are used to ensure non-linearity’s within the
network and are further be discussed in Section 3-1-2. A single neuron could be used for simple
linear binary classification. If the weighted sum exceeds a threshold, it outputs a positive class,
otherwise a negative class (like a Logistic Regression Classifier or linear Support Vector Machine).

A neural network has three main sections: the input layer, hidden layers and an output layer
(see Figure 3-1b) [30]. The input layer takes the input data and sends it to the first hidden layer.
A network consists of one or multiple hidden layer, more hidden layers results a ’deeper’ network.
The output layer processes the information passed on from the last hidden layer to produce a
result. Lets consider a classic Deep Learning example, training a neural network to recognize hand
written digits. Training a network (see Section 3-1-1) means supplying the network with inputs
(e.g. digitized hand written number 9) such that it can find patterns belonging to a specific output
(e.g. the value 9). Let us consider two-dimensional images of size 10x10 pixels as input, containing
the digitized hand written digits. Consequently, the input layer will have 10x10 = 100 neurons.
The optimal amount of hidden layers (and their size) is never immediately evident and is found
through cross-validation. With respect to the written digits, let us consider two hidden layers. We
could expect the first hidden layer to search for loopy patterns or lines, and the second layer to
search for certain edges. When the input data contains the handwritten digit ’9’, the hidden layers
will ’search’ for a combination of a straight line pattern and a circle pattern. The output layer will
have 10 neurons, such that the network can output values from 0 to 9.

(a) Architecture of a single neuron using a step
function as activation function.

(b) Architecture of fully connected neural net-
work with multiple neurons in hidden layer.

Figure 3-1: Schematic of TLU- and neural network architecture. [3]

3-1-1 Training

Training a neural network is the process of finding the optimal network function f , by tuning the
weights w, such that a desired output is found. Most neural networks are trained using a method
called backpropagation [31]. The algorithm goes through the network in two passes (forward and
backward) and computes the gradient of the network error with regards to every single parameter
(or weight). Once it has all the gradients, it performs a Gradient Descent [32] (or a variation off
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Gradient Descent). This process repeats itself until the neural network converges to a solution.

Going through the algorithm in more detail:

• During training not all data is fed into the network at once. It works in mini-batches and
goes through the training set multiple times. Each pass through the network is called an
epoch.

• During a forward pass, the algorithm computes the outputs of the hidden layers until the
output layer is reached.

• The algorithm measures the output error by comparing it to the desired output (using a loss
function).

• Then the contribution of each hidden layer output connection, to the error, is determined.

• Finally, Gradient Descent is used to optimize the weights.

The performance of a neural network is determined by a given loss function L(θ). This loss function
depends on the network parameters (θ), original labeled output y, and is computed over batches
of data during each epoch:

L(θ) = 1
B

N∑
b=1

` (y, f (xb;θ)) , (3-3)

where f (xb;θ) is the networks predicted output (ypredicted) and xb represents the input data
[30]. During training, the network tries to minimize this loss function L(θ) in an attempt to find
the optimal system parameters that yield the closed relationship between y and ypredicted. The
minimization process is performed by (or a variation off) batch gradient descent

∇L(θ) = 1
B

N∑
b=1
∇θ` (yb, f (xb; θ)) ,

θt+1 = θt − α∇L(θ),
(3-4)

where α presents the learning rate [30]. This determines the step size of the gradient descent. If
the step size is to large, it will have trouble converging to an minimum. If the step size is too
small, the optimization routine will take a very long time (see Figure 3-7).
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Figure 3-2: Illustrations of a 2D loss function J(θ) and the minimization process. Each
plot shows iterations using different learning rates (α). A small α requires many iterations
before reaching the minimum point. The optimal α rapidly reaches the minimum point using
minimal iterations. To high an α causes drastic updates which lead to divergent behaviours.
[33]

However, most optimization surfaces vary a lot along all directions, hence a constant learning
rate often yields poor performance. To tackle the learning rate issue, stochastic gradient descent
methods have been proposed like: Adaptive Moment Estimation (ADAM) or RMSProp [34, 35].

3-1-2 Activation function

Activation functions introduce non-linearity’s to the neural network. Introducing non-linearity en-
sures the model is capable of learning more complex problems. If there is no activation function
the output signal would just be simple linear function. This is because a chain of linear functions
is still a linear function. It would only be capable of Linear Regression which is limited in potential
if you want to analyse images or videos.

Common activation functions are: sigmoid, Rectified Linear Unit function ’ReLU’ or soft ReLU.
The sigmoid activation function is defined as

φsigmoid(x) = 1
1 + exp(−x) . (3-5)

This function clips all input values between (0,1), this makes it particularly useful in the output
layer in networks where probabilities are predicted. However, the sigmoid activation function is
not very well suited for the hidden layers. This is because during backpropagation, derivative’s are
calculated with respect to the activation functions (see Equation 3-4). Inside the sigmoid, values
close to 0 or 1 have a gradient close to zero. This is known as the ’vanishing gradients’ problem,
and causes the optimization routine to get stuck. In order to prevent these vanishing gradients,
the ReLU activation function was introduced

φReLU (x) = max{0, x}. (3-6)

The ReLU prevents vanishing gradients in the positive regions, but could still cause saturated
neurons in the negative regions. One solution to this is the ’soft ReLU’, allow a small fraction in
the negative part. Regular ReLU however, is computationally more efficient and helps to generalize.
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Figure 3-3: Three different activation functions. The sigmoid activation is often used in
the output layer of a network, when a single probability has to be predicted. (soft) ReLU are
the most widely used activation functions and are less prone to vanishing gradients.

3-2 Convolutional Neural Network

Deep neural networks (DNN) show very good results on linear regression- and very simple image
recognition problems. However, they are not suited for more complex visual tasks like classification
of detailed images, object detection (classifying multiple objects in an image) or semantic segmen-
tation (classifying each pixel). For these complex tasks, convolution layers are required, creating
Convolutional Neural Networks (CNN). Convolutional layers use filters to convolve patches of ad-
jacent pixels, not only to reduce the operations needed to process the image but also because
adjacent pixels together are often meaningful.

The most essential blocks of a CNN are its convolutional layers. Neurons in the first convolu-
tional layer are not connected to every pixel of the input image (like discussed in the previous
section) but only to the pixels in their receptive fields. This allows the network to concentrate
on low-level features (shapes, e.g. a circle) in the first layers, then assemble them into high-level
features (edges, lines) in the next layers. A neurons weights can be represented as an image the
size of its receptive field. A set of weights are called filters, or convolutional kernels. When an
image goes through a kernel, it outputs a feature map, which highlights the areas in an image
that activate the filter the most. During training, these filters will learn to take on the most useful
values for its specific task, and the layers above learn to combine them into more complex patterns.
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Figure 3-4: Convolutional Neural Network showing the receptive fields for training. Post
training, when an image is submitted (e.g. of a house), each convolutional layer will output
multiple feature maps. These feature maps highlight the parts the conventional layer was
trained to look for. Feature maps resulting from the first convolutional layer would most
likely show the outline of the house, roof or door. The second convolutional layer would
output feature maps illustrating edges and lines of the house. [36]

All neurons within a feature map share identical parameters (i.e weights and bias). This not only
reduces the number of parameters in the model but also ensures that a learned pattern is invariant
of its location. This is in contrast to regular DNN, if it recognizes a pattern in one location, it will
only recognize it in that particular location.

Figure 3-5: A Convolutional operation for input image x ∈ R1×5×5 and a convolutional
kernel u ∈ R1×3×3. The output is a feature map, highlighting relevant features within the
input image. [4]

Consider the input data x of size RC×H×W and convolutional kernel u of size RC×h×w. A con-
volution operation is performed by sliding the kernel across the input image, and summing the
element-wise product between the overlapping elements (see Figure 3-5).
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oi,j = bi,j +
C−1∑
c=0

(uc ∗ xc) [i, j] = bi,j +
C−1∑
c=0

N−1∑
n=0

M−1∑
m=0

uc,n,mxc,n+i,m+j (3-7)

The output o is of size RC×(H−h+1)×(W−ω+1) and is used as input to subsequent convolutional-
or fully-connected layers.

3-2-1 Pooling layers

Training a convolutional neural network can be a time consuming process since it involves many
iterations of computationally expensive operations. To reduce the training time, pooling layers
were introduced. Pooling layers have one purpose: down-sample the feature map. By reducing
the dimensions of the feature map, computational load is decreased while maintaining spatial
information and decreasing over-fitting effects. Suppose an input tensor x ∈ RC×(rh)×(mw) is
passed to a pooling layer of size h x w, then the max pooling operation can be defined as:

oi,j = max
n<h,m<w

xc,ri+n,sj+m (3-8)

The output o has dimensionality RC×r×s and is passed on the subsequent convolutional- or fully-
connected layers.

Figure 3-6: Example of a max-pooling operation with kernel 2x2 and stride of 2. The stride
of a kernel determines the pixel step size over the image. A stride of 2 makes the kernel slide
2 pixels each iteration. [5]

3-2-2 Dropout layers

A typical regularization method is applying dropout on fully connected layers within the network.
Regularization methods prevent overfitting caused by optimization. A model which has been
overfitted performs well on the training set, but poorly on the test set. In essence it has failed
to generalize. Dropout prevents this and works as follows: in each forward pass, a random set of
neurons will be set to zero. This forces the network to be less reliant on certain combination of
neurons. As a result, the model becomes more generalized.
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Figure 3-7: Illustration of dropout within a neural network. During training, after each
epoch, some neurons will be set to zero. This has proven to be an effective regularization
method and forces the network to generalize. [37]

3-3 Fully Convolutional Network

FCN’s were first introduced in [38] by Jonathan Long for semantic segmentation. Semantic seg-
mentation is the classification of each pixel in an image according to the object or class it belongs
too (see Figure 3-8). The proposed strategy is to replace the fully connected layers at the top
of a Neural Network with convolutional layers. A major advantages of this strategy is that there
are not restrictions on the input size of an image and it offers an efficient method for pixel-wise
classification for the precise localization of objects.
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Figure 3-8: Fully Convolution Neural Network for pixel-wise classification. Note that the
top fully connected layers have been replaced with convolutional layers. The values under-
neath the blocks indicate the amount of channels within the convolutional kernel. First, the
image is gradually down-sampled, not unlike regular convolutional neural networks. Secondly,
unlike CNN’s, the image is up-sampled back to its original size. This yields a pixel-to-pixel
classification of the original image. [38]

Conventional CNN’s only down-sample the input image in its convolutional layers, FCN’s however
use up-sampling of the image in its top layers using transpose convolution. In [38], skip connec-
tions between different parts of the network are proposed. Complex or deep features can be found
using a ’deep’ network. However, spatial information is lost in these deeper layers. Shallower layers
contain more local information. The result is greatly enhanced when these two information sources
are combined using these skip connections.

As mentioned above, FCN enabled efficient pixel-wise classification which is a useful concept in the
field of DLWFS. Input images such as PSF or SH-patterns can now be trained to directly output
a phase-map, hereby avoiding Zernike calculations. This negate fitting errors Zernike polynomials
may introduce.

3-4 Custom models

Many teams compete each year to win the ILSVRC challenge, this is an image classification
competition. AlexNET was the first team to win using a CNN in 2012. From this competition
a couple of fundamental architectures have emerged, like GoogLeNet (2014) and ResNet(2015).
Figure 3-9 shows a couple of common models, comparing accuracy with complexity. The key
difference between these networks are its networks size (a larger network has more parameters,
hence training and inference time is greater) and accuracy. When choosing a network, the trade-
off between inference (and training-) time and accuracy needs to be considered.
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Figure 3-9: Top-1 accuracy vs. the number of operations required for a single forward pass
in multiple popular neural network architectures. As can be deduced from this plot, more
operations does necessarily mean more accurate estimations.

These fundamental architectures can be trained from scratch, starting with random initialized
weights, but can also be used for transfer learning. Transfer learning is a method where a model
developed for a task is reused as the starting point for a model on a second task. The transfer
of previous knowledge from the first model to the second is often beneficial. This concept is
especially powerfull when there is insufficient data. The interested reader can refer to [39] for more
information on transfer learning.
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3-4-1 U-Net

A drawback of Neural Networks is the need for a large amount of data for the training process,
which is beyond the scope for certain applications. O.Ronnerberger’s team provided a new type of
FCN architecture, called U-Net, in [40], which greatly reduced the amount of required data and
improved the inference speed for pixel-wise classification.

The major modification made to the standard FCN architecture is that the up-sample parts also
have multiple feature channels. This way, local information can propagate to higher resolution
layers. The up-sample part of the network is now symmetric creating an u-shaped architecture,
hence the name of the network (see Figure 3-10).

Figure 3-10: U-Net architecture, expensive path has multiple feature channels. The blue
arrows pointing to the right indicate convolutional layers with the activation layer ’ReLU’.
For 3x3 convolution, one pixel border is lost in the image. The downward path consists of
pooling layers, which decreases the x,y size of the feature map by a factor of 2. After each
pooling step, in the downwards path, the amount of feature channels are increased by a factor
of 2 (these are the numbers on top of each layer). The downwards ’contracting’ path gradually
increases the width and decreases the height of the layers. The upwards ’expansion’ path
consists of up-convolution (increasing the output resolution) and concatenation with high-
resolution features from the contracting path. This concatenation helps with localization of
high-resolution features. A successive convolution layer can then learn to assemble a more
precise output based on this information. [40]
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3-4-2 Xception

Xception [41] is a state-of-the-art deep neural network (see Figure 3-11) which is based on the
Inception-V4 network, which merges ideas from GoogleNet [42] and ResNet [43]. The novel ap-
proach of Xception is using Depth wise Separable Convolution Layers (DSEP) instead of convolution
layers. These type of layers have two major advantages:

• Fewer parameters to tune, which reduces overfitting.

• Computationally cheaper due less operations.

Where standard convolutional layers try to simultaneously capture spatial patterns (e.g., a circle)
and cross-channel patterns (e.g., circle + circle = number 8), separable convolutional layer assume
these can be modeled separately.

Figure 3-11: Xception Deep Neural Network architecture. The connections going around
the Separable Convolutional layers are called residual blocks. These were introduced by
GoogleNet and ResNet. These blocks allow for better flow of information to the last fully-
connected layers and may prevent vanishing gradients during back propagation. The main
activation function used in this network is ReLU and Max Pooling layers are used to down-
sample the image. [41]

Depth wise Separable Convolution Layers

Suppose an input image of size Df · Df ·M (see Figure 3-12) and a convolutional layer with N
filters of size Dk ·Dk ·M . There are N filters which slide over the image Dp ·Dp times, hence the
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output will be of size Dp ·Dp ·N . The kernel parameter Dp depends on the step size (stride) of
the kernel over the image.

number of operations per single convolution (C) = Dk ·Dk ·M (3-9)

total amount of multiplications = N ·Dp ·Dp · C = N ·D2
p ·D2

k ·M (3-10)

Figure 3-12: Standard operation of a convolutional layer. The input is convolved with N
kernels, resulting a down sampled output. [44]

Equation 3-10 denotes the total amount of operations (multiplications) required in a standard
convolutional layer. Lets consider operations performed by the DSEP layers, which are performed
in two steps: Depth-wise convolutions and Point-wise convolutions. Depth-wise convolutions (see
Figure 3-13) are applied only to a single channel, unlike normal Convolutional layers. Filters will
be of size Dk ·Dk · 1. Input data of M channels requires M such filters and the output size will be
Dp ·Dp ·M .

number of operations per single convolution (C) = Dk ·Dk (3-11)

total amount of multiplications = M ·Dp ·Dp · C = M ·D2
p ·D2

k (3-12)

Figure 3-13: First step of a DSEP layer, Depth-wise convolutions. These Depth-wise
convolutions use multiple filters with only one channel. [44]

The second step is the point-wise operation (see Figure 3-14), a 1 · 1 convolution is performed for
each of the M channels. Hence, the filters will be of size 1 ·1 ·M and the output size with N filters
will be Dp ·Dp ·N . Note that this is the same output as the standard convolutional layer.
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number of operations per single convolution (C) = 1 ·M (3-13)

total amount of multiplications = C ·Dp ·Dp ·N = M ·D2
p ·N (3-14)

Figure 3-14: Second step of a DSEP layer, Point-wise convolutions. These Point-wise
convolutions use multiple filters (N) of size 1 x 1 x M. [44]

Summing the operations performed in both steps will yield the total number of operations applied
by the DSEP layers.

Number of operations Depth Wise Separable = M ·D2
p · (D2

k +N) (3-15)

Comparing Equation 3-15 with Equation 3-16 reveals DSEP layers substantially decrease the total
amount of performed operations compared to standard convolutional layers.

Number of operations standard convolution = N ·D2
p ·D2

k ·M (3-16)

3-4-3 Alex-Net

Alex-Net [45], created by Alex Krizhevsky, won the 2012 ImageNet Large Scale Visual Recognition
Challenge in 2012, beating the other systems by a large margin. Alex-Net contains less convolutional
operations than Xception or UNET and as a result, achieves faster training- and inference times
respectively. However, less convolutional operations also limits the pattern recognition potential.
The architecture is denoted in Figure 3-15.
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Figure 3-15: The Alex-Net architecture containing 5 convolutional layers and 3 fully con-
nected layers using Relu. Dropout is applied on both fully connected layers. Max pooling
layers are added after the convolutional layers.

Alex-Net popularised the use of ReLU activation functions, dropout layers and pooling layers within
convolutional neural networks.
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Chapter 4

Numerical Experiment:
Shack-Hartmann Simulations

This thesis aims to answer the research questions proposed in Chapter 1, in order to develop a
new approach to phase reconstruction from raw SH measurements. To answer these questions,
two numerical experiments have been performed. The first numerical experiment centers around
Shack-Hartmann simulations and sets the stage for the second numerical experiment. In the sec-
ond numerical experiment, discussed in Chapter 5, we will use these simulated Shack-Hartmann
patterns to train/evaluate the proposed neural networks. The outcome of the second numerical
experiment will determine the validity of our approach.

In order to create the proposed Deep Learning models, a neural network has a to be trained.
Training a neural network requires large amounts of input/output data pairs, such that the model
can generalize properly. The purpose of our approach is fast and accurate estimation of a wave-
front using its Shack-Hartmann pattern. Thus, our model has to learn the non-linear relationship
between Shack-Hartmann patterns (input) and their corresponding combination of Zernike polyno-
mials or phase-map (output). Before we start the training process, which is described in Chapter
5, a fast amount of data pairs has to be generated. This chapter is about data generation, which
is vital for training our Deep Learning model. Three different micro-lens array geometries are
considered, consisting of 25 (5x5), 256 (16x16) or 900 (30x30) lenses. The 256- and 900 lens
micro-lens array’s will be subjected to wavefronts originating from the first 32-Zernike polyno-
mials. The 25 lens micro-lens array’s will be subjected to wavefronts originating from the first
100-Zernike polynomials. The purpose of the former two data sets is validation of our approach
using results achieved in [13] and testing the effect of number of lenses in the micro-lens array. The
purpose of the latter data set is testing the accuracy of our approach within a setting where tra-
ditional methods fail (i.e. estimation of more Zernike indexes than the available lenses in the MLA).

This chapter is structured as follows: in Section 4-1, a distinction is made between three data
sets and the wavefront generation methodology is explained. In Section 4-2, a description is given
on the simulation process of the actual Shack-Hartmann patterns and several examples are illus-
trated. To make the Shack-Hartmann patterns more realistic, each pattern is subjected to noise
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and physical parameters are taken into consideration. The type of noise is described in Section 4-3
and the implication of physical parameters is discussed in Section 4-4.

4-1 Data Generation

The Shack-Hartmann patterns are generated in Python using Fourier Principles as imaging model
(see Fourier Imaging, Section A-2). The SH-patterns are generated using either a 5x5, 16x16 or
30x30 MLA. Using these three MLA geometries, three different data sets are generated:

• SH-patterns (with 16x16 MLA), from first 32-Zernike.

• SH-patterns (with 30x30 MLA), from first 32-Zernike.

• SH-patterns (with 5x5 MLA), from first 100-Zernike.

For both the 32-Zernike and the 100-Zernike sets, the first coefficient (piston) is set to zero, since
this does not influence the PSF. For the first 32-Zernike case, the remaining 31 Zernike coefficients
were randomly generated within the range of [−0.5, 0.5] rad for computing each phase map. Com-
bining these indexes yield wavefronts between [1.2:2.0] rad, see Figure 4-1a. The extension of from
32-Zernike to 100-Zernike yields more rapidly varying phase maps due to higher-order abberations.

For the first 100-Zernike, the indexes were generated a bit differently. A random [−0.5, 0.5]
range like the 32-Zernike case would yield extremely unstable wavefronts. Hence, the indexes were
generated as described in [46]. As a result, the range of wavefronts within this set is [0.6:1.2] rad,
see Figure 4-1b. In fact, these values correspond to the wavefront error operation range of the vast
majority of imaging system [47]. In general, RMS WFE of less than 0.15 rad can be considered
as perfect image quality. Poorer image quality is found with RMS WFE greater than 0.15 rad.

(a) First 32-Zernike data set. (b) First 100-Zernike data set.

Figure 4-1: Distribution of RMS WFE across the 32- and 100 Zernike data sets. Both sets
roughly follow a Gaussian distribution.

In Table 4-1 two examples are shown denoting phase map and corresponding Zernike indexes.
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Table 4-1: Two phase map examples with corresponding Zernike indexes. The top image
shows a phase map generated from the first 32-Zernike (piston excluded) with a RMSE of
1.61 rad. The bottom image shows a phase map generated from the first 100 Zernike (piston
excluded) with a RMSE of 0.91 rad. Colorbar is in rad.

Phase map Zernike indexes

4-2 Shack-Hartmann Patterns

The physical parameters used for simulation are a MLA focal length of 10 mm with a pitch of 150
µm. The observed wavelength has been chosen to be 633 nm and the CCD pixel size has been set
to 4.65 µm. The aperture size depends on the amount of lenses used in the MLA. The Hartmann
Patterns (HP) used for this project were simulated using the following steps:

• Generate and combine first n (32 or 100) Zernike polynomials using random indexes. The
Zernike polynomials are generated in the Aotools library [48].

• Sub-divide the phase in the pupil into multiple sub-apertures (s/a) depending on MLA ge-
ometry.
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• Calculate PSF for every isolated s/a using Direct Fourier Transform.

• Add all PFS’s coherently and take squared absolute value of the intensity to obtain the final
HP.

• Down sample entire HP to desired neural network input size.

Taking the Discrete Fourier Transform (DFT) of the entire MLA at once, instead of every isolated
s/a might be tempting, however such a single-shot DFT poses issues which can be traced back
to the definition of the FT (see Section A-2). The complex field at coordinates (u, v) are solely
determined by phase and amplitude of the input at spatial frequencies

(
fx = u

λz , fy = v
λz

)
. Let

us assume an input function h sampled at N points xn (1D example is only considered since
generalization to 2D is trivial). The distance between the points is denoted by ∆x. Taking the FT
over this function yields a function G, sampled at N points u = fxλz. This gives a step length of

∆u = ∆fxλz = λz

N∆x, (4-1)

with ∆fx = (N∆x)−1. Suppose we sample the input over xmin = −N/2 · ∆x to xmax =
(N/2−1) ·∆x such that the origin is included. As a result, the FT is given over spatial coordinate
u from

umin = −N∆u
2 = Nλf

4xmin
,

umax = umin +N∆u = (N − 2)λf
4xmax

.

Assume now an incoming wavefront which is 10 mm in diameter and we sample it using 8192 steps
in each dimension (this is a very high sampling density which will already result in very long com-
putation time). Running the FFT (Fast Fourier Transform) would yield a coordinate plane ranging
from -2.5 mm to 2.5 mm, which is still insufficient size since the resulting HP should be about the
same size as the original wavefront. Furthermore, such a high sampling density is unnecessary since
the sample density of the CCD is fixed. In our simulations, this problem is solved by giving each
lenslet its own coordinate system to avoid unpractical sample densities. Each coordinate system is
subjected to a FFT using parameters defined in section 4-4.

In the next two pages, Tables 4-2 and Table 4-3 illustrate some random samples taken from
the data sets.
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Table 4-2: Example phase map and corresponding HP (MLA 16x16 and 30x30). Phase
maps are generated by using the first 32 Zernike coefficients. The denoted HP serve as input
to the Neural Networks. Colorbars are in rad.

30x30 16x16 Phase map
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Table 4-3: Example phase map and corresponding HP (MLA 5x5). Phase maps are gen-
erated by using the first 100 Zernike coefficients with statistical model described 4-1. The
denoted HP serve as input to the Neural Networks. Colorbars are in rad.

5x5 Phase map
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4-3 Noise

To make the models more robust to usage in real optical setups, noise has been added to the HP.
There are various noise sources that impact the imaging system. In this project the assumption
has been made that only the CCD contributes to noise generation. The primary noise contributors
[49] are denoted in Table 4-4:

Table 4-4: Quantities used to determine noise levels generated by a CCD.

Quantity Meaning
Qe Quantum Efficiency
Ndc Dark-current noise
Nr Read-out noise
Ns Shot noise
P Photon flux

Qe refers to the ratio photons hitting the CCD to conversion into electrical impulse. Not all incident
photons are actually detected. Ndc and Nr refer to the dark-current noise and read-out noise of
the CCD (see A-1-8). Ns is caused by inherent statistical variation in the arrival rate of incident
photons and is due to the quantum nature of light. Shot noise cannot be reduced by camera design
and thus the minimum noise level achievable is always bounded by this noise type. In general, the
number of electrons (N) follows a Poisson distribution:

P (x) = Nxe−N

x! . (4-2)

This is because photons are emitted randomly and independently. In case N � 1, this distributions
skewed towards a Gaussian distribution N (N,N). Hence, the shot noise scales with

√
N .

For this project, a short exposure time is assumed, causing shot noise to be the dominant fac-
tor (Ns � Ndc,Nr). This renders Ndc,Nr negligible. Hence, the simulated HP are dictated by
Poisson statistics. On average, a Peak Signal to Noise Ratio (PSNR) of 27 dB is assumed. This
is illustrated in Figure 4-2.
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(a) HP without noise. (b) HP with noise.

Figure 4-2: Each HP is subjected to Poisson noise for more realistic simulations. On
average, a PSNR of 27 dB is reached.

4-4 Anti-aliasing

When simulating a SH-pattern, it is important to keep in mind the physical limitations of sensors.
Using arbitrary amount of pixels for the SH-pattern will yield in unrealistic results [50]. For a proper
SH-pattern simulation without aliasing the pixel size should be small enough such that the Nyquist
criterion holds:

D

f

2π
λ
≤ π

s
. (4-3)

Where s is the pixel size (of CCD), D the total aperture size and f the focal length and λ the light
wavelength. Two other important parameters to keep in mind are the pitch and amount of lenses
the SH is constructed with. Pitch meaning the distance between the center of two neighbouring
lenses inside the micro-lens array (MLA). These two factors determine the aperture size of the
MLA.

Consider the following example, given a MLA of 16x16 lenslets with a pitch of 0.15 mm, focal
length 10 mm and aperture diameter 2.4 mm (16 · 0.15 · 10−3). Also given that the CCD has a
sampling rate of 4.65 µm and the incoming light has a wavelength of λ = 633 nm. Inserting these
parameters into Equation 4-3 bounds total aperture size to a maximum of ≈ 1.14mm to avoid
aliasing. Although the SH-pattern could fit inside a grid of 517 pixels, it should be sampled with
about 3 times smaller pixel size to avoid aliasing. Hence, the simulation grid for the pupil field
should be about 1551x1551.

4-5 Summary

First we discussed the type of wavefronts used to generated the Shack-Hartmann patterns, using a
combination of 32- or 100-Zernike coefficients. Then, a list of steps was provided, taking the reader
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through the process of simulating a Shack-Hartmann pattern. The quality of Shack-Hartmann
patterns generated through a physical optical setup, is always influenced by noise and hardware
limitations. Thus, some physical parameters were introduced to the simulated patterns to make
them more realistic. Figure 4-3a shows a Shack-Hartmann pattern generated inside a physical
setup, Figure 4-3b shows a Shack-Hartmann pattern simulated in Python.

(a) Real Shack-Hartmann pattern. (b) Simulated Shack-Hartmann pattern.

Figure 4-3: Real and Simulated Shack-Hartmann pattern from a flat wavefront. (a) has
a pitch, focal length and pixel size of 150 µm, 10 mm and 5.2 µm respectively. (b) has a
pitch, focal length and pixel size of 150 µm, 10 mm and 4.65 µm respectively.

Concluding, three different data sets are simulated which vary in micro-lens array setting and
wavefront aberrations. In the next chapter, we will show how these generated data sets are utilized
to train different neural networks.
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Chapter 5

Numerical Experiment: Training and
Evaluation

In this chapter, we will show the training and evaluation of three custom neural network architec-
tures: Xception, Alex-Net and U-Net. These custom neural networks have been adapted to fit our
desired output and each are trained with respect to three data sets (as mentioned in Chapter 4).
This yields 9 models in total, 3 neural networks times 3 data sets equals 9 models. We can evaluate
these models post training by taking the residual error between predicted wavefront and original
wavefront. Comparing these residual errors, we can determine the influence of MLA geometry, data
set size and network architecture. Each network is trained with respect to a specific loss function,
depending on the network type.

In the introduction of this chapter, the three networks and their training schemes are briefly dis-
cussed. In Section 5-2, the network results regarding the two ’32-Zernike’ data sets are reviewed
and a single prediction is illustrated. In Section 5-3 the network results regarding the ’100-Zernike’
data set are discussed and a single prediction is illustrated. Finally, the Xception network trained
with respect to the ’100-Zernike’ data set is used for a more comprehensive analysis. The robust-
ness of this model is evaluated using different noise types and noise intensities. Furthermore, the
static and dynamic closed-loop behaviour is modeled.

5-1 Introduction

All data sets are split up into 100.000 training images, 1000 test images and 1000 validation images
respectively (see Section A-3-1). The codes were implemented in Python and were executed on a
computer with a single Radeon RX Vega GPU. Keras [51] was used as Deep Learning framework
within Python. PlaidML was used in combination with Keras to enable Keras to run on a AMD
GPU. PlaidML is an advanced and portable tensor compiler. To test the influence of training set
size, the models are also trained with respect to two smaller sets sizes using the 16x16 MLA data set.
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Some adjustments to the Xception network (see Section 3-4-2) were required such that it was
capable of Zernike regression. The top fully connected layer is replaced since on default it outputs
1000 classes, while we need 32 (or 100). A dropout layer is added before the last fully connected
layer we just replaced. The dropout layer has a dropout ratio of 0.5 which greatly reduces overfit-
ting of the model. The new fully connected output layer has 32 (or 100) neurons and has a linear
activation function. We need a linear activation in the last layer since this enables regression. The
input layer has been modified to accept images of size 256x256x1 (length,height,channels). During
training, the Xception network will be evaluated using the following loss function:

Loss =

√∑N
i=1 (ci − c′i)

2

N
, (5-1)

where N is the number of predicted Zernike coefficients and ci and c
′
i are the exact- and predicted

Zernike coefficients respectively. Evaluation of the network post training will be done using the
Root Mean Square Error (RMSE), which in our case, is equal to the loss function but without
averaging.

RMSE =

√√√√ N∑
i=1

(ci − c′i)
2, (5-2)

Averaging should not be done by nature of the Zernike [52].

The second Neural network, based on Alex-Net (see Section 3-4-3), has also been modified for our
goal. The last fully connected layer has been reduced in size to fit our 32- or 100 Zernike indexes
and has a linear activation function. Furthermore, two drop-out layers with ratio 0.25 have been
added after the first and second fully-connected layers. Alex-net has less convolutional operations
than Xception but is still capable of Zernike regression [53]. Fewer convolutional layers yield faster
training- and prediction times. Like Xception, Alex-Net is evaluated during training using the loss
function defined in Equation 5-1.

The third neural network, U-Net (see Section 3-4-1), enables pixel-wise classification. Unlike
Xception and Alex-Net, U-Net does not estimate Zernike indexes, but is trained to directly output
a one-to-one pixel-wise estimation of the phase-map. From the estimated phase-map, the Zernike
indexes can be recovered by projecting the phase onto the Zernike orthogonal basis

ci = < θ(x, y), Zi(x, y) >
< Zi(x, y), Zi(x, y) >. (5-3)

Although Zernikes polynomials are normalized, < Zi(x, y), Zi(x, y) > 6= 1 in numerical simula-
tions since they are sampled on a grid.

The input/output layer has been modified to accept/output images of size 256x256x1. During
training, the network is evaluated with respect to the root mean squared wavefront error (RMS
WFE) between the real- (θ) and predicted phase (θ′)

Loss =
√√√√ 1
N(ρ)

∑
i,j∈ρ

(θ (xi, yi)− θ′ (xj , yj))2, (5-4)
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where ρ is the sampled pupil aperture and N(ρ) is the total number of pixels within the apertures
diameter. Post training the network is evaluated with respect the same RMSE metric as the pre-
vious networks. This is achieved by recovering the Zernike indexes from the estimated phase-map.

Figure 5-1 gives a broad overview of the training process. During training, the goal is to min-
imize the defined loss function. This loss function is an important performance metric indicating
the accuracy of the model. The smaller the loss, the closer the original- and predicted wavefronts
are related.

Figure 5-1: Network training flow of operations used for loss calculations. During training,
the averaged RMSE or RMS WFE is minimized. First, a random set of Zernike coefficients
are generated. Using these indexes, a wavefront is generated and subjected to a micro-lens
array, causing sub-aperture functions. Taking the Fourier Transform for each s/a function,
results in a Shack-Hartmann pattern. This focal spot pattern is used by the neural network
to estimate Zernike coefficients or a phase-map, depending on the network. (left) Flowchart
indicates the flow of operations for Xception and Alex-Net. (right) Flowchart indicates flow
of operations for U-Net.

The ADAM optimizer was chosen as primary optimization routine for both networks. It has re-
markable computational efficiency and handles learning rate optimization automatically, which
saves considerable time hyper-tuning this parameter [34]. ADAM is initialized to a user-defined
value and then updated according to values of the gradient. Total allowed trainable epochs was
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50, however, whenever the validation loss did not decrease for 5 epochs, the training sequence was
stopped automatically. This was done to prevent unnecessary long training times and overfitting
of the model. Table 5-1 shows the influence of network design on training- and inference time.

Table 5-1: Table showing amount of trainable parameters, time spend on a single epoch
during training (100.000 samples) and post training prediction time from HP to phase map.
Computed using a single Radeon RX Vega GPU.

Network Parameters Time per Epoch (h) Inference (ms)
Xception 20,869,895 1.2 13
U-Net 485,673 0.45 7
Alex-Net 33,952,319 0.15 2

Table 5-1 reveals that the size of a network is not necessarily responsible for longer inference
times. It is the amount of multiplications done within the network that induces longer inference-
and training times. All of the above networks achieve competitive operation speeds, compared
to traditional Shack-Hartmann wavefront sensing methods which may take around 17.6 ms per
pattern [54].
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5-2 Training Neural Networks on 32-Zernike

5-2-1 Xception

Figure 5-2: Example learning curve showing loss
vs. epochs. Obtained from using 100.000 data pairs
and 16x16 MLA HP. Validation loss is lower than
the training loss due to the dropout layer.

Figure 5-3: Averaged RMSE (using Equation 5-1)
vs number of training pairs for three 16x16 MLA
models over a 1000 data pair test set.

Figure 5-2 denotes the learning curve ob-
tained using the following learning proto-
cols: ADAM optimizer, learning rate of 1e-
4 and batch size of 10. Figure 5-2 shows
the validation- and training loss (see Sec-
tion A-3-1). The model should always
perform better on training data than un-
seen data, however, this is not the case
when dropout layers are present in the net-
work. Dropout is only applied on the train-
ing set, hence the validation loss remains unaf-
fected.

Figure 5-3 shows the effect of training set size
on the performance of the resulting model. A
larger training set size has a positive effect on
the models performance, however the percent-
age of improvement does decrease with larger
data set sizes. Meaning a lot of improvement
can be gained going from 10.000 to 50.000 set
sizes, but less from 50.000 to 100.000 set sizes.
Table 5-2 presents the post training evaluation
of the model, showing the RMSE over the test
set using two MLA geometries. Increasing the
number of lenses from 256 to 900 did not yield
significantly better results.

Table 5-2: The RMSE (Equation 5-2) of
Xception over the 1000 samples test set.

MLA RMSE [rad] RMSE [nm]
16x16 0.17 ± 0.07 16 ± 7.2
30x30 0.16 ± 0.06 15 ± 6.1
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5-2-2 U-NET

Figure 5-4: Example learning curve showing loss
vs. epochs. Obtained from using 100.000 data pairs
and 16x16 MLA HP. Validation loss is lower than
the training loss due to the dropout layer.

Figure 5-5: Averaged RMSE (using Equation 5-1)
vs number of training pairs for three 16x16 MLA
models over a 1000 data pair test set.

Figure 5-4 denotes the learning curve obtained
using the following learning protocols: ADAM
optimizer, learning rate of 1e-4 and batch
size of 64. Figure 5-4 shows the valida-
tion loss (performance model on unseen data)
and training loss (performance model on train
set).

Figure 5-5 shows the effect of training
set size on the performance of the re-
sulting model. A larger training set size
has a positive effect on the models perfor-
mance, however the percentage of improve-
ment does decrease with larger data set
sizes. Noticeably, U-Net is less effected by
a smaller set size than Xception or Alex-
Net.

Table 5-3 presents the post training evaluation
of the model, showing the RMSE over the test
set using two MLA geometries. Increasing the
number of lenses from 256 to 900 decreases the
error rate by roughly 20 %.

Table 5-3: The RMSE (Equation 5-2) of
U-Net over the 1000 samples test set.

MLA RMSE [rad] RMSE [nm]
16x16 0.33 ± 0.069 33 ± 6.9
30x30 0.27 ± 0.056 29 ± 5.6
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5-2-3 Alex-Net

Figure 5-6: Example learning curve showing loss
vs. epochs. Obtained from using 100.000 data pairs
and 16x16 MLA HP. Validation loss is lower than
the training loss due to the dropout layer.

Figure 5-7: Averaged RMSE (using Equation 5-1)
vs number of training pairs for three 16x16 MLA
models over a 1000 data pair test set.

Figure 5-6 denotes the learning curve ob-
tained using the following learning proto-
cols: ADAM optimizer, learning rate of
1e-5 and batch size of 128. Figure 5-
6 shows the validation loss (performance
model on unseen data) and training loss
(performance model on train set). As
expected, Figure 5-7 shows a decrease
in average error when the set size in-
creases.

Table 5-4 presents the post training evaluation
of the model, showing the RMSE over the test
set using two MLA geometries. Increasing the
number of lenses from 256 to 900 does not yield
significant reduction in error rates.

Table 5-4: The RMSE (Equation 5-2) of
Alex-Net over the 1000 samples test set.

MLA RMSE [rad] RMSE [nm]
16x16 0.38 ± 0.089 39 ± 8.9
30x30 0.36 ± 0.066 36 ± 6.7
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5-2-4 Prediction Example Networks

In this section a randomly sampled prediction will be illustrated and discussed. An unseen 16x16
MLA HP (see Figure 5-8b, noise has not been applied yet) is used as input to all three networks.
This HP is constructed using a randomly generated phase-map shown in Figure 5-8a. Note that
all colorbars are in rad.

(a) (b)

Figure 5-8: (a) Randomly generated phase-map (θ) using first 32 Zernike indexes, RMSE:
1.5 rad. (b) Corresponding noise-less Shack-Hartmann pattern. Noise is added before the
image is submitted to the network.

Xception and Alex-Net both estimated Zernike indexes (c′i) which are compared to the real Zernike
indexes (ci) in Figure 5-9.

(a) (b)

Figure 5-9: Predicted- (c′i) and original (ci) Zernike indexes from (a) Alex-Net, residual
RMSE 0.47 rad and (b) Xception, RMSE 0.2 rad.

These estimated Zernike indexes can be used to infer an estimated phase-map (θ′), see Figures
5-10, 5-11 . U-NET directly outputs an estimated phase-map, see Figure 5-12.
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(a) (b)

Figure 5-10: (a) Predicted Wavefront (θ′) Alex-Net. (b) Residual wavefront (θ−θ′). RMS
WFE 0.47 rad.

(a) (b)

Figure 5-11: (a) Predicted Wavefront (θ′) Xception. (b) Residual wavefront (θ−θ′). RMS
WFE: 0.2 rad.

(a) (b)

Figure 5-12: (a) Predicted Wavefront (θ′) U-Net. (b) Residual wavefront (θ − θ′). RMS
WFE: 0.37 rad.
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First we notice that especially Figures 5-11b and 5-12b have a similar error profiles, repeating
that of the input phase. Figure 5-10b has some components of the input phase, but due to
less exact Zernike coefficient estimation shows less commonality. U-Net’s residual wavefront shows
pixel-to-pixel discontinuities and non-smoothness. However, these pixel-to-pixel variations are small
compared to pixel values of the predicted wavefront. Hence, this non-smooth behaviour is negligible.
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5-3 Training Neural Networks on 100-Zernike

5-3-1 Xception

Figure 5-13: Example learning curve showing loss
vs. epochs. Obtained from using 100.000 data pairs
and 5x5 MLA HP. Validation loss is lower than the
training loss due to the dropout layer.

Figure 5-13 denotes the learning curve ob-
tained using the following learning proto-
cols: ADAM optimizer, learning rate of
1e-5 and batch size of 10. It shows
the validation loss (performance model on
unseen data) and training loss (perfor-
mance model on train set). Figure 5-14
shows a random HP and its resulting pre-
dicted Zernike indexes from the Xception
model.

Table 5-5 presents the post training evaluation
of the model, showing the RMSE over the test
set using the 5x5 MLA geometry.

Table 5-5: The RMSE (Equation 5-2) of
Xception over the 1000 samples test set.

MLA RMSE [rad] RMSE [nm]
5x5 0.2 ± 0.13 20 ± 13

(a) (b)

Figure 5-14: (a) Noise-less Shack-Hartmann pattern (input) and (b) predicted- (c′i) and
original (ci) Zernike indexes (output) from the Xception network. Noise is added before the
image is submitted to the network. This example has a residual RMSE of 0.15 rad.
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5-3-2 U-NET

Figure 5-15: Example learning curve showing loss
vs. epochs. Obtained from UNET using 100.000
data pairs and a 5x5 MLA HP. Validation loss is
lower than the training loss due to the dropout
layer.

Figure 5-15 denotes the learning curve ob-
tained using the following learning proto-
cols: ADAM optimizer, learning rate of 1e-
4 and batch size of 64. It shows the
validation loss (performance model on un-
seen data) and training loss (performance
model on train set). Figure 5-16 shows the
predicted phase-map (θ′) and the predicted
Zernike indexes (c′i) from the predicted phase-
map.

Table 5-6 presents the post training evalua-
tion of the model, showing the RMSE over
the test set using the 5x5 MLA geometry.
Noticeably, the RMSE values between U-Net
and Xception are much closer together using
the 5x5 MLA than the 16x16/30x30 MLA val-
ues.

Table 5-6: The RMSE (Equation 5-2) of
U-Net over the 1000 samples test set.

MLA RMSE [rad] RMSE [nm]
5x5 0.26 ± 0.038 26 ± 3.8

(a) (b)

Figure 5-16: (a) Predicted phase-map (θ′) from the identical input illustrated in Figure 5-
14a and (b) predicted- (c′i) and original (ci) Zernike indexes determined through the predicted
phase-map. This example has a residual RMSE of 0.34 rad.
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5-3-3 Alex-Net

Figure 5-17: Example learning curve showing
loss vs. epochs. Obtained from Alex-Net using
100.000 data pairs and a 5x5 MLA HP.

Figure 5-17 denotes the learning curve obtained
using the following learning protocols: ADAM
optimizer, learning rate of 1e-4 and batch size
of 128. It shows the validation loss (perfor-
mance model on unseen data) and training loss
(performance model on train set). Figure 5-18
shows a random HP and its resulting predicted
Zernike indexes from the Alex-Net model. The
index plot clearly shows an inability to estimate
a larger portion of the Zernike indexes. This
is due an insufficient number of convolutional
layers within Alex-Net, for this particular input.
Table 5-7 presents the post training evaluation
of the model, showing the RMSE over the test
set using the 5x5 MLA geometry.

Table 5-7: The RMSE (Equation 5-2) of
Alex-Net over the 1000 samples test set.

MLA RMSE [rad] RMSE [nm]
5x5 0.46 ± 0.043 46 ± 4.3

(a) (b)

Figure 5-18: (a) Noise-less Shack-Hartmann pattern (input) and (b) predicted- (c′i) and
original (ci) Zernike indexes (output) from the Alex-Net. Noise is added before the image is
submitted to the network. This example has a RMSE of 0.59 rad.
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5-3-4 Prediction Example Networks

Figures 5-19, 5-20 and 5-21 show the estimated- and residual wavefronts obtained using the different
networks through identical inputs denoted in Figures 5-18a,5-16a and 5-14a. Note that all colorbars
are in rad.

(a) (b)

Figure 5-19: (a) Predicted Wavefront (θ′) Alex-Net. (b) Residual wavefront (θ−θ′). RMS
WFE: 0.59 rad.

(a) (b)

Figure 5-20: (a) Predicted Wavefront (θ′) Xception. (b) Residual wavefront (θ−θ′). RMS
WFE: 0.15 rad.

(a) (b)

Figure 5-21: (a) Predicted Wavefront (θ′) UNET. (b) Residual wavefront (θ − θ′). RMS
WFE: 0.34 rad.

First we notice the high residual error from Alex-Net in Figure 5-19b. This high residual error is the
result of poor estimation of the Zernike indexes, see Figure 5-18b. Due to the lack of convolutional
filters within Alex-Net, it is incapable properly generalizing. The optimization routine logically
prioritized searching for low-order aberrations since these are larger in magnitude. Thus, incorrectly
estimated lower-order aberrations would give rise to larger residual errors of the Zernike coefficients.
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As a result, the higher-order Zernike polynomials are ignored at the wavefront reconstruction and
larger residual errors arise. Secondly, we notice the non-smoothness of U-Net’s prediction and
residual in Figure 5-21. Although the non-smoothness is more clear in the prediction this time, it
does not yield significant residual errors.
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5-3-5 Noise Robustness

To evaluate the robustness of the best achieving model (Xception), it will be tested for inputs sub-
jected to a combination of different noise types: Poisson noise, Gaussian noise and ADC (analog-
to-digital) noise. ADC noise arises due to the CCD inability to register any continuous spectrum
of energy. Values are rounded between 4096 discrete gray levels (12 bits). The model response to
different noise levels is denoted in Figure 5-22. Table 5-8 illustrates four key points in Figure 5-22.
Testing for these parameters quantifies the applicability of the model in practical setups.

Figure 5-22: The test set is evaluated at different PSNR levels. As the noise intensity
increases, the models accuracy decreases.

Figure 5-22 reveals an extreme sensitivity to noise types not included in the train set. Since
training conditions assumed short exposure times (i.e Poisson noise), it did not adapt for Gaussian
noise leading from longer exposure times. Since the model is not trained to deal with Gaussian
noise, it has a great impact on the average accuracy. It is evident that including different noise
types into the training procedure is paramount.

Table 5-8: Illustrations of different PSNR noise intensities taken from a single region of
interest located near the center of the MLA.

No noise 29 dB 22 dB 16 dB
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5-3-6 Closed-Loop Control

To evaluate the closed-loop behaviour of the best achieving model (Xception), multiple iterations
are performed using static and dynamic aberrations. Static meaning the incoming wavefront re-
mains unchanged and is only affected by noise. Illustrated in Table 5-9, are three closed-loop
iterations using a static aberration. Figure 5-23 denotes the closed-loop behaviour regarding dy-
namic aberrations.

Table 5-9: Illustrations of three static closed-loop corrections. As the iterations progress,
the Hartmann Pattern returns to its diffraction limited form. The RMS WFE’s are 1.09 rad,
0.31 rad and 0.09 rad respectively. A vary rapid convergence to a near diffraction limited
HP is observed. Colorbars are in rad.

Original Wave Residual Correction One Residual Correction Two

Original HP HP Correction One HP Correction Two
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Dynamic aberrations, indicate a changing wavefront at every time step due to atmospheric turbu-
lence for example. Since the speed of correction is not instantaneous, a temporal error is introduced
to the residual error. This temporal error is due to time lag, introduced by the readout of the wave-
front sensor and the inference time of the model. In the example illustrated in Figure 5-23, the
incoming wavefront is subjected to moving Kolmogorov turbulence [48] (see Section A-1-7) at each
time step.

Figure 5-23: Closed-loop performance of the (5x5 MLA) Xception model to dynamic aber-
rations. The ratio D

r0
(Frieds parameter r0 and aperture size D) equals 6, with a wind speed

of 0.5 m
iteration . Each line is a separate test, using a different randomized phase screen and

reveal stable closed-loop behaviour.

Figure 5-23 indicates stable closed-loop behaviour for the 25 sub-aperture MLA Xception model.
It should be stated that traditional Shack-Hartmann wavefront reconstruction algorithms would
not be able to stabilize such a feed-back system. These type of algorithms are unable to reliably
reconstruct 100-Zernike from a 25 sub-aperture MLA Adaptive Optics system [2].

5-4 Summary

In this chapter we discussed the second and last numerical experiment. In Section 5-2 we showed
the training process of six Deep Learning models and evaluated them on their ability to recon-
struct 32-Zernike. These six DL models emerged from different MLA geometries and different NN
architectures. The Xception network trained on 30x30 MLA HP and 100.000 data pairs achieved
the highest accuracy. Furthermore, we noticed that mainly U-Net gained significant accuracy by
increasing the amount of lenses in the MLA (from 256 to 900).
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In Section 5-3 we showed the training process of three Deep Learning models and evaluated them
on their ability to reconstruct 100-Zernike. Just like the 32-Zernike case, the Xception network
achieved the highest accuracy. Alex-Net experienced difficulties estimating 100-Zernike from a
5x5 MLA. More thorough analysis of the Xception network revealed a particular high sensitivity
to unknown noise types. Furthermore, closed-loop simulations were performed using static and
dynamic aberrations. Both cases showed stable closed-loop performance.
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Chapter 6

Conclusion

In this Master Thesis, a new approach to phase reconstruction from the SH measurement is pro-
posed. We have shown that Deep Learning techniques in combination with a micro-lens array can
surpass traditional SH phase reconstruction methods and alleviate their current limitations. The
proposed method uses the entire Shack-Hartmann Pattern as input to a Neural Network, making
the centroiding algorithm obsolete. Furthermore, it is shown that Deep Learning models allow for
better estimations of the phase-map compared to traditional methods, since they are less depended
on MLA size.

Multiple scenarios have been considered, using different MLA geometries (5x5,16x16 and 30x30)
with different neural network architectures (Alex-Net, Xception and U-Net). For all cases, a
phase-map is constructed by projecting the phase onto an orthogonal basis (Zernike basis). This
phase-map is used in combination with three MLA geometries to create three data sets of Hartmann
Patterns. Alex-Net and Xception have been trained to estimate Zernike coefficients from such a
HP. U-Net on the other hand, is trained to directly output a pixel-wise estimation of the phase-map.

The 16x16 and 30x30 MLA data sets are constructed using phase-maps resulting from the first
32-Zernike. Six models emerge from these MLA/aberrations settings. All networks perform excep-
tionally well, although no significant performance gain is observed going from a 16x16 MLA to a
30x30 MLA. We find that the MLA as preconditioner serves as a viable alternative to the proposed
preconditioners mentioned in [13]. The 5x5 MLA data set encompasses the first 100-Zernike and
as a result, three models are obtained. Alex-Net proofed unable to reconstruct 100-Zernike prop-
erly. We find that in all of the tested cases, the Xception custom network outperforms the other
networks in terms of accuracy. Alex-Net has the fastest operation speed. Further investigation on
the trained Xception network shows stable closed-loop performance. Traditional algorithms would
only reliably be able to reconstruct 25-Zernikes from such a MLA geometry. We find that the
tested CNN’s alleviate this limitation, showing near perfect reconstruction capabilities.
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6-1 Future work

The natural next step would be implement the models in a real physical optical setup, testing
their accuracy not only in simulation. Such tests were beyond the scope of this project, but are
paramount in testing the methods validity. As the noise robustness analysis showed, certain effects
left out in simulation, by accident or by choice, could significantly impact the phase reconstruction.
A solution to this would be to gather training data within an optical setup, automatically including
physical effects inside the model. A drawback of this approach is that the model would generalize
for that setup specifically and could not be share amongst peers. However, techniques like transfer
learning could somewhat alleviate this problem.

A common issue in AO systems involving SH phase reconstruction is the alignment and cali-
bration of the sensor which often contribute to systematic errors. Parameters like MLA orientation
or distance between lenslet and detector can impact the accuracy significantly. Orientation cal-
ibration can be done by recording reference centroids using an ideal light source. Finding the
correct distance between MLA and detector can be done by comparing known wavefronts against
measurements made by the WFS. It is unavoidable to completely remove all of these effects, hence
they should be included to some degree in the Deep Learning model. One approach to include
some of the effects is through data augmentation, where each input image is copied several times
and subjected to different effects. This does yield a significantly larger data set and training time.

This thesis proofed that Deep Learning models are less reliant on the amount of lenses in the
micro-lens array. However, due to time constraints we were unable to perform a comprehensive
statistical analysis of the relationship between lenses and Zernike index estimation. Further inves-
tigation on this relationship would yield a more sophisticated and applicable method.
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Definitions

A-1 Optics

A-1-1 Point Source

A point source is an infinitely small emitter of light which radiates uniformly in all directions.

A-1-2 Optical Path Length

The Optical Path (OPL) is the integral of the refractive index of the medium along the path
traveled by light. Which is analogous to traveled time.

OPL =
∫
P
n(r)dr (A-1)

A-1-3 Wavefront

Wavefront is a surface of a constant OPL from the source [24]. A wavefront is perpendicular to
the rays from a point source. A point source at infinity generates a collimated (flat) wavefront.

A-1-4 Abberations

Optical abberations are deviations from a diffraction limited (ideal) wavefront and cause degradation
of image quality. Abberations are caused by optical components due to manufacturing errors or the
simplified shape of the component. Misalignment, thermal interaction or atmospheric turbulence
also cause abberations.
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A-1-5 Point Spread Function

The Point Spread Function (PSF) describes the response of an optical system (with circular aper-
ture) to a point source. It is the 2D irradiance profile in the image plane of a point source object.
It is a very powerfull mathematical concept in the field of Fourier Optics and other imaging fields.
The degree of spreading of the imaged point is a measure of quality of the imaging system and is
defined as:

PSF(x, y) = |F(w(x, y))|2 (A-2)

and,
w(x, y) = Ap(x, y)ejϕ(x,y) (A-3)

where F is the Fourier transform, Ap the transmittance function of the pupil and ϕ(x, y) the
wavefront phase over the entrance pupil.

Figure A-1: (left) 3D irradiance profile of a PSF. (right) overexposed 2D intensity distri-
bution. [24]

When a point source is imaged inside a perfect optical system (i.e incoming wavefront phase not
subjected to any optical aberrations), the image is shaped by the diffraction and the resulting PSF
is called the Airy Disk [24].

p0(α) = πD2

4λ2

(2J1(πD|α|/λ)
πD|α|/λ

)2
(A-4)

where the quantities are defined in Table A-1.
Table A-1: Quantities used in Equation A-4

Quantity Meaning
α angular coordinate
p0(α) light intensity in the focal plane
λ wavelength of light
D diameter of the telescope aperture
I1 Bessel function of the first kind

The first minimum from the center (the first dark ring) as an angular distance of 1.22λ/D from its
center. This describes a fundamental limit to the resolution power of a optical instrument. This
limit is known as the Rayleigh resolution criterion and states that two objects should be separated
at least half the diameter (D) of the airy disk to be resolvable.
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Figure A-2: Schematic of a diffraction limited system: as the distance between the two airy
disks decrease, it becomes increasingly difficult to distinguish the two points.[2]

The diffraction-limited point spread function can be used as optimisation quality metric for image-
based AO systems. This metric is called the Strehl-ratio and is the ratio of the maximum intensity
of the actual point spread function to a perfect point spread function.

A-1-6 Zernike Polynomials

Zernike Polynomials are a set of polynomials which are orthogonal to the unit disk. A weighted
sum of these functions can describe the shape of a waveform. Depending on the direction of the
wave, Zernike polynomials can be odd or even and are defined using polar coordinates ρ, θ (or
Cartesian) as:

Z±mn (ρ, θ) = Rmn


cos(mθ) l = ±m > 0
sin(mθ) l −±m < 0
1 m = 0

(A-5)

m,n ∈ Z≥0, n ≥ m, n−m ∈ 2Z (A-6)

Hence, the product of the radial Zernike polynomial Rmn (ρ) with the azimuthal harmonic compo-
nent of frequency m yields the Zernike polynomial.

The radial polynomials are given by:

Rmn (ρ) =
n−m

2∑
s=0

(−1)s(n− s)!
s!
(
n+m

2 − s
)
!
(
n−m

2 − s
)
!
ρn−2s (A-7)

The numbering of Zernike polynomials is done through the indexes n and m, radial- and azimuthal
order respectively. Noll [19] proposed a different notation, using a different normalization and index
numbering J (or mode).

J = n(n+ 2)m
2 (A-8)
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Ordering the polynomials first by index n and the absolute value m. The first Zernike modes form
basic optical shapes like, Piston (Z0

0 ), Tip (Z−1
1 ), Tilt (Z1

1 ) or Defocus (Z0
2 ). Figure A-3 denotes

some of these lower-order modes (in Cartesian coordinates) and their effect on the PSF formation.
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Figure A-3: First Zernike polynomials in Cartesian coordinates. Source: [24]
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A-1-7 Zernike-Kolmogorov

For Kolmogorov turbulence, as the mode number J increases, defined by Noll [19], the contribution
of the J-th mode to the phase decreases [55].

Figure A-4: Zernike-Kolmogorov mean square residual phase errors (∆J). D is the aperture
size and r0 is Frieds parameter.

Frieds parameter is the diameter of the sub-aperture where the RMS of the phase is statistically
equal to 1 rad. The ratio of D/r0 is an indication of the turbulence strength.

A-1-8 Charged Coupled Device

A Charged Coupled Device (CCD) is an photon detector and is divided into multiple small areas
called pixels. Incident photons are proportionally converted to electrons. Exposure time is used
such that the ’potential well’ of each pixel does not exceeds its capacity. The resolution of a CCD
is defined by the size of its pixels and their individual separation (pitch).

Several important properties of a CCD are: Quantum Efficiency, Wavelength range, Dynamic
Range and Noise. Quantum Efficiency (QE) refers to the ratio photons hitting the CCD to conver-
sion into electrical impuls. Not all incident photons are actually detected. The Best CCD’s achieve
a QE of 80%.
Wavelength range refers to the operation range of a CCD, ranging from 400 nm to about 1050
nm with a peak sensitivity at 700nm. Dynamic Range is the difference between the brightest and
faintest source a detector can distinguish. Essentially its the minimum and maximum amount of
electrons which can be collected by a pixel. The maximum value is determined by the pixel satu-
ration value. The minimum value is determined by the CCD physical structure causing electronic
noise.
Noise response is an important parameter and two of its main contributors are listed here:

• Dark current - noise generated through thermal heating. The lower the temperature of the
CCD, the lower this noise generation becomes.

• Readout noise - generated through the conversion of electrons in each pixel to a voltage on
the CCD output.
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The photocurrent i generated through absorbed photons and its linearly proportional to the incident
power (P):

i = RP (A-9)

The constant R is the responsivity and is given by:

R = ηqeq

hv
(A-10)

Where ηqe is the QE, q the electronic charge, h Planck’s constant and ν the optical frequency.
Thus, the measurable constant is the optical power which is related to the complex field equation
(see Section A-2-2).

A-1-9 Wavefront Error

Wavefront error is defined as the difference between a diffraction limited wavefront and the mea-
sured wavefront. It is an important quantity defining the quality of an optical system.

A-2 Imaging Theory

A-2-1 Fourier Transform

Fourier methods can be used to describe an optical system, such as the Point Spread Function
(PSF). The definition of the (two-dimensional) Fourier Transform of a complex-valued function
g(x,y) is:

G (fx, fy) = F{g(x, y)} =
∫ ∞
−∞

∫ ∞
−∞

g(x, y)e−2π((f,x+f,r)dxdy (A-11)

with fx and fy being the spatial frequencies.

A-2-2 Monochromatic light and intensity

A monochromatic (single-frequency) wave propagating through an imaging system perpendicular
to the x-, y-plane can be expressed at this location through equation [56]:

U (x1, y1) = A (x1, y1) eiφ(x1,y1) (A-12)

With amplitude A and phase φ. This field equation squared yields the intensity of the wave:

I (x1, y1) = U (x1, y1)U (x1, y1)∗ = |U (x1, y1)|2 (A-13)
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A-2-3 Fresnel-Kirchhoff Diffraction

The propagation of light within an optical system can be described using Fresnel-Kirchhoff diffrac-
tion theory. The Fresnel diffraction integral is expressed as

U(u, v) = z

iλ

∫∫
Σ
U(x, y)eikr

r2 dxdy (A-14)

with r =
√
z2 + (u− x)2 + (v − y)2.

Figure A-5: Diffraction geometry according to Equation A-14 for pupil- and imaging plane.
After simplifications to the distance r, Equation A-14 can be rewritten to

U(u, v) = eikz

iλz

∫∫ ∞
−∞

U(x, y)e
ik
2z ((u−x)2+(v−y)2)dxdy (A-15)

where U(x, y) is zero outside the aperture. Algebraically manipulating this Equation yields:

U(u, v) = eik

iλz
e
ik
2z (u2+v2)

∫ ∞
−∞

∫ ∞
−∞

U(x, y) · e
ik
2z (x2+y2) · e−

2πi
λz

(ux+vu)dxdy (A-16)

which is the Fourier transform of a field within an aperture multiplied by a quadratic phase factor.
For a more thorough analysis of Fresnel’s diffraction integrals, the reader is referred to [56].

A-3 Deep Learning

A-3-1 Training, Validation and Testing

Deep learning models learn from and make predictions on data. The data set used to build a Deep
Learning model, can be subdivided into three parts: a training set, a validation set and test set.
The training set contains the majority of data and is used to fit the parameters during training.
The validation set provides a unbiased evaluation of the model fit on the training set. Since the
model has not seen the validation data before, the validation error will always be higher than the
training error. Often, multiple parameters are tuned (e.g. amount of hidden layers, amount of
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neurons or regularization intensity) such that multiple models emerge. The final model would be
the model with the lowest validation error. The test set is used for an unbiased evaluation of the
best achieving model.
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Appendix B

CODE

B-1 Neural Networks

In this section the implementation of the neural networks in Python is shown. All networks have
been implemented using Keras. Each line of code denotes a different layer in the network and is
structured from input (top) to output (bottom). Each convolutional layers shows in order: amount
of filters, kernel size, activation function and padding. Dense layers show the amount of neurons
and activation function. Dropout layers indicate the dropout ratio. Note that all output layers end
with a linear activation function, which enable regression.

B-1-1 Alex-Net

1
2 model = keras . models . Sequential ( [
3
4 keras . layers . Conv2D (32 , 5 , activation="relu" , padding="same" ,
5 input_shape =[256 , 256 , 1 ] ) ,
6 keras . layers . MaxPooling2D ( ) ,
7 keras . layers . Conv2D (32 , 5 , activation="relu" , padding="same" ) ,
8 keras . layers . MaxPooling2D ( ) ,
9 keras . layers . Conv2D (64 , 3 , activation="relu" , padding="same" ) ,

10 keras . layers . Conv2D (64 , 3 , activation="relu" , padding="same" ) ,
11 keras . layers . Conv2D (64 , 3 , activation="relu" , padding="same" ) ,
12 keras . layers . MaxPooling2D ( ) ,
13 keras . layers . Flatten ( ) ,
14 keras . layers . Dense (512 , activation="relu" ) ,
15 keras . layers . Dropout ( 0 . 2 5 ) ,
16 keras . layers . Dense (512 , activation="relu" ) ,
17 keras . layers . Dropout ( 0 . 2 5 ) ,
18 keras . layers . Dense (31 , activation="linear" )
19
20 ] )
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B-1-2 U-Net

1
2 inputs = keras . Input ( (256 , 256 , 1) )
3
4 c1 = keras . layers . Conv2D (8 , (3 , 3) , activation=’relu’ , padding=’same’ ) (

inputs )
5 c1 = keras . layers . Conv2D (8 , (3 , 3) , activation=’relu’ , padding=’same’ ) ( c1

)
6 p1 = keras . layers . MaxPooling2D ( ( 2 , 2) ) ( c1 )
7
8 c2 = keras . layers . Conv2D (16 , (3 , 3) , activation=’relu’ , padding=’same’ ) (

p1 )
9 c2 = keras . layers . Conv2D (16 , (3 , 3) , activation=’relu’ , padding=’same’ ) (

c2 )
10 p2 = keras . layers . MaxPooling2D ( ( 2 , 2) ) ( c2 )
11
12 c3 = keras . layers . Conv2D (32 , (3 , 3) , activation=’relu’ , padding=’same’ ) (

p2 )
13 c3 = keras . layers . Conv2D (32 , (3 , 3) , activation=’relu’ , padding=’same’ ) (

c3 )
14 p3 = keras . layers . MaxPooling2D ( ( 2 , 2) ) ( c3 )
15
16 c4 = keras . layers . Conv2D (64 , (3 , 3) , activation=’relu’ , padding=’same’ ) (

p3 )
17 c4 = keras . layers . Conv2D (64 , (3 , 3) , activation=’relu’ , padding=’same’ ) (

c4 )
18 p4 = keras . layers . MaxPooling2D ( pool_size=(2 , 2) ) ( c4 )
19
20 c5 = keras . layers . Conv2D (128 , (3 , 3) , activation=’relu’ , padding=’same’ ) (

p4 )
21 c5 = keras . layers . Conv2D (128 , (3 , 3) , activation=’relu’ , padding=’same’ ) (

c5 )
22
23 u6 = keras . layers . Conv2DTranspose (64 , (2 , 2) , strides=(2 , 2) , padding=’

same’ ) ( c5 )
24 u6 = keras . layers . concatenate ( [ u6 , c4 ] )
25 c6 = keras . layers . Conv2D (64 , (3 , 3) , activation=’relu’ , padding=’same’ ) (

u6 )
26 c6 = keras . layers . Conv2D (64 , (3 , 3) , activation=’relu’ , padding=’same’ ) (

c6 )
27
28 u7 = keras . layers . Conv2DTranspose (32 , (2 , 2) , strides=(2 , 2) , padding=’

same’ ) ( c6 )
29 u7 = keras . layers . concatenate ( [ u7 , c3 ] )
30 c7 = keras . layers . Conv2D (32 , (3 , 3) , activation=’relu’ , padding=’same’ ) (

u7 )
31 c7 = keras . layers . Conv2D (32 , (3 , 3) , activation=’relu’ , padding=’same’ ) (

c7 )
32
33 u8 = keras . layers . Conv2DTranspose (16 , (2 , 2) , strides=(2 , 2) , padding=’

same’ ) ( c7 )
34 u8 = keras . layers . concatenate ( [ u8 , c2 ] )
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35 c8 = keras . layers . Conv2D (16 , (3 , 3) , activation=’relu’ , padding=’same’ ) (
u8 )

36 c8 = keras . layers . Conv2D (16 , (3 , 3) , activation=’relu’ , padding=’same’ ) (
c8 )

37
38 u9 = keras . layers . Conv2DTranspose (8 , (2 , 2) , strides=(2 , 2) , padding=’

same’ ) ( c8 )
39 u9 = keras . layers . concatenate ( [ u9 , c1 ] , axis=3)
40 c9 = keras . layers . Conv2D (8 , (3 , 3) , activation=’relu’ , padding=’same’ ) ( u9

)
41 c9 = keras . layers . Conv2D (8 , (3 , 3) , activation=’relu’ , padding=’same’ ) ( c9

)
42
43 outputs = keras . layers . Conv2D (1 , (1 , 1) , activation=’linear’ ) ( c9 )

B-1-3 Xception

1
2 input_shape = _obtain_input_shape ( input_shape ,
3 default_size=299 ,
4 min_size=71,
5 data_format=K . image_data_format ( ) ,
6 include_top=include_top )
7
8
9 img_input = Input ( shape=input_shape ) (x )

10 x = Conv2D (32 , (3 , 3) , strides=(2 , 2) , use_bias=False , name=’
block1_conv1’ ) ( img_input )

11 x = BatchNormalization ( name=’block1_conv1_bn’ ) (x )
12 x = Activation ( ’relu’ , name=’block1_conv1_act’ ) (x )
13 x = Conv2D (64 , (3 , 3) , use_bias=False , name=’block1_conv2’ ) (x )
14 x = BatchNormalization ( name=’block1_conv2_bn’ ) (x )
15 x = Activation ( ’relu’ , name=’block1_conv2_act’ ) (x )
16
17 residual = Conv2D (128 , (1 , 1) , strides=(2 , 2) ,
18 padding=’same’ , use_bias=False ) (x )
19 residual = BatchNormalization ( ) ( residual )
20
21 x = SeparableConv2D (128 , (3 , 3) , padding=’same’ , use_bias=False , name

=’block2_sepconv1’ ) (x )
22 x = BatchNormalization ( name=’block2_sepconv1_bn’ ) (x )
23 x = Activation ( ’relu’ , name=’block2_sepconv2_act’ ) (x )
24 x = SeparableConv2D (128 , (3 , 3) , padding=’same’ , use_bias=False , name

=’block2_sepconv2’ ) (x )
25 x = BatchNormalization ( name=’block2_sepconv2_bn’ ) (x )
26
27 x = MaxPooling2D ( ( 3 , 3) , strides=(2 , 2) , padding=’same’ , name=’

block2_pool’ ) (x )
28 x = layers . add ( [ x , residual ] )
29
30 residual = Conv2D (256 , (1 , 1) , strides=(2 , 2) ,
31 padding=’same’ , use_bias=False ) (x )
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32 residual = BatchNormalization ( ) ( residual )
33
34 x = Activation ( ’relu’ , name=’block3_sepconv1_act’ ) (x )
35 x = SeparableConv2D (256 , (3 , 3) , padding=’same’ , use_bias=False , name

=’block3_sepconv1’ ) (x )
36 x = BatchNormalization ( name=’block3_sepconv1_bn’ ) (x )
37 x = Activation ( ’relu’ , name=’block3_sepconv2_act’ ) (x )
38 x = SeparableConv2D (256 , (3 , 3) , padding=’same’ , use_bias=False , name

=’block3_sepconv2’ ) (x )
39 x = BatchNormalization ( name=’block3_sepconv2_bn’ ) (x )
40
41 x = MaxPooling2D ( ( 3 , 3) , strides=(2 , 2) , padding=’same’ , name=’

block3_pool’ ) (x )
42 x = layers . add ( [ x , residual ] )
43
44 residual = Conv2D (728 , (1 , 1) , strides=(2 , 2) ,
45 padding=’same’ , use_bias=False ) (x )
46 residual = BatchNormalization ( ) ( residual )
47
48 x = Activation ( ’relu’ , name=’block4_sepconv1_act’ ) (x )
49 x = SeparableConv2D (728 , (3 , 3) , padding=’same’ , use_bias=False , name

=’block4_sepconv1’ ) (x )
50 x = BatchNormalization ( name=’block4_sepconv1_bn’ ) (x )
51 x = Activation ( ’relu’ , name=’block4_sepconv2_act’ ) (x )
52 x = SeparableConv2D (728 , (3 , 3) , padding=’same’ , use_bias=False , name

=’block4_sepconv2’ ) (x )
53 x = BatchNormalization ( name=’block4_sepconv2_bn’ ) (x )
54
55 x = MaxPooling2D ( ( 3 , 3) , strides=(2 , 2) , padding=’same’ , name=’

block4_pool’ ) (x )
56 x = layers . add ( [ x , residual ] )
57
58 for i in range (8 ) :
59 residual = x
60 prefix = ’block’ + str (i + 5)
61
62 x = Activation ( ’relu’ , name=prefix + ’_sepconv1_act’ ) (x )
63 x = SeparableConv2D (728 , (3 , 3) , padding=’same’ , use_bias=False ,

name=prefix + ’_sepconv1’ ) (x )
64 x = BatchNormalization ( name=prefix + ’_sepconv1_bn’ ) (x )
65 x = Activation ( ’relu’ , name=prefix + ’_sepconv2_act’ ) (x )
66 x = SeparableConv2D (728 , (3 , 3) , padding=’same’ , use_bias=False ,

name=prefix + ’_sepconv2’ ) (x )
67 x = BatchNormalization ( name=prefix + ’_sepconv2_bn’ ) (x )
68 x = Activation ( ’relu’ , name=prefix + ’_sepconv3_act’ ) (x )
69 x = SeparableConv2D (728 , (3 , 3) , padding=’same’ , use_bias=False ,

name=prefix + ’_sepconv3’ ) (x )
70 x = BatchNormalization ( name=prefix + ’_sepconv3_bn’ ) (x )
71
72 x = layers . add ( [ x , residual ] )
73
74 residual = Conv2D (1024 , (1 , 1) , strides=(2 , 2) ,
75 padding=’same’ , use_bias=False ) (x )
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76 residual = BatchNormalization ( ) ( residual )
77
78 x = Activation ( ’relu’ , name=’block13_sepconv1_act’ ) (x )
79 x = SeparableConv2D (728 , (3 , 3) , padding=’same’ , use_bias=False , name

=’block13_sepconv1’ ) (x )
80 x = BatchNormalization ( name=’block13_sepconv1_bn’ ) (x )
81 x = Activation ( ’relu’ , name=’block13_sepconv2_act’ ) (x )
82 x = SeparableConv2D (1024 , (3 , 3) , padding=’same’ , use_bias=False ,

name=’block13_sepconv2’ ) (x )
83 x = BatchNormalization ( name=’block13_sepconv2_bn’ ) (x )
84
85 x = MaxPooling2D ( ( 3 , 3) , strides=(2 , 2) , padding=’same’ , name=’

block13_pool’ ) (x )
86 x = layers . add ( [ x , residual ] )
87
88 x = SeparableConv2D (1536 , (3 , 3) , padding=’same’ , use_bias=False ,

name=’block14_sepconv1’ ) (x )
89 x = BatchNormalization ( name=’block14_sepconv1_bn’ ) (x )
90 x = Activation ( ’relu’ , name=’block14_sepconv1_act’ ) (x )
91
92 x = SeparableConv2D (2048 , (3 , 3) , padding=’same’ , use_bias=False ,

name=’block14_sepconv2’ ) (x )
93 x = BatchNormalization ( name=’block14_sepconv2_bn’ ) (x )
94 x = Activation ( ’relu’ , name=’block14_sepconv2_act’ ) (x )
95
96
97 x = GlobalAveragePooling2D ( name=’avg_pool’ ) (x )
98
99 x = Dropout ( 0 . 5 ) (x )

100 predictions = Dense (31 , activation=’linear’ ) (x )
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