

Delft University of Technology

Motion Planning in Dynamic Environments with Learned Scalable Policies

Serra Gomez, A.

DOI
10.4233/uuid:91cac381-d47f-4333-a7d0-b2336cf613a7
Publication date
2025
Document Version
Final published version
Citation (APA)
Serra Gomez, A. (2025). Motion Planning in Dynamic Environments with Learned Scalable Policies.
[Dissertation (TU Delft), Delft University of Technology]. https://doi.org/10.4233/uuid:91cac381-d47f-4333-
a7d0-b2336cf613a7

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.4233/uuid:91cac381-d47f-4333-a7d0-b2336cf613a7
https://doi.org/10.4233/uuid:91cac381-d47f-4333-a7d0-b2336cf613a7
https://doi.org/10.4233/uuid:91cac381-d47f-4333-a7d0-b2336cf613a7

Motion Planning in Dynamic Environments
with Learned Scalable Policies

Motion Planning in Dynamic Environments
with Learned Scalable Policies

Dissertation

for the purpose of obtaining the degree of doctor

at Delft University of Technology

by the authority of the Rector Magnificus prof. dr. ir. T.H.J.J. van der Hagen

chair of the Board for Doctorates

to be defended publicly on

Monday the 10th of February 2025 at 10:00 o’clock.

by

Álvaro SERRA GOMEZ

Master of Science in Appled Mathematics and Computer Science,

École Polytechnique, France,

Master’s degree in Automatic Control and Robotics,

Technical University of Catalonia, Spain,

born in Barcelona, Spain.

This dissertation has been approved by the promotors.

promotor: Dr. J. Alonso-Mora

copromotor: Dr. J. W. Böhmer

Composition of the doctoral committee:

Rector Magnificus, Chairperson

Dr. J. Alonso-Mora Delft University of Technology, promotor

Dr. J. W. Böhmer Delft University of Technology, copromotor

Independent members:
Prof. Dr. G. C. H. E de Croon Delft University of Technology

Prof. Dr. S. Leutenegger Technical University of Munich

Prof. Dr. A. Prorok University of Cambridge

Prof. Dr. M. T. J. Spaan Delft University of Technology

Dr. Ing. J. Kober Delft University of Technology, reserve member

Keywords: Deep Reinforcement Learning, Attention-based Architectures,

Multi-Robot Systems, Active Classification

Printed by: Gildeprint

Cover: Created by Alvaro Serra and image generation tools.

Copyright © 2024 by A. Serra Gomez

ISBN 978-94-6384-724-7

An electronic version of this dissertation is available at

http://repository.tudelft.nl/.

http://repository.tudelft.nl/

To become a good professional you must have a complete life. None of your accomplishments
are important without your family and life outside of work.

Javier Serra-Aracil (Dad)

vii

Contents

Summary xi

Samenvatting xiii

Acknowledgments xv

1 Introduction 1
1.1 Motivation . 2

1.2 Approach . 3

1.3 Contribution and Outline . 5

2 Scalable and Efficient Communication for Multi-Robot Collision Avoid-
ance 9
2.1 Introduction . 10

2.2 Related Work. 11

2.2.1 Communication in Collision Avoidance 11

2.2.2 Communication Scheduling . 12

2.2.3 Learning Methods for Coordination 12

2.3 Preliminaries . 13

2.3.1 Multi-Robot Collision Avoidance 13

2.3.2 Distributed Model Predictive Control 14

2.3.3 Cost Functions . 14

2.3.4 Drone dynamic model . 15

2.3.5 Problem Formulation. 16

2.4 Method. 17

2.4.1 Reinforcement Learning Setup 18

2.4.2 Network Architecture . 20

2.4.3 Multi-Scenario Multi-Stage Training 22

2.4.4 Predicting and Generating Safe Trajectory Intentions 25

2.5 Simulation Experiments . 30

2.5.1 Training Setup . 30

2.5.2 Baselines . 30

2.5.3 Testing Scenarios. 31

2.5.4 Performance Evaluation . 32

2.5.5 Robustness and Zero-Shot Generalization Capabilities 34

2.5.6 Ablation Study . 35

2.6 Real Experiments. 39

2.6.1 Hardware Setup . 39

2.6.2 Multi-Robot Scenarios . 39

2.7 Conclusions . 41

viii Contents

3 Active Classification of Moving Targets with Learned Control Policies 43
3.1 Introduction . 44

3.2 Related Works . 45

3.2.1 Multi-view active classification. 45

3.2.2 Learning for motion planning in dynamic environments 46

3.3 Background . 46

3.3.1 Problem formulation . 46

3.3.2 Target class observations and Belief Updates 47

3.4 Methodology . 48

3.4.1 Viewpoint Control Policy . 48

3.4.2 Low-level Controller . 51

3.5 Implementation Details . 51

3.5.1 Simulated Perception Environment. 51

3.5.2 Training Algorithm . 52

3.6 Simulated Results . 53

3.6.1 Baselines . 53

3.6.2 Test conditions . 53

3.6.3 Scalability analysis . 54

3.6.4 Policy behavior. 54

3.7 Photo-Realistic Results . 55

3.8 Conclusion . 57

4 Distributed multi-target tracking and active perception with mobile cam-
era networks 59
4.1 Introduction . 60

4.2 Related Work. 61

4.2.1 Multi-camera Multi-target Tracking 61

4.2.2 Collaborative systems for perception tasks 62

4.2.3 Active Perception for Class Recognition 62

4.3 Preliminaries . 63

4.3.1 Problem Formulation. 63

4.3.2 Overview . 64

4.4 Distributed Tracking . 64

4.4.1 Distributed Kalman Filter . 64

4.4.2 Local Data Association . 66

4.4.3 Distributed Tracker Manager. 67

4.5 Active Perception . 67

4.5.1 Target class observations and Belief Updates 68

4.5.2 Viewpoint Control Policy . 68

4.6 Experiments . 70

4.6.1 Environment . 70

4.6.2 Evaluation metrics . 72

4.6.3 Sequence Evaluated . 72

4.6.4 Results and settings . 72

4.7 Conclusions . 76

Contents ix

5 Conclusions and Future Work 77
5.1 Conclusions . 77

5.2 Future work . 79

5.2.1 Limitations and extension . 79

5.2.2 Scalable and interpretable coordination policies 80

5.2.3 Modular Control . 80

5.2.4 Hierarchical Control: Multi-objective encoding. 80

Bibliography 83

Curriculum Vitæ 95

List of Publications 97

xi

Summary

The application of multi-robot systems has gained popularity in recent years. Multi-robot

systems show great potential in scaling up robotic applications in surveillance, monitoring,

and exploration. Although single robots can already be used to automatize search and

rescue, and surveillance tasks, their capability to solve their given task is still dependent on

the region of interest size. For example, in expansive environments, a single robot’s ability

to cover or surveil the entire area effectively diminishes, resulting in information gaps. To

this end, this thesis aims to improve multi-robot coordination and navigation in active

perception tasks, e.g. exploration and surveillance. The multi-robot coordination problem

aims to determine when and with whom multiple robots should exchange information to

avoid collisions while navigating to their goal. The active perception problem involves

guiding a sensing robot to positions rich in task-relevant information. The primary objec-

tive of this dissertation is to provide algorithmic contributions, specifically focusing on the

obtention of robust policies that can adapt and scale to fleets and tasks of varying sizes.

To this end, this thesis leverages the combination of high-level policies, learned

through Reinforcement Learning, with robust low-level optimal control policies. Firstly,

the communication-based coordination problem for decentralized multi-robot systems is

formally defined and modeled as a Markov Decision Process. This thesis then proposes a

novel communication policy for decentralized multi-robot systems, improving coordination

and collision avoidance. The proposed policy, learned via Reinforcement Learning, allows

robots to selectively communicate, requesting trajectory plans from potential risks while

assuming constant velocities for others. This utilizes an attention-based neural network

architecture for scalability, integrated with Non-Linear Model Predictive Control for safe

and robust motion planning. When tested with 12 robots, it reduced communications

compared to alternatives, maintaining safety. Scalable and robust, it performed well with

different team sizes and in the presence of observation noise. Real-world tests on quadrotors

confirmed its practical applicability.

The Active Perception problem represents the second major challenge addressed in this

dissertation. Specifically, this thesis addresses the challenge of using a drone to collect se-

mantic information for classifying multiple moving targets, focusing on computing control

inputs for optimal viewpoints. This task is complicated by the variable amount of targets to

classify in the region of interest, and the use of a ”black-box" classifier, like a deep learning

neural network, which lacks clear analytical relationships between viewpoints and outputs.

This thesis proposes an attention-based architecture, trained with Reinforcement Learning

(RL), which determines the best viewpoints for the drone to gather evidence from multiple

unclassified targets, considering their movement, orientation, and potential occlusions.

A low-level MPC controller then guides the drone to these viewpoints. The approach

outperforms various baselines and shows adaptability to new scenarios and scalability to

xii Summary

numerous targets with varying movement dynamics.

To conclude the thesis, the previous approach is extended to more realistic and larger

environments where targets need to be localized, tracked, and then classified. This thesis

introduces a novel decentralized hybrid multi-camera system designed for surveillance and

monitoring applications. Traditional fixed camera networks suffer from blind spots and

backlighting issues. A decentralized hybrid framework is proposed that integrates both

static and mobile cameras to actively and dynamically enhance critical information gather-

ing. All networked cameras collaborate to monitor and localize people in the environment

by comparing their local information. The mobile camera is guided by a viewpoint control

policy to maximize semantic information from observed targets. The framework was

implemented in a photorealistic environment using Unreal Engine and enabled distributed

communications through the Robot Operating System (ROS), bridging the gap between

simulation and real-world applications. Results in large environments demonstrate the

advantages of collaborative mobile cameras over static and individual setups both in target

identification and tracking accuracy, respectively. In crowded scenarios, mobile cameras

excel in avoiding occlusions and capturing desired viewpoints, improving the percentage of

classified tracked targets compared to static setups. Qualitatively, mobile cameras provide

superior target observation quality unmatched by the static framework.

In summary, this thesis makes significant contributions that are validated through

extensive evaluations in simulated photo-realistic environments and with commercial

drones, demonstrating the potential for practical applications. Despite the progress, the

thesis acknowledges the remaining challenges in deploying multi-robot systems in real-

world perception tasks, especially when the policy is learned, and suggests directions for

future research.

xiii

Samenvatting

De toepassing van multi-robotsystemen heeft de laatste jaren aan populariteit gewon-

nen. Multi-robotsystemen tonen veel potentie in het opschalen van robottoepassingen op

het gebied van bewaking, monitoring en verkenning. Hoewel enkele robots al kunnen

worden gebruikt om zoek- en reddingsacties en bewakingstaken te automatiseren, is hun

vermogen om hun gegeven taak op te lossen nog steeds afhankelijk van de grootte van

het interessegebied. Bijvoorbeeld, in uitgestrekte omgevingen neemt het vermogen van

een enkele robot om het hele gebied effectief te dekken of te bewaken af, wat resulteert in

gemiste informatie. Om deze reden streeft dit proefschrift ernaar de coördinatie en naviga-

tie van een multi-robot team te verbeteren in actieve perceptietaken, zoals verkenning en

bewaking. Het multi-robot coördinatieprobleem beoogt te bepalen wanneer en met wie de

robots informatie moeten uitwisselen om botsingen te vermijden terwijl ze naar hun doel

navigeren. Het probleem van actieve perceptie houdt in dat een sensorrobot wordt geleid

naar posities rijk aan taakrelevante informatie. Het primaire doel van dit proefschrift is

om algoritmische bijdragen te leveren, specifiek gericht op het verkrijgen van robuuste

strategieën die zich kunnen aanpassen en opschalen naar vloten en taken van verschillende

groottes.

In dit kader maakt dit proefschrift gebruik van de combinatie van hoogwaardige

strategieën, geleerd via Reinforcement Learning, met robuuste laagwaardige optimale

strategieën. Ten eerste wordt het communicatie-gebaseerde coördinatieprobleem voor

gedecentraliseerde multi-robotsystemen formeel gedefinieerd en gemodelleerd als een

Markov-beslissingsproces. Vervolgens stelt dit proefschrift een nieuw communicatiestrate-

gie voor voor gedecentraliseerde multi-robotsystemen, dat de coördinatie en het vermijden

van botsingen verbetert. De voorgestelde strategie, geleerd via Reinforcement Learning,

stelt robots in staat selectief te communiceren, waarbij ze trajectplannen aanvragen van

potentiële risico’s terwijl ze constante snelheden aannemen voor anderen. Dit maakt

gebruik van een ättention-gebaseerd neurale netwerkarchitectuur voor schaalbaarheid,

geïntegreerd met niet-lineaire model voorspellende controle voor veilige en robuuste be-

wegingsplanning. Getest met 12 robots, verminderde het de communicatie vergeleken met

alternatieven, terwijl de veiligheid behouden bleef. Schaalbaar en robuust, presteerde het

goed met verschillende teamgroottes en in de aanwezigheid van observatieruis. Praktijk-

tests met quadrotors bevestigden de praktische toepasbaarheid ervan.

Het probleem van actieve perceptie vertegenwoordigt de tweede grote uitdaging die

in dit proefschrift wordt aangepakt. Dit proefschrift richt zich specifiek op de uitda-

ging van het gebruik van een drone om semantische informatie te verzamelen voor het

classificeren van meerdere bewegende doelen, met de focus op het berekenen van be-

sturingssignalen voor optimale gezichtspunten. Deze taak wordt gecompliceerd door de

variabele hoeveelheid doelen die in het interessegebied moeten worden geclassificeerd,

xiv Samenvatting

en het gebruik van een "black-box"classificator, zoals een diep neuraal netwerk, dat geen

duidelijke analytische relaties heeft tussen gezichtspunten en uitvoer. Dit proefschrift stelt

een ättention-gebaseerde architectuur voor, getraind met Reinforcement Learning (RL),

die de beste gezichtspunten voor de drone bepaalt om bewijsmateriaal te verzamelen van

meerdere niet-geclassificeerde doelen, waarbij rekening wordt gehouden met hun bewe-

ging, oriëntatie en mogelijke occlusies. Een laagwaardige MPC-besturingsalgoritme leidt

vervolgens de drone naar deze gezichtspunten. De aanpak presteerde beter dan verschil-

lende baselines en toonde aanpassingsvermogen aan nieuwe scenario’s en schaalbaarheid

naar talrijke doelen met verschillende bewegingsdynamiek.

Als laatste onderdeel in dit proefschrift wordt de voorgaande aanpak uitgebreid naar

realistischere en grotere omgevingen waar doelen moeten worden gelokaliseerd, gevolgd

en vervolgens geclassificeerd. Dit proefschrift introduceert een nieuw gedecentraliseerd

hybride multi-camerasysteem ontworpen voor bewakings- en monitoringtoepassingen.

Traditionele vaste cameranetwerken hebben last van dode hoeken en tegenlichtproblemen.

Er wordt een gedecentraliseerd hybride raamwerk voorgesteld dat zowel statische als

mobiele camera’s integreert om kritische informatie actief en dynamisch te verbeteren.

Alle camera’s in het netwerk werken samen om mensen in de omgeving te monitoren

en lokaliseren door hun lokale informatie te vergelijken. De mobiele camera wordt ge-

leid door een gezichtspuntbesturingsstrategie om maximale semantische informatie uit

waargenomen doelen te halen. Het raamwerk werd geïmplementeerd in een fotorealis-

tische omgeving met Unreal Engine en maakte gedistribueerde communicatie mogelijk

via het Robot Operating System (ROS), waarbij de kloof tussen simulatie en praktische

toepassingen werd overbrugd. Resultaten in grote omgevingen tonen de voordelen van

samenwerkende mobiele camera’s boven statische en individuele opstellingen aan, zowel

in doelidentificatie als in trackingnauwkeurigheid. In drukke scenario’s excelleren mobiele

camera’s in het vermijden van occlusies en het vastleggen van gewenste gezichtspunten,

waardoor het percentage geclassificeerde gevolgde doelen verbetert in vergelijking met

statische opstellingen. Kwalitatief bieden mobiele camera’s een superieure doelobservatie-

kwaliteit die ongeëvenaard is door het statische raamwerk.

Samenvattend maakt dit proefschriftsignificante bijdragen die zijn gevalideerd door

uitgebreide evaluaties in gesimuleerde fotorealistische omgevingen en met commerciële

drones, waardoor de potentie voor praktische toepassingen wordt aangetoond. Ondanks

de vooruitgang erkent dit proefschrift de resterende uitdagingen bij het implementeren

van multi-robotsystemen in realistische perceptietaken, vooral wanneer de strategie is

aangeleerd, en suggereert richtingen voor toekomstig onderzoek.

xv

Acknowledgments

At last! Four years and a pandemic later, this book is the result. Writing this thesis has

not been an easy process but I have definitely enjoyed it both academically and personally

despite its setbacks. This section is dedicated to thank all of the people who made this

process easier, more enjoyable, and possible. Thank you all!

I would like to thank my supervisors, Javier Alonso-Mora and Wendelin Böhmer, for

their time and feedback. Your guidance and patience have been invaluable in shaping my

growth as a scientist and in the completion of this thesis.

I would like to express my gratitude to ONR Global for their financial support. The

connections and discussions forged over the course of four years have been immensely

valuable. A special thanks to Eduardo Montijano for the constructive feedback, inspiring

conversations, and approachability. I always felt motivated after talking with you, even

when the moments were tough. Your contributions have significantly influenced the

development of this dissertation and the scientist I want to become. I am also grateful to

Eduardo and the rest of the project members from Zaragoza: Ana Cris and Sara for creating

a motivating work environment during my visit to the University of Zaragoza. I extend

this thanks to the rest of the members from the group, who made me feel welcome from

the first moment: Diego and Sara, it was great, and fun :), having you in Delft, Eduardo

S. and Leon, for the great conversations and for indulging me by joining my afterwork

bouldering session, Alberto, Clara, Carlos and David.

To Thomas and Aske, my new supervisors, for the opportunity, their mentorship, and

their conviction in creating a safe and comfortable environment where all voices are heard

and feel valued. I extend my thanks to the SELL group, Felix, Koen, Lindsay, and the RLG

group for the nice conversations at lunch and the occasional office visits. Also, thanks to

the people at LIACS, in particular Alberto, for insisting on talking about off-work topics,

and Kash for his patience with me overusing our office whiteboard.

To my students, Shijie, Walter, Moji, Alessandro and Alex for their patience with my

constant effort to improve my supervision skills.

To my coauthors for being one of the main reasons I can enjoy this frustrating but

beautiful job. Working with you has been, and still is, a treat. To Daniel for the motivating

and insightful talks about RL, the sporadic drinks in Barcelona/the Netherlands and sharing

my first research project as a postdoc. Also to you, Dhruva, for joining the project and

taking the time to share your feedback and experience despite your packed schedule, always

maintaining a kind and optimistic attitude. To Gang Chen and Elia for allowing me to

co-supervise a master’s student and learn from them. To Max Lodel for allowing me to join

his first research project and putting up with my ramblings on information gathering. Also

to Bruno, and especially Hai, for joining my first publication and sharing your wisdom

throughout experiments and summer schools. Last but definitely not least, to Manuel

Turismo for his admirable work ethic and cheerfulness. Everyone should experience

having a Manule as a co-author at least once.

xvi Acknowledgments

If anything, I am deeply thankful for the social environment I got to enjoy in the AMR

Lab and my group at the Cognitive Robotics Department. To Oscar, because there’s always

one coffee or tea left to share (even if we’ll miss half of them), Andrés and Luzia for their

kind attitude, Saray for her optimism, Andreu for sharing our passion for rice and giving

great advice on how to build your own computer, and Dennis for being a great listener

while building drones together. To Julian for his consistent baking skills, to Bas for our

conversations over RL and the importance of a good simulator, to Tomas and Kyle for their

friendship and motivating me to improve my English listening skills. To Tasos, thank you

for your hospitality and our talks on Mediterranean culture, to Jelle, your jokes made the

days in the office lighter, and to Linda, whose interdisciplinarity remains inspiring to this

day, Mert, Padmaja, and Ashwin. I also want to thank Carlos, Laura, and Jens for their

sympathy and sharing their experience over coffee.

To be fair, I came to Delft expecting this next section to be way shorter, yet here I

am getting all nostalgic. To the friends I made during my Ph.D., you know how lucky I

consider myself to be. Meeting you is part of this luck.

To my Ph.D. brothers, my Pennybois, Gio and Ro, who put up with me from day one

until now. Thank you for all the dinners, BBQs, ice creams, walks, parties, and allowing

me to show you Barcelona, but mostly thank you for all the support. Also thanks to Bea

and Elena, who put up with our workaholic talks waaay too many times. I extend this

thanks to Mnauel Kuramoto for allowing me to beat him at SET and for destroying me at

chess, Lorenzoo for never failing to bring up a disrupting topic to spark a memorable group

conversation, Italo for always lightening the mood, and Mariano for his patience putting

up with all of us. To Max Lodel and his useful advice on improving framework setups, and

Beatriz for having us over for lovely dinners and BBQs. Also thanks to Max Spahn, for

being straightforward and genuine. Finally, thank you Carlos Celemin, for enduring the

cold during our endless conversations and being a key pillar of support in Delft.

To my bouldering buddies who put up with my competitive nature. To Elia for being a

grate friend you can always count on, and for sharing his culinary skills, also to Daniela,

even if she still does not believe I got my pennyboard willingly. To Corrado and Patricija

for reminding me to take life less seriously. I take more notes from you than you from

me. To Lasse for being objectively an all-rounder. You can count on him to excel both

academically and getting your bike back. I will always consider you our 3rd roommate.

Also to Yuria, who is probably one of the coolest people I know. I definitely cannot leave

out Tallo, for enduring our pets despite being confined to a dog’s body. To Kinder Maxi

King for getting me to run one last time during our pre-corona times, but mostly for being

a wholesome person. Our walks, talks, and game sessions helped me a lot during tough

times. Also thanks to Toni for enduring and even joining our rants about Ph.D. life.

Also thanks to my friends from my Bachelor and Master, who´ve had to suffer my

WhatsApp sparsity. À Vincent pour me garder dans sa vie et montrer que ses capacités

culinaires sont toujours top. Aussi à Fred, même si on se voit bien de temps en temps c’est

toujours comme si on était toujours à Ferney-Voltaire et Genève. I extend my thanks to you

too, Kyuhwa for your help during my Ph.D. application period, for being a great bouldering

buddy and tricking me into your memorable surprise hikes. Gràcies Kittus per ensenyar-me

el món de les magic i per ser el meu recomanador de videojocs oficial. También gracias a

Martin por enseñarme chileno, y por ser y tratarme como familia alrededor de Europa.

Acknowledgments xvii

Si me he considerado una persona con suerte ha sido por la gente con quien he tenido

el placer de compartir mi vida hasta ahora. Sois la razón por la cual recuerdo el sol de

Barcelona con cariño.

A la Mariana i Marimagda por tolerarme a mí y mis bromas por muy inapropiadas que

fuesen, y por hacer como si el tiempo no hubiera pasado (incluso cuando el color de mi

pelo insiste en lo contrario).

Gracias a mis amigos de la escuela, algunos de los cuales conozco desde los tres años,

y a mis estrellas por conocerlos: Guillem, Laura y Marc por consentirme y visitarme a

todas partes, a pesar de que eso supusiera convertir una pérdida de avión en una maraton

de kung-fu panda, Edu por las largas conversaciones de camino a casa, Lluís por ser un

amigo atento y un compañero de escalada excelente, Teresa i Júlia por tener siempre un

cotilleo suculento que compartir. Gracias Ferran por tu ayuda durante la candidatura y

por aguantar mis chapas sobre el Ph.D., a Adrián por su humildad y aguantar nuestras

bromas, a Silvia por encontrar momentos para dar una vuelta a pesar de ser la persona más

ocupada que conozco, y a Marc G. por ser un gran fichaje y mejor persona. Gracias a todos

por hacerme sentir como si no hubiera dejado Barcelona durante estos cinco años y medio.

Gràcies a la Núria, Oriol i Pilar per rebre’m a casa seva amb els braços oberts. També

gràcies a la Mireia, Pasqui, Marc, Lluís i Anna per acollir-me com un més de la família.

Extenc els meus agraïments als nostres amics peluts Roc, Ona i Dobby per consentir els

meus intents de fer-me amic seu.

A Meim, Cristina, y Peip, Javier, por enseñarnos, a Borja y a mi, a ser independientes,

humildes y pensar críticamente, siendo vosotros ejemplo. Gracias por recibirnos con los

brazos abiertos y hacernos sentir queridos y en casa sin pedir nada a cambio. Borja, mi

hermano, mi tercer cerdito, gracias por creer en mi cuando yo no era capaz. Gracias por

ser quien me introdujo al placer de viajar, la vida del expat y por ser un faro en mi vida.

Te quiero tron. Y Brus, nuestro hermano peludo, gracias por permitirme disfrutar de tus

días de cachorro. Perdona por irrumpir en tu casa sin aviso y dividir la atención de los

papás. Por las graduaciones, los post-its en la maleta, las conversaciones hasta las 4am, las

recogidas en el VIP del aeropuerto (y en Perpignan), los vuelos a las 7am y las despedidas

Gómez, esta tesis tambien es vuestra.

A la meva parella, Natàlia, a qui vaig tenir la immensa sort de (re)conèixer fa sis anys.

Gràcies per ser la meva companya de camí a través de pandemies, avions bi-setmanals, dues

mudances travessant Delft i viatges per mig món. Gràcies per seguir-me a Delft tot i que

això signifiqui haver d’escoltar les meves reflexions matutines sobre temes inconseqüents.

Gràcies per la teva confiança, pel teu suport incondicional i per donar-me espai per recuperar

la confiança i la seguretat que vaig perdre pel camí. Per obligar-me a descansar, aprendre

junts a fer de la nostra casa una llar i per que ets un oasi, t’estimo Nat, aquesta tesi és per

tu.

1

1

1
Introduction

1

2 1 Introduction

1.1 Motivation
Multi-robot systems have the potential to make a significant societal impact by elevating

the capabilities and efficiency of autonomous robot applications across diverse domains.

While they have already demonstrated success in areas such as transportation [1–3] and

logistics [4], their promise extends further into domains like surveillance and search and

rescue [5], where their ability to cover extensive and intricate areas stands out as a no-

table advantage. While single robots can cover broader areas than human operators, they

encounter notable scalability challenges in tasks requiring large area coverage [6]. In

expansive environments, a single robot’s ability to effectively and continuously cover

the entire region of interest is greatly diminished, often leading to considerable gaps in

information coverage. Additionally, environments rich in complexity necessitate robots

equipped with sophisticated actuators and sensor capabilities for effective navigation and

data processing [5]. However, incorporating these advanced features leads to increased

costs, higher energy consumption, and diminished autonomy. Addressing these challenges

typically requires additional investment to strike a balance between the robot’s advanced

capabilities and its energy efficiency [7]. Thus, the shift towards multi-robot systems

marks a significant stride in transcending the limitations inherent in single-robot systems,

paving the way for a more comprehensive realization of autonomous robotics across a

wider spectrum of applications.

The strategic integration of multi-robot systems becomes particularly crucial in scenar-

ios demanding swift action, such as search and rescue operations and surveillance tasks [5].

These applications often involve surveying extensive areas within a constrained time

period. Multi-robot systems, in such cases, offer significant advantages due to their ability

to cover larger areas, provide redundancy, and therefore enhance resiliency. The diverse

sensors equipped in each robot, combined with their lower individual cost and increased

flexibility, hold the promise of delivering fast response times, robust support in perilous

environments, and the ability to parallelize complex tasks. This is especially evident in

decentralized systems, where individual robots can amplify their problem-solving capacity

and intervention efficacy while offering a more efficient computational approach.

Decentralized multi-robot systems enable the implementation of robust perception

methods, effectively addressing potential faults and uncertainties in the robots’ measure-

ments [8]. Despite their capabilities, however, the current deployment of drones and

multi-robot systems is primarily limited to structured, hand-crafted scenarios such as

cinematography and entertainment [9], where the number of robots and the nature of tasks

are known a priori. This limited scope represents only a fraction of their potential utility

in more critical domains, highlighting a significant gap between current usage and the

vast possibilities offered by multi-robot systems in enhancing operational efficiency and

safety in crucial applications such as surveillance and triage/active perception in dynamic

environments [10, 11]. Moreover, most industry-level applications, despite recent techno-

logical advances, still rely on offline planning and centralized solutions for multi-robot

systems which are difficult to scale up, thereby underscoring the need for more adaptive,

decentralized, and failure-resistant approaches in real-world applications [12].

The deployment of decentralized multi-robot system frameworks for motion planning

1.2 Approach

1

3

and active perception tasks poses significant challenges. First and foremost, these methods

must be scalable, accommodating both a variable number of tasks and a variable number

of robots within the environment. For instance, the system should be adaptable to different

quantities of robots, ensuring the successful completion of all tasks in any case. Solving

this already leads to ensuring the system’s resilience to individual robot failures, the mal-

function or breakdown of one or several robots no longer compromises the entire team’s

functionality [13]. Thirdly, it is crucial that the robots coordinate and interact efficiently.

They should be able to cover the maximum possible area simultaneously, aiding each other

in completing tasks, while avoiding interference or duplication of efforts.

This thesis tackles three core challenges in the domain of scalable robot navigation

and active perception tasks: efficient communication for coordination, scalability across

varying tasks and robots, and robustness. Firstly, efficient communication is key. While

coordinating actions among robots does not necessarily require sharing future trajectory

plans, doing so often leads to less conservative and more task-efficient behaviors. However,

this approach has its trade-offs, notably increased resource consumption in terms of band-

width and battery life. Secondly, the scalability challenge arises from the dynamic nature of

perception and navigation tasks, such as reaching a set of goals or classifying dynamic tar-

gets. The number of tasks, e.g. the number of potential places to find victims in search and

rescue operations, or the number of pedestrians in surveillance, can fluctuate over time and

differ in various scenarios. Similarly, the number of robots available for active perception

and navigation tasks is not fixed. Ideally, more robots would lead to faster task completion,

but the actual number can vary based on robot availability or due to robot failures during

execution. Often, this information is not known in advance. Lastly, robustness is addressed

from two perspectives. The first pertains to the aforementioned changing scale of tasks

and the size of the robot team, which may evolve due to robot failures or the addition of

new members. The second perspective focuses on the transference from simulation to real

applications (sim-to-real), emphasizing the importance of collision avoidance guarantees

to manage risks effectively in robot navigation tasks. This thesis focuses on the motion

planning, communication efficiency, and scalability of decision-making problems.

We envision a future where large multi-robot systems can reliably and robustly be

used to monitor large areas populated by static and dynamic targets, either in hazardous

environments, helping prioritize which survivors require aid, or farming, monitoring

livestock and plant health. Therefore, in this dissertation the main research goal is to

develop algorithms that enable robust and scalable navigation of multi-robot systems in active
perception tasks while coordinating using their resources efficiently.

1.2 Approach
This thesis explores the application of learning-based methods to create scalable algorithms

that enable efficient resource utilization during coordination and active classification within

dynamic environments, characterized by a varying number of elements. Recognizing that

learning methods inherently lack guarantees for dynamic feasibility and collision avoidance,

this research adopts a modular approach. Within the proposed framework, learned policies

are utilized to modulate the hyperparameters of a low-level controller. This strategy

1

4 1 Introduction

ensures that the high-level adaptability of machine learning is effectively integrated with

the reliability and precision of traditional control mechanisms. In this thesis, we follow this

formulation to learn scalable and efficient communication policies in multi-robot systems,

and viewpoint recommendation policies for active classification of multiple targets under

full and partial environment observability.

From a high-level perspective, the algorithms developed in this thesis mainly rely on

the following three pillars as the foundation to solve the problems of obtaining robust and

scalable learning-based methods while maintaining collision avoidance guarantees.

1. Reinforcement Learning: The sequential decision problems (SDP) addressed in

this thesis cannot be solved directly since the information required is difficult to

model and can only be obtained by interacting with the environment. Fortunately,

provided they are Markovian, these problems can generally be reformulated into a

Markov Decision Process (MDP) defined by the tuple ( ,, ,𝑅, 𝛾) describing the
problem state  and action  spaces, dynamics or transition function  , reward

function 𝑅, and discount factor 𝛾 . Reinforcement learning (RL) involves an agent

interacting with its environment, e.g. through trial and error, to learn behaviors

that maximize cumulative reward. For each discrete time step 𝑡, given a state 𝑠 ∈  ,
the agent undertakes an action 𝑎 ∈, following a policy 𝜋 ∶  →, which results

in receiving a reward 𝑟 and transitioning to a new state 𝑠′. The return is defined

as the discounted sum of rewards 𝑅𝑡 =∑𝑇
𝑖=𝑡 𝛾 𝑖−𝑡 𝑟(𝑠𝑖, 𝑎𝑖, 𝑠𝑖+1) where 𝛾 is the discount

factor that models the uncertainty of future rewards. The goal in RL is to find an

optimal policy 𝜋𝜙, parameterized by 𝜙, that maximizes the expected return 𝐽 (𝜙) =
𝔼[∑𝑇

𝑖=𝑡 𝛾 𝑖−𝑡 𝑟(𝑠𝑖, 𝑎𝑖, 𝑠𝑖+1)]. In this thesis, an on-policy RL algorithm named Proximal

Policy Optimization (PPO) [14] is used to learn high-level policies that output high-

level actions, e.g. communication requests or viewpoint recommendations, the

long-term effect of which is difficult to model. PPO learns a policy that maximizes

the cumulative rewards in a stable manner. In difference to other on-policy actor-

critic methods, which have to periodically evaluate the policy every time it is updated

by sampling new trajectories, PPO reuses samples where the policy has not changed

much before resampling, making it more sample efficient.

2. Model Predictive Control (MPC): All the methods presented in this thesis end

with a low-level Model Predictive Control (MPC) framework [15]. Assuming the

availability of a model of the dynamical system, the MPC computes and predicts a

sequence of control inputs and states that minimizes some costs for a given time

horizon while satisfying a set of constraints. Following the receding horizon control

paradigm, only the first control input of the sequence is applied, and the optimization

is performed again with the state information updated. This process is iteratively

carried out online until the goal system state is achieved. A primary advantage of

MPC lies in its ability to foresee upcoming system events through forward prediction,

allowing for proactive adjustments. Additionally, it can manage intricate costs and

constraints, even in systems characterized by nonlinear dynamics. In this thesis, MPC

is used as a low-level controller that tracks a given subgoal while satisfying robot

dynamic feasibility and collision-avoidance constraints. Learning algorithms are

used in combination to modulate the hyperparameters that shape the optimization

1.3 Contribution and Outline

1

5

process, e.g. choice of subgoal being tracked, or modify the constraints restricting

the solution. See Sections 2.3.4 and 2.3.3 for more details on the costs, and the

formulation of the dynamic model employed throughout this thesis.

3. Attention Mechanisms in Learning: The interest in attention mechanisms started

in the field of Natural Language Processing (NLP), arising as a tool for sequence-to-

sequence modeling. Gaining significant traction through its successful applications

in translation tasks [16], the field witnessed a paradigm shift with the introduction

of the Transformer model [17]. Unlike RNNs and Graph Neural Networks (GNNs),

attention mechanisms are permutation equivariant functions that are not constrained

by the need for prior knowledge of the input sequence’s structure and order. This

allows them to adaptively focus on different segments of input data, enhancing

their ability to encode large and variable-length sequences efficiently. Furthermore,

attention mechanisms excel in learning latent embedding of the interactions among

the elements of the sequence that is most suitable to solve complex tasks effectively.

In the realm of Deep Learning’s expansion into robotics, the application of attention

models has become increasingly crucial, particularly in areas like task allocation

and multi-robot motion planning [18]. These domains often involve the encoding of

environments with dynamic and variable elements, such as multiple tasks or robots.

In this thesis, attention models are employed as a key component for effectively

encoding these environments, handling the complexities arising from multiple, dy-

namically evolving elements like tasks to be completed or coordination among team

members.

1.3 Contribution and Outline
The goal of this thesis is to provide algorithmic innovations to enable robust and scalable

multi-robot navigation in active perception tasks with efficient coordination. Hence, this

thesis makes the following scientific contributions:

1. A Scalable and Efficient Communication Policy for multi-robot collision avoid-

ance. A decentralized framework where robots learn to reason about the states of

others and assess the need for communication. An attention-based neural architec-

ture for the communication policy is presented which enables scalability. When a

robot determines the need for communication with another, it requests its trajectory

intentions and integrates these into its MPC constraints. If no communication is

needed, constant velocity estimates are used instead. This method allowed a team of

multiple robots to navigate safely making an efficient use of communication.

2. A framework for Active Classification of Moving Targets with Learned Con-
trol Policies that computes control inputs for drones to collect semantic information

for the classification of multiple moving targets. An attention-based architecture,

trained via Reinforcement Learning (RL), has been developed to determine the next

optimal viewpoint for the drone. This method surpasses various baselines and shows

strong generalization capabilities to different scenarios, including handling large

numbers of targets with diverse movement dynamics.

1

6 1 Introduction

3. A Distributed Multi-Target Tracking and Active Perception framework with
Mobile Camera Networks. This is a hybrid camera system combining static and

mobile cameras for improved surveillance and monitoring. This system enables

collaborative observation and efficient visualization of dynamic targets within the

environment, thereby overcoming the limitations of our previous work that assumed

complete knowledge of all target poses. This framework maximizes the synergies

of tracking and control modules, leading to a system that offers high-level scene

understanding and is closer to real-world application. The effectiveness of collabora-

tive mobile cameras over static or individual camera setups has been demonstrated

through extensive analysis in a photo-realistic simulation environment.

The proposed algorithms of this thesis have been extensively evaluated and validated

with commercial drones, see sections 2.3.4 and 2.6.1, and in photo-realistic simulated envi-

ronments [19].

Figure 1.1 presents the overall thesis structure. Initially, Chapter 2 presents our scal-

able and efficient communication policy for decentralized multi-robot collision avoidance.

Chapter 3 introduces the problem of Active Classification and our learning-based scalable

solution for dynamic environments. Chapter 4 introduces our method for simultaneous

tracking and classification of dynamic targets. Finally, Chapter 5 concludes this thesis and

presents possible future research directions.

1.3 Contribution and Outline

1

7

Chapter 1
Introduction

Chapter 3
Active Classification of

Moving Targets with
Learned Control Policies

Chapter 2
Learning scalable and efficient

communication policies for
multi-robot collision avoidanceChapter 4

Distributed multi-target tracking
and active perception with mobile

camera networks

 Chapter 5
Conclusion and

Future Work

Figure 1.1: Thesis’ structure: Chapter 1 introduces and motivates the research presented in this thesis. Chapter 2

presents the first contribution of this thesis: a scalable and efficient communication policy for multi-robot collision

avoidance. Chapter 3 presents an active classification policy that is further explored in Chapter 4 in more realistic

setting . Finally, Chapter 5 presents the conclusions and the proposed future research directions.

2

9

2
Scalable and Efficient

Communication for
Multi-Robot Collision

Avoidance

The work of this chapter has appeared in:

� Á. Serra-Gómez
⋆
, H. Zhu, B. Brito, J. J. Chung, J. Alonso-Mora, With whom to communicate: Learning efficient

communication for multi-robot collision avoidance, in IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), Las Vegas, NV, USA, pp. 11770-11776, 2020, doi: 10.1109/IROS45743.2020.9341762. [20]

� Á. Serra-Gómez
⋆
, H. Zhu, B. Brito, W. Böhmer, J. Alonso-Mora, Learning scalable and efficient communication

policies for multi-robot collision avoidance, in Autonomous Robots, vol. 8, no. 6, pp. 3717-3724, 2023, doi:

10.1007/s10514-023-10127-3 [21]

2

10 2 Scalable and Efficient Communication for Multi-Robot Collision Avoidance

2.1 Introduction
Being able to account for the future trajectory of other robots is of utmost importance for

safe navigation in environments shared with other robots. Centralized systems achieve this

objective by using a central station to manage all of the robots’ information and plans but

they are difficult to scale up to large teams. Instead, decentralized systems can scale up by

relying on each robot’s on-board computation capabilities. Some decentralized solutions

have each robot estimate other robots’ behaviors or future trajectories through trained

parametric functions, e.g. neural networks [22]. However, these solutions are generally

computationally expensive and may have inaccuracies stemming from the lack of infor-

mation on the other robot’s goals and local observations. Instead, direct communication

of each robot’s trajectory intentions may allow to obtain accurate predictions with less

computational effort. Common communication policies broadcast to all robots, employing

distance-based heuristics to communicate trajectory plans. However, much of this infor-

mation becomes redundant or unnecessary when robot motions do not present a threat

to others, e.g. when they are far from each other, or may, at worst, harm the multi-robot

system’s performance [23]. Besides, designing a set of rules to communicate efficiently may

be difficult as it would require to estimate a priori the future value of communicating with

other robots, which also depends on their motion planner and dynamics. Since there is no

clear intuition on how to hand-engineer an adequate trade-off between communication

efficiency and safety, in this work, we focus on the following two issues: a) providing a

solution to the problem of when and with whom to communicate that can scale up to large

teams of robots, and b) how to couple this communication policy with existing motion

planning methods.

We propose an efficient communication policy method combined with an optimal

control motion planner for multi-robot collision avoidance that can handle large multi-

robot systems with varying number of robots. The approach leverages the strengths of

learning methods for decision-making and nonlinear receding horizon control, or Non-

Linear Model Predictive Control (NMPC) for multi-robot motion planning. In particular,

we use Multi-Agent Reinforcement Learning (MARL) to learn the robots’ communication

policies. For every robot and time instance, the policy selects a set of other robots [24]

and requests their trajectory plans. Non-selected robots are assumed to follow their

last communicated trajectory which is extended assuming constant velocity. This last

communicated trajectory is exploited as long as they remain within a tolerance distance.

Otherwise, robots that do not follow their last communicated trajectory are assumed to

follow a constant velocity trajectory. Then, we formulate a nonlinear optimization problem

to generate a safe trajectory. The planned trajectory takes into account the requested and

estimated trajectories represented as constraints in the receding horizon framework.

The main contributions of this work are:

• A combined communication policy and trajectory planning method for micro-aerial

vehicles (MAVs), that utilizes the strengths of non-linear model predictive control

(NMPC) to plan safe trajectories, and multi-agent reinforcement learning (MARL) to

learn an efficient communication policy.

• An on-line communication policy that uses MARL to learn (off-line) when and with

whom it is useful to communicate, decreasing the amount of communication while

2.2 Related Work

2

11

still achieving safe navigation and coordination among robots.

• We introduce a new neural architecture for the learned communication policy that

scales to a large and varying number of robots while still providing safe navigation

in a variety of situations.

• We demonstrate that the communication policy, which is trained in a simulator,

works equally well in physical MAVs.

We evaluate our method with team of varying number of quadrotors in simulated

scenarios requiring different levels of interaction for safe navigation and compare it with

four other heuristic based methods for communication. We then test the robustness of

our method under different levels of observation noise. Finally, we show that our method

presents zero-shot generalization properties when tested in scenarios with more robots

than during training while still maintaining safety online.

In an earlier conference version of this work [20], an early version of the framework

to learn a communication policy and its combination with a local motion planner was

introduced for a fixed number of robots. In this paper, we extend the approach with a new

neural architecture and refine the training procedure of the communication policy to render

the final navigation policy safer in interaction-rich situations, more robust to sampled

training scenarios, and scalable to robot teams of varying amount of robots. We show that

our learning method enables the emergence of more efficient and intuitive communication

behaviours than before while maintaining a performance similar to that of broadcasting

policies with regards to safe navigation.

2.2 Related Work
2.2.1 Communication in Collision Avoidance
We focus our work on online local motion planning for multi-robot systems (also referred

as multi-robot collision avoidance), which has been actively studied over the past years.

Traditional reactive controller-level approaches include the optimal reciprocal collision

avoidance (ORCA) method [25], the artificial potential field (APF) based method [26], the

buffered Voronoi cell (BVC) approach [27, 28], and control barrier functions (CBF) [29].

These methods are fully decentralized and each robot only needs to know other robots’

current state, which can be measured by the robot via its onboard sensors. Hence, communi-

cation among robots is not necessary. However, these reactive methods are inefficient since

they typically plan one time step ahead. This can result in overly conservative policies that

are more vulnerable to deadlocks than predictive collision avoidance methods. These issues

can be overcome by using a model predictive control (MPC) framework for collision-free

trajectory generation that accounts for the plans of other robots [30].

For each robot to solve a local trajectory optimization problem in the MPC framework,

it needs to know the future trajectories of other robots. One approach is to let each robot

communicate its planned trajectory with every other robot in the team. Hence, robots

can then update their own trajectories to be collision free with other robots’ trajectory

plans, as in these distributed MPC works [30, 31]. Another approach is to let each robot

predict other robots’ future motions based on its own observations. For instance, [32]

employs a constant velocity model when predicting other robots’ future trajectories. In

2

12 2 Scalable and Efficient Communication for Multi-Robot Collision Avoidance

that case, communication among robots is not required. However, such a prediction can

be inaccurate and may lead to unsafe trajectory planning, in particular when the robots

are moving at a high speed [30]. In this paper, we aim to develop a communication policy,

which determines “when” and “with whom” a robot should communicate with another

robot in the system, to reduce the amount of communication while still keeping a high-level

of safety.

2.2.2 Communication Scheduling
A lot of works tend to formulate the problem of efficient communication in a receding

horizon fashion. Some methods formulate the problem as a decentralized version of a

Markov Decision Process (Dec-MDP) [33] or Partially Observable MDP (Dec-POMDP) [34]

and try to optimize a value function in which communications are penalized. Others, such

as [35], choose to formulate a constrained optimization problem where communications

must be directly minimized while still guaranteeing data flow throughout the network.

These approaches assume access to an analytical model or require the design of a hand-

engineered utility function to estimate the future effects of communication, which might

not be available or intuitive to do, respectively. Recent work [36] manages to tackle

this problem by triggering communication whenever uncertainty over another agent’s

actions exceeds a threshold. Ultimately, however, receding horizon methods are limited by

their prediction horizon and the need for hand-engineered evaluation heuristics, which

can unintentionally bias the resulting communication processes. In this work, we use

reinforcement learning methods to learn the communication policy. Through learning

from experience, this family of methods has the potential to discover more general policies

without the need for fine-tuning hand-engineered heuristic functions..

2.2.3 Learning Methods for Coordination
Onemajor challenge inMulti-Agent Reinforcement Learning (MARL) is the non-stationarity

of multi-agent environments. This problem is caused by having multiple agents that learn

and change their policy every learning iteration, which may result in the learning process

being unstable. In order to mitigate this challenge, recent works on MARL [37–42] perform

centralized training and decentralized execution. This paradigm has been applied in the

field of non-communicating multi-robot collision avoidance tasks [43, 44] to learn an

end-to-end navigation policy. Yet, these methods typically do not offer solid theoretical

guarantees for collision avoidance. Instead we aim to learn the communication policy

while leveraging already existing well-performing motion planners, e.g. [30].

Regarding tasks that require communication, several works have been published re-

cently. Many of them focus on learning what content should be shared among agents, be it

in the form of explicit messages [45], a composition of binary signals [46] and predefined

symbols [47], policy hidden layers [48], or by directly sharing parameters among agents

[49]. The most relevant to our work additionally focuses on learning, in a scalable way,

policies that are able to appropriately choose when and with whom to communicate or

cooperate in collision avoidance tasks. Prior work [50], address this task by assigning roles

to every agent, making some of them in charge of organizing a common communication

channel with their neighbours. However, regions where there are no agents with such a role

are left without coordination capabilities. Instead, [51], [18] and [52] present end-to-end

2.3 Preliminaries

2

13

MARL algorithms that design an attention module to assign and weight the importance

of the messages received from other agents. While previous methods use dense attention

mechanisms, [53] proposes an adaptive sparsity-inducing activation function to enable

learning a sparse communication graph. Along these lines, [54] learn to choose whom to

communicate with and evaluate the received messages to choose an action.

Similarly, the method we present in this paper can also be considered as an attention

module targeting other agents. However, we set our communications to be unilateral to

promote asymmetrical behaviour. Additionally, we decouple the problem of communication

and motion planning, allowing the combination of our method with existing and well-tested

solutions for motion planning in collision avoidance tasks.

2.3 Preliminaries
In this paper, we address the problem of deciding when and with whom to communicate

during a multi-robot collision avoidance task. Though the proposed formulation is intended

to be general, we are inspired by the results obtained in [30], which show how in a collision-

avoidance scenario, methods that incorporate communication have a clear advantage over

those that do not. We approach the information-sharing process as a MARL problem

where the robots must learn to request information effectively. In this section, we set the

context for our targeted communication process by formulating the problem of multi-robot

collision avoidance. We provide an overview of the Non-Linear Model Predictive Control

method used for motion control, as well as our MARL framework, introducing relevant

notations for this work.

2.3.1 Multi-Robot Collision Avoidance
Consider a team of 𝑛 robots moving in a shared workspace  ⊆ ℝ3

, where each robot

𝑖 ∈  = {1,2,…,𝑛} ⊂ ℕ is modeled as an enclosing sphere with radius 𝑟 . The dynamics of

each robot 𝑖 ∈  are described by a discrete-time equation as follows,

𝐱𝑡+1𝑖 = 𝐟(𝐱𝑡𝑖 ,𝐮
𝑡
𝑖), 𝐱0𝑖 = 𝐱𝑖(0), (2.1)

where 𝐱𝑡𝑖 ∈  ⊂ ℝ𝑛𝑥 denotes the state of the robot with dimension 𝑛𝑥 , typically including its
position 𝐩𝑡𝑖 ∈ℝ3

and velocity 𝐯𝑡𝑖 ∈3
(amongst others, see section 2.4.1), and 𝐮𝑡𝑖 ∈ ⊂ℝ𝑛𝑢 the

control inputs with dimension 𝑛𝑢. The function 𝑓 is the model of the robot and is detailed in

Section 2.3.4. The super-script ⋅𝑡 indicates the time step 𝑡.  and are the admissible state

space and control space respectively. 𝐱𝑖(0) is the initial state of robot 𝑖. Any pair of robots

𝑖 and 𝑗 from the group are mutually collision-free if
‖‖‖𝐩
𝑡
𝑖 −𝐩𝑡𝑗

‖‖‖ ≥ 2𝑟,∀𝑖 ≠ 𝑗 ∈ , ∀𝑡 = 0,1,… .

Each robot has a given goal location 𝐠𝑖, which generally comes from some high-level path

planner or is specified by some user.

Robots in the team are allowed to communicate. Communication is assumed to be

ideal, e.g. robots can communicate with each other perfectly and instantaneously. We also

assume a point-to-point network topology. The implementation is viable provided that

communication protocols with low energy consumption, such as a mesh network where

links are established using Bluetooth LE, are utilized. Under this communication protocol,

point-to-point communication topologies generally use less bandwidth than broadcasting

topologies and scale better with the number of robots as they allow for redundant or

2

14 2 Scalable and Efficient Communication for Multi-Robot Collision Avoidance

unnecessary communication to be avoided. Robots can associate other robots with the

messages they send since, in practice, each sender could add its ID to the message or the

receiving robot could infer it using the first position of the received trajectory.

The objective of multi-robot collision avoidance is to compute a local motion 𝐮𝑡𝑖 for
each robot in the group, that respects its dynamics constraints, makes progress towards

its goal location 𝐠𝑖 and is collision-free with other robots in the team for a time horizon

𝜏 = 𝑁Δ𝑡, where Δ𝑡 is the sampling time and 𝑁 is the number of discrete steps.

2.3.2 Distributed Model Predictive Control
The key idea of using distributed model predictive control to solve the multi-robot collision

avoidance problem is to formulate it as a receding horizon constrained optimization problem.

For each robot 𝑖 ∈ , the discrete-time constrained optimization formulation is

min
𝐱0∶𝑁𝑖 ,𝐮0∶𝑁−1

𝑖

𝑁−1
∑
𝑘=0

𝐽 𝑡𝑖 (𝐱
𝑘
𝑖 ,𝐮

𝑘
𝑖)+ 𝐽

𝑁
𝑖 (𝐱𝑁𝑖 , 𝐠𝑖)

s.t. 𝐱0𝑖 = 𝐱𝑖(0),

𝐱𝑘+1𝑖 = 𝐟(𝐱𝑘𝑖 ,𝐮
𝑘
𝑖),

‖‖‖𝐩
𝑘
𝑖 −𝐩𝑘𝑗

‖‖‖ ≥ 2𝑟,

𝐮𝑘−1𝑖 ∈ , 𝐱𝑘𝑖 ∈  ,
∀𝑗 ≠ 𝑖 ∈ ; ∀𝑘 ∈ {0,1,…,𝑁 }.

(2.2)

Where 𝐽 𝑘𝑖 (𝐱𝑘𝑖 ,𝐮𝑘𝑖) and 𝐽𝑁𝑖 (𝐱𝑁𝑖 , 𝐠𝑖) are the stage and terminal costs, respectively [30] (defined

in Section 2.3.3). At each time step, each robot in the team solves online the constrained

optimization problem (2.2) and then executes the first step control inputs, in a receding-

horizon fashion. In this paper, the generated future plans of robot 𝑖 are also called robot

𝑖’s (future) trajectory intentions. We reiterate that robot trajectory intentions are not

equivalent but rather an approximation of their future trajectories.

2.3.3 Cost Functions
The components of the cost function 𝐽 𝑘𝑖 (𝐱𝑘𝑖 ,𝐮𝑘𝑖),𝑘 = 0,1,…,𝑁 −1 and 𝐽𝑁𝑖 (𝐱𝑁𝑖 , 𝐠𝑖) are defined
in the following.

Goal navigation
We minimize the displacement between the trajectory’s terminal position and the robot’s

goal location, and define a terminal cost

𝐽𝑁𝑖 (𝐱𝑁𝑖 , 𝐠𝑖) = 𝑤𝑁
𝑖

‖‖𝐩
𝑁
𝑖 −𝐠𝑖‖‖

‖‖𝐩
0
𝑖 −𝐠𝑖‖‖

, (2.3)

where 𝑤𝑁
𝑖 ∈ ℝ+

is a tuning weight coefficient.

Control input cost
One of the stage cost terms is to minimize the control input,

𝐽 𝑘𝑖,𝑢(𝐮
𝑘
𝑖) = 𝑤𝑖,𝑢

‖‖‖𝐮
𝑘
𝑖
‖‖‖ , (2.4)

2.3 Preliminaries

2

15

where 𝑤𝑖,𝑢 ∈ ℝ+
is a tuning weight coefficient.

Collision cost
To improve safety, a stage collision potential field cost is introduced between the robot and

each other robot,

𝐽 𝑘𝑖,𝑗 ,𝑐(𝐱
𝑘
𝑖) =

{
𝑤𝑖,𝑐(𝑑pot−𝑑𝑘𝑖𝑗), if 𝑑𝑘𝑖𝑗 < 𝑑pot,
0, otherwise .

(2.5)

where 𝑤𝑖.𝑐 ∈ ℝ+
is a tuning weight coefficient, 𝑑𝑘𝑖𝑗 =

‖‖‖𝐩
𝑘
𝑖 − 𝐩̂𝑘𝑗

‖‖‖ is the distance between

robot 𝑖 and each other robot 𝑗 , and 𝑑pot is the specified potential field distance, a scalar

hyperparameter that establishes the limits of the potential field. The field grows linearly

once a robot enters its limits as seen in equation 2.5. Then the collision potential cost is

defined as

𝐽 𝑘𝑖,𝑐(𝐱
𝑘
𝑖) = ∑

𝑗∈,𝑗≠𝑖
𝐽 𝑘𝑖,𝑗 ,𝑐(𝐱

𝑘
𝑖). (2.6)

Finally, the overall stage cost is

𝐽 𝑘𝑖 (𝐱
𝑘
𝑖 ,𝐮

𝑘
𝑖) = 𝐽 𝑘𝑖,𝑢(𝐮

𝑘
𝑖)+ 𝐽

𝑘
𝑖,𝑐(𝐱

𝑘
𝑖). (2.7)

2.3.4 Drone dynamic model
In this work, we use the same drone model and specifications for the Parrot Bebop2 SDK

as in [30]. According to the Parrot Bebop2 SDK, the control inputs to the quadrotor are

given by 𝐮 = [𝜙𝑐 , 𝜃𝑐 , 𝑣𝑧𝑐 , 𝜓̇𝑐] ∈ ℝ4
, where 𝜙𝑐 and 𝜃𝑐 are the desired roll and pitch angles, 𝑣𝑧𝑐

is the desired linear velocity in the z-axis and 𝜓̇𝑐 is the yaw rate. To simulate the drone

dynamics, we extend the state of each drone, as defined in Section 2.4.1, with information of

its orientation (𝜙,𝜃,𝜓). We use a first-order low-pass Euler approximation of the quadrotor

dynamics [30], where the dynamics of the state velocity vector are:

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

[
𝑣̇𝑥
𝑣̇𝑦]

= 𝑅𝑍 (𝜓)[
tan𝜃
−tan𝜙]𝑔 −𝑘𝐷 [

𝑣𝑥
𝑣𝑦]

,

𝑣̇𝑧 = 1
𝜏𝑣𝑧

(𝑘𝑣𝑧 𝑣𝑧𝑐 −𝑣𝑧),
(2.8)

where 𝑔 = 9.81𝑚/𝑠2 is the earth’s gravity, 𝑅𝑍 (𝜓) ∈ 𝑆𝑂(2) is the rotation matrix along

the drone’s local z-axis, 𝑘𝐷 is the drag coefficient, 𝑘𝑣𝑧 and 𝜏𝑣𝑧 are the gain and time constant

of vertical velocity. The attitute dynamics of the quadrotor are:

𝜙̇ =
1
𝜏𝜙

(𝜙𝑐 −𝜙), 𝜃̇ =
1
𝜏𝜃
(𝜃𝑐 −𝜃), 𝜓̇ = 𝜓̇𝑐 (2.9)

where 𝜏𝜙, 𝜏𝜃 are the time constants of roll and pitch angles respectively. In this work,

due to the drone being able to move in any direction with any yaw angle, we fix the drone’s

yaw angle to zero. Consequently, 𝜓̇𝑐 = 0

2

16 2 Scalable and Efficient Communication for Multi-Robot Collision Avoidance

2.3.5 Problem Formulation
For each robot to solve problem (2.2), it has to know the future trajectories of other robots

in the team. Aside from the particular case of prioritized sequential motion planning

schedules, obtaining the exact information on future trajectories beforehand is generally

not feasible. Thus, other robots’ future positions can be approximated either by estimating

them [22] or by requiring other robots to communicate their trajectory intentions, com-

puted during the previous time step [30].

At time 𝑡, let ̂ 𝑡
𝑗 ∣𝑖 = {𝐩𝑡+1∶𝑡+𝑁𝑗 ∣ predicted at time 𝑡} be the N-time horizon trajectory of

robot 𝑗 ∈ , 𝑗 ≠ 𝑖 that robot 𝑖 assumes and uses in solving the problem (2.2), where the

hat ̂ indicates that it is what robot 𝑖 knows about the other agent’s trajectory. Further
denote by  𝑡

𝑖 = {𝐩𝑡∶𝑡+𝑁𝑖 ∣ predicted at time 𝑡} the trajectory for robot 𝑖 planned at time 𝑡. As
mentioned, there are two ways for robot 𝑖 to approximate the future trajectory of robot 𝑗 ,
namely ̂ 𝑡

𝑗 ∣𝑖:

• Without communication: robot 𝑖 predicts another robot’s future trajectory based

on their current states, that is

̂ 𝑡
𝑗 ∣𝑖 = prediction(𝐱𝑡𝑗), ∀𝑗 ≠ 𝑖 ∈ . (2.10)

In [32], each robot was considered to follow constant velocitymodel for the prediction.

However, this approach ignores the previously communicated information on future

trajectory intentions from other robots, even when they could potentially hold more

information on other robots’ future positions than constant velocity estimates. Our

prediction model uses the last communicated trajectory plans and expands it by

assuming constant velocity. If robot 𝑗 strays past a predetermined distance from

its last communicated trajectory intentions, then robot 𝑗 is estimated to follow a

constant velocity model from its current position (section 2.4.4).

• Communication request: Robot 𝑖 can request other robots 𝑗 in the team to com-

municate their planned trajectories at each time step, that is:

̂ 𝑡
𝑗 ∣𝑖(0 ∶ 𝑁 −1) =  𝑡−1

𝑗 (1 ∶ 𝑁), ∀𝑗 ≠ 𝑖 ∈ . (2.11)

where ̂ 𝑡
𝑗 ∣𝑖(𝑎 ∶ 𝑏), with 𝑎 ≤ 𝑏, represents the subsequence of ̂ 𝑡

𝑗 ∣𝑖 that goes from the 𝑎th

to the 𝑏th-indexed element (inclusive). At time 𝑡, the last position of the communicated

path of robot 𝑗 : ̂ 𝑡
𝑗 ∣𝑖(𝑁) = 𝐩̂𝑁𝑗∣𝑖, cannot be communicated as it is beyond the N-time

horizon at time step 𝑡 − 1. Therefore it is estimated by assuming constant velocity of

robot 𝑗 : 𝐩̂𝑁𝑗∣𝑖 = 𝐩̂𝑁−1
𝑗∣𝑖 +(𝐩̂𝑁−1

𝑗∣𝑖 − 𝐩̂𝑁−2
𝑗∣𝑖).

Both of the twomethods have their advantages and disadvantages. Fully communicating

methods allow more accurate predictions and achieve safe collision avoidance as long as a

feasible solution is found, but they require a large amount of communication among robots.

If there is no communication, the robot may plan an unsafe trajectory if its prediction on

other robots’ trajectories deviates from their real ones or an overly conservative trajectory

to avoid collisions.

2.4 Method

2

17

Motivated by these facts, this paper aims to solve the problem of “with whom to

communicate” for each robot in the team for collision avoidance. More precisely, at each

time step, each robot 𝑖 decides whether or not to request a trajectory intention from every

other robot 𝑗 . If robot 𝑖 decides to request robot 𝑗 , robot 𝑗 should communicate its planned

trajectory to robot 𝑖. If robot 𝑖 decides not to request robot 𝑗 , it predicts robot 𝑗 ’s future
trajectory based on its last communicated trajectory intention and the observed current

state of robot 𝑗 .
Denote by 𝜋 𝑡𝑖 = {𝑐𝑡𝑗 ∣𝑖 ∣ ∀𝑗 ≠ 𝑖} the communication vector of robot 𝑖 at time 𝑡, in which

𝑐𝑡𝑗 ∣𝑖 = 1 indicates that robot 𝑖 requires a communicated trajectory from robot 𝑗 . Otherwise
𝑐𝑡𝑗 ∣𝑖 = 0. Note that 𝑐𝑡𝑖∣𝑖 = 0 since the robot does not need to communicate with itself. Let

𝜋 𝑡 = {𝜋 𝑡1;… ;𝜋 𝑡𝑛} be the communication matrix of the multi-robot system at time 𝑡 in an

episode of length 𝑇𝑒 . We define the communication cost of the system to be

𝐶(𝜋 𝑡) =
1

𝑁𝑐(𝑛)

𝑛
∑
𝑖

𝑛
∑
𝑗
𝑐𝑡𝑗 ∣𝑖. (2.12)

Where 𝑁𝑐(𝑛) = 𝑛(𝑛−1)/𝑇𝑒 is a normalization factor depending on the number of agents

and the length of the episode, that represents the maximum amount of communications

that can happen within a system of 𝑛 robots across 𝑇𝑒 timesteps. The objective of this paper

is to find a policy for each robot 𝑖,

𝜋 𝑡𝑖 = 𝜋𝑖(𝐱𝑡1,𝐱
𝑡
2,… ,𝐱𝑡𝑛) = {𝑐𝑡𝑗 ∣𝑖 ∣ ∀𝑗 ≠ 𝑖} (2.13)

that minimizes 𝐶(𝜋 𝑡) while ensuring that the robots are collision-free with each other in

the system.

2.4 Method
An overview of the proposed method is given in Figure 2.1. It consists of two components:

a learned communication policy, which we introduce asWW2C, that decides with whom

to communicate, and a NMPC planner.

Every time step, based on its partial observation of the current joint state 𝑧𝑡𝑖 , every
robot targets a set of other robots 𝜋 𝑡𝑖 and requests their intended trajectory plans ̂ 𝑡

𝑗 ∣𝑖 =  𝑡−1
𝑗

according to a learnt parametric policy 𝜋𝑖,𝜃𝑖(𝑧𝑡𝑖). Those robots not targeted are estimated to

follow a previously communicated trajectory extended assuming constant velocity or, in

case it is no longer useful, a constant velocity model ̂ 𝑡
𝑗 ∣𝑖 = prediction(𝐱𝑡𝑗) as described in

section 2.3.5.

A receding horizon optimization is then employed to plan the future intended trajectory

 𝑡
𝑖 for robot 𝑖. To guarantee the safety of such a trajectory, the resulting path is constrained

to not intersect with ̂ 𝑡
𝑗 ∣𝑖 for any 𝑗 ≠ 𝑖. The first action input from the computed plan is

applied and a new observation is gathered. Along this work we assume that robots plan

and execute actions in a synchronized fashion. While this assumption is necessary for

learning the communication policy, it can be alleviated during test time since robots employ

previously received or estimated trajectories [22].

2

18 2 Scalable and Efficient Communication for Multi-Robot Collision Avoidance

Figure 2.1: Schema of the proposed method for efficient communication. 𝜋 𝑡𝑖 (𝑧𝑖) is the communication policy

dependent on the observation 𝑧𝑖. In practice, 𝜋 𝑡𝑖 (𝑧𝑖) is a boolean vector 𝑐𝑡𝑗 |𝑖 indicating if 𝑖 requests 𝑗 its trajectory

intention, or estimates it.  𝑡−1
𝑗 is the trajectory intention of robot j at the previous time step. And ̂ 𝑡

𝑗 ∣𝑖 is the
combination of obtained and estimated trajectories of the other robots.

2.4.1 Reinforcement Learning Setup
We formulate a multi-robot reinforcement learning problem to compute an efficient com-

munication policy. By considering the MPC based motion planner as part of the transition

function, this problem can be transformed into a decentralized POMDP [55]. The de-

centralized POMDP is composed of six components, including state space, action space,

observation space, reward function, transition model and observation model.

State space 
For every robot 𝑖, 𝒙𝑖 ∈  must account for the current physical state, its goal position, its

sequence of intended future positions, computed during the previous time step by the

motion planner, and its knowledge on other robots’ future trajectory plans. Therefore, the

state at time 𝑡 can be defined as:

𝒙𝑡𝑖 ∶= [𝒈 𝑖,𝒑
𝑡
𝑖 , 𝒗

𝑡
𝑖 , 𝑡−1

𝑖 , ̂ 𝑡−1
−𝑖∣𝑖], (2.14)

𝑿 𝑡 ∶= {𝒙𝑡1,𝒙
𝑡
2, ...,𝒙

𝑡
𝑛}, (2.15)

where 𝒈 𝑖,𝒑𝑡𝑖 , 𝒗𝑡𝑖 ∈ ℝ3
are the goal, position and velocities of robot 𝑖 at time 𝑡, and ̂ 𝑡−1

−𝑖∣𝑖 =
{̂ 𝑡−1
𝑗∣𝑖 ∣ ∀𝑗 ≠ 𝑖}. Then, 𝑿 𝑡

is the joint state of the whole multi-robot system. Following a

similar formulation as [44], robot 𝑖 only has access to the information of its own state 𝐱𝑡𝑖
and the terms from other robots 𝑗 that can be estimated through its sensors, such as their

positions and velocities.

Observation space 
We assume all robots are within sensor range (e.g. camera, lidar, ...) of each other and can

always estimate the relative positions and velocities of all other robots. Each robot also

knows the relative position of its own goal from a mission planner. For robot 𝑖, partial
observations on the joint state at time 𝑡 are:

𝒛𝑡𝑖 = [𝒗𝑡𝑖 ,𝒑
𝑡
𝑖,𝑔 , {𝒅

𝑡
𝑗 ∣𝑖}𝑗∈𝐼\𝑖, {𝒑

𝑡
𝑗 ∣𝑖}𝑗∈𝐼\𝑖, {𝒗

𝑡
𝑗 ∣𝑖}𝑗∈𝐼\𝑖], (2.16)

2.4 Method

2

19

where 𝑑𝑡𝑗 ∣𝑖,𝒑
𝑡
𝑗 ∣𝑖 and 𝒗

𝑡
𝑗 ∣𝑖 are the relative distances, positions and velocities of the other robots

with respect to the 𝑖𝑡ℎ robot, and 𝒑𝑡𝑖,𝑔 is the relative position of robot 𝑖’s goal. The joint
observation from all robots is denoted by 𝒛𝑡 = {𝒛𝑡1, ..., 𝒛𝑡𝑛} ∈

Action space  = ×𝑖∈𝑖
As it has already been introduced in section 2.3.5, we denote by 𝜋 𝑡𝑖 = {𝑐𝑡𝑗 ∣𝑖 ∣ ∀𝑗 ≠ 𝑖} the
communication vector of robot 𝑖 at time 𝑡. Note we have dropped the 𝑖𝑡ℎ element as the

robot cannot communicate with itself. Therefore the action space for robot 𝑖 is:

𝑖 = {0,1}𝑛−1

Note that the dimensionality of the action space depends on the number of agents. This

matter will be further addressed later in 2.4.2.

Reward 𝑅𝑖(𝒙𝑡 ,𝜋 𝑡)
The reward function is chosen based on the multiple behaviors we want to achieve. It

aims for the learned communication policy to communicate as little as possible while

allowing each robot in the team to reach its goal and avoid collisions. The reward value

𝑅(𝒙𝑡 ,𝜋 𝑡) is the immediate reward that every robot 𝑖 gets at a state 𝒙 ∈  after applying the

communication vector 𝜋 𝑡𝑖 .
Global rewards are often used in multi-agent systems in order to capture coordinating

coupled behaviors. However, this often leads to multi-agent credit assignment problems

during training [56]. In this work we attempt to capture coupled behaviors by employing

the same reward function conditioned by each robot’s state individually. Since all agents

share the same architecture and policy parameters, this allows to quickly learn to properly

punish pairwise interactions such as collisions and communications as all samples from all

robots can be used in the same way to compute the gradients and update the parameters of

the communication policy. Also, even though reward signals are individual, optimising the

same set of parameters for all agents at the same time allows to account for coordinating

behaviours when there are more than two agents crossing paths. The reward function is

composed of the following weighted combination of terms:

𝑅𝑖(𝒙𝑡 ,𝜋 𝑡𝑖) = 𝑤𝑔𝑅𝑔,𝑖(𝒙𝑡)+𝑤𝑐𝑜𝑙𝑙𝑅𝑐𝑜𝑙𝑙,𝑖(𝒙𝑡)
+𝑤𝑐𝑅𝑐,𝑖(𝜋 𝑡)

(2.17)

where 𝑤𝑔 , 𝑤𝑐𝑜𝑙𝑙 , 𝑤𝑐 are the weights for each term. Each reward term is defined:

𝑅𝑔,𝑖(𝒙𝑡) =

{
𝑟𝑔

‖‖‖𝒑
𝑡
𝑖,𝑔 −𝒑𝑡𝑖

‖‖‖ ≤ 𝑟𝑖
0 otherwise

with 𝑟𝑔 > 0 is a tuned reward given at the end of the episode if robot 𝑖 is within its goal, 𝑟𝑖
is the radius of the smallest sphere containing the robot. This reward gives an incentive to

learn communication patterns that stir the robot toward its own goal.

2

20 2 Scalable and Efficient Communication for Multi-Robot Collision Avoidance

 Encoder

Linear(32)

robot i

robot j

Transformer x 3

heads: 2
embed. dim: 32
hidden. dim: 64

Decoder
(Policy)

Relu(64) +
Linear(2)

Decoder
(VF)

Relu(64) +
Linear(1)

Sum

n-1 robots

Figure 2.2: Proposed network policy architecture. Information from the ego and other robots is marked respectively

in orange and red. Red arrows show the flow of information through the architecture of each individual robot j.

Architecture layers are marked in green. Concatenation and Sum operations are marked in blue. Outputs are

shown in purple.

𝑅𝑐𝑜𝑙𝑙,𝑖(𝒙𝑡) =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

−𝑟𝑐𝑜𝑙𝑙 ∀𝑗 ∈ , 𝑖 ≠ 𝑗,
‖‖‖𝒑

𝑡
𝑖 −𝒑𝑡𝑗

‖‖‖ ≤ 𝑟𝑖+𝑟𝑗
0 otherwise

where 𝑟𝑐𝑜𝑙𝑙 > 0 is a tuned penalty term for the collision between any two robots.

Finally the local penalization term for path plan requests is similar to the global version

introduced before in section 2.3.5 and has the form:

𝑅𝑐,𝑖(𝜋 𝑡) = −𝐶𝑖(𝜋 𝑡) = −
1

𝑁𝑖(𝑛)

𝑛
∑
𝑗≠𝑖

𝑐𝑡𝑗 ∣𝑖.

Where 𝑁𝑖(𝑛) is a local normalization term depending on the number of agents.

Observation model (𝒛𝑡+1,𝒙𝑡+1,𝜋 𝑡)
We assume that every robot 𝑖 can directly observe the positions and velocities of other

robots. Although not all information is observed, the observation vector is determined

completely by the given state vector 𝒙𝑡+1.

Transition model 𝑇 (𝒙𝑡+1,𝜋 𝑡 ,𝒙𝑡)
The transition model can be decomposed into a communication step and a physical action

step. The communication step is stochastic, only during training (see Section 2.4.2), and

models the effects of communication 𝜋 𝑡 on the constrained optimization problem used to

compute the control actions applied at time step 𝑡, 𝒖𝑡 . Then, the robot model 𝑓 , introduced
in Section 2.3.1, determines the joint state at the next time step 𝐱𝑡+1. Note that, since

we are sharing parameters, the communication matrix 𝜋 𝑡 depends directly on the shared

policy. The robots employed in this paper are quadrotors, thus the state transition can be

interpreted as the quadrotor model introduced in Section 2.3.4.

2.4.2 Network Architecture
Given the input (observation 𝐳𝑡𝑖) and output (action 𝜋 𝑡𝑖), we elaborate on the communication

policy network mapping 𝐳𝑡𝑖 to 𝜋 𝑡𝑖 . We want each robot to process all the information from

2.4 Method

2

21

the environment and decide whether it needs to make a request to any of the other robots.

While concatenation of other robots’ observed information is possible at low scales, learnt

policies are bound to quickly deteriorate in performance as the input vector dimensionality

grows exponentially with the number of robots. We need an architecture that can provide

a compact representation of the observed information of an arbitrary number of other

robots, while still being able to leverage that information and choose whether each robot’s

trajectory is needed to compute a safe trajectory. Therefore, we need an architecture that

can pool together all the information coming from all the different robots while still being

able to output a different signal for each one of them.

There are several recent works in the field of motion planning that use information

pooling mechanisms. Often, simulated laser scanner observations allow considering all

information in the environment without having to explicitly define each element and its

properties [57, 58]. However, individual information on each of the other agents and their

interactionwith the environment are lost. Other works address this issue by using Recurrent

Neural Networks (RNN) [59] over the sequence of other robots observations [44, 60]. While

these methods allow learning the additional coupled effects resulting from adding each

robot into the environment representation, they are not permutation invariant and their

performance depends on the heuristic ordering method chosen to feed the elements into

the network. Methods using Graph Neural Networks (GNN) [61], represent elements in

the environment as vertices in a graph and allow learning a permutation equivariant and

compact representation of the set of observed information on each one of the vertices [45].

In [62], attention mechanisms [17] are formulated as a GNN for the particular case of fully

connected graphs and are used to map a set of sensor measurements from an agent with

multiple limbs to a set of actions to be applied by each one of them. We build our policy

network on top of the attention-based architecture proposed in [62] and extend its use to

homogeneous multi-agent environments.

Our communication policy architecture is depicted in Figure 3.2. We design a five-

layer neural network as a nonlinear function approximation of the policy 𝜋𝜃. For each
robot 𝑖, we arrange the information on the other robots {𝒅𝑡𝑗 ∣𝑖}𝑗∈𝐼\𝑖, {𝒑

𝑡
𝑗 ∣𝑖}𝑗∈𝐼\𝑖, {𝒗

𝑡
𝑗 ∣𝑖}𝑗∈𝐼\𝑖 into

a sequence of vectors {(𝒅𝑡𝑗 ∣𝑖,𝒑
𝑡
𝑗 ∣𝑖, 𝒗

𝑡
𝑗 ∣𝑖)}𝑗∈𝐼\𝑖 and append the observed information on robot

𝑖 at the end of each element in the sequence. Our policy network consists of three parts:

an encoder layer, a transformer block, and a decoder layer. Each one of these layers has

the property of being permutation equivariant and enables processing sequences with an

arbitrary number of vectors, even during testing. The encoder layer consists of a linear

layer applied independently to each element of the sequence, mapping each element 𝒛𝑡𝑗 to a
latent representation of higher dimension 𝒛̃𝑡𝑗 . We employ a three-layered transformer [17],

to allow each element 𝒛̃𝑡𝑗 in the sequence to exchange information among themselves and

encode the information present in the environment while still providing a different result

for each element. However, information on each robot’s relative position and velocities are

still very important regardless of the additional information and coupled effects coming

from other robots in the environment. To preserve this information, we concatenate each

element 𝑗 with its counterpart 𝒛̃𝑡𝑗 , which also enables the transformer block to focus on

learning the coupled effects in communication arising from having multiple agents in the

environment.

The network has two decoder heads applied independently to each one of the sequence

2

22 2 Scalable and Efficient Communication for Multi-Robot Collision Avoidance

outputs: one computes the communication action for each robot 𝑗 : 𝜋 𝑡𝑖 , while the other
estimates the state-value function: 𝑉 𝜋(𝒙𝑡) = 𝔼𝑥∼𝑝𝜋𝜃 ,𝑎∼𝜋𝜃 [∑

∞
𝑘=0 𝛾𝑘𝑅𝑖(𝒙𝑘 , 𝑎) ∣ 𝑥0 = 𝑥 𝑡]. Both of

them start with a multi-layer perceptron with a hidden layer with a ReLU non-linearity

and an output linear layer. The first head outputs a 2-dimensional vector per robot of

communication scores that we project onto the probability 1-simplex with a softmax

activation function resulting in the vector [𝑝𝑗 ∣𝑖, 1−𝑝𝑗 ∣𝑖]. To enhance exploration, during

training the output action is sampled from the resulting Bernoulli distribution(𝑝𝑗 ∣𝑖). While

testing, we follow a deterministic policy where robot 𝑖 requests 𝑗 ’s trajectory intentions

when 𝑝𝑗 ∣𝑖 > 0.5.
The second head outputs a scalar representing the contribution 𝑉𝑗 ∣𝑖 of each robot 𝑗 to

the value function. Similar to the use of value decomposition networks in collaborative

multi-agent tasks [40], we model agent’s 𝑖 value function as 𝑉 𝜋(𝒛𝑡𝑖) = ∑𝑛
𝑗≠𝑖,𝑗=1 𝑉𝑗 ∣𝑖.

2.4.3 Multi-Scenario Multi-Stage Training
In order to learn a robust communication policy, we present a multi-stage training scheme

in varied scenarios with a clear separation between training and test regime.

Training algorithm
Here we focus on learning a robust communication policy that, in combination with an

MPC for motion planning, allows large multi-robot systems to coordinate and navigate at

least as safely as when using broadcasting communication policies. To accomplish this, we

use the extension to homogeneous multi-agent systems developed in [58] of the on-policy

policy gradient algorithm: Proximal Policy Optimization (PPO) [14] under the assumption

of parameter sharing across agents [49], although the general framework is agnostic to the

specific RL training algorithm. For this matter, we take the centralized learning, decentralized
execution paradigm, which is already popular in multi-agent reinforcement learning for

decentralized systems [37, 44]. In particular, the individual policy shared by all agents is

learned in a centralized way from the experiences gathered by all robots simultaneously

during training. This has been shown to allow the policies of homogeneous agents to be

trained more efficiently, and mitigate the non-stationarity in the environment dynamics

that arises from having multiple agents learning at the same time. While testing, each

robot has copy of the learned policy which is executed in a decentralized fashion.

Algorithm 1 describes the proposed training strategy which alternates between gath-

ering experiences (𝐳𝑡𝑖 ,𝜋 𝑡𝑖 ,𝑅(𝐱𝑡𝑖 ,𝜋 𝑡𝑖), 𝐳𝑡+1𝑖) from all robots and performing PPO gradient up-

dates. PPO is an on-policy method that addresses the high-variance and the difficult

hyper-parameter tuning in policy gradient methods for continuous control problems. As

suggested in [14], in this particular PPO implementation [63], we add to the surrogate

objective an entropy bonus and a value function loss to ensure sufficient exploration and

account for the shared parameters between the policy and the value function. We refer the

reader to [14] and [58] for more information on the method’s equations and details. The

hyperparameters used for training are detailed in table 2.1.

As explained in [58], this multi-robot adaptation of the PPO algorithm can be paral-

lelized and easily scaled to large-scale multi-robot systems since every robot counts as

an independent worker gathering data. This reduces the sampling time cost and makes

2.4 Method

2

23

Table 2.1: Hyperparameters for PPO training algorithm

Parameter Value

Lambda 𝜆 1.0

Gamma 𝛾 0.99

Episodes each iteration 𝑛𝑒 40

Episode time steps/episode 𝑇𝑒 100

Number of epoch per iteration 𝐸𝜃 30

SGD minibatch size 𝑛𝑚𝑖𝑛𝑖𝑏𝑎𝑡𝑐ℎ 512

Clip param. 𝜖 0.3

KL target 𝐾𝐿𝑡𝑎𝑟𝑔𝑒𝑡 0.01

Learning rate 𝑙𝑟𝜃 5e-5

KL coeff. 𝛽 0.2

Value function loss coeff. 𝑐1 1

Entropy loss coeff. 𝑐2 0.001

Gradient Clipping 0.1

the algorithm suitable for training a large number of robots in various scenarios, profiting

from frameworks specialized in distributed computation (i.e. Ray [64] and RLlib [63]) to

accelerate our network’s convergence.

Training scenarios
While proper exploration of the action and state spaces is crucial for the quality, robustness

and generalization characteristics of the learned communication policy, it is difficult to

achieve proper exploration of the state space since our policy only decides on whom to
communicate with. Therefore, it is necessary to design interaction-rich training scenarios

where the robots can sample meaningful experiences that will allow them to learn when it

is necessary to cooperate and request other robots future trajectory intentions.

We have created a simulation environment [30] where a group of twelve drones navigate

from an initial position to a goal position and may communicate their trajectory plans

to perform collision avoidance. We have designed three different scenarios to train our

communication policy, as depicted in the left column of Figure 2.3. Each scenario requires

increasing levels of interaction and cooperation to perform collision avoidance, ranging

from a simple scenario where almost no communication is needed (e.g., Figure 2.3a) to

complex scenarios where the drones must communicate (e.g., Figure 2.3e) to successfully

avoid each other. The employed scenarios are:

• Random navigation (Figure 2.3a): Each robot must to move to a random goal

position.

• Random swapping (Figure 2.3)c: The group of robots is arranged in pairs. Then

each robot switches position with its counterpart.

• Asymmetric swapping (Figure 2.3e): We split the ℝ2
x-y plane into twelve quad-

rants and randomly initialize each robot in a different quadrant with random initial

2

24 2 Scalable and Efficient Communication for Multi-Robot Collision Avoidance

position. Then, each robot swaps positions with a robot from the diametrically

opposed quadrant.

The learned communication policy depends on the scenarios on which it is trained. For

instance, if an agent is trained only on the first scenario it will learn a no communication
behavior. In contrast, if only trained in the last one, it may learn to always communicate.

Hence, we employ curriculum learning [67], training the agents first in a simple scenario,

where communication is generally not needed, and subsequently introducing more difficult

and complex scenarios where the agents must learn when and with whom to communicate.

We design the learning process in three stages of 12500 episodes, through which we sample

episodes from a scenario pool. During the first stage the scenario pool only has the first

type of scenario, thus we sample random navigation scenarios with probability one. In the

second step, we add the second type to the scenario pool, sampling the new scenario 75%

of times. Finally, during the last stage we add the asymmetric swapping type to the pool,

sampling this one 75% of times and 12.5% each of the others.

Training/Test regime differentiation
As explained in section 2.4.3, the learned communication policy cannot explore directly the

state space since only the MPC is in charge of motion planning. Also, communication is not

the only source of cooperation as the other robot’s future trajectory can be approximated

by constant velocity models. This results in our robots rarely exploring collisions or

dangerous situations even when not communicating, thus creating sparsity and a lack of

collision experiences to learn from. On top of this, while all communications are punished

instantaneously when they happen, there is a delay between issuing a communication

request (or not) and its associated reward for completing the episode successfully (or

colliding).

We apply a crucial change between the training and testing regimes to promote explo-

ration of the state space, specially collision events. During training, we turn off constant

velocity predictions whenever robot 𝑖 does not communicate with robot 𝑗 to request its

trajectory intentions. This makes robot 𝑖 MPC planner virtually blind to robot 𝑗 future
intended positions. This will ultimately result in a learnt communication policy that keeps

track and decides to request trajectory intentions from all robots that might put the safety

of our future trajectory at risk, or need to be cooperated with. As seen in section 2.5.6,

this modification results in an efficient and intuitive communication policy that is as safe

as broadcasting policies. During testing, we turn on once again trajectory estimations

whenever there is no communication both as a safety layer and to avoid generating oscil-

lating trajectories due to switching on and off constraints related to other robots’ future

trajectories in the MPC.

The main idea of turning robot 𝑖 blind to robot 𝑗 whenever it does not request 𝑗 ’s
trajectory intentions, is to force collisions to happen whenever necessary communications

are not effectuated. This way, it is easier to discriminate and learn the cause and effect

relationship between a communication signal being (not) triggered between 𝑖 and 𝑗 and
their subsequent collision (not) being avoided. The intuition behind this training approach

is to learn with whom to cooperate rather than with whom to communicate as it results in a

policy that puts the attention in those other robots in the team that need to be cooperated

2.4 Method

2

25

with to achieve safe navigation. Although less information for the motion planner during

training results in a suboptimal policy for testing, i.e. more communicative than necessary,

we argue that the additional information can help in some situations and, at worst, will

not make the resulting policy less safe. This is why the found solution is able to achieve

similar performance to broadcasting policies in terms of safety. The robot motion planning

loop during training and testing are detailed in Algorithm 2.

2.4.4 Predicting and Generating Safe Trajectory Intentions
Informed constant velocity estimations
At time step t, robot 𝑖 can obtain ̂𝑗 ∣𝑖 either by communicating and requesting robot 𝑗 ’s
future trajectory intention (̂ 𝑡

𝑗 ∣𝑖 =  𝑡−1
𝑗) or directly by computing an estimation of said

robot’s future trajectory (̂ 𝑡
𝑗 ∣𝑖 = prediction(𝐱𝑡𝑗)). Algorithm 3 depicts the structure of the

prediction function.

Whenever robot 𝑖 requests robot 𝑗 ’s trajectory intentions at time step 𝑡, it stores both the
last communicated trajectory  𝑡−1

𝑗 and the time step of communication 𝑡. Every subsequent
time step 𝑡 + 𝑘, we make sure the last communicated trajectory intention is not obsolete,

and that robot 𝑗 is within a predefined tolerance region around its trajectory intention 𝑟𝑡𝑜𝑙 .
If any of these conditions is not true, the last communicated trajectory is discarded and

robot 𝑗 ’s future positions are estimated by assuming it will follow constant velocity. If the

communicated information is not discarded, we take the remaining 𝑁 −1−𝑘 steps from
the tail of the communicated trajectory intention and expand them until obtaining a set of

N future positions by assuming constant velocity.

Generating safe trajectory intentions
At time 𝑡, given robot 𝑖’s requests for information 𝜋 𝑡𝑖 , we can determine ̂ 𝑡−1

𝑗∣𝑖 . Then, robot

𝑖’s computed trajectory intentions  𝑡
𝑖 and control inputs 𝐮𝑡𝑖 are computed by solving a

constrained optimization problem. This optimization problem computes the optimal future

values for {(𝐱𝑡+𝑙+1𝑖 ,𝐮𝑡+𝑙𝑖) ∣ ∀𝑙 = 0, ...,𝑁 − 1}, that minimize, over a N-time step horizon, a

given cost function (defined in Section 2.3.3). The solution of the problem is constrained

to follow the robot’s dynamic model 𝐟 and account for the estimates of other robots’

trajectory intentions ̂ 𝑡−1
𝑗∣𝑖 to avoid future collisions (equality and inequality constraints).

The sequence of intended future positions in {𝐱𝑡+𝑙+1𝑖 ∣ ∀𝑙 = 0, ...,𝑁 −1} is used to construct

 𝑡
𝑖 , while only the first value of the sequence {𝐮𝑡+𝑙𝑖 ∣ ∀𝑙 = 0, ...,𝑁 −1}, 𝐮𝑡𝑖 , is used.

The sequence {(𝐱𝑡+𝑙+1𝑖 ,𝐮𝑡+𝑙𝑖) ∣ ∀𝑙 = 0, ...,𝑁 −1} is computed at every time step 𝑡 by formu-

lating and solving the following constrained optimization problem:

min
𝐱0∶𝑁𝑖 ,𝐮0∶𝑁−1

𝑖

𝑁−1
∑
𝑘=0

𝐽 𝑘𝑖 (𝐱
𝑘
𝑖 ,𝐮

𝑘
𝑖)+ 𝐽

𝑁
𝑖 (𝐱𝑁𝑖 , 𝐠𝑖)

s.t. 𝐱0𝑖 = 𝐱𝑡𝑖 ,

𝐱𝑘+1𝑖 = 𝐟(𝐱𝑘𝑖 ,𝐮
𝑘
𝑖),

‖‖‖𝐩
𝑘+1
𝑖 − 𝐩̂𝑘+1𝑗∣𝑖

‖‖‖ ≥ 2𝑟, ∀𝑗 ∈ \{𝑖}

𝐮𝑘𝑖 ∈ , 𝐱𝑘+1𝑖 ∈  ,

(2.18)

2

26 2 Scalable and Efficient Communication for Multi-Robot Collision Avoidance

Table 2.2: Hyperparameters for the WW2C framework

Parameter Value

Episode length 𝑇𝑒 100

Trajectory prediction horizon 𝑁 20

Time step length Δ𝑡 0.05s

Tolerance length 𝑟𝑡𝑜𝑙 0.1m

where 𝐩̂𝑘+1𝑗∣𝑖 are extracted from ̂ 𝑡−1
𝑗∣𝑖 . 𝐽 𝑘𝑖 (𝐱𝑘𝑖 ,𝐮𝑘𝑖) and 𝐽𝑁𝑖 (𝐱𝑁𝑖 , 𝐠𝑖) are the stage and terminal cost

functions to be minimized, which are defined in Section 2.3.3. Function 𝐟 is the non-linear
discrete function representing the dynamic model of the robot.

2.4 Method

2

27

Algorithm 1 PPO for multiple agents with parameter sharing

1: Initialize policy network 𝜋𝜃 and value function 𝑉𝜙. Set hyper-parameters as shown in

Table 2.1. Note that 𝜃 and 𝜙 share the same set of parameters except for the decoder

layer.

2: for iteration = 1,2,..., do
3: for Robot 𝑖 = 1,2,...,n do
4: // Collect data in parallel. We define 𝑟 𝑡𝑖 = 𝑅𝑖(𝐱𝑡𝑖 ,𝜋 𝑡𝑖)
5: for e = 1,2,...,𝑛𝑒 do
6: Run comm. policy 𝜋𝜃 for episode 𝑒, collecting {𝐳𝑡𝑖 , 𝑟 𝑡𝑖 ,𝜋 𝑡𝑖 } where 𝑡 ≤ 𝑇𝑒

(Algorithm 2)
7: Estimate and collect advantages using GAE [65]: 𝐴̂𝑡𝑖 =∑𝑇𝑒−𝑡

𝑙=0 (𝛾𝜆)
𝑙𝛿𝑡+𝑙𝑖 where

𝛿𝑡𝑖 = 𝑟 𝑡𝑖 +𝛾𝑉𝜙(𝐳𝑡+1𝑖)−𝑉𝜙(𝐳𝑡𝑖)
8: Estimate and collect target values: 𝑉 𝑡𝑡𝑎𝑟𝑔𝑒𝑡(𝐱𝑡𝑖) = ∑𝑇𝑒

𝑡′>𝑡 𝛾
𝑡′−𝑡 𝑟 𝑡′𝑖

9: end for
10: end for
11: 𝜋𝑜𝑙𝑑 ⟵𝜋𝜃
12: //Update policy and value function
13: for j = 1,...,𝐸𝜋 do
14: for b = 1,...,(𝑛𝑒𝑇𝑒𝑛)//𝑛𝑚𝑖𝑛𝑖𝑏𝑎𝑡𝑐ℎ do
15: Sample minibatch 𝐷𝑏 from collected rollout data 𝐷
16: //Surrogate objective. We define: ℎ𝑖𝑡(𝜃) =

𝜋𝜃(𝜋𝑡𝑖 ∣𝐳
𝑡
𝑖)

𝜋𝑜𝑙𝑑(𝜋 𝑡𝑖 ∣𝐳
𝑡
𝑖)

17: 𝐿𝑂(𝜃) = 𝔼(𝐳𝑡𝑖 ,𝑟
𝑡
𝑖 ,𝜋

𝑡
𝑖 ,𝑉

𝑡
𝑡𝑎𝑟𝑔𝑒𝑡 (𝐱𝑡𝑖),𝐴̂

𝑡
𝑖)∼𝐷𝑏

[𝑚𝑖𝑛(ℎ𝑖𝑡(𝜃)𝐴̂𝑡𝑖 , 𝑐𝑙𝑖𝑝(ℎ𝑖𝑡(𝜃),1 − 𝜖,1 + 𝜖)𝐴̂𝑡𝑖) +
𝛽𝐾𝐿[𝜋𝑜𝑙𝑑 ∣ 𝜋𝜃]]

18: //Value function Loss
19: 𝐿𝑉 𝐹 (𝜙) = 𝔼(𝐳𝑡𝑖 ,𝑟

𝑡
𝑖 ,𝜋

𝑡
𝑖 ,𝑉

𝑡
𝑡𝑎𝑟𝑔𝑒𝑡 (𝐱𝑡𝑖),𝐴̂

𝑡
𝑖)∼𝐷𝑏

[(𝑉 𝑡𝑡𝑎𝑟𝑔𝑒𝑡(𝐱𝑡𝑖)−𝑉𝜙(𝐳𝑡𝑖))2]
20: //Entropy objective. We define 𝑆[𝜋𝜃](𝐳𝑡𝑖) as the entropy of the policy distribution

𝜋𝜃(𝜋 𝑡𝑖 ∣ 𝐳𝑡𝑖)
21: 𝐿𝑆(𝜃) = 𝔼(𝐳𝑡𝑖 ,𝑟

𝑡
𝑖 ,𝜋

𝑡
𝑖 ,𝑉

𝑡
𝑡𝑎𝑟𝑔𝑒𝑡 (𝐱𝑡𝑖),𝐴̂

𝑡
𝑖)∼𝐷𝑏

[𝑆[𝜋𝜃](𝐳𝑡𝑖)]
22: //Total PPO objective
23: 𝐿𝑃𝑃𝑂(𝜃,𝜙) = 𝐿𝑂(𝜃)− 𝑐1𝐿𝑉 𝐹 (𝜙)+ 𝑐2𝐿𝑆(𝜃)
24: Update policy param. 𝜃 with 𝑙𝑟𝜃 by Adam [66] with respect to 𝐿𝑃𝑃𝑂(𝜃,𝜙)
25: end for
26: end for
27: //Adapt KL penalty coefficient
28: if 𝐾𝐿[𝜋𝑜𝑙𝑑 ∣ 𝜋𝜃] > 2𝐾𝐿𝑡𝑎𝑟𝑔𝑒𝑡 then
29: 𝛽⟵ 1.5𝛽
30: else if 𝐾𝐿[𝜋𝑜𝑙𝑑 ∣ 𝜋𝜃] < 0.5𝐾𝐿𝑡𝑎𝑟𝑔𝑒𝑡 then
31: 𝛽⟵𝛽/2
32: end if
33: end for

2

28 2 Scalable and Efficient Communication for Multi-Robot Collision Avoidance

Algorithm 2 WW2C framework

1: Inputs: Number of robots 𝑛. Starting and goal positions and initial velocities:

{𝐩0𝑖 ,𝐩𝑖,𝑔 ,𝐯0𝑖 },∀𝑖 ∈ . Training/Testing communication policy. 𝑛 number of robots.

Episode length: 𝑇𝑒 . Maximum velocity: 𝐯𝑚𝑎𝑥 .
2: Initialize 𝑛 robots in their initial positions and velocities. Copy an instance of the

learned/still in training communication policy 𝜋𝜃 to all robots.

3: Initialize within each robot a set of last communicated trajectories {𝐷𝑗 }𝑗≠𝑖. Obtain
the first observation of the environment {𝐳0𝑖 }𝑖∈

4: for time step t = 0,1,...,𝑇𝑒 do
5: for robot i = 1,2,...,n do
6: //Compute 𝜋 𝑡𝑖 = {𝑐𝑡𝑗 ∣𝑖}𝑗≠𝑖
7: if training then
8: 𝜋 𝑡𝑖 ∼ (𝜋𝜃(𝐳𝑡𝑖))
9: else
10: 𝜋 𝑡𝑖 = 1[𝜋𝜃(𝐳𝑡𝑖) > 0.5]
11: end if
12: //Compute ̂ 𝑡−1

𝑗∣𝑖
13: for robot 𝑗 ≠ 𝑖, 𝑖 = 1, ..., 𝑛 do
14: if 𝑐𝑡𝑗 ∣𝑖 == 1 then
15: //Traj. intention requested
16: ̂ 𝑡−1

𝑗∣𝑖 =  𝑡−1
𝑗

17: 𝐷𝑗 ⟵  𝑡−1
𝑗

18: else if not training then
19: //Traj. int. predicted (alg. 3)
20:  𝑡−𝑘−1

𝑗 ⟵𝐷𝑗 , 𝑘 > 0
21: ̂ 𝑡−1

𝑗∣𝑖 = 𝑝𝑟𝑒𝑑( 𝑡−𝑘−1
𝑗 ,𝐯𝑡𝑗 ,𝐩𝑡𝑗)

22: else
23: ̂ 𝑡−1

𝑗∣𝑖 = ∅
24: end if
25: end for
26: { 𝑡

𝑖 ,𝐮𝑡𝑖}⟵ Solve eq.2.18 with 𝐠𝑖 = 𝐩𝑖,𝑔
27: end for
28: {𝐳𝑡+1}𝑖∈ ⟵ Step({𝐮𝑡𝑖}𝑖∈)
29: end for

2.4 Method

2

29

Algorithm 3 Informed constant velocity estimator of robot 𝑗

1: Inputs: Last communicated trajectory at time step 𝑡 − 𝑘: ̂ 𝑡−𝑘−1
𝑗∣𝑖 , 𝑗 ’s current velocity

and position: 𝐩𝑡𝑗 𝐯𝑡𝑗 . Hyperparameters in table 2.2.

2: reject = 0

3: if 𝑘 ≥ 𝑁 −1 then
4: reject = 1

5: else if ‖‖‖̂
𝑡−𝑘−1
𝑗∣𝑖 (𝑘)−𝐩𝑡𝑗

‖‖‖ > 𝑟𝑡𝑜𝑙 then
6: reject = 1

7: end if
8: if reject then
9: ̂ 𝑡−1

𝑗∣𝑖 = {𝐩̂𝑡+𝑙𝑗 ∣ 𝐩̂𝑡+𝑙+1𝑗 = 𝐩̂𝑡+𝑙𝑗 +Δ𝑡𝐯𝑡𝑗 , 𝑙 = 0, ...,𝑁 −1; 𝐩̂𝑡𝑗 = 𝐩𝑡𝑗 }
10: else
11: //Expand the tail of the last communicated trajectory. Note that we consider:

̂ 𝑡−𝑘−1
𝑗∣𝑖 (0) = 𝐩𝑡−𝑘−1𝑗

12: 𝑇 𝑎𝑖𝑙 = {𝐩̂𝑡+𝑙𝑗 ∣ 𝐩̂𝑡+𝑙𝑗 = ̂ 𝑡−𝑘−1
𝑗∣𝑖 (𝑘 +1+ 𝑙), 𝑙 = 0, ...,𝑁 −𝑘−2}

13: 𝑠𝑡𝑒𝑝𝑐𝑡𝑒_𝑣 = ̂ 𝑡−𝑘−1
𝑗∣𝑖 (𝑁 −1)− ̂ 𝑡−𝑘−1

𝑗∣𝑖 (𝑁 −2) //Cte. velocity step at the end of the tail

14: ̂ 𝑡−1
𝑗∣𝑖 = 𝑇𝑎𝑖𝑙 ∪ {𝐩̂𝑡+𝑙𝑗 ∣ 𝐩̂𝑡+𝑙+1𝑗 = 𝐩̂𝑙𝑗 + 𝑠𝑡𝑒𝑝𝑐𝑡𝑒_𝑣; 𝑙 = 𝑁 − 𝑘 − 1, ...,𝑁 − 1; 𝐩̂𝑡+𝑁−𝑘−2

𝑗 =
̂ 𝑡−𝑘−1
𝑗∣𝑖 (𝑁 −1)}

15: end if
16: return ̂ 𝑡−1

𝑗∣𝑖

2

30 2 Scalable and Efficient Communication for Multi-Robot Collision Avoidance

2.5 Simulation Experiments
In this section we first describe our implementation of the proposed method. Next, we

provide a thorough evaluation of our learned communication policy by comparing it

with our previous approach [20] and other communication baselines in several scenarios

requiring increasing cooperation efforts to navigate safely.

2.5.1 Training Setup
We train our communication policy for a team of twelve quadrotors moving in ℝ3

and

following Parrot Bebop 2 dynamics. We rely on the solver Forces Pro [68] to generate

optimized NMPC code and its corresponding Python wrapper. As in [69], the time step

used in the NMPC is 0.05s and the prediction horizon is 𝑁 = 20 (1 second ahead). The

constraints are formulated as soft-constraints to ensure the feasibility of the problem,

and the solver iterations have been limited to 600 to have at least a control frequency of

20 Hz. Note that the framework is agnostic to the choice of solver as long as it allows a

control frequency of 20 Hz. The learning algorithm and the training of our policy were

implemented in Tensorflow, using the RLlib framework [63]. The Critic and Actor models

follow the architecture shown in section 2.4.2 and were trained for 37200 episodes using

an Intel i9-9900 CPU@3.10GHz computer. The hyperparameters used for training are

explained in the Table 2.1. The simulation time step is set to 0.05s, which is the robot’s

control period. The quadrotors’ dimensions are represented by a sphere of radius 𝑟 = 0.3𝑚
and their maximum speed is 𝑣𝑚𝑎𝑥 = 4.25𝑚/𝑠. Computing both the communication policy

and the MPC control inputs takes less than 0.01s per robot for each time step, which

allows for a real-time implementation of the framework with a control and communication

frequency of 20Hz. No noise is added into the simulation environment during the training

process, in order to optimize the policy with low variance. Values for the reward weights

were 𝑤𝑔 = 10, 𝑤𝑐𝑜𝑙𝑙 = 10, 𝑤𝑐 = 10. Tuned reward and penalty terms were 𝑟𝑔 = 1, 𝑟𝑐𝑜𝑙𝑙 = 1
and 𝑁𝑖(𝑛) = 100(𝑛−1). Goal reward is only received once during the episode. Episodes are

finished after reaching 100 time steps or when all agents reach the goal.

2.5.2 Baselines
We introduce and compare our method with four other commonly used heuristic commu-

nication policies:

• Full communication (FC): At each time step each robot broadcasts its trajectory plans.

• No communication (NC): The robots never exchange their trajectory plans and a

Constant Velocity model is used by each robot to infer the others trajectories.

• A distance-based communication policy (𝜖-DBCP): If the distance between two robots

distance is smaller than a threshold 𝜖 (in meters) then the agents broadcast their

trajectory information. 𝜖 ∈ {4.25𝑚,8.5𝑚}, which is once and twice the maximum

distance within planning horizon, respectively.

Full communication and no communication policies give us a reference on what are the

expected maximum and minimum performances in terms of safety and communication

requests. On the one hand, since full communication policies allow each robot to request

2.5 Simulation Experiments

2

31

(a) Random navigation (c) Random swapping (e) Asymmetric swapping

(b) Rotation (d) Group swapping (f) Symmetric swapping

Figure 2.3: Simulation results for each scenario using our communication policy. The three figures on the left

show the scenarios used for training while the three on the right are the ones used for testing. Solid lines represent

the trajectories executed by the drone-swarm. Yellow represents the positions where the drones communicate

their trajectory plans. Blue depicts the positions where the drones do not communicate. Green and Red represent

the initial and goal position of each drone, respectively. Increasing opacity represents the episode progression.

trajectory intentions from all robots at every time step, we can consider it to be an over-

conservative communication policy. Thus, if safe navigation is not achievable by applying

full communication in a particular sampled episode, we can consider that it is difficult to

find a better communication policy that can achieve collision avoidance for this particular

configuration of robot initial positions and goals. On the other hand, no communication
policies provide a reference on the expected minimum performance of the framework when

only constant velocity estimations are used to predict other robots’ future trajectories.

Other baselines (𝜖-DBCP) give us a sense of our learned method’s efficiency and safety in

comparison with hand-crafted, reasonable and strong heuristics. The MPC motion planner

is implemented with the same parameters for all baselines.

2.5.3 Testing Scenarios
To evaluate and compare our method with the baselines we design scenarios where we can

evaluate how communication policies adapt to different levels of interaction. Therefore,

aside from the scenarios used for training (see Sec. 2.4.3), we define three additional ones:

• Rotation (Figure 2.3b): All drones are arranged in a circle and must rotate one

2

32 2 Scalable and Efficient Communication for Multi-Robot Collision Avoidance

(a) Evolution throughout training of the learned

policy’s number of communication requests.

(b) Evolution throughout training of the learned

policy’s collision rate. Since the y-axis is in loga-

rithmic scale, the 0 value is represented by 10−3.

Figure 2.4: Policy evolution in each scenario throughout the different training stages of curriculum learning.

We train three seeds and evaluate them every 400 training episodes for 100 episodes. We show the evolution

of the mean and standard deviation of the number of communication requests and collision rate in each of

the presented scenarios. We use the results obtained for the full communication policy, which represents the

maximum communication possible, to normalize the number of communication requests of the learned policy

between [0,1].

position either clockwise or counter-clockwise. This is a control scenario where

no communication should be necessary. Therefore it allows us to evaluate the

adaptability and communication efficiency of the policy.

• Group swapping (Figure 2.3d): We arrange the twelve drones in two groups of six

symetrically opposed. Then, each drone must swap positions with its symmetrical

counterpart.

• Symmetric swapping (Figure 2.3f): All drones are arranged in a circle in sym-

metrically opposed initial positions and swap places with the opposite drone. As

with the asymmetric swapping scenario, communication is required for all drones to

ensure collision-free trajectories.

All scenarios used for evaluation are depicted in Figure 2.3.

2.5.4 Performance Evaluation
We evaluate the performance of the proposed learned collision-avoidance policy in terms

of its safety and communication efficiency. We present multiple performance metrics and

then compare our method with the indicated baselines. The metrics are:

• Collision rate: Proportion of episodes where there has been a collision between any

of the robots in the team.

• Number of communication requests along the episode: Total number of communication

requests throughout the episode. In deterministic scenarios, where we are certain of

the low or high need for cooperation, this metric will allow to discern the adaptability

of each model.

2.5 Simulation Experiments

2

33

(a) Proportion of episodes with at

least one collision in each scenario.

(b) Number of communication re-

quests in each scenario.

(c) Time steps needed to reach the

goal in each scenario.

Figure 2.5: Performance evaluation for each scenario of the communication baselines and our learned policy.

For our trained policy, we run three seeds and take their average performance and standard deviation. We run

each method for 1000 episodes, gathering results for each metric. For collision rates, we show the proportion of

episodes where we obtain at least one collision. For communication requests and number of time steps, we show

the results for those episodes without collisions. In case none of the sampled episodes end without collisions, no

bar is shown for that policy.

• Time to achieve the goal: Number of time steps needed to reach the goal. Failed

episodes, where a collision has happened, are not accounted for when computing

the mean and standard deviation.

Fig 2.4 shows the evolution of the learned policy throughout training in terms of average

collision rate and number of communication requests for all scenarios. To account for

the effect of different network initialization seeds into the final learned policy, we train

three different initialization seeds and show the average and standard deviation of their

performance in all our evaluations.

We normalize our results in communication requests between [0,1] using those obtained for

the full/no communication policies for the same sets of sampled episodes for each scenario

since this gives us a reference on the maximum/minimum values that we can score in both

metrics. We can see that our method is able to learn an adaptable policy that makes close to

no requests in simple settings such as Rotation, Random navigation and Random swapping
scenarios while marginally affecting the number of collisions obtained in more difficult

settings such as Group swapping, Asymmetric and Symmetric swapping scenarios. We can

observe that our learned policy can adapt to the different amounts of communication that

are required to achieve safe navigation. Note how at the end of training, the collision rate

decreases drastically.

Figure 2.5 compares the learned communication policy against the proposed baselines

using these metrics. The scenarios are ordered according to their levels of interaction. The

results obtained for the no communication policy show correlation between the different

complexity in scenarios and the need for communication. As shown in Figure 2.5a, the

collision percentage of our method (WW2C) is the same or very similar as all other

conservative baselines in all scenarios (0.4% difference at most). Even in the most complex

scenarios, such as asymmetric swapping, we show that the difference in collisions is not

significant in comparison with the safest communication policy: full communication. The
clear advantage of our method is illustrated in Figure 2.5b, where WW2C shows better

2

34 2 Scalable and Efficient Communication for Multi-Robot Collision Avoidance

(a) Collision rate over each scenario

for full communication policy.

(b) Collision rate over each scenario

for our method.

(c) Normalized number of communi-

cation requests over each scenario.

Figure 2.6: Results obtained when testing the full communication and our policy with 6, 12, 18 and 24 drones. Our

method has been trained with 12 drones. Showed communication requests are have been scaled using the mean

communication requests of the full communication policy under each scenario/number of agents.

results by communicating less than 50% and 30% in comparison with 4.25m heuristic and the
full communication in the worst cases. We show that the learned policy can adapt better to

scenarios of different complexities since there is also a clear correlation between the amount

of communication requested at each scenario and the expected need for cooperation shown

in Figure 2.5a.

Due to our setup not allowing our drone to stop instantaneously, it will collide rather

than run into deadlocks. Therefore, the success rate for any method is equivalent to one

minus its collision rate. We show that the learned communication policy still manages

to succeed in practically all scenarios with little effect in the time it needs to achieve the

goal in comparison with the baselines. Our reward function accounts for achieving the

goal only at the end of the episode. This is due to our main priority being to decrease the

amount of communication while maintaining safety and avoiding deadlocks. We find that,

although our reward function does not motivate achieving the goal as fast as possible, the

sacrifice in terms of additional time steps is not significant.

2.5.5 Robustness and Zero-Shot Generalization Capabilities
Our approach allows to obtain a policy that is capable to generalize to an arbitrary number

of robots in the environment, and to scenarios requiring different levels of interaction.Thus,

we demonstrate the generalization of the learned communication policy with a series of

experiments.

Lower/Larger scale multi-robot systems
We evaluate the performance of our method trained with 12 agents, on scenarios with a

higher/lower number of agents. More specifically, in Figure 2.6, we show the obtained

results from simulating 6,12,18 and 24 robots in each of the training and testing scenarios

for 1000 episodes in comparison to the performance shown by the full communication
policy under the same conditions.

We show that our method is able to communicate at least 70% less in comparison with

the full communication policy, while still being capable to adapt to scenarios requiring

different levels of interaction. Note that the normalized communication requests for

each scenario does not change significantly with the number of agents, even showing a

2.5 Simulation Experiments

2

35

decreasing tendency when scaling up to 24 agents. This indicates that our communication

policy generalizes well to environments with additional agents.

Regarding the obtained collision rates, our method generalizes well and shows better

results when there are fewer robots in the environment. There is a degradation of perfor-

mance when the number of agents in the environment is higher than seen during training.

However, the degradation obtained for our method is low (i.e., less than 2% for 18 agents,

and less than 10% for 24 agents) and is similar to the degradation seen when using full
communication for the same numbers of agents.

Noisy positions and velocities
We also evaluate the robustness of our communication method under different levels of

noisy inputs. We add a multiple of a gaussian noise to the other agents’ relative positions

and velocities in our observation vector 𝐳𝑡𝑖 to simulate the effects of sensor measurement

errors and localization uncertainties on our learned communication policy. The added

measurement noise is zero mean with covariance: Σ = diag(0.06m, 0.06m, 0.06m)2. We

simulate 1000 episodes for each scenario under three levels of noise: Σ, 2Σ, 4Σ. In figure

2.7, we show that our method is robust to these different levels of the added measurement

noise since both performance and behaviour in terms of collision rates and communication

requests suffer non-significant changes. In fact, note how the collision rates for each level

of noise remains very low (lower than 1%) and similar to the other results.

(a) Collision rate over each scenario. (b) Number of communication requests over each sce-

nario.

Figure 2.7: Results obtained when testing our policy in presence of noise of the observed robot’s positions and

velocities. Standard deviations are taken over the results taken when evaluating 3 seeds of the trained policy over

1000 episodes.

2.5.6 Ablation Study
We analyse the key design choices we have introduced in this paper in comparison to

[20]. Two main changes that we introduce are a model architecture that is able to function

with an arbitrary number of robots, and a difference in conditions between training and

testing regimes to obtain more robust and adaptable communication policies. Overall,

these two changes allow us to learn policies that can decide better when and with whom to

2

36 2 Scalable and Efficient Communication for Multi-Robot Collision Avoidance

communicate. We also changed the reinforcement learning algorithm from MADDPG [37]

to PPO [14] with parameter sharing [49]. This was necessary as MADDPG requires one

state-action value function per agent, which scales badly with the number of agents and

tends to learn specialized agent roles that are situation-specific. PPO, on the other hand,

only requires one state-value function for all agents and can learn the same communication

policy for all agents using parameter sharing as well, avoiding over-specialization to specific

scenarios.

We perform an ablation study to justify the modifications applied to the previous

approach [20]. First, we will address the implementation of a targeted scalable attention-

based architecture to encode the information of the dynamic environment. Second, we

will empirically justify our decision of disabling informed constant velocity estimations

whenever there’s no communication during training.

Evaluation metrics and output models
We compare the different ablations across the same scenarios mentioned in section 2.5.4

showing the evolution of their training according to the following metrics (sorted in

descending priority order):

• Collision rate: Defined in section 2.5.4.

• Number of communication requests: Defined in section 2.5.4.

Similar to our method in section 2.4.2, each ablated communication policy outputs a

normalized 2-dimensional vector [𝑝𝑗 ∣𝑖, 1−𝑝𝑗 ∣𝑖] for each other robot 𝑗 . This vector represents
a Bernoulli distribution (𝑝𝑗 ∣𝑖). The communication policy is stochastic if it samples such

distribution to decide whether to request robot 𝑗 ’s trajectory intentions (𝑐𝑗 ∣𝑖 ∼ (𝑝𝑗 ∣𝑖)).
The policy is deterministic if it decides to communicate by comparing the mean of the

distribution to a predetermined threshold (𝑐𝑡𝑗 ∣𝑖 = 1[𝑝𝑗 ∣𝑖 > 0.5]). For fair comparison, we

evaluate every ablation both as a stochastic and deterministic policy and show the one

obtaining the best performance across all different evaluation scenarios.

Scalable attention-based architecture
One of the main limitations of our previous approach [20] is its difficulty to scale to multi-

robot teams larger than four quadrotors, let alone react to an arbitrary number of robots

in the environment. Similar to [44] and [62], in this work we address this challenge by

incorporating three layers of transformer blocks into the core of the network architecture to

encode the environment, which allows to provide a communication action for an arbitrary

number of other robots. In Figure 2.8, we compare our approach with two ablated versions.

Ablated architecture 1 concatenates all the encoded vectors from other robots and

substitutes the transformer block by three 64 neuron fully-connected layers with a ReLu

activation. The decoder layer maps the resulting hidden layer to a vector of 2(𝑛 − 1)
communication scores. This ablated version cannot be used for a different number of

agents than in training. The aim of this ablated version is to showcase the benefits of using

each other drone individual information while using attention mechanisms to encode the

state of the environment and compute each communication signal. In Figure 2.8, we show

that the architecture used in this work is able to scale better to larger multi-robot systems

2.5 Simulation Experiments

2

37

(a) Collision rate (b) Number of communication requests

Figure 2.8: Performance evaluation over the ablated versions presenting different policy architectures. We add

the performance of our own method for comparison. Standard deviations are taken over the results taken when

evaluating 3 seeds of each trained policy over 1000 episodes.

both in terms of collision rate and number of communication requests across episodes.

These results also remark the importance of precise communication. A higher amount of

communication requests do not necessarily translate to a safer communication policy.

Ablated architecture 2 also replaces the transformer block with three fully-connected

layers of 64 neurons with ReLu activation functions. However, it processes each robot’s

information individually to decide whether to communicate or not. This network solves a

simpler problem than the precedent ablated version since it learns to communicate with

another other robot by only considering the information on its distance, relative position

and velocity. Surprisingly, Figure 2.8 shows that this second ablation performs similar to

our attention-based architecture. The intuition behind these results is that, at least in the

tested scenarios, the individual relative information of every other robot contains most of

the information that is relevant to decide whether to communicate with it or not. Although

our method seems to result in slightly less collisions in all scenarios, we cannot draw a

solid conclusion on this since the performance is not significantly different. In fact, while

it is logical that there should be situations where the attention module would add a clear

advantage over the pairwise communication ablation, it seems difficult to identify and

reproduce these scenarios.

Training-test environment separation
As explained in section 2.4.3, distinction between test and training regimes was applied

to increase the amount of collision experiences and increase the causality between lack

of communication and collision events. The result of doing this is an efficient learned

communication policy that is able to adapt to different scenarios with variating levels of

interaction and still be practically as safe as full communication policies.

However, it could be unclear whether the same results could still be achieved by

finding the right weighting trade-off between collision event and communication event

penalizations. To verify this, we modify the reward function by adding a weighting variable

𝜌, as shown in Equation 2.19, and attempt to fine-tune it by training three models under

2

38 2 Scalable and Efficient Communication for Multi-Robot Collision Avoidance

(a) Collision rate (b) Number of communication requests

Figure 2.9: Performance evaluation over the ablated versions trained while enabling the prior information

predictions. We add the performance of our own method for comparison. Standard deviations are taken over the

results taken when evaluating 3 seeds of each trained policy over 1000 episodes.

different values for it: 𝜌 = {0.98,0.90,0.50}. Informed constant velocity estimations are

enabled during training. Note that 𝜌 = 0.5 results in the original reward function proposed

in section 2.4.1.

𝑅𝑖(𝒙𝑡 ,𝜋 𝑡𝑖) = 𝑤𝑔𝑅𝑔,𝑖(𝒙𝑡)
+2𝜌𝑤𝑐𝑜𝑙𝑙𝑅𝑐𝑜𝑙𝑙,𝑖(𝒙𝑡)+2(1−𝜌)𝑤𝑐𝑅𝑐,𝑖(𝜋 𝑡𝑖)

(2.19)

The values of 𝜌 were chosen to showcase how difficult and counter-intuitive it is

to properly balance communication and collision penalties when the training and test

environment are the same. Rather than a wide range of parameters, Figure 2.9 shows which

values of 𝜌 are necessary to obtain a policy that matches ours in terms of collision rates

(𝜌 = 0.98), communication requests (𝜌 = 0.90), and what happens when we balance both

objectives equally (𝜌 = 0.50).
In Figure 2.9, we compare our method with different versions of the ablated model

trained under the given different values for 𝜌. Increasing the value of the 𝜌 hyperparameter

results in learning more conservative communication policies that make more communica-

tion requests to navigate more safely. We can argue that fixing such value around 𝜌 = 0.90
yields similar performance to our method as it is just slightly lower in terms of communi-

cation requests in the most complex training scenario: Asymmetric swapping. However, we
show crucial differences in terms of fine-tuning difficulty, adaptability and reliability of the

learned policy. In rotation scenarios, we should learn to decrease communications as no

interaction is needed to perform safe navigation in this setting.

Note how the value of 𝜌 has high impact on the converged policy for the ablated

versions. In particular, their collision rate and overall communication amount throughout

all scenarios variate greatly as shown in Figure 2.9. In contrast, our method allows us

to decrease the number of communications while hardly compromising safety by just

applying a simple modification.

2.6 Real Experiments

2

39

Additionally, ablated versions fail to adapt to different scenarios. Policies trained with

high values for 𝜌 (≥ 0.90) tend to over-communicate, requesting other robots’ trajectory

intentions even when both of them are not moving. Instead, for lower values of 𝜌 (≤ 0.90
and specially ≤ 0.50), learned policies tend to under-communicate as they rely too much

on the predicted future trajectories which compromise their collision rate. In particular,

a balanced value of 𝜌 = 0.5 that equally punishes collisions and communication already

results in close to 0 communication requests and high collision rates. We won’t get any

further interesting results from lower 𝜌 values since that would mean a policy even closer

to the no communication policy baseline. Enabling informed constant velocity estimations

during training results in learned policies that leverage howmuch they can rely on informed

constant velocity estimations. In practice, this means that we have a stochastic policy

that controls the expected frequency of trajectory intention requests. While it is another

valid strategy, it lacks adaptability and is less reliable and intuitive in complex scenarios.

This explains why policies trained under high values for 𝜌 tend to overcommunicate in all

scenarios (Figure 2.9).

2.6 Real Experiments
In this section, we demonstrate that our communication policy learned through reinforce-

ment learning in simulation can be deployed on physical quadrotors. In the following

subsections, we first briefly introduce the hardware setup of our framework. Then, we

present the multi-robot scenarios used for evaluation.

2.6.1 Hardware Setup
As in [30], our experimental platform is the Parrot Bebop 2 quadrotor. The radius of each

quadrotor is set as 0.30m in the MPC. An external motion capture system (Optitrack)

is used to measure the pose of each quadrotor, which provides an estimated pose for

each quadrotor. We then use an UKF to estimate the state of quadrotors [30]. We use an

Intel i7 CPU@2.6GHz computer for the communication policy and planner and use Robot

Operating System (ROS) to send commands to the quadrotors. The communication policy

and the NMPC configurations are explained in section 2.5.1.

2.6.2 Multi-Robot Scenarios
In this section, we design three scenarios to validate that the behaviors learnt in simulation

during training (Figure 2.3) can be reproduced in real multi-drone teams. These experi-

ments have been designed to showcase the adaptability of the communication policy to

different amount of drones and to motion planning tasks requiring different amounts of

interaction.

First, in Figure 2.10a we let two drones follow parallel trajectories (analogous to the

rotation scenario in 2-drone settings) to verify that the learned communication policy does

not communicate when it is not necessary. Additionally, we let them swap positions (Figure

2.10b) to demonstrate that two robots can reliably avoid each other using this framework

and to verify the adaptability of our learned communication policy to different situations

along the episode (i.e. they do not communicate unless needed to avoid collisions). Finally,

2

40 2 Scalable and Efficient Communication for Multi-Robot Collision Avoidance

(a) Parallel trajectories (b) Swapping positions (2 drones) (c) Swapping positions (3 drones)

(d) Distance from each drone to its closest neighbour and the number of communication requests at each time step

Figure 2.10: Validation of our trained policy under different scenarios in real experiments.

we add a third robot to the environment and let them perform the swapping scenario

(Figure 2.10c). Note that the communication policy is the same for all robots and does not

need retraining when their number changes.

In Figure 2.10d, we plot the minimum distance among drones and the number of com-

munications registered along these three scenarios. We show that in all three cases, our

framework manages to avoid collisions with a minimal number of communication requests,

and to adapt to a different number of robots without retraining or tuning the parameters

from the NMPC.

To show the relationship between communication requests and distance holds even in

real environments, we perform 9 swapping experiments with two drones (Figure 2.10b)

while keeping record of the distance between them and the number of communications.

Although there are overlaps among the distance distributions, the box plot in Figure

2.11 shows a clear relationship between the distance between drones and the number

of communications. Note that the outliers in the 0-communication distribution and the

overlaps between boxes could be due to the fact that the learned communication policy does

not behave symmetrically in space. As seen in Figure 2.11, this means that the two drones

do not necessarily communicate at the same time and does not behave equally before and

2.7 Conclusions

2

41

Figure 2.11: Box plot on the two-drone distance distribution for different levels of communication. The dotted

line indicates the collision distance.

after the intersection (Figure 2.10d). Our results show therefore that the proposed learned

communication strategy allows physical quadrotors to navigate tight situations with lower

communication requests to avoid collisions.

2.7 Conclusions
In this paper, we have introduced an efficient communication policy integrating the

strengths of MARL and NMPC in collision avoidance tasks. Simulation results show

that our policy learns when and from whom to request planned trajectories to successfully

avoid collisions. Experimental results show that the learned communication policy can

be deployed on physical quadrotors. Further testing and the extension of our method

to heterogeneous multi-robot systems is left for future work. Our method reduces the

amount of communication requests significantly while achieving collision-free motions,

practically achieving the same safety as more conservative communication baselines. The

analysis and extension of our method under imperfect and delayed communication con-

ditions are also left for future work. In comparison to [20], we use an architecture that

enables us to scale our approach to higher and varying number of agents during and after

training. Furthermore, we introduce a training method which allows to learn safe policies

2

42 2 Scalable and Efficient Communication for Multi-Robot Collision Avoidance

without sacrificing adaptability. Future work will investigate how to prioritize episodes

from scenarios which are rich in information to improve sample efficiency. Finally, our

learned communication policy can only influence and coordinate the motion planning of

each robots to a certain extent. It can only choose when additional information is needed

to generate safe trajectories, but cannot modify this information nor modify the plans

generated by the NMPC directly. Learning how to modify the information and/or plans

generated by the NMPC to compensate for a lack in accuracy of our model is left for future

work as well.

3

43

3
Active Classification of

Moving Targets with
Learned Control Policies

The work of this chapter has appeared in:

� Á. Serra-Gómez
⋆
, E. Montijano, W. Böhmer, J. Alonso-Mora, Active Classification of Moving Targets With

Learned Control Policies, in IEEE Robotics and Automation Letters (RA-L), vol. 8, no. 6, pp. 3717-3724, 2023, doi:

10.1109/LRA.2023.3271508.

3

44 3 Active Classification of Moving Targets with Learned Control Policies

3.1 Introduction
In surveillance and tracking applications an autonomous drone may be tasked with col-

lecting relevant information from multiple targets, e.g., recognize people with blue eyes.

Recent deep learning approaches show excellent results at detecting and categorizing

single and multiple elements with images [70] or LiDAR [71]. However, these methods

are generally not enough for active classification with a mobile drone, which also requires

planning of the drone’s movement and reasoning over the targets’ future behavior.

The use of deep learning perception algorithms for information gathering comes

with its own challenges. On the one hand, the “black-box” nature of these algorithms

makes it difficult to determine the position that would yield the most informative data

for classification. On the other hand, the drone also needs to reason about the targets’

movement and orientation, as well as the possible occlusions among them, to plan a

trajectory that will reveal the most information.

To overcome these issues, the main contribution of this paper is a complete solution

to the problem of active classification of multiple moving targets. Differently to previous

approaches, our framework can handle dynamic targets without requiring an explicit obser-

vation model, e.g., using a black-box classifier. Our solution leverages Deep Reinforcement

Learning (DRL) to train a control policy that recommends informative viewpoints using

the relative position of the targets and their current class probability estimations. We also

propose a novel attention-based permutation-invariant architecture for the DRL policy

that generalizes to more targets that move differently from those seen during training.

Moreover, to simplify the training, the policy is abstracted from the low-level dynamics

of the drone, which are instead considered inside a low-level MPC controller at test time.

Finally, the estimations are updated with an efficient information fusion method, conflation,

suited to be used with black-box perception algorithms. A full overview of the method

is shown in Fig. 3.1. Experiments under different conditions show that our approach

outperforms a variety of baselines and is robust to scenarios unseen during training.

3.2 Related Works

3

45

Figure 3.1: Overview of our method for active classification. The objective is to classify all targets into different

classes, red and blue in the example. The method has three parts. First, observable targets, targets 1 to 5,

represented with white back in the figure, are detected by the onboard sensor. We assume the existence of a

classification algorithm, e.g., a CNN, able to provide probability estimates for each target (bars at the bottom

right). Then, we use an efficient fusion mechanism, conflation, to obtain the beliefs, 𝐛𝑡 , over the classes for each
target. Finally, this information, together with the observed probabilities and relative locations, 𝐨𝑡 , is fed to a

control algorithm that computes the recommended viewpoint, 𝐚𝑡 , using a novel deep learning architecture trained

using Reinforcement Learning. The recommended viewpoint is tracked with a low-level controller, which outputs

the robot control input 𝐮𝑡 .

3.2 Related Works
Our contributions build upon recent work in multi-view active classification and learning

for motion planning in dynamic environments.

3.2.1 Multi-view active classification
The problem of active classification is typically solved by pre-defining a set of viewpoints

through which trajectories are planned to gather sufficient information to solve an active

classification task. One-step greedy planners for active object classification [72] select

object-dependent viewpoints based on class uncertainty and observation occlusions. Some

non-myopic methods [73] account for the cost of movement and information gain between

viewpoints to solve the problem of active classification. Others, e.g., [74], formulate

the problem as a partially observable Markov Decision Process (POMDP) and plans a

path over viewpoints while accounting for measurement costs, occlusions and possible

misclassifications. Similarly, [75] computes plans using a variation of Monte Carlo tree

search. However, these methods generally require access to a model to estimate viewpoint

usefulness a priori.

Learning methods are non-myopic and allow to use black-box models. Recent works

leverage the use of DRL for static multi-target pose estimation and active classification

by learning a policy that moves the camera towards viewpoints that reduce observation

uncertainty [76] or maximize information gain to enhance object classification [77]. Nev-

ertheless, these methods assume that targets are static, which makes them unsuitable for

active classification with moving targets. Although some works consider dynamic targets,

they are often limited to a pre-defined closed environment [78] or, as its the case for aerial

videography methods [79, 80], focus on target information visibility which requires prior

3

46 3 Active Classification of Moving Targets with Learned Control Policies

knowledge on where this information is visible from.

3.2.2 Learning for motion planning in dynamic environments
Learning approaches in motion planning tasks have the potential to encode and identify

patterns in complex motion planning tasks. Recent advances in Deep Representation

Learning show promise in learning latent representations of the state space, capturing

the underlying structure and symmetries in dynamic environments [81]. Recent works in

learning-based motion-planning policies rely on Convolutional Neural Networks (CNN) [82,

83] for visual-based navigation, or encode the state of multiple static/dynamic elements in

the environment using Graph Convolutional Networks (GCN) [45, 84] or Long-Short Term

Memory layers (LSTMs) [44, 60].

Yet these strategies require a priori knowledge on the priority order of the elements in

the encoded sequence, or the structure of the encoded graph [62]. Instead, DeepSets [85] and

self-attention based architectures [17, 86] are permutation invariant and enable encoding

element sets without making further assumptions on their structure. Most related to our

approach, [10] uses a combination of Self-attention [17] and DeepSets [85] to learn a policy

that coordinates a multi-robot system to track a set of dynamic targets. However, DeepSets

aggregate all targets’ information by assigning equal weights to them. In contrast, we

leverage the use of self-attention [17] and attention-based set-function approximators [87]

to effectively encode the dynamic environment, learning the importance of each target in

our future decision.

3.3 Background
3.3.1 Problem formulation
Consider a drone with state 𝐱𝑡 at discrete time 𝑡, control inputs 𝐮𝑡 and dynamics 𝐱𝑡+1 =
𝑓 (𝐱𝑡 ,𝐮𝑡), obtained for a sampling time of 𝜏𝑙 seconds. The drone has to collect information

from a set  = {1, ...,𝑀} of 𝑀 dynamic targets, where 𝐲𝑗𝑡 is the state of target 𝑗 at time step

𝑡, represented in the drone’s reference frame and 𝑡 = {𝐲𝑗𝑡 }𝑗=1,...,𝑀 . The targets follow their

own dynamics, 𝐲𝑗𝑡+1 = 𝑔 𝑗 (𝐲𝑗𝑡), which are unknown to the drone. We assume that the drone

flies above the targets, neglecting physical collisions with them. Nevertheless, the targets

can still collide with each other and, more importantly, they can occlude the visibility of

others to the drone, depending on where they are. Besides, we do not deal with how to

measure and track the targets’ relative information, assuming they are provided by some

external perception algorithm, e.g., [88]. For the sake of simplicity, in the following we

omit the 𝑡 subscript, except when needed.

We denote by  = {1, ...,𝐶} the set of classes, such that each target in  belongs to one

class in  (e.g., eye color). The objective of the drone is to classify all the targets. To do

that, the drone has a belief vector for each target, 𝐛𝑗 = {𝑏𝑗1, 𝑏𝑗2, ..., 𝑏𝑗𝐶}, where 0 ≤ 𝑏𝑗𝑐 ≤ 1
denotes the belief the drone has of target 𝑗 belonging to class 𝑐 at time 𝑡, and ∑𝐶

𝑐=1 𝑏𝑗𝑐 = 1.
Target 𝑗 is tagged as classified whenever max𝑐∈𝐶 𝑏𝑗𝑐 is above a pre-defined threshold 𝑏max.

We use the Boolean variable 𝑙𝑗 , to specify whether target 𝑗 is classified or not at timestep 𝑡.
To compute the beliefs, every 𝜏ℎ ≫ 𝜏𝑙 seconds, the drone is able to make an observation

and use a black-box perception algorithm (e.g., a pre-trained CNN classifier) to compute

a probability distribution over the class set for each target. We denote that distribution

3.3 Background

3

47

as  = ℎ() = {𝐩𝑗 }𝑗=1,...,𝑀 , where 𝐩𝑗 = (𝑝𝑗1, ...,𝑝𝑗𝐶) is the probability vector for target 𝑗 ,
and 𝑝𝑗𝑐 is the probability of target 𝑗 belonging to class 𝑐. For unobserved targets, 𝐩𝑗
is a uniform distribution. As it happens with the majority of real CNN classifiers, we

assume the drone has no available model to map how the relative positions relate to the

observed probability distributions. Beliefs are then computed by fusing thesemeasurements,

𝐛𝑗𝑡 = 𝜁 (𝐩𝑗1∶𝑡), where 𝜁 is the conflation operator [89], a function that models how the beliefs

can be computed from the history of classification probabilities given by the black-box

sensor (see Section 4.5.1).

Under these conditions, the problem considered in the paper is to actuate the drone

in such a way that it is able to classify all targets as quickly as possible, i.e., make 𝑙𝑗𝑡 true
for all 𝑗 in the minimum possible value of 𝑡. To address it, we formulate a sequential

decision-making problem that the drone solves at every time step 𝑡. The objective of this
problem is to find the actions over a time horizon 𝑇 that minimize the accumulated entropy

of all the targets’ beliefs,

min
𝐮0∶𝑇

𝑇
∑
𝑡=1

∑
𝑗∈

𝑤[𝐛𝑗𝑡]+𝑤𝑢 ‖𝐮𝑡 ‖

s.t. 𝐱𝑡+1 = 𝑓 (𝐱𝑡 ,𝐮𝑡), 𝐲𝑗𝑡+1 = 𝑔 𝑗 (𝐲𝑗𝑡), ∀𝑡

𝑡 = ℎ(𝑡), 𝐛𝑗𝑡 = 𝜁 (𝐩𝑗1∶𝑡), ∀𝑡 ∝ 𝜏ℎ/𝜏𝑙
𝑗 ∈  , 0 ≤ 𝑡 ≤ 𝑇 −1

(3.1)

where [𝐛𝑗𝑡] denotes the entropy of belief 𝐛𝑗𝑡 , 𝑤 and 𝑤𝑢 are scaling weights, and ∝ is the

proportional sign.

3.3.2 Target class observations and Belief Updates
An important aspect to consider is how to aggregate the different observations made by

the drone about each target’s class to produce the class beliefs. The first issue to consider

is that standard Bayesian recursive estimation is not advisable because the measurement

likelihood model for the update, ℙ(𝐩𝑗𝑡 |𝐛𝑡−1), is not available from a black-box sensor. To

train and learn an accurate pose-dependent model of the likelihood, a dense dataset must

be built first. Then, to use it for optimal viewpoint search all targets and their occlusions

must be considered. This process is costly and scales badly.

Instead, in this paper we propose to use a mathematical method called conflation [89].

Conflation is used to aggregate probability distributions obtained from measurements

over the same phenomena under different circumstances. Notably, this technique has

the property of minimizing the loss of Shannon information when flattening multiple

independent probability distributions into a single one, that is, computing 𝐛𝑗𝑡 given the

measurements 𝐩𝑗0∶𝑡 . In addition, it is a commutative and associative operator, enabling easy

and efficient recursive computation and making it appealing for onboard computation. The

conflation is defined by

𝐛𝑗𝑡 = 𝜁 (𝐩𝑗1∶𝑡) ≡ 𝜁 (𝐛𝑗𝑡−1,𝐩
𝑗
𝑡) =

𝐛𝑗𝑡−1⊙𝐩𝑗𝑡
(𝐛𝑗𝑡−1)⊤𝐩

𝑗
𝑡
, (3.2)

3

48 3 Active Classification of Moving Targets with Learned Control Policies

where the Hadamard product ⊙ in the numerator is taken component-wise, whereas the

dot product is the normalization factor. Beliefs are initialized at 𝑡 = 0 with a uniform prior

over classes in .
Lastly, although Eq. (3.2) considers all the measurements equally, it can easily be

extended to a weighted version using the weights as powers of the probability distributions.

This could be useful for example in cases where the black-box also outputs a confidence

measurement over the class probabilities.

3.4 Methodology
The lack of information about ℎ(𝑡) and 𝑔 𝑗 (𝐲𝑗𝑡) hinders the direct solution of problem (3.1).

Instead, in the paper we leverage Reinforcement Learning to train a control policy that

implicitly learns these quantities (Viewpoint Control Policy). The policy 𝜋𝜙, parametrized

by 𝜙, operates at the perception low-frequency,
1
𝜏ℎ
, and computes informative viewpoints

𝐚𝑡 for the drone. The viewpoints are then tracked with an MPC controller that generates

the low-level control inputs, 𝐮𝑡 , at the necessary higher frequency,
1
𝜏𝑙
. A positive side-

effect of this decomposition in two temporal abstraction levels is the possibility to neglect

the complex drone dynamics in the POMDP formulation used for the RL algorithm. An

overview of the proposed framework is given in Figure 3.1. To simplify the notation, in

this section 𝑡 denotes time periods of 𝜏ℎ, whereas the faster time steps of periods 𝜏𝑙 are
denoted by 𝑘 in Section 3.4.2.

3.4.1 Viewpoint Control Policy
POMDP Formulation
We formulate the high-level viewpoint recommendation problem as a POMDP, which

is defined by the tuple ⟨𝑆,𝐴, ,𝑍,,𝑅⟩. The states 𝐬𝑡 ∈ 𝑆 contain the drone’s position

𝐪𝑡 and yaw orientation 𝜓𝑡 , all targets’ states 𝐲𝑗𝑡 and ground truth class, and the current

beliefs 𝐛𝑗𝑡 and 𝑙
𝑗
𝑡 , 1 ≤ 𝑗 ≤ 𝑀 . The action space, 𝐴, models the recommended viewpoints,

defined by displacements over the drone’s position and yaw, 𝐚𝑡 = (Δ𝐪𝑡 ,Δ𝜓𝑡). Recommended

viewpoints are constrained to a neighborhood and orientation from the current pose,

which depends on the maximum distance and angle the drone can traverse in 𝜏ℎ seconds.
The transition probability function,  , simply assumes that the drone is able to reach

the output viewpoint in time for the next measurement. The drone observes partial

environment information 𝐨𝑡 ∈ 𝑍 , according to the observation function. This observation
is defined by 𝐨𝑡 = {𝐨𝑗𝑡 }𝑗=1,...,𝑀 , where 𝐨

𝑗
𝑡 B (𝐲𝑗𝑡 ,[𝐛𝑗𝑡],[𝐩𝑗𝑡], 𝑙

𝑗
𝑡) is the information available

from target 𝑗 regarding its relative pose, velocity, normalized entropy of the belief and the

current measurement, and whether it has already been classified. The use of the belief

and measurement entropy, instead of the probability distribution vector, enables handling

an arbitrary number of classes 𝐶 and keep track of how much information can still be

gained by observing a target. We also recall that for unobserved targets, 𝐩𝑗𝑡 is a uniform
distribution.

Finally, the reward function, 𝑅, is shaped based on the problem described in Eq. (3.1),

and additional factors that the policy should take into account. First of all, there is a dense

reward, 𝑅 , proportional to how much the entropy of each belief, 𝐛𝑗𝑡 , has decreased each

time step, 𝑡, due to the new information gathered. Additionally, there is one sparse reward,

3.4 Methodology

3

49

denoted by 𝑅𝑙 , for individual target classifications, when any 𝑙𝑗𝑡 changes from zero to one

at time 𝑡, and another, 𝑅 , for completing the classification of all of the existing targets,

when∑𝑗 𝑙
𝑗
𝑡 =𝑀 . On the other hand, to promote solving the task quickly and efficiently, the

reward includes a constant penalty associated to the time required to classify the targets,

𝑅𝑡 , and another one proportional to the distance to the recommended viewpoint, 𝑅𝑎, to
favor small motions. The formal definition of all the reward terms is

𝑅(𝐬𝑡 , 𝐚𝑡 , 𝐬𝑡+1) = 𝑅(𝐬𝑡 , 𝐬𝑡+1)+𝑅𝑙(𝐬𝑡 , 𝐬𝑡+1)
+𝑅 (𝐬𝑡+1)−𝑅𝑡 −𝑅𝑎(𝐚𝑡),

where 𝑅(𝐬𝑡 , 𝐬𝑡+1) = 𝑤

𝑀
∑
𝑗=1

((𝐛𝑗𝑡)−(𝐛𝑗𝑡+1)),

𝑅𝑙(𝐬𝑡 , 𝐬𝑡+1) = 𝑤𝑙
𝑀
∑
𝑗=1

(𝑙𝑗𝑡+1− 𝑙
𝑗
𝑡), (3.3)

𝑅 (𝐬𝑡+1) =

{
𝑤 if ∑𝑀

𝑗=1 𝑙
𝑗
𝑡+1 = 𝑀

0 otherwise

,

𝑅𝑡 = 𝑤𝑡 ,

𝑅𝑎(𝐚𝑡) = 𝑤𝑎(‖Δ𝐪𝑡 ‖+ |Δ𝜓𝑡 |),

with 𝑤 , 𝑤𝑙 , 𝑤 , 𝑤𝑡 and 𝑤𝑎 weights that scale each term. Note that both 𝐛𝑗𝑡 and 𝑙
𝑗
𝑡 are

stored within 𝐬𝑡 .

Architecture
The ability of any learned policy 𝜋𝜙(𝐚𝑡 |𝐨𝑡) to generalize beyond the exact situations seen

during training, e.g., more targets or changing target behaviors, depends crucially on the

chosen neural architecture, shown in Figure 3.2. We arrange the information available

of each target, 𝐨𝑗𝑡 , into a set 𝐨𝑡 . The main challenge arises from the set being large and

changing over time. Inspired by Relational Graph Convolutional Networks [90] and self-

attention mechanisms [17] used on static knowledge graphs, we implement a self-attention

block (SAB) to identify the relationship between the poses of all targets, i.e., at time 𝑡. Thus,
the first layer is,

𝐞̃1,ℎ𝑖 = 𝐹(𝐨𝑖𝑡 ;𝐖
1
𝑞,ℎ)+∑

𝑗∈
𝜆ℎ𝑖,𝑗𝐹(𝐨

𝑗
𝑡 ;𝐖1

𝑣,ℎ) ,

𝐞1𝑖 = 𝐿𝑁(𝑅𝑒𝑠1(𝐿𝑁(𝑐𝑜𝑛𝑐𝑎𝑡({𝐞̃1,ℎ𝑖 }ℎ=1...𝐻)))) ,

𝜆ℎ𝑖,𝑗 = softmax(
1√
𝑑ℎ
𝐹(𝐨𝑖𝑡 ;𝐖

1
𝑞,ℎ)

⊤𝐹(𝐨𝑡 ;𝐖1
𝑘,ℎ))𝑗

,

(3.4)

where 𝑖 ∈  , 𝑅𝑒𝑠𝑙(𝑥) = 𝑥 +𝜎(𝐹(𝑥;𝐖𝑙)), with 𝜎 being a ReLU activation function and 𝐹 a

parametric affine transformation. 𝐖1 ∈ ℝ𝑑𝑒𝑛𝑐×(𝑑ℎ+1) and 𝐖1
𝑤,ℎ ∈ ℝ

𝑑ℎ𝐻×(𝑑𝑖𝑛+1),𝑤 ∈ {𝑣, 𝑞,𝑘}, are

3

50 3 Active Classification of Moving Targets with Learned Control Policies

Figure 3.2: Policy neural network architecture. The sequence of target information is fed to the self-attention

block (SAB) which encodes and identifies how each target pose affects the visibility of the others from the drone’s

perspective. This information is fed to the pooling multi-head attention layer (PMA) and mapped through a

fully connected layer (FC) to obtain the parameters of a gaussian distribution. During training we sample the

distribution to obtain the policy viewpoint recommendation. At test time we use the learned mean value instead.

learnable parameters. 𝑑𝑖𝑛, 𝑑ℎ, 𝑑𝑒𝑛𝑐 are the dimensionality of the input, each head ℎ, and
the first layer. Note that each head ℎ encodes a different relation 𝜆ℎ between targets. The

purpose of this first layer is to encode information such as target visibility, perspective from

which each target’s information can be observed, occlusions, and possible simultaneous

observations.

Next, we draw inspiration from Set Tranformers [87], used in static set-structured

data, to aggregate the features of all latent target representations. We employ a pooling

multi-head attention mechanism (PMA) where a learned seed vector per head 𝐯ℎ𝑠 ∈ ℝ𝑑ℎ is
employed to compute the attention weights for a single query,

𝐞̃2,ℎ = 𝐯ℎ𝑠 +∑
𝑗∈

𝜆ℎ𝑗 𝐹(𝐞
1
𝑗 ;𝐖

2
𝑣,ℎ) ,

𝐞2 = 𝐿𝑁(𝑅𝑒𝑠2(𝐿𝑁(𝑐𝑜𝑛𝑐𝑎𝑡({𝐞̃2,ℎ}ℎ=1...𝐻)))) ,

𝜆ℎ𝑗 = softmax(
{ 1√

𝑑ℎ
𝐯ℎ,⊤𝑠 𝐹(𝐞1𝑗 ;𝐖

2
𝑘,ℎ)

}

𝑗∈)𝑗
.

(3.5)

This results in a latent vector 𝐞2 that is mapped, through a fully connected layer,

to the parameters 𝜇𝐚𝑡 and log(𝜎𝐚𝑡) of a diagonal Gaussian distribution  (𝜇𝐚𝑡 ,𝜎𝐚𝑡) over
viewpoints. The learned policy 𝜋𝜙 samples recommended viewpoints 𝐚𝑡 from this dis-

tribution. We use the Proximal Policy Optimization (PPO) algorithm to train the net-

work [14, 63]. As learning algorithms like PPO also require an estimate of the state-value

𝑉 𝜋𝜙(𝐬𝑡) = 𝔼[∑∞
𝑡′=𝑡 𝛾 𝑡

′−𝑡𝑅(𝐬𝑡′ , 𝐚𝑡′)|𝐬𝑡′ ∼  , 𝐚𝑡′ ∼ 𝜋𝜙], where 𝛾 is the discount factor, another
linear layer predicts 𝑉 𝜋𝜙(𝐬𝑡) ≈ 𝐯⊤𝑣 𝐞2. The latter is only used during training to guide the

policy. We combine both the surrogate loss and KL-divergence term to stabilize training.

We also use an entropy regularization term to encourage exploration [91]. We refer the

reader to [14] for more information on the algorithm equations and details.

3.5 Implementation Details

3

51

3.4.2 Low-level Controller
To account for the drone dynamics, the recommended viewpoint position 𝐚𝑡 is tracked
with an MPC low-level controller [92]. Let 𝐱𝑎𝑡 denote the viewpoint state output by the

policy in the world frame, obtained from the current drone state and setting to zero the

information that is not considered in 𝐚𝑡 , e.g., roll and pitch. Every 𝜏𝑙 seconds, the controller
solves the following receding horizon constrained optimization problem,

min
𝐱1∶𝑁 ,𝐮0∶𝑁−1

𝑁−1
∑
𝑘=0

𝐽 𝑘(𝐱𝑘 ,𝐮𝑘)+ 𝐽𝑁 (𝐱𝑁 ,𝐱𝑎𝑡)

s.t. 𝐱0 = 𝐱𝑡 , 𝐱𝑘+1 = 𝑓 (𝐱𝑘 ,𝐮𝑘)
𝐮𝑘 ∈ , 0 ≤ 𝑘 ≤ 𝑁−1

(3.6)

where 𝐮𝑘 is the low-level control input sent to the robot, that needs to be inside the possible
values  , 𝑓 (𝐱𝑘 ,𝐮𝑘) the internal dynamics and 𝐽 𝑘(𝐱𝑘 ,𝐮𝑘) = 𝑤𝑢 ‖𝐮𝑘‖ ,

𝐽𝑁 (𝐱𝑁 ,𝐱𝑎𝑡) = 𝑤𝑔
‖𝐱𝑁 −𝐱𝑎𝑡 ‖
‖𝐱0−𝐱𝑎𝑡 ‖

, (3.7)

the stage and terminal costs, weighted by 𝑤𝑢 and 𝑤𝑔 respectively. For more details we refer

the reader to [92].

3.5 Implementation Details
We train and test the proposed method both with simulated perception and with a real

classifier in a photo-realistic simulator. The first environment has a simplified, compu-

tationally efficient observation model and is used for comparison between our method

and the baselines introduced in Section 3.6.1. The second environment is used to test the

proposed method under more realistic conditions.

3.5.1 Simulated Perception Environment
Observation Model
We consider a synthetic pinhole camera with focal length equal to 400 pixels that acquires

images of 640 × 480 pixels. A target is modeled as visible if we can draw a line between

its center and the drone’s without any collision. For each target we consider only the

half part of the cylinder that is facing forward and project it into the image frame, if it is

visible from the camera perspective. This generates an image of a trapezoid with area and

skew depending on the relative position and orientation of the target (Figure 3.1). We use

these two parameters to determine the probability distribution of the observation over

the class set, decreasing the probability of the true class exponentially with the skew and

increasing it linearly with the area. We also penalize heavily trapezoids that do not fit in

the image. Our method does not have any knowledge of neither the observation model nor

the classification model, which makes them black-box to it without loss of generality.

Training conditions
Our high-level policy and the learned baselines are trained in closed environments of

50×50 𝑚2
with simulation steps of 𝜏ℎ = 0.25 𝑠. As shown in Figure 3.1, targets are modeled

3

52 3 Active Classification of Moving Targets with Learned Control Policies

Table 3.1: Hyperparameters for PPO training algorithm

Parameter Value

Time steps each update 16000

SGD minibatch size 256

Learning rate 3e-4

Entropy loss coeff. 𝑐2 0.001

Gradient Clipping 0.1

as cylinders of 0.6 𝑚 radius, 1.8 𝑚 of height, with their class information only visible from

the front. The targets follow constant velocity dynamics and belong to either class red or

class blue. Targets’ speed in every axis is sampled around 1 m/s and clipped at 1.5 m/s.

Whenever targets collide among themselves or against walls, they rebound conserving

kinetic energy and momentum.

The drone’s maximum angular and linear speed in each axis is respectively 𝜓̇𝑚𝑎𝑥 = 60𝑜/𝑠
and 2 m/s. This is to ensure that the drone can reach targets moving away from it. To

reduce computation costs, only during training we assume that the drone follows first-order

dynamics, and control its velocity to guide the drone to the recommended viewpoint.

Each episode, each method is given 100 seconds to classify all targets (𝑙𝑗𝑡 = 1, ∀𝑗 ∈  ,

𝑏max = 0.95). Episodes are finished after reaching the timeout, or successfully classifying

all targets. Values for the reward weights are 𝑤 = 100, 𝑤𝑙 = 5, 𝑤 = 1, 𝑤𝑡 = 0.3, 𝑤𝑎 = 0.01.

3.5.2 Training Algorithm
The learning algorithm and the training of our policy are implemented using the RLlib

framework [63]. Table 3.1 shows the hyperparameters tuned for training the PPO algorithm.

We tuned these hyperparameters because they regulate the speed and quality of training

and are more problem-specific. Other hyperparameters follow the default values provided

by the framework. We refer the reader to [14, 93, 94] for a detailed analysis on the effect

of these hyperparameters on the training algorithm and how to tune them. State space

exploration is enhanced [95] to make the learned policy more robust at test time, by

randomizing the drone’s initial poses, and the targets’ initial poses, velocities and beliefs

over their classes. Some of the targets are randomly selected and enforced to remain static.

We follow a two-phase training schedule. First, we train the policy for the general case

in scenarios, chosen randomly, containing between 1 and 12 targets. Then we fine tune the

resulting policy by training it in scenarios containing only 1 to 6 targets. While counter-

intuitive, this choice of schedule is motivated by how the task of active classification

changes depending on the number of targets present in the environment. There are two

motion planning tasks that need to be solved to perform active classification: simultaneous

observations of multiple targets and, if that is not possible, then focus on single target high-

quality viewpoints. We find that only learning both tasks simultaneously in environments

with 1-12 targets results in a policy prioritizing simultaneous observations of multiple

targets. Such policy scales up well but at the expense of poor choice of viewpoints when

the number of targets is small. This is why a second training phase to fine-tune the policy

to environments requiring single-target viewpoints is used.

The policy and value function (detailed in section 4.5.2) were trained for 9.6𝑒7 steps

3.6 Simulated Results

3

53

in environments containing up to twelve targets, sampled uniformly (first phase). Then,

they were further trained for 3.2𝑒7 steps in environments containing a random number

between one to six targets (second phase). The training of the algorithm was done using

an Intel i9-9900 CPU@3.10GHz computer.

Computing the policy actions takes less than 4𝑚𝑠 per time step, which allows for a

real-time implementation of the framework with a fast control frequency.

3.6 Simulated Results
We analyze our high-level policy’s scalability and robustness to different target dynamics

in comparison with other hard-coded and learned baselines.

3.6.1 Baselines
There are no existing approaches that address the problem of active classification of dynamic

targets without relying on an available observation model. Therefore, the baselines used

for comparison are:

• Hand-crafted: Hard-coded policy that guides the drone to a position 2m in front of

an unobserved target, pointing the camera at it.

• Single-target (Ours): This is an ablation of our method. A learned single-target

policy is given the information of an unobserved target and guides the drone to

viewpoints allowing it to classify it as fast as possible. It is trained in scenarios with

just one target.

• LSTM encoder [44, 60]: The self-attention and attention pooling layers are substi-

tuted by a linear layer followed by an LSTM. Every unclassified target is inversely

sorted by proximity to the drone. The first layer encodes each target’s information,

and the sequence is fed into the LSTM.

• DeepSets decoder [10]: We replace the attention pooling layer by a mean pooling

layer.

The latter two baselines are recently proposed scalable architectures employed in different,

albeit similar [10], problems.

3.6.2 Test conditions
At test time, the whole pipeline described in section 3.4 is used, including the drone

dynamics and controller described in section 3.4.2. We evaluate our method’s robustness

under target behavior both seen and unseen during training. Aside from constant velocity

dynamics, we test our policy in environments where targets follow social forces pedestrian

dynamics [96]. As in training, each method is given up to 100 seconds to classify all targets.

Each policy is trained with 5 different seeds. The results of all seeds are averaged and shown

with their standard deviations. For every test, we evaluate and average each method’s

results over 50 episodes. Initial conditions of all evaluation episodes are randomised but

maintained equal across our method and all baselines.

Since the first two methods are designed to classify one target, the extension to multiple

targets is done through their sequential classification. Unclassified targets are ordered by

3

54 3 Active Classification of Moving Targets with Learned Control Policies

Figure 3.3: Top row) Experiments with targets following constant velocity dynamics, as in training. Bottom
row) Experiments with targets following social forces dynamics not seen during training. Left) Comparison of

the percentage of targets classified before timeout in environments with 1 to 40 targets. The black line denotes

the maximum amount of targets seen during training. Center) Evolution of simultaneous observations along the

episode in environments of 30 targets. Right) Classification speed in environments of 30 targets.

their distance to the drone. The drone classifies the first in the list before moving on to the

next one. Observations of other targets are still accounted for in the information fusion

and belief computation.

3.6.3 Scalability analysis
We evaluate eachmethod in environments containing up to 40 targets to test their scalability

to larger number of targets than seen during training. In Figure 3.3-Left , we report each
method’s percentage of classified targets at the 75 second mark in environments containing

different numbers of targets. In general, as expected, there is a drop in the percentage

of targets that can be classified when their quantity increases. This is due to the task

theoretically requiring more steps and an increase of occlusions generated by other targets.

The results show that our method is the one able to generalize best to target dynamics

unseen during training and generally outperforms all other baselines in environments

containing much larger amounts of targets than seen during training. While our method

does not take any assumption on how target information should be weighted, [60] relies

heavily on the priority order given to targets, as analysed in [44]. This is the reason why, in

our experiments, [60] shows similar scalability results under target dynamics seen during

training (Figure 3.3, Top row) but does not generalize as well as our method to unseen

dynamics (Figure 3.3, Bottom row).

3.6.4 Policy behavior
We provide an empirical analysis on each method’s behavior and the effect on its perfor-

mance. In Figures 3.3-Center and 3.3-Right, we test our policy in simulated perception

3.7 Photo-Realistic Results

3

55

Figure 3.4: Pedestrian models, as seen from the drone’s perspective in the realistic environment. Each pedestrian

is tracked using AirSim’s API. Its class is represented by a red number in the front, classified using YoloV3.

environments with 30 targets and report the number of unclassified targets simultaneously

observed along the episode. During the first half of the episode, our method consistently is

shown to observe and provide classification estimates of more targets than other baselines,

which results in faster classification of targets. This shows that our method is able to learn

the effect of each target on the observations of others and discover groups of simultane-

ously observable targets. The latter is difficult to achieve by single-target classification

baselines or methods that assume distance-based relations among targets. Similarly, the

lower performance albeit similarly high simultaneous observations of the DeepSets decoder
baseline, especially at the end of the episode when there are less targets to classify, suggest

that the attention-based pooling layer allows better aggregation of each target’s latent

information, effectively establishing a classification priority order. The sharp decline in

simultaneous observations of unclassified targets is due to simultaneously observable

targets becoming classified, which results in a sparser distribution of unclassified targets.

3.7 Photo-Realistic Results
To ascertain our framework’s capabilities under realistic conditions, we test its performance

in an environment generated with Unreal Engine using AirSim [97] to simulate drone

control and perception. We simulate our targets using open-source 3D human meshes,

produced inMakeHuman [98], which move to random goals while avoiding collisions in an

environment of 50×50𝑚2
. As shown in Figure 3.4, to remain close to the use-case shown

in the earlier simpler environment, pedestrian classes are denoted by a red number in their

front.

Photo-Realistic Observation Model
We obtain the cropped image of every pedestrian detected in the drone’s field of view (FOV)

using the AirSim API, avoiding the problem of data association. Each image is resized, and

everything other than the painted number is filtered out.

An implementation of the YoloV3 [99] algorithm is used to detect and classify the digit

in each processed image. We train the algorithm using a dataset of rotated, up-scaled and

down-scaled MNIST images. Both YoloV3 implementation and the adapted dataset have

been obtained from [100].

The output of the algorithm consists in a set of bounding boxes, each one associated to

a detected digit and a normalized score stating how sure the algorithm is of it’s detection.

We rule out those boxes containing a number of pixels smaller than a threshold 𝐵𝑎 = 2000
and take the box with the highest score. The normalized score of the detected digit is used

as the target class probability estimate, distributing the remaining probability mass among

3

56 3 Active Classification of Moving Targets with Learned Control Policies

Figure 3.5: Probability heat-map of the employed black-box classifier for a target of class 1. For a robot placed at

the bottom, facing upwards and a FOV of 90𝑜, every plot shows the output probability of identifying the real

class of the target at different relative positions and a fixed relative orientation from the robot.

the other classes. The output is a uniform distribution when no digits are detected, or the

normalized score is below the uniform distribution.

Training conditions
We use the training setup explained in Section 3.5.1, using the realistic observation model.

However, to avoid the computational cost of running Unreal/Airsim and YoloV3, for training

we use AirSim to extract a dense library of pedestrian observations of all classes in different

relative poses from the drone’s FOV. For each class, each pose-dependent image is used

to compute and save a probability distribution. During training, for each target in the

drone’s FOV, we use the probability distribution of the library image whose pose is the

closest to the target’s current relative pose. Being in a controlled environment, during

training we monitor the output of the perception system to detect classification errors,

and substitute them by a uniform probability. This enables our policy to prioritise good

over bad classification viewpoints, adding an additional robustness mechanism to outlier

classifications to the control policy. An example of the resulting normalized classification

score is given in Figure 3.5.

Real Perception Environment
This time we test our method’s performance in the photo-realistic environment. In Figures

3.6a and 3.6b, we only analyze the performance of the viewpoint recommendation policy

without having AirSim’s different drone dynamics and in-built controller affecting the

results, which we use for comparison in Figure 3.6c. We show results for our method and

how it compares in this new setting to the baselines presented in Section 3.6.1.

As in section 3.6, we evaluate each method 50 times in environments containing up to

40 targets for 75 and 100 seconds, and show the resulting mean and standard error. In all our

experiments, the mean percentage of misclassifications was under 3% with no significant

differences among different methods. Figure 3.6 shows that the results presented in Section

3.6 hold in the new photo-realistic environment, even when realistic drone dynamics and

control are used. Note that the different performance in comparison to Figure 3.3 is due

to the different observation model and the fact that we take measurements directly from

the viewpoints recommended by the DRL policy in Figures 3.6-Left and 3.6-Center. This
is very relevant from the Sim-to-Real perspective, considering that the policy has been

trained in a different environment with a perception system approximated from the one

used during testing.

3.8 Conclusion

3

57

Figure 3.6: Mean and standard error over 50 experiments in the photo-realistic simulator. Left) Comparison of

the percentage of targets classified before timeout of 75 seconds in environments with 1 to 40 targets, where

measurements are directly taken from viewpoints that the DRL policy suggests. Center) Classification speed in

the experiment of (Left) with 30 targets. Right) Classification speed in environments of 30 targets with realistic

drone dynamics and AirSim’s controller.

3.8 Conclusion
In this chapter, we have introduced a framework for active classification ofmultiple dynamic

targets when the information is extracted using a “black-box” classifier. The proposed

framework learns a policy that outputs viewpoints through Deep Reinforcement Learning

using an attention-based, permutation invariant architecture. Then, a low-level MPC

controller moves the drone to the viewpoints taking care of the complex dynamics at high-

frequency. Sensor fusion of the black-box sensor is done through conflation. The results

have shown that our policy outperforms multiple baselines, both in terms of generalization

to target dynamics not seen during training and scalability to environments with more

than double the amount of targets experienced during training. However, there is a limit

to the number of targets one robot can classify under given time constraints. In the future,

multiple drones could be employed for efficient dynamic active classification.

4

59

4
Distributed multi-target

tracking and active
perception with mobile

camera networks

The work of this chapter has appeared in:

� S. Casao
⋆
, Á. Serra-Gómez

⋆
, A. C. Murillo , W. Böhmer, J. Alonso-Mora, E. Montijano, Distributed multi-target

tracking and active perception with mobile camera networks, in Computer Vision and Image Understanding, 2023,

doi: 10.1016/j.cviu.2023.103876.

S. Casao worked on the distributed tracking framework and Á. Serra-Gómez worked on the active perception

framework.

4

60 4 Distributed multi-target tracking and active perception with mobile camera networks

Figure 4.1: Overview of our multi-camera collaborative system. The system comprises a camera network that

performs a distributed multi-target tracking process. The static cameras monitor the scene and the mobile cameras

are guided by a control policy to capture close-up images of viewpoints likely to strengthen the classification of

certain attributes.

4.1 Introduction
Multi-camera systems are common in applications such as surveillance or monitoring. The

use of multiple cameras increases the coverage and the amount of information collected

from large-scale scenes. Although the most frequent configuration in surveillance applica-

tions is a network of static cameras, including mobile cameras brings plenty of potential

benefits. In addition to the improved coverage capabilities of such a hybrid system, mobile

cameras can be guided to acquire more detailed information and particular viewpoints

when needed. Enhancing collaborative behavior among them is then essential to achieve

an efficient mutual scene understanding [101–103].

One of the main challenges of collaborative camera network systems is to attain

robustness and efficiency. Hence, there has been a tendency to transition from centralized

to distributed setups that can easily scale and are more robust against individual node

failures ([104, 105]). Another common challenge in multi-camera systems is finding a

suitable viewpoint that maximizes gaining new knowledge for a given recognition task.

For instance, solving tasks such as person identification or clothing brand recognition

requires a specific viewpoint, which should be free from occlusion or blind spots. Active

perception enables the capability of moving a camera to the location of the most informative

perspective. Developing and evaluating distributed solutions, where mobile cameras with

autonomous decision-making are involved, is not a trivial task. To address all of these

challenges we propose a novel active and distributed framework. Our system has static

cameras to monitor the scene and mobile cameras to strengthen the visualization of certain

attributes with high-resolution close-up target images, as summarized in Figure 4.1.

The mobile cameras, drones in our case, are guided by a control policy built upon

previous work [106]. This policy continuously determines the cameras’ next position and

orientation to capture viewpoints that maximize the acquisition of relevant information for

4.2 Related Work

4

61

certain people’s attributes class. Differently from our prior work, here we consider multiple

drones working together with a network of static cameras that provide information about

the targets’ position and orientation using real data, taking into account the challenges

associated to the use of a real tracking system.

The distributed tracking process in charge of this task is based on [8]. Our contribution

in this module is related to the implementation, making the transition to a real system

easier thanks to the integration with ROS to handle communications. The assessment of

the framework is performed with a photo-realistic simulator. In particular, we use the

open-source Unreal Engine together with the AirSim simulator [97], which provide a photo-

realistic environment to simulate drones and static camera data generation. Additionally,

we employ specific tools for creating scenes involving multiple pedestrians from [19].
1

To summarize, the main contributions of this work are:

• A novel hybrid multi-camera framework, composed of static and mobile nodes, that

collaboratively tackles the problem of people monitoring. To do so, it combines

distributed tracking and active perception of semantic knowledge from the scene.

• Active Perception: We extend prior work to consider multiple mobile cameras and

real perception provided by the distributed tracking algorithm.

• Distributed Tracking: We incorporate distributed communications using ROS and

perform the evaluation with a photo-realistic simulator, contributing to bridge the

gap with real-world applications.

4.2 Related Work
4.2.1 Multi-camera Multi-target Tracking
Multi-camera centralized setups are commonly used in real-world applications to cover

larger areas ([107, 108]) or acquire a greater amount of information ([109, 110]). These

centralized approaches process the entire camera network information in one unique node,

making it difficult to scale up. Thus, there is a trend toward distributed setups to increase

the applicability of multi-camera systems [111]. While theoretical works have proposed

solutions to problems such as event-trigger mechanisms for bandwidth requirements

([112]) or consensus algorithms to unify local estimations ([113, 114]), only a few works

have addressed the distributed multi-target tracking with real data. For example, [115]

combine the Information-weighted Consensus Filter (ICF) with the Joint Probabilistic Data

Association Filter (JPDAF), which uses the previous target states, to fill the gap of relating

measurements and trackers in the consensus algorithm. Based on the same ICF consensus

method, [116] address the association of measurements and trackers through a global metric

that merges appearance and geometry cues. To associate trackers across cameras, they

employ the Euclidean distance between the 3D position of the targets. Different from [115]

and [116], we tackle the problem of havingmobile nodes in the camera network. Besides, we

analyze in both data associations, trackers with measurements and cross-camera trackers,

the geometric information together with the appearance representation.

1
Simulated data and photo-realistic environment used available at https://sites.google.com/unizar.
es/poc-team/research/hlunderstanding/collaborativecameras.

https://sites.google.com/unizar.es/poc-team/research/hlunderstanding/collaborativecameras
https://sites.google.com/unizar.es/poc-team/research/hlunderstanding/collaborativecameras

4

62 4 Distributed multi-target tracking and active perception with mobile camera networks

4.2.2 Collaborative systems for perception tasks
Multiple works have developed collaborative systems to address complex perception tasks.

One of the most common problems tackled is active object tracking, where visual observa-

tions are transformed into a camera control signal to improve the tracking process, e.g.,

turning left or moving forward ([117]). The combination of a fixed camera, that globally

monitors the scene, with a pan-tilt-zoom (PTZ) camera, used to increase the image quality

of the target of interest, is proposed in [102] In [118], this setup is extended to a centralized

PTZ camera network, where reinforcement learning techniques are employed to learn

the new pose of the cameras for finding the target and tracking it as long as possible. In

order to follow an object capable of moving in all directions, [119] develop a cooperative

aerial robotic approach with two drones for achieving overlapping images and forming

a pseudo-stereo vision system. The collaboration of hybrid systems has been studied for

different tasks such as dynamic obstacle avoidance, where the information of the static

cameras is leveraged by the mobile robot ([101]), or the localization, planning, and naviga-

tion of ground robots using a semantic map created by a high-altitude quadrotor ([103]).

Furthermore, some works have focused on distributed collaborative perception tasks. [105]

propose an approach for distributed learning where each robot only shares the weights

of the network for privacy protection and [104] present a general-purpose graph neural

network for fusing node information and obtaining accurate perception tasks. Closer to our

work, [120] leverage the collaboration of fixed cameras, PTZ, and UAVs for crowd scene

covering in a distributed manner. Different from [120], we do not assume as known the

target positions, which entail addressing the challenges of a distributed tracking system.

4.2.3 Active Perception for Class Recognition
The active perception problem of recognizing certain classes is commonly addressed by

defining a set of viewpoints in advance, which are then used to plan trajectories for gather-

ing new information. One-step greedy planners select viewpoints specific to objects based

on factors such as class uncertainty and observation occlusions [72]. Instead, non-myopic

methods such as [73] consider both, movement costs and information gained between

the object’s viewpoints. Alternatively, some approaches formulate the problem as a par-

tially observable Markov Decision Process (POMDP) and design paths over viewpoints by

accounting for costs associated with measurements, occlusions, and potential misclassi-

fications [74]. Likewise, [75] employs a modified version of Monte-Carlo tree search to

generate plans. However, these techniques typically rely on a priori access to the black-box

model for estimating the usefulness of viewpoints. More recent works use non-myopic

learning methods like Deep Reinforcement Learning (DRL) for static multi-target pose

estimation and active perception. They optimize camera movements to reduce observation

uncertainty [76] or maximize information gain [77]. However, these approaches either

assume static targets, are limited to closed environments [78], or require prior knowledge

of where the information is visible from [79, 80]. Our work leverages an attention-based

neural network architecture to encode dynamic targets and to provide viewpoint recom-

mendations that are traced with a low-level controller. In addition, we enable the use of

multiple drones and overcome the assumption of possessing prior knowledge about the

positions and orientations of the targets by exploiting the collaboration with a multi-target

tracking system.

4.3 Preliminaries

4

63

Figure 4.2: Method overview deployed in one mobile camera. The whole system is implemented in ROS, initializing

each camera as a node and the image processing module as a service. First, the Local Data Association relates

people detection (𝑏𝑏) with the corresponding trackers (). Then, the cameras exchange and fuse data with their

neighboring cameras to obtain a collaborative distributed tracking system. The knowledge of the environment is

provided to the control policy for obtaining a new recommendation of viewpoint (𝑎𝑡) to improve the gathering

people’s information.

4.3 Preliminaries
4.3.1 Problem Formulation
This work addresses the distributed tracking and correct visualization of people’s attributes

in large-scale environments. We monitor an area populated by a set of 𝐼 targets, {𝑖}𝐼𝑖=1,
with a system of 𝐽 cameras, {𝐶𝑗 }𝐽𝑗=1, where a subset of𝑄 < 𝐽 cameras can translate and rotate,

e.g. they are installed on drones. Each camera in the network captures an RGB image and

a depth map to estimate the state of the targets locally by fusing its information with that

received from its neighbors,𝑗 . The state of target 𝑖 in camera 𝑗 is defined as 𝐱𝑗𝑖 = (𝑥𝑗𝑖 , 𝑦
𝑗
𝑖 , 𝑧

𝑗
𝑖 ,

𝑤𝑗
𝑖 , ℎ

𝑗
𝑖 , 𝑥̇

𝑗
𝑖 , 𝑦̇

𝑗
𝑖) represented by a 3D cylinder with (𝑥𝑗𝑖 , 𝑦

𝑗
𝑖 , 𝑧

𝑗
𝑖) the 3D coordinates of the center

cylinder’s base, 𝑤𝑗
𝑖 the width, ℎ

𝑗
𝑖 the height, and (𝑥̇𝑗𝑖 , 𝑦̇

𝑗
𝑖) the velocity of the target in the 𝑥

and 𝑦 directions, respectively. The orientation of the target, 𝜑𝑗𝑖 , is estimated based on their

velocities 𝑥̇𝑗𝑖 and 𝑦̇
𝑗
𝑖 . The responsibility for correctly visualizing the attribute’s class of the

4

64 4 Distributed multi-target tracking and active perception with mobile camera networks

targets lies in the moving cameras (drones). It is important to note that these attributes can

only be observed from specific viewpoints, such as determining if the targets are wearing

a backpack or glasses. The state of the drones 𝐲𝑞 = (𝐮𝑞 ,𝜓𝑞), assumed as known in this

work, is represented as their position 𝐮𝑞 and their heading 𝜓𝑞 , being 𝑞 ∈ {1,…,𝑄}. Each
drone is controlled by a hierarchical policy, where a viewpoint control policy operating at

1
𝜏ℎ

Hz takes as input the knowledge of the scene and outputs a viewpoint recommendation

𝐚𝑞 . Next, the recommended viewpoint is traced with a low-level controller operating at

1
𝜏𝑙
≫ 1

𝜏ℎ
Hz. The purpose of the policy is to position the targets’ attributes within the field

of view (FOV) of the drone. We assume that the drones are faster than the targets and fly

at a constant height above them, avoiding collisions.

The goal of the presented work is to achieve an accurate estimation of the targets’

position and visualize all people’s attributes as quickly as possible.

4.3.2 Overview
Figure 4.2 presents an overview of the proposed method to address the problem described

in the previous section. The complete framework has been implemented in ROS, with

each camera defined as a node of the system and ensuring synchronization between them.

Neural networks have been implemented in the image processing module as services to

save memory.

First, each camera captures an RGB image and a depth map (𝐷𝑖) to compute the re-

projection between the image plane and the real-world coordinates. We incorporate depth

information to simplify the re-projection but this could be replaced by a network calibration

in a more realistic setup. Then, a general detector provides the people bounding boxes

(𝑏𝑏) that are used as measures for the tracking system and that are associated with the

current trackers through the Local Data Association module (LDA). Once the cameras in

the networks exchange the targets’ information () with their neighbors, the Distributed

Kalman Filter (DKF) implemented attempts to obtain consensus on the targets’ state. Finally,

the Distributed Tracker Manager (DTM) initializes new trackers and associates them locally

with the trackers received from the neighboring cameras. The mobile cameras of the system

obtain the output of a black-box CNN, with perception information about the visible targets

(ℎ()), and update their class beliefs with an efficient information fusion method. Based on

the latter and the estimated state of the targets, the viewpoint control policy recommends

a new camera pose (𝑎𝑡) to maximize the information acquired in the next step. The new

viewpoints are then tracked with a low-level controller.

4.4 Distributed Tracking
This section explains the different components of our approach to perform fully distributed

multi-target tracking with hybrid collaborative cameras.

4.4.1 Distributed Kalman Filter
We define the target motion model as a discrete-linear dynamic system with constant

velocity. Each camera executes a Kalman filter independently producing a local estimation

of the target state, 𝐱̂𝑖(𝑘), and the associated error covariance matrix 𝐏𝑖(𝑘). Note that

local estimations may vary among different cameras. Therefore, the Distributed Kalman-

4.4 Distributed Tracking

4

65

Consensus filter [113] is implemented to mitigate these differences and seek to reach a

consensus in 𝐱̂𝑖(𝑘) for all cameras 𝐶𝑗 .
The consensus algorithm assumes knowledge of the data association between the

local measurement 𝐳𝑖(𝑘) and the target prediction 𝐱̄𝑖(𝑘), which is obtained by applying the

linear motion model to the previous target state estimation 𝐱̂𝑖(𝑘 −1). The measurement

𝐳𝑖(𝑘) is the 3D cylinder obtained as the projection of the bounding box given by the

detector, and the velocity of the target computed with the last data association, i.e., 𝐳𝑖(𝑘) =
(𝑥(𝑘),𝑦(𝑘), 𝑧(𝑘),𝑤(𝑘),ℎ(𝑘), 𝑥̇(𝑘), 𝑦̇(𝑘)). This measurement is coupled in the filter with a

zero mean Gaussian noise characterized with 𝐑𝑖(𝑘) as its covariance matrix. Using mobile

cameras requires online updates of the transformation matrix from the image plane to

the three spatial global coordinates of the world. The cameras of the photo-realistic

environment follow the pinhole model, which combined with the depth information, 𝑑(𝑘),
enables the conversion of image plane coordinates 𝑣𝑥(𝑘) and 𝑣𝑦(𝑘), to the relative 3D world

camera coordinates 𝑥𝑟 (𝑘),𝑦𝑟 (𝑘) and 𝑧𝑟 (𝑘) by

𝑥𝑟 (𝑘) = 𝑑(𝑘),𝑦𝑟 (𝑘) =
𝑑(𝑘)
𝑓

(𝑣𝑥(𝑘)− 𝑐𝑥), 𝑧𝑟 (𝑘) =
𝑑(𝑘)
𝑓

(𝑣𝑦(𝑘)− 𝑐𝑦) (4.1)

where 𝑓 is the focal length and, 𝑐𝑥 and 𝑐𝑦 are the image center coordinates in 𝑥 and 𝑦,
respectively. Then, the relative camera coordinates are transformed into the common

global world system demand by the consensus-filter algorithm following

⎡
⎢
⎢
⎢
⎣

𝑥(𝑘)
𝑦(𝑘)
𝑧(𝑘)
1

⎤
⎥
⎥
⎥
⎦

= [
𝑅𝑗 (𝑘) | 𝑇𝑗 (𝑘)

0 1]

⎡
⎢
⎢
⎢
⎣

𝑥𝑟 (𝑘)
𝑦𝑟 (𝑘)
𝑧𝑟 (𝑘)
1

⎤
⎥
⎥
⎥
⎦

(4.2)

being 𝑅𝑗 (𝑘) the rotation matrix and 𝑇𝑗 (𝑘) the translation vector of the camera at instant

𝑘, assumed as known. In a real setup, this information could be computed by offline

calibration of the cameras and using onboard sensors such as GPS or IMUs together with

SLAM algorithms for the drones. Regarding the velocity, we take advantage of the online

tracking to measure the time the target has taken to arrive at the current position at 𝑘 since
the last data association between 𝐱̄𝑖 and 𝐳𝑖.

Once the camera 𝑗 associates the local measurement 𝐳𝑗𝑖 (𝑘) with the local target pre-

diction 𝐱̄𝑗𝑖 (𝑘), the consensus algorithm transforms the measurement and its noise to the

information form by

𝐮𝑗𝑖 (𝑘) = 𝐇𝑇𝐑𝑖−1(𝑘)𝐳𝑗𝑖 (𝑘), 𝐔𝑗
𝑖 (𝑘) = 𝐇𝑇 (𝐑

𝑗
𝑖 (𝑘))

−1𝐇. (4.3)

The obtained sensor data information, 𝐮𝑗𝑖 (𝑘), and its inverse-covariance matrix, 𝐔𝑗
𝑖 (𝑘) are

exchanged with the neighboring cameras in the network 𝑗 , together with 𝐱̄𝑖(𝑘). Due to
the transformation into the information form, we are able to combine all the measurements

received from other cameras with the acquired one by simply adding them,

𝐲𝑗𝑖 (𝑘) = ∑
𝐶∈𝑗

𝐮𝐶𝑖 (𝑘), 𝐒𝑗𝑖 (𝑘) = ∑
𝐶∈𝑗

𝐔𝐶
𝑖 (𝑘). (4.4)

4

66 4 Distributed multi-target tracking and active perception with mobile camera networks

Finally, the estimated state is updated by correcting the prediction target state with the

data computed in (4.4) and the predictions from the neighboring cameras following

𝐱̂𝑗𝑖 (𝑘) = 𝐱̄𝑗𝑖 (𝑘)+𝐌𝑗
𝑖 (𝑘)[𝐲

𝑗
𝑖 (𝑘)−𝐒𝑗𝑖 (𝑘)𝐱̄

𝑗
𝑖 (𝑘)]

+𝛾𝐌𝑗
𝑖 (𝑘) ∑

𝐶∈𝑗

(𝐱̄𝐶𝑖 (𝑘)− 𝐱̄𝑗𝑖 (𝑘)), (4.5)

where 𝐌𝑗
𝑖 (𝑘) = (𝐏𝑗𝑖 (𝑘)−1 +𝐒𝑗𝑖 (𝑘))−1 is the Kalman Gain in the information form and 𝛾 =

1/‖𝐌𝑗
𝑖 (𝑘)+1‖.

4.4.2 Local Data Association
For simplicity in the explanation, this subsection will focus on the data association in

a single camera. Hence, the subscripts 𝑗 used in the notation will refer to the different

measurements locally observed and not the cameras in the network. The accurate update

of the DKF relies on a correct association between the set of measurements,  = {𝐳𝑗 }, and
the set of targets prediction, ̄ = {𝐱̄𝑖}, during each estimation cycle. To tackle this issue,

we assess two constraints based on geometry and appearance.

The similarity value in the geometry of both sets is obtained as

𝑠𝑑(𝐳𝑗 , 𝐱̄𝑖) =
{ 1

𝛼 𝑑𝑀 (𝐳𝑗 , 𝐱̄𝑖) if 𝑑𝑀 (𝐳𝑗 , 𝐱̄𝑖) < 𝜏𝑑
1 otherwise, (4.6)

being 𝛼 a configuration parameter, 𝜏𝑑 a threshold applied to ignore highly unlikely candi-

dates and, 𝑑𝑀 (𝐳𝑗 , 𝐱̄𝑖) the Mahalanobis distance between the 𝑥,𝑦 positions. The covariance

matrix in theMahalanobis distance is computed by adding the sub-matrices of 𝐏𝑖 and 𝐑𝑗 that
encode the covariance position of the estimation 𝐱̄𝑖 and the measurement 𝐳𝑗 , respectively.

Then, those data whose distance is below 𝜏𝑑 are evaluated in appearance. To get rep-

resentative appearance features for measuring similarity, we use the output of a person

re-identification network ([121]) pre-trained in the MSMT17 Benchmark ([122]) as ap-

pearance descriptors. Inspired by this re-identification methodologies, each local tracker

creates an online appearance model, 𝑖, of the target 𝑖 with budget size. This appearance

model, also called gallery, is built based on a scoring system that estimates the usefulness

and confidence of each appearance feature. Thus, every feature of the gallery, 𝐟𝓁𝑖 ∈ 𝑖, has
a score assigned 𝜀(𝑘) whose value changes depending on two factors. First, the gallery

component with the minimum distance to the final associated measurement appearance

increases its score by one with

𝜀𝓁𝑖 (𝑘 +1) =

{
𝜀𝓁𝑖 (𝑘)+1 if 𝓁 = argmin

𝐟∈𝑖
𝛿(𝐟𝑗 , 𝐟),

𝜀𝓁𝑖 (𝑘) otherwise,
(4.7)

where 𝐟𝑗 is the appearance feature get from the 𝐳𝑗 bounding box detection. Secondly, the
closest component of the appearance model to the gallery centroid, 𝐟𝑖, increases by one its

4.5 Active Perception

4

67

value score while the farthest component decreases by one following

𝜀𝓁𝑖 (𝑘 +1) =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

𝜀𝓁𝑖 (𝑘)+1 if 𝑗 = argmin
𝐟∈𝑖

𝛿(𝐟𝑖, 𝐟),

𝜀𝓁𝑖 (𝑘)−1 if 𝑗 = argmax
𝐟∈𝑖

𝛿(𝐟𝑖, 𝐟),

𝜀𝓁𝑖 (𝑘) otherwise.

(4.8)

The gallery is updated periodically every N iteration with a new feature. Once the budget

size is reached, the component with the lowest score is dropped to make room for the

newest one. Finally, the similarity between the appearance feature of the measurement, 𝐟𝑗 ,
and the tracker’s gallery 𝑖 used as a model of the appearance of the prediction state 𝐱̄𝑖 is
provided by the minimum cosine distance

𝑠𝑎(𝐟𝑗) = min
𝐟𝑖∈𝑖(

1−
𝐟𝑇𝑗 𝐟𝑖
‖𝐟𝑗 ‖‖𝐟𝑖‖)

, (4.9)

The final data association assignment between the measurements,  = {𝐳𝑗 }, and the target

predictions, ̄ = {𝐱̄𝑖}, is solved with the Hungarian algorithm [123] by defining the cost

function as the product of both similarity scores, 𝑠𝑑 and 𝑠𝑎.

4.4.3 Distributed Tracker Manager
In the practical implementation of distributed tracking systems, it is also essential to

perform a correct association of trackers across the different cameras in the network. Our

proposed approach to address this problem involves performing the same process as the one

described in Section 4.4.2 for the local data association but with the set of measurements

replaced by the set of other camera’s predictions ̄𝑗 = {𝐱̄𝑗 }, and using the Euclidean distance
instead of the Mahalanobis distance. These modifications are based on the information

exchanged in the communication message, which is subject to the data required in the

DKF and does not include the covariance matrices 𝐏𝑗 . In case no local tracker is associated

with those received from neighboring cameras, the current camera initializes a new tracker

based on the tracker information received.

Since we limit sharing appearance exclusively to newly initialized trackers for saving

bandwidth, the tracker consensus process across cameras occurs only when a new tracker

is initialized in any of them. To ensure the robustness of mobile cameras in dynamic

communication scenarios, where the cameras they exchange information with may change

over time, we include the cross-camera trackers association in the communication message.

This cross-camera trackers association consists of a look-up table where each tracker locally

stores the unique identifier, 𝑖, assigned to the same target by the rest of the cameras in

the network 𝐶𝑗 . Consequently, once the message has traversed the entire network, the

cameras achieve a global consensus on the association of trackers across all the cameras in

the network.

4.5 Active Perception
In addition to collaborating in the distributed tracking of multiple targets, mobile cameras

tackle the task of active perception to gain additional knowledge about the people presented

4

68 4 Distributed multi-target tracking and active perception with mobile camera networks

in the scene. They leverage shared information to efficiently position themselves for

effectively visualizing each target’s attribute class. In this work, mobile cameras are allowed

to communicate between them in order to gather global knowledge of the visualization

process’s status.

4.5.1 Target class observations and Belief Updates
Every time step 𝜏ℎ, the drone uses a black-box perception algorithm (e.g., a pre-trained

CNN classifier) to compute the class probability distribution for each target visualized from

the correct viewpoint. Let  = ℎ() = {𝐩𝑖}𝐼𝑖=1 be the class probability distribution, where 𝐩𝑖
represents the likelihood of target 𝑖 belonging to each one of the 𝐺 classes in the class set

. To simplify the notation, in this complete Section 4.5, 𝑡 will denote times periods of 𝜏ℎ.
The probability distribution over time is modulated by belief vectors 𝐛𝑡𝑖 for each target

𝑖. These vectors contain 𝐺 belief values 𝑏𝑡𝑖𝑔 representing the aggregate likelihood of target

𝑖 belonging to a class 𝑔 ∈  up to time 𝑡, i.e., combines the historical class probabilities

distributions up to time 𝑡. The process of aggregating the drone’s observations to derive class
beliefs for each target is a crucial consideration. Standard Bayesian recursive estimation

is not recommended in this case due to the unavailability of the measurement likelihood

model, ℙ(𝐩𝑡𝑖 |𝐛𝑡−1), from the black-box sensor. Building a precise pose-dependent likelihood

model requires the construction of a dense dataset and considering all targets and occlusions

for optimal viewpoint search. This process is expensive and does not scale well due to its

computational demands.

Instead, we propose the use of the conflation operator 𝜁 (𝐩1∶𝑡𝑖), a mathematical method

introduced by [89]. Conflation enables the aggregation of probability distributions obtained

from measurements of the same phenomena under different conditions. It possesses the

remarkable property of minimizing the loss of Shannon information when combining

multiple independent probability distributions into a single distribution, specifically when

computing 𝐛𝑡𝑖 based on the measurements 𝐩0∶𝑡𝑖 . The conflation is defined by

𝐛𝑡𝑖 = 𝜁 (𝐩1∶𝑡𝑖) ≡ 𝜁 (𝐛𝑡−1𝑖 ,𝐩𝑡𝑖) =
𝐛𝑡−1𝑖 ⊙𝐩𝑡𝑖
(𝐛𝑡−1𝑖)⊤𝐩𝑡𝑖

, (4.10)

where the Hadamard product⊙ in the numerator is taken component-wise, whereas the dot

product is the normalization factor. Conflation’s commutative and associative properties

enable efficient recursive computation, making it suitable for onboard and decentralized

belief updates in the presence of multiple communicating drones. The beliefs are initialized

at 𝑡 = 0with a uniform prior probability distribution over all possible target classes, formally

𝑏0𝑖𝑔 = 1/𝐺 ∀𝑔 ∈ .

4.5.2 Viewpoint Control Policy
The lack of an observationmodel that maps target relative poses to a probability distribution,

i.e., the ℎ function that maps  = ℎ(), hinders the direct solution of the active perception

for class recognition problem. Therefore, we leverage Reinforcement Learning to train

a viewpoint control policy, 𝜋𝜙, that learns to recommend viewpoints 𝐚𝑡 that minimize

the accumulated entropy of all targets’ beliefs over a given time horizon. The policy is

parameterized by 𝜙 and operates at the perception low-frequency,
1
𝜏ℎ
.

4.5 Active Perception

4

69

Each drone uses a copy of the same learned viewpoint control policy that solves the view-

point recommendation problem. The viewpoint recommendation problem is formulated

as a Partial Observable Markov Decision Process (POMDP), denoted by ⟨𝑆,𝐴, ,Ω,,𝑅⟩.
The state 𝑆 includes the state of the drones, the targets’ pose, their beliefs, and their

visualization status (visualized or not). Actions 𝐴 represent recommended viewpoints

within a constrained neighborhood and transitions  assume timely movement to the next

viewpoint. The drone receives partial information Ω about the environment through the

observation function . The observation of each target is defined by 𝐨𝑡𝑞,𝑖 = [𝐨̄𝑝𝑞,𝑖, 𝐨̄𝑐𝑞,𝑖] ∈ Ω
where 𝐨̄𝑝𝑞,𝑖 is the observation of each target physical attributes (poses and velocities). Each

target’s attribute information is represented by 𝐨̄𝑐𝑞,𝑖 which includes the entropy of the local

class estimates from the drone 𝑞 and the entropy of the global class beliefs.We define the

joint target observation vector as 𝐨𝑡𝑞 = {𝐨𝑡𝑞,𝑖}𝐼𝑖=1 = [𝐨̄𝑝𝑞 , 𝐨̄𝑐𝑞].
The reward function in this work is based on the formulation of chapter 3. It provides

rewards to the agent for successfully classifying each and all targets and reducing the

entropy of target class beliefs. Additionally, it penalizes the agent for movement and for

each time step in which the task remains incomplete. For more detailed information, we

refer the interested reader to 3.

Architecture
The generalization ability of the learned policy 𝜋𝜙(𝐚|𝐨𝑞) depends on the neural network

architecture chosen. The main challenge lies in the size and dynamical changes over time

of the set 𝐨𝑞𝑡 = {𝐨𝑡𝑞,𝑖}𝐼𝑖=1.
Inspired by Relational Graph Convolutional Networks [90] and self-attention mech-

anisms [17] used in static knowledge graphs, we employ a self-attention block (SAB) to

capture the relationships among all targets at time 𝑡. Note that the focus in this first layer is

on spatial features such as poses and velocities 𝐨̄𝑞𝑝 , since the purpose is to encode important

information including target visibility, observation perspective, occlusions, and potential

simultaneous observations. Therefore, the initial layer is,

𝐞̃1,ℎ𝑖,𝑝 = 𝐹(𝐨̄𝑝𝑞,𝑖;𝐖
1
𝑞,ℎ)+∑

𝑗∈
𝜆ℎ𝑖,𝑗𝐹(𝐨̄

𝑝
𝑞,𝑗 ;𝐖

1
𝑣,ℎ) ,

𝐞1𝑖,𝑝 = 𝐿𝑁(𝑅𝑒𝑠1(𝐿𝑁(𝑐𝑜𝑛𝑐𝑎𝑡({𝐞̃1,ℎ𝑖,𝑝 }ℎ=1...𝐻)))) ,

𝜆ℎ𝑖,𝑗 = softmax(
1√
𝑑ℎ
𝐹(𝐨̄𝑝𝑞,𝑖;𝐖

1
𝑞,ℎ)

⊤𝐹(𝐨̄𝑝𝑞 ;𝐖1
𝑘,ℎ))𝑗

,

(4.11)

where 𝑖 ∈  , 𝑅𝑒𝑠𝑙(𝑥) = 𝑥 +𝜎(𝐹(𝑥;𝐖𝑙)), with 𝜎 being a ReLU activation function and 𝐹 a

parametric affine transformation. 𝐿𝑁 stands for Layer Normalization. 𝐖1 ∈ ℝ𝑑𝑒𝑛𝑐×(𝑑ℎ𝐻+1)

and 𝐖1
𝑤,ℎ ∈ ℝ

𝑑ℎ×(𝑑𝑖𝑛+1),𝑤 ∈ {𝑣, 𝑞,𝑘}, are learnable parameters. 𝑑𝑖𝑛, 𝑑ℎ, 𝑑𝑒𝑛𝑐 are the dimension-

ality of the input, each head ℎ, and the first layer. Note that each head ℎ encodes a different
relation 𝜆𝕙 between targets. To incorporate the information acquired about each target’s

class, we concatenate it with the latent representation of each target from the previous

layer. Then, we map it back to a latent space of dimension 𝑑𝑒𝑛𝑐 using a learned linear layer.

The process can be expressed as 𝐞1𝑖 = 𝐹([𝐞1𝑖 , 𝐨̄𝑐𝑞,𝑖];𝐖𝑐)], where 𝐞1𝑖 represents the updated
latent representation, 𝐨̄𝑐𝑞,𝑖 is the class information of target 𝑖 observed by drone 𝑞, and 𝐖𝑐
is the learned weight matrix.

4

70 4 Distributed multi-target tracking and active perception with mobile camera networks

Next, we use a pooling multi-head attention mechanism (PMA) that incorporates a

learned seed vector per head 𝐯ℎ𝑠 ∈ ℝ𝑑ℎ to calculate the attention weights for a single query,

𝐞̃2,ℎ = 𝐯ℎ𝑠 +∑
𝑗∈

𝜆ℎ𝑗 𝐹(𝐞
1
𝑗 ;𝐖

2
𝑣,ℎ) ,

𝐞2 = 𝐿𝑁(𝑅𝑒𝑠2(𝐿𝑁(𝑐𝑜𝑛𝑐𝑎𝑡({𝐞̃2,ℎ}ℎ=1...𝐻)))) ,

𝜆ℎ𝑗 = softmax(
{ 1√

𝑑ℎ
𝐯ℎ,⊤𝑠 𝐹(𝐞1𝑗 ;𝐖

2
𝑘,ℎ)

}

𝑗∈)𝑗
.

(4.12)

The output latent vector 𝐞2 is further processed by a fully connected layer to obtain the

parameters 𝜇𝐚𝑡 and log(𝜎𝐚𝑡) of a diagonal Gaussian distribution (𝜇𝐚𝑡 ,𝜎𝐚𝑡) over viewpoints.
The learned policy 𝜋𝜙 then samples recommended viewpoints 𝐚𝑡 from this distribution. We

assume that the drone can reach the recommended viewpoint before the next time step.

For training the network, we employ the Proximal Policy Optimization (PPO) algorithm

[14, 63]. PPO requires an estimate of the state-value 𝑉 𝜋𝜙(𝐬𝑡), which is approximated by

a linear layer predicting 𝑉 𝜋𝜙(𝐬𝑡) ≈ 𝐯⊤𝑣 𝐞2. This value estimation is used during training to

guide the policy. The training process combines the surrogate loss and KL-divergence term

to ensure stability. Additionally, an entropy regularization term is included to promote

exploration [91]. For more detailed information and equations regarding the algorithm, we

refer the reader to [14].

Low-Level Control MPC
During training, we assume the drone reaches the suggested viewpoint by the next time

step. However, at test time we employ a low-level controller operating at a frequency

1
𝜏𝑙
Hz >> 1

𝜏ℎ
Hz, to guide it there while accounting for the drone dynamics. The controller

solves the following receding-horizon constrained optimization problem:

min
y1∶𝑁 ,𝜌0∶𝑁−1

𝑁−1
∑
𝑘=0

𝑤𝜌 ‖‖𝜌𝑘‖‖+𝑤𝑔
‖‖y𝑁 −a𝑡 ‖‖
‖y0−a𝑡 ‖

s.t. y0 = y𝑡 , y𝑘+1 = 𝑓 (y𝑘 ,𝜌𝑘)
𝜌𝑘 ∈  , 0 ≤ 𝑘 ≤ 𝑁−1

(4.13)

where 𝜌𝑘 is the low-level control input sent to the robot, that needs to be inside the possible
values  , 𝑓 (y𝑘 ,𝜌𝑘) the internal dynamics and 𝑤𝑢 and 𝑤𝑔 are the respective weights of the
stage and terminal costs. For more details, we refer the reader to [92] and [106]. Although

our full method accounts for the drone dynamics using this low-level controller, our

formulation is flexible to other low-level controllers as long as they track the recommended

viewpoint a𝑡 . This is why during simulation we employ both the in-built drone dynamic

model and the controller from AirSim, see [97] for more information.

4.6 Experiments
4.6.1 Environment
We use two high-fidelity virtual environments in Unreal Engine to test the presented

framework using our previous work [19], where we provide the essential tools for creating

4.6 Experiments

4

71

Figure 4.3: Experimental environments used to evaluate the proposed framework. On the left, we show the setup

for the experiments performed in the commercial street, Street, and on the right the setup for the font area, Font.
The starting points of the two drones used as mobile cameras are also shown and they always communicate with

each other.

multi-pedestrian scenarios. Photo-realistic simulators offer several advantages, including

obtaining automatically labeled data, easily varying testing conditions, and developing au-

tonomous robotics approaches by filling the gap of using perception information. Previous

works have shown that methods developed in such environments, which are increasingly

prevalent, can generalize to real-world scenes with augmentation techniques ([124, 125]).

The designed scenes are presented in Fig. 4.3. The first scene is a commercial street

(Street), while the second is a green open area (Font). Their respective dimensions are

97x27m and 97x50m. In both scenes, we place three static cameras with overlapping views

for global area monitoring and define distant starting points for the drones. The size of

the images captured by the camera network is set to 1440𝑥900 and the field of view to 90
degrees

2
. Regarding communications, to be as faithful as possible to a real-world scenario,

we set the drones to share information with each other as well as with the closest camera to

them at the time. Communication between static cameras is limited to their direct neighbor,

as shown in Fig. 4.3. Finally, the number of pedestrians present on the scene varies between

episodes, and their trajectories are randomized.

Regarding the task of correctly visualizing people’s attributes, we devise a marketing

study on clothing brands as a use case. Specifically, we create different pedestrians with

a logo on the front of their T-shirts which can be visualized exclusively from the frontal

view of the person.

2
The rest of the camera parameters are those set by default in Unreal Engine and AirSim

4

72 4 Distributed multi-target tracking and active perception with mobile camera networks

4.6.2 Evaluation metrics
To comprehensively evaluate the proposed approach for distributedmulti-target tracking,
the common CLEAR MOT metrics ([126, 127]) are adopted for evaluation:

• Multiple Object Tracking Accuracy (MOTA): measures failures during the tracking

taking into account the number of misses, false positives, and mismatches.

• Identity F1 Score (IDF1): evaluates the capability of the system for preserving the

identities over time.

• Multiple Object Tracking Precision (MOTP): shows the ability of the tracker to

estimate precise object positions through the error in estimated position.

The above evaluation is performed in the image plane where metrics require setting a

threshold between the ground truth and the resulting trackers in order to consider a tracker

valid. We evaluate the resulting bounding boxes in the image plane using a minimum

intersection over union (IoU) of 0.3 as the threshold to validate the trackers. The final

tracking results are those obtained as output of the Distributed Tracker Manager. The final

result is the median of the cameras in the network.

Regarding the acquisition of the correct people’s viewpoint obtained from the active
perception approach, the evaluation is performed using a black-box clothing brands

detector. Thus, we employ two metrics:

• Trackers Classified (TC): measures the percentage of trackers whose beliefs are

higher than 95%.

• Precision (P): evaluates the percentage of trackers for which their beliefs exceed 95%

and correctly identifies their brand (attribute).

To associate each tracker with a ground truth brand class, we perform a linear sum assign-

ment problem between the trackers and ground truth bounding boxes. The ground truth

bounding boxes obtained from the simulator contain the person’s attribute class.

4.6.3 Seqence Evaluated
Several sequences are evaluated in each one of the environments with their corresponding

ground truth being automatically obtained from the simulator. Specifically, we varied the

number of pedestrians to assess the performance for 5, 10, and 15 pedestrians. Thus, the

conducted experiments are named as sparse, medium, and busy for 5, 10, and 15 pedestrians

respectively, resulting in the following sequences: Street Sparse, Street Medium, Street Busy
for Street environment, and Font Sparse, Font Medium, Font Busy for Font environment. All

of them have the same length of 500 frames.

4.6.4 Results and settings
In the following, we explain the baselines selected to compare the proposed method in the

Street sequences and perform a detailed analysis of the obtained results. To conclude the

experiments, we also present the performance of our approach in the metrics described

above for both environments, Street and Font. We set the parameters defined in the method

for all the experiments to 𝜏𝑑𝐿𝐷𝐴 = 1, 𝛼 = 700, 𝜏𝑎𝐿𝐷𝐴 = 0.55, 𝜏𝑑𝐷𝑇𝑀 = 2,𝜏𝑎𝐿𝐷𝐴 = 1, 𝜏𝑙 = 0.05,
𝜏ℎ = 0.25 and the size of the targets’ gallery is set to 10.

4.6 Experiments

4

73

Figure 4.4: Comparison of the cameras responsible for distributed multi-target tracking collaborating with each

other with a chain graph of communications (Static Collaborative) and a single view tracking with isolated

cameras (Single View)

Collaborative behaviour analysis To demonstrate the benefits of collaborative be-

havior between nodes in a multi-target tracking network, we gather the three cameras

from our system responsible for tracking and assessed their performance with and without

communication. The first case (Static Collaborative) follows the initial setup where cameras

communicate exclusively with their direct neighbor in a chain graph (Fig. 4.3). In the sec-

ond setup, the different cameras perform individual tracking without any communication

between nodes (Single View). The obtained results, shown in Fig. 4.4, demonstrate the

benefits of sharing information once per iteration with minimum communications so that

no node in the network is isolated. The Static collaborative setup achieves up to 21% and

15% of improvement in the IDF1 and MOTA metric, respectively, in comparison with the

tracking in Single View. Therefore, we can conclude that in large scenarios, the use of

collaborative cameras with overlapping perspectives enhances tracking performance in

comparison to the use of independent cameras.

Mobile cameras analysis Furthermore, we evaluate the efficiency of our mobile cameras

(MC) to correctly visualize the desired people’s viewpoint against a baseline of static

cameras (SC). The static setup is composed of five cameras, the three already existing in

the system and two more located on the other side of the street for more visual coverage

Method

Classification Process (%)
Street Sparse Street Medium Street Busy
↑TC ↑P ↑TC ↑P ↑TC ↑P

SC 75 75 80 60 70.83 58.33

MC 71.5 64.3 76.2 66.7 81.5 74.1

Table 4.1: Percentage of trackers classified (TC) and percentage of trackers correctly identified (P) in the Street
sequences. Results for the baseline static camera network (SC) and our hybrid system with two mobile cameras

(MC).

4

74 4 Distributed multi-target tracking and active perception with mobile camera networks

of the scene. Communications among the five cameras are defined as a ring graph, i.e.,

each camera shares information with its two nearest neighbors. As a consequence of

the distributed nature of the system, the static cameras collaborate to gain knowledge of

the overall scene, and the evaluation of the correct viewpoint visualization is performed

individually. The final results of the baseline are the median of all the cameras in the

system.

The results obtained of the percentage of trackers classified (TC) and correctly identified

their brands (P) with beliefs higher than 95% are presented in Table 4.1. In the sparse

scenario, where the occlusions between targets are not frequent, the static camera setup

gets better results than the mobile cameras. However, in more crowded scenarios, static

cameras struggle to avoid occlusions for obtaining a view with high confidence from the

pedestrian. In contrast, mobile cameras can be actively positioned to capture the desired

viewpoint, achieving a coverage (TC) of 81.5%, against the 70.83% obtained from the static

setup, in the most challenging scenario (Street Busy). In addition, the quality of the people

data captured by each one of the systems is unmatched. Fig. 4.5 shows examples of the

same pedestrian captured with the mobile cameras (blue box) and with the static cameras

(red dashes box). Every two columns correspond to the same person and we can notice

the great difference in quality. The images from mobile cameras revealed much more clear

details than the static ones, whose images are of low quality and blurry. These result in

better identification of the person’s brand in most of the sequences evaluated (P).

Figure 4.5: Examples of people images captured from the correct viewpoint: mobile cameras (blue box) and static

cameras (red dashed box) in the Street Busy sequence. Every pair of columns displays images of the same person.

Final Evaluation As a summary, we present the performance of the proposed framework

in both photo-realistic environments, Street and Font. The results obtained are shown in

Table 4.2, from which we can conclude that the method is consistent under various condi-

tions, including different numbers of people, size of the space, and type of environments.

Specifically, the experiments focus on evaluating sparse, medium, and busy scenarios, with

5, 10, and 15 pedestrians, respectively. Moreover, the Font environment is larger than the

Street environment with static cameras located further away from the path where people

walk, making it more challenging for monitoring. Finally, we also perform a measurement

of the mean time required by each of the modules comprising the proposed framework:

detection 0.0198 s, local data association per tracker 0.038 s, distributed Kalman filter per

4.6 Experiments

4

75

Sequence

Multi-target Tracking Classification
↑MOTA% ↑IDF1% ↑MOTP% ↑TC% ↑P%

Street Sparse 54.18 48.34 61.43 71.5 64.3

Street Medium 43.62 42.57 60.45 76.2 66.7

Street Busy 38.83 42.52 60.1 81.5 74.1

Font Sparse 38.24 41 58.1 100 75

Font Medium 47.22 55.52 59 93.3 53.35

Font Busy 40.34 47.96 63.63 72.73 63.63

Table 4.2: Results of the evaluated metrics in the Street and the Font sequences where sparse, medium, and busy

environments are analyzed.

Cam1 Cam2 Cam3 Drone1 Drone2

Figure 4.6: Example of images captured by the hybrid system. First row Street Busy sequence and second row

Font Medium sequence. Static cameras are mainly responsible for the global understanding of the scene while

mobile cameras (drones) capture pedestrian images from the desired viewpoint.

tracker 0.002 s, distributed tracker manager 0.0015 s, class information fusion per tracker

0.00004 s, viewpoint control policy 0.005 s. The complete evaluation is conducted in one

computer with an Intel® Core™ i7-9700 CPU @ 3.00GHz ×8 and a Nvidia GeForce GTX

1070. Both tracking modules, with mobile and static cameras, and classification modules,

with mobile cameras, work in parallel. Provided that the poses of new targets are estimated

and relayed to the mobile cameras within 𝜏ℎ, our framework operates in real time. This

isn’t a strict constraint, as there’s allowable latency; however, it’s crucial that tracked

targets remain within the recommended viewpoint FOV during any such delays.

In addition to the numerical results, Fig. 4.6 displays examples of images captured by

the hybrid system at a specific time. The first row corresponds to images from the Street
environment and the second row from the Font scenario. The overall understanding of

the scene is mainly performed by the static cameras although the drones also assist in

the distributed tracking, while the close-up person images are gathered from the mobile

cameras. For example, in the first row, Drone2 correctly captures the viewpoint of the

target with local identity 14, and in the second scenario, Drone1 accomplishes its goal with

local identity 7. In the supplementary material, we include more examples of the complete

framework working on both scenarios.

4

76 4 Distributed multi-target tracking and active perception with mobile camera networks

4.7 Conclusions
In this work, we have presented a collaborative hybrid system comprised of static and

mobile cameras where all of them cooperate for pedestrian monitoring and high-resolution

visualization of certain people’s attributes. The proposed framework performs multi-

camera distributed tracking providing a global understanding of the scene for which the

static cameras are mainly responsible. We demonstrate that by allowing collaboration

between cameras through sharing information once per cycle with the closest nodes, the

multi-target tracking improves up to 21 points in the IDF1 metric and up to 15 points in

MOTA. Global scene awareness and the current state of drones are used by the viewpoint

control policy to provide a new position and orientation for mobile cameras whose goal

is capturing a desired viewpoint of the people as quickly as possible. In comparison with

a static multi-camera system, mobile cameras are able to capture the required viewpoint

with higher precision in most of the scenes evaluated.

5

77

5
Conclusions and Future

Work

5.1 Conclusions
This thesis has presented algorithms that enable robust and scalable coordination of

multi-robot systems in navigation and active perception tasks. The first goal of this

thesis was to enable the safe coordination of multiple drones through an efficient use

of communication. In scenarios of point-to-point navigation, each robot is typically

designated a single navigation task. However, in more intricate scenarios featuring

multiple objectives, the tasks allocated to each robot can dynamically change, e.g. dynamic

multi-target active classification. Consequently, the second goal of this thesis was to

enhance motion-planning policies with properties that allow them to scale and efficiently

adapt to time-varying numbers of tasks. When dealing with active perception tasks

that involve dynamic targets, addressing their partial observability becomes essential.

Therefore, the third goal of this thesis was to enhance our existing framework to better

reflect real-world conditions, where targets need to be detected, tracked, and classified.

Finally, multiple robots are necessary to realistically monitor large areas.

Chapter 2 introduced an efficient communication policy for decentralized multi-robot

systems, enhancing coordination in collision avoidance tasks. This chapter addressed the

challenge of efficiently enabling communication-based coordination. Previous models

for multi-robot systems often relied on constant or periodic broadcasting of each robot’s

intentions, leading to unnecessary communication and inefficiency, especially when robots

were not nearby. To overcome this, we developed a communication policy that determines

when and with whom to communicate based on a communication policy trained through

Reinforcement Learning. Each robot learned to selectively request trajectory plans from

other robots posing potential risks while assuming constant velocities for non-selected

robots. This learned policy used a novel attention-based neural architecture, allowing

scalability across a varying number of robots while ensuring safe navigation. We coupled

the communication policy with Non-Linear Model Predictive Control (NMPC) for motion

planning to provide collision avoidance guarantees. The effectiveness of this method was

5

78 5 Conclusions and Future Work

tested in simulation with 12 robots, showing 30% less communication than the closest

competitor, minimally compromising safety. The method’s scalability was evidenced

by its successful application to lower/larger scale teams of robots than it was trained

on, showing a degradation pattern comparable to that of the broadcasting policy in

larger teams (e.g. less than 2% and 10% for 18 and 24 agents). The method also showed

robustness to observation noise. This enabled us to perform real experiments, successfully

demonstrating the transferability of our framework to physical quadrotors.

Chapter 3 presented a novel framework for the active classification of multiple dynamic

targets using a drone and a "black-box" classifier. The primary challenge addressed was

the computation of control inputs that guide the drone to informative viewpoints in

dynamic environments. Previous methods were limited to static target classification

or used predefined sets of target-centric viewpoints and trajectories, restricted by the

need for previously established models to select viewpoints according to their estimated

usefulness. Our approach learned a viewpoint control policy via Deep Reinforcement

Learning (DRL), that recommended informative viewpoints which were then tracked by

a low-level MPC. The class of the observed targets were estimated with the "black-box"

classifier and aggregated with prior estimates through conflation. The proposed

architecture used self-attention and set-function approximators for scalable encoding of

dynamic environments, overcoming the requirements for prior knowledge in existing

motion-planning strategies. The framework’s effectiveness was tested against various

baselines, including hand-crafted policies, ablations of our approach, and other existing

learning-based motion-planning strategies. Simulation results with both simple and

photo-realistic models showed the proposed method outperformed baselines in observing

and classifying targets quickly. Additionally, its effectiveness in the photo-realistic

environment indicates robustness in bridging the simulation-to-reality gap.

Chapter 4 presented a novel decentralized hybrid multi-camera system for surveillance

and monitoring applications. The main limitations of traditional fixed camera networks

are the presence of blind spots and back-lighting in the environment. Therefore, we

proposed a decentralized hybrid framework that integrated both static and mobile cameras

to enhance the system’s ability to gather critical information actively and dynamically. All

cameras in the network were coordinated to monitor people moving in the environment.

They detected, distinguished, and coordinated to localize each person by comparing their

local information. The mobile camera was guided through a viewpoint control policy

(introduced in Chapter 3) towards viewpoints that maximized the observable semantic

information from the observed targets. We implemented the framework in a photorealistic

environment designed in Unreal Engine according to the guidelines provided in [19]. We

enabled distributed communications among static and mobile cameras using the Robot

Operating System (ROS), helping to bridge the gap between simulated and real-world

applications. Results on the tracking performance of the framework in large environments

demonstrated the advantages of using collaborative mobile cameras over purely static

and individual camera setups, achieving an improvement of 21% and 15% respectively

in target identification and tracking accuracy. The benefits of mobile cameras became

particularly evident in crowded scenarios where static cameras often face challenges in

5.2 Future work

5

79

avoiding occlusions to obtain a high-confidence view of pedestrians. Mobile cameras were

actively positioned to capture the desired viewpoint, resulting in over a 10% improvement

in classified trackers compared to a static setup. Qualitatively, the mobile cameras provided

superior target observation quality that was unmatched by the static framework.

Overall, these contributions address the key challenges in robust, scalable, and efficient

coordination of multi-robot systems in navigation and active perception tasks. However,

there are still several remaining challenges before we can realistically deploy robot swarms

in real perception tasks, especially when the policy is learned. Toward that goal, possible

directions of future work are described below.

5.2 Future work
This thesis contributed to the fields of motion planning and active perception, enabling

scalable target triage and efficient coordination of multiple robots. Nevertheless, many

open challenges remain to be addressed before reliable and robust multi-robot monitoring

of large areas becomes a reality. Hereafter, we first assess the limitations and possible

extensions of our work followed by recommendations on several future research directions

for scalable and interpretable coordination, hierarchical control, and trading-off multiple

objectives.

5.2.1 Limitations and extension
This thesis has shown advances in multi-robot motion planning coordination and scalable

active perception. However, several limitations still offer possibilities for future research.

Despite our last results showing two robots coordinating with static cameras to locate and

classify dynamic targets, one notable gap is the lack of explicit coordination among mobile

cameras to cover the region of interest, track identified targets efficiently, and actively

search for remaining targets that have not been found yet [8, 11, 128]. Additionally,

the current system’s movement is limited to convex two-dimensional free space, which

restricts its application to three-dimensional maps with obstacles, such as urban areas or

inside buildings [129].

Our approach also assumes prior knowledge about the targets’ dynamics, the classifier’s

behavior, and the viewpoints from which visual target information can be observed. This

information was used to learn a viewpoint recommendation policy through model-free

Reinforcement Learning. Being a family of generally data-hungry methods that require

interacting with an environment, the use of accurate simulators was imperative to generate

large amounts of data, learn accurate value functions, and obtain near-optimal policies.

However, this information is often very specific to our problem and the assumptions taken,

which affects the data, the flexibility of the learned policy, and therefore its transferability

to real-life scenarios. On top of that, real-life environments are generally unstructured

and uncertain, which makes simulating them for training, planning and prediction an

open problem. This highlights the need for more general methods that can react and adapt

seamlessly to sim-to-real changes during deployment instead of overfitting to the training

environment.

5

80 5 Conclusions and Future Work

Finally, a promising extension would involve integrating heterogeneous robots with

diverse sensing and actuation capabilities [130]. Addressing these limitations could signifi-

cantly refine the system’s efficiency and effectiveness in real-world scenarios, broadening

its range of applications.

5.2.2 Scalable and interpretable coordination policies
This work proposed to learn policies that can scale with the number of tasks and robots

by using attention to adaptively encode the state, regardless of the number of tasks or

other robots present. However, extending single-agent policy learning to multi-agent

policy learning is far from trivial. Apart from the additional challenges coming from

MARL, e.g. credit assignment and non-stationarity during training, the learned policies are

limited to perform with the set of policies it has been trained with [11, 131]. Nevertheless,

there is no guarantee their performance will not deteriorate when cooperating with other

robots that follow policies that do not share the same weights or are trained with another

initialization seed. With the rising energy demand, it is critical to obtain solutions that

enable easy maintenance, replacement, and collaboration with other-party robot policies

with minimal energy cost, e.g. without retraining the whole system. Explicit modeling

of multi-agent interaction [132] would allow to obtain generalizable coordination among

multiple single-agent policies. Future work may explore formulations of Dec-POMDPs and

explicit multi-agent interaction models allowing predictable and controllable coordination

of single-agent policies under more flexible conditions [133].

5.2.3 Modular Control
This thesis steers away from the trend of learning end-to-end general policies that replace

the entire robotics pipeline (e.g. from perception to low-level actuators) in favor of the

combination of learned and classic approaches for each sub-task. Similar to [60], it places

special emphasis on obtaining learned high-level policies that enhance the performance of

a low-level controller, e.g. by changing its constraints or the tracked goal. This allows our

motion planner to solve complex tasks while respecting dynamic and collision constraints.

Similar trends are followed by methods such as [134], where an MPC is used to redirect a

learned policy to move according to dynamic and collision avoidance constraints. However,

the learning algorithms in these methods do not account for the effects of the low-level

controller and its imposed dynamic and task constraints on the learned policy, which

tends to result in sample inefficiencies and artifacts. Thus, advancing learning methods

incorporating such information is critical to enable learning policies for control. Two

recent promising works further blend planning and gradient-based reinforcement learning

by directly propagating gradients through a differentiable low-level controller [135], or

by directly learning high-level policies that map states to hyperparameter settings of low-

level controllers [136]. Nevertheless, there is still much work to be done in more general

scenarios such as task and motion planning (TAMP) applications.

5.2.4 Hierarchical Control: Multi-objective encoding
Realistic robotics problems are generally multi-objective. Thus the methods proposed

throughout this thesis solve multiple tasks at the same time, like classifying multiple

5.2 Future work

5

81

targets, or reaching a goal while avoiding obstacles. The former is a set of independent

tasks that do not have any priority assigned to them. As seen in Chapter 3, this can

be leveraged and encoded through attention. However, as shown in chapter 2, tasks in

multi-objective scenarios are generally correlated, which requires coordination beyond

task distribution. Furthermore, these objectives have generally different priority weights,

which are difficult to trade off both at training and test time. Following the work from

this thesis, future work on multi-objective cost encoding is necessary beyond the scalar

representation cost and reward functions generally used in the fields of optimal control

and reinforcement learning. How to represent, trade-off such objectives, and find Pareto

front solutions have been widely studied in the field of Multi-Objective Decision Making,

and its research is still ongoing [137]. However, previous efforts in RL only focus on how

to modify the policy through training algorithmic modifications. Future work on careful

formulation of the learned policy so that it represents the set of solutions on the Pareto

front, from which to choose a policy according to the engineer’s specifications without the

need for retraining, could prove more intuitive to maintain and adapt to non-stationary

multi-objective scenarios.

83

Bibliography

References
[1] Nils Boysen, Stefan Fedtke, and Stefan Schwerdfeger. Last-mile delivery concepts: a

survey from an operational research perspective. OR Spectrum, 43(1):1–58, 2021.

[2] Anne Goodchild and Jordan Toy. Delivery by drone: An evaluation of unmanned

aerial vehicle technology in reducing co2 emissions in the delivery service industry.

Transportation Research Part D: Transport and Environment, 61:58–67, 2018. Innova-
tive Approaches to Improve the Environmental Performance of Supply Chains and

Freight Transportation Systems.

[3] Dan Liu, Zhenghong Deng, Xinhua Mao, Yang Yang, and Evangelos I. Kaisar. Two-

echelon vehicle-routing problem: Optimization of autonomous delivery vehicle-

assisted e-grocery distribution. IEEE Access, 8:108705–108719, 2020.

[4] Giuseppe Fragapane, René de Koster, Fabio Sgarbossa, and Jan Ola Strandhagen.

Planning and control of autonomous mobile robots for intralogistics: Literature

review and research agenda. European Journal of Operational Research, 294(2):405–
426, 2021.

[5] Jorge Peña Queralta, Jussi Taipalmaa, Bilge Can Pullinen, Victor Kathan Sarker,

Tuan Nguyen Gia, Hannu Tenhunen, Moncef Gabbouj, Jenni Raitoharju, and Tomi

Westerlund. Collaborative multi-robot search and rescue: Planning, coordination,

perception, and active vision. IEEE Access, 8:191617–191643, 2020.

[6] Randa Almadhoun, Tarek Taha, Lakmal Seneviratne, and Yahya Zweiri. A survey

on multi-robot coverage path planning for model reconstruction and mapping. SN
Applied Sciences, 1(8):847, 2019.

[7] C. S. Chen, F. C. Lin, and C. J. Lin. The energy efficiency multi-robot system and

disinfection service robot development in large-scale complex environment. Sensors,
23(12):5724, Jun 2023.

[8] Sara Casao, Abel Naya, Ana C Murillo, and Eduardo Montijano. Distributed multi-

target tracking in camera networks. In 2021 IEEE International Conference on Robotics
and Automation (ICRA), pages 1903–1909. IEEE, 2021.

[9] Drone Show Europe. Drone show europe. https://droneshoweurope.
com/, 2023. Accessed on: November 2023.

[10] Christopher D. Hsu, Heejin Jeong, George J. Pappas, and Pratik Chaudhari. Scalable

reinforcement learning policies formulti-agent control. In 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 4785–4791, 2021.

https://droneshoweurope.com/
https://droneshoweurope.com/

84 Bibliography

[11] Ekaterina Tolstaya, James Paulos, Vijay Kumar, and Alejandro Ribeiro. Multi-robot

coverage and exploration using spatial graph neural networks. In 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 8944–8950,
2021.

[12] Amazon Science. How amazon robots navigate conges-

tion. https://www.amazon.science/latest-news/
how-amazon-robots-navigate-congestion, 2023. Accessed

on: November 2023.

[13] Matthew Cavorsi, Orhan Eren Akgün, Michal Yemini, Andrea J. Goldsmith, and

Stephanie Gil. Exploiting trust for resilient hypothesis testing with malicious robots.

In 2023 IEEE International Conference on Robotics and Automation (ICRA), pages
7663–7669, 2023.

[14] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

Proximal policy optimization algorithms. ArXiv, abs/1707.06347, 2017.

[15] Eduardo Camacho and Carlos Bordons. Model Predictive Control, volume 13. 01 2004.

[16] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation

by jointly learning to align and translate. In Yoshua Bengio and Yann LeCun, editors,

3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,

U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-

nett, editors, Advances in Neural Information Processing Systems, volume 30. Curran

Associates, Inc., 2017.

[18] Qingbiao Li, Weizhe Lin, Zhe Liu, and Amanda Prorok. Message-aware graph

attention networks for large-scale multi-robot path planning. IEEE Robotics and
Automation Letters, 6(3):5533–5540, 2021.

[19] Sara Casao, Andrés Otero, Álvaro Serra-Gómez, Ana C. Murillo, Javier Alonso-

Mora, and Eduardo Montijano. A framework for fast prototyping of photo-realistic

environments with multiple pedestrians. In 2023 IEEE International Conference on
Robotics and Automation (ICRA), pages 9083–9089, 2023.

[20] Álvaro Serra-Gómez, Bruno Brito, Hai Zhu, Jen Jen Chung, and Javier Alonso-Mora.

With whom to communicate: Learning efficient communication for multi-robot

collision avoidance. In 2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 11770–11776. IEEE, 2020.

[21] Álvaro Serra-Gómez, Hai Zhu, Bruno Brito, Wendelin Böhmer, and Javier Alonso-

Mora. Learning scalable and efficient communication policies for multi-robot colli-

sion avoidance. Autonomous Robots, 47(8):1275–1297, 2023.

https://www.amazon.science/latest-news/how-amazon-robots-navigate-congestion
https://www.amazon.science/latest-news/how-amazon-robots-navigate-congestion

References 85

[22] Hai Zhu, Francisco Martinez Claramunt, Bruno Brito, and Javier Alonso-Mora.

Learning interaction-aware trajectory predictions for decentralized multi-robot

motion planning in dynamic environments. IEEE Robotics and Automation Letters,
6(2):2256–2263, 2021.

[23] Mohamed S. Talamali, Arindam Saha, James A. R. Marshall, and Andreagiovanni

Reina. When less is more: Robot swarms adapt better to changes with constrained

communication. Science Robotics, 6, 2021.

[24] Thomas Wheeler, Ezhil Bharathi, and Stephanie Gil. Switching topology for resilient

consensus using wi-fi signals. In 2019 International Conference on Robotics and
Automation (ICRA), pages 2018–2024, 2019.

[25] Jur Van Den Berg, Stephen J. Guy, Ming Lin, and Dinesh Manocha. Reciprocal n-body

collision avoidance. In Springer Tracts in Advanced Robotics, volume 70, pages 3–19.

2011.

[26] Yan Yongjie and Zhang Yan. Collision avoidance planning in multi-robot based on

improved artificial potential field and rules. In 2009 IEEE International Conference on
Robotics and Biomimetics (ROBIO), pages 1026–1031. IEEE, 2009.

[27] Dingjiang Zhou, Zijian Wang, Saptarshi Bandyopadhyay, and Mac Schwager. Fast,

on-line collision avoidance for dynamic vehicles using buffered voronoi cells. IEEE
Robotics and Automation Letters, 2(2):1047–1054, 2017.

[28] Hai Zhu and Javier Alonso-Mora. B-uavc: Buffered uncertainty-aware voronoi cells

for probabilistic multi-robot collision avoidance. In 2019 International Symposium on
Multi-Robot and Multi-Agent Systems (MRS), pages 162–168. IEEE, 2019.

[29] Li Wang, Aaron D. Ames, and Magnus Egerstedt. Safety barrier certificates for

collisions-free multirobot systems. IEEE Transactions on Robotics, 33(3):661–674,
2017.

[30] Hai Zhu and Javier Alonso-Mora. Chance-constrained collision avoidance for mavs

in dynamic environments. IEEE Robotics and Automation Letters, 4(2):776–783, 2019.

[31] Carlos E Luis, Marijan Vukosavljev, and Angela P Schoellig. Online trajectory

generationwith distributedmodel predictive control for multi-robot motion planning.

IEEE Robotics and Automation Letters, 5(2):604–611, 2020.

[32] Mina Kamel, Javier Alonso-Mora, Roland Siegwart, and Juan Nieto. Robust collision

avoidance for multiple micro aerial vehicles using nonlinear model predictive control.

In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
pages 236–243. IEEE, 2017.

[33] Maayan Roth, Reid Simmons, and Manuela Veloso. Reasoning about joint beliefs for

execution-time communication decisions. In Proceedings of the Fourth International
Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS ’05, page

786–793, New York, NY, USA, 2005. Association for Computing Machinery.

86 Bibliography

[34] Raphen Becker, Alan Carlin, Victor Lesser, and Shlomo Zilberstein. Analyzing

myopic approaches for multi-agent communication. Computational Intelligence,
25:31–50, 2009.

[35] Abdallah Kassir, Robert Fitch, and Salah Sukkarieh. Communication-efficient motion

coordination and data fusion in information gathering teams. In IEEE International
Conference on Intelligent Robots and Systems, volume 2016-November, pages 5258–

5265. Institute of Electrical and Electronics Engineers Inc., nov 2016.

[36] Graeme Best, Michael Forrai, Ramgopal R. Mettu, and Robert Fitch. Planning-aware

communication for decentralised multi-robot coordination. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pages 1050–1057, 2018.

[37] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch. Multi-

agent actor-critic for mixed cooperative-competitive environments. In Advances in
Neural Information Processing Systems, volume 2017-Decem, pages 6380–6391, 2017.

[38] Jakob N. Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and

Shimon Whiteson. Counterfactual multi-agent policy gradients. In Proceedings of
the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative
Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on
Educational Advances in Artificial Intelligence, AAAI’18/IAAI’18/EAAI’18. AAAI
Press, 2018.

[39] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar,

Jakob Foerster, and Shimon Whiteson. Monotonic value function factorisation for

deep multi-agent reinforcement learning. J. Mach. Learn. Res., 21(1), jan 2020.

[40] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius

Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z. Leibo, Karl Tuyls,

and Thore Graepel. Value-decomposition networks for cooperative multi-agent

learning based on team reward. In Proceedings of the 17th International Conference on
Autonomous Agents and MultiAgent Systems, AAMAS ’18, page 2085–2087, Richland,

SC, 2018. International Foundation for Autonomous Agents and Multiagent Systems.

[41] Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung

Yi. QTRAN: Learning to factorize with transformation for cooperative multi-agent

reinforcement learning. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors,

Proceedings of the 36th International Conference on Machine Learning, volume 97 of

Proceedings of Machine Learning Research, pages 5887–5896. PMLR, 09–15 Jun 2019.

[42] Shariq Iqbal and Fei Sha. Actor-attention-critic for multi-agent reinforcement learn-

ing. In ICML, 2019.

[43] Michael Everett, Yu Fan Chen, and Jonathan P. How. Motion Planning among

Dynamic, Decision-Making Agents with Deep Reinforcement Learning. In IEEE
International Conference on Intelligent Robots and Systems, pages 3052–3059, 2018.

References 87

[44] Michael Everett, Yu Fan Chen, and Jonathan How. Collision avoidance in pedestrian-

rich environments with deep reinforcement learning. IEEE Access, 9:10357–10377,
2021.

[45] Qingbiao Li, Fernando Gama, Alejandro Ribeiro, and Amanda Prorok. Graph neural

networks for decentralized multi-robot path planning. In IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems, pages 11785–11792, 2020.

[46] Jakob N. Foerster, Yannis M. Assael, Nando de Freitas, and Shimon Whiteson. Learn-

ing to communicate with deep multi-agent reinforcement learning. In Proceedings of
the 30th International Conference on Neural Information Processing Systems, NIPS’16,
page 2145–2153, Red Hook, NY, USA, 2016. Curran Associates Inc.

[47] Igor Mordatch and Pieter Abbeel. Emergence of grounded compositional language

in multi-agent populations. 32nd AAAI Conference on Artificial Intelligence, AAAI
2018, pages 1495–1502, 2018.

[48] Sainbayar Sukhbaatar, Arthur Szlam, and Rob Fergus. Learning multiagent commu-

nication with backpropagation. Advances in Neural Information Processing Systems,
(Nips):2252–2260, 2016.

[49] Jayesh K. Gupta, Maxim Egorov, and Mykel Kochenderfer. Cooperative multi-agent

control using deep reinforcement learning. In Gita Sukthankar and JuanA. Rodriguez-

Aguilar, editors, Autonomous Agents and Multiagent Systems, pages 66–83, Cham,

2017. Springer International Publishing.

[50] Jiechuan Jiang and Zongqing Lu. Learning attentional communication for multi-

agent cooperation. In Advances in Neural Information Processing Systems, 2018.

[51] Abhishek Das, Théophile Gervet, Joshua Romoff, Dhruv Batra, Devi Parikh, Michael

Rabbat, and Joelle Pineau. TarMAC: Targeted multi-agent communication. In 36th
International Conference on Machine Learning, ICML 2019, 2019.

[52] Yuanzhao Zhai, BoDing, Xuan Liu, Hongda Jia, Yong Zhao, and Jie Luo. Decentralized

multi-robot collision avoidance in complex scenarios with selective communication.

IEEE Robotics and Automation Letters, 6(4):8379–8386, 2021.

[53] Chuangchuang Sun, M. Shen, and Jonathon P. How. Scaling up multiagent reinforce-

ment learning for robotic systems: Learn an adaptive sparse communication graph.

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages
11755–11762, 2020.

[54] Ziluo Ding, Tiejun Huang, and Zongqing Lu. Learning individually inferred com-

munication for multi-agent cooperation. In Proceedings of the 34th International
Conference on Neural Information Processing Systems, NIPS’20, Red Hook, NY, USA,

2020. Curran Associates Inc.

[55] Daniel Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The

complexity of decentralized control of markov decision processes. Mathematics of
Operations Research, 27, 12 2002.

88 Bibliography

[56] Aida Rahmattalabi, Jen Jen Chung, Mitchell Colby, and Kagan Tumer. D++: Struc-

tural credit assignment in tightly coupled multiagent domains. In 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 4424–4429,
2016.

[57] Rose Wang, J. Chase Kew, Dennis Lee, Tsang-Wei Lee, Tingnan Zhang, Brian Ichter,

Jie Tan, and Aleksandra Faust. Model-based reinforcement learning for decentralized

multiagent rendezvous. In Jens Kober, Fabio Ramos, and Claire Tomlin, editors,

Proceedings of the 2020 Conference on Robot Learning, volume 155 of Proceedings of
Machine Learning Research, pages 711–725. PMLR, 16–18 Nov 2021.

[58] Tingxiang Fan, Pinxin Long, Wenxi Liu, and Jia Pan. Distributed multi-robot collision

avoidance via deep reinforcement learning for navigation in complex scenarios. The
International Journal of Robotics Research, 39(7):856–892, 2020.

[59] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-
tation, 9:1735–80, 12 1997.

[60] Bruno Brito, Michael Everett, Jonathan How, and Javier Alonso-Mora. Where to go

next: Learning a subgoal recommendation policy for navigation among pedestrians.

IEEE Robotics and Automation Letters, 6(3):4616–4623, 2021.

[61] F. Gama, A. Marques, G. Leus, and Alejandro Ribeiro. Convolutional neural network

architectures for signals supported on graphs. IEEE Transactions on Signal Processing,
67:1034–1049, 2019.

[62] Vitaly Kurin, Maximilian Igl, Tim Rocktäschel, Wendelin Boehmer, and Shimon

Whiteson. My body is a cage: the role of morphology in graph-based incompatible

control. In International Conference on Learning Representations, 2021.

[63] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg,

Joseph Gonzalez, Michael Jordan, and Ion Stoica. RLlib: Abstractions for distributed

reinforcement learning. In Jennifer Dy and Andreas Krause, editors, Proceedings of
the 35th International Conference on Machine Learning, volume 80 of Proceedings of
Machine Learning Research, pages 3053–3062. PMLR, 10–15 Jul 2018.

[64] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw,

Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan, and Ion

Stoica. Ray: A distributed framework for emerging ai applications. In Proceedings
of the 13th USENIX Conference on Operating Systems Design and Implementation,
OSDI’18, page 561–577, USA, 2018. USENIX Association.

[65] John Schulman, P. Moritz, S. Levine, Michael I. Jordan, and P. Abbeel. High-

dimensional continuous control using generalized advantage estimation. CoRR,
abs/1506.02438, 2016.

[66] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In

Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015.

References 89

[67] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum

learning. In Proceedings of the 26th annual international conference on machine
learning, pages 41–48, 2009.

[68] Alexander Domahidi and Juan Jerez. Forces professional. embotech gmbh

(http://embotech. com/forces-pro), 2014.

[69] Hai Zhu, Jelle Juhl, Laura Ferranti, and Javier Alonso-Mora. Distributed multi-robot

formation splitting and merging in dynamic environments. In 2019 IEEE International
Conference on Robotics and Automation (ICRA), pages 9080–9086. IEEE, 2019.

[70] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi. You only

look once: Unified, real-time object detection. IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 779–788, 2016.

[71] Inigo Alonso, Luis Riazuelo, Luis Montesano, and Ana Murillo. Domain adaptation

in lidar semantic segmentation by aligning class distributions. In Int. Conf. on
Informatics in Control, Autom. and Robot., 2021.

[72] Timothy Patten, Michael Zillich, Robert C. Fitch, Markus Vincze, and Salah Sukkarieh.

Viewpoint evaluation for online 3-d active object classification. IEEE Robotics and
Automation Letters, 1(1):73–81, 2016.

[73] Marija Popović, Gregory Hitz, Juan Nieto, Inkyu Sa, Roland Siegwart, and Enric

Galceran. Online informative path planning for active classification using uavs. In

IEEE Int. Conf. on Robotics and Automation, pages 5753–5758, 2017.

[74] Nikolay Atanasov, Bharath Sankaran, Jerome Le Ny, George J. Pappas, and Kostas

Daniilidis. Nonmyopic view planning for active object classification and pose esti-

mation. IEEE Trans. on Rob., 30(5):1078–1090, 2014.

[75] Timothy Patten, WolframMartens, and Robert Fitch. Monte carlo planning for active

object classification. Auton. Rob., 42(02):391–421, 2018.

[76] Juil Sock, Guillermo Garcia-Hernando, and Tae-Kyun Kim. Active 6d multi-object

pose estimation in cluttered scenarios with deep reinforcement learning. In IEEE/RSJ
Int. Conf. on Intel. Rob. and Syst., pages 10564–10571, 2020.

[77] Qianli Xu et al. Towards efficient multiview object detection with adaptive action

prediction. In IEEE Int. Conf. on Robotics and Automation, pages 13423–13429, 2021.

[78] David Kent and Sonia Chernova. Human-centric active perception for autonomous

observation. In IEEE Int. Conf. on Robotics and Automation, pages 1785–1791, 2020.

[79] Alfonso Alcántara, Jesús Capitán, Rita Cunha, and Aníbal Ollero. Optimal trajectory

planning for cinematography with multiple unmanned aerial vehicles. Robotics and
Autonomous Systems, 140:103778, 2021.

[80] Boseong Felipe Jeon, Dongsuk Shim, and H. Jin Kim. Detection-aware trajectory

generation for a drone cinematographer. In IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems, pages 1450–1457, 2020.

90 Bibliography

[81] Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Velickovic. Geometric

deep learning: Grids, groups, graphs, geodesics, and gauges. CoRR, abs/2104.13478,
2021.

[82] Adarsh Jagan Sathyamoorthy, Jing Liang, Utsav Patel, Tianrui Guan, Rohan Chandra,

and Dinesh Manocha. Densecavoid: Real-time navigation in dense crowds using

anticipatory behaviors. In IEEE Int. Conf. on Robotics and Automation, pages 11345–
11352, 2020.

[83] Yuxiang Cui, Haodong Zhang, Yue Wang, and Rong Xiong. Learning world transi-

tion model for socially aware robot navigation. In IEEE Int. Conf. on Robotics and
Automation, pages 9262–9268, 2021.

[84] Yuying Chen, Congcong Liu, Bertram E. Shi, and Ming Liu. Robot navigation in

crowds by graph convolutional networks with attention learned from human gaze.

IEEE Rob. and Autom. Let., 5(2):2754–2761, 2020.

[85] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Russ R

Salakhutdinov, and Alexander J Smola. Deep sets. In Advances in Neural Infor-
mation Processing Systems, volume 30. Curran Associates, Inc., 2017.

[86] Changan Chen, Yuejiang Liu, Sven Kreiss, and Alexandre Alahi. Crowd-robot

interaction: Crowd-aware robot navigation with attention-based deep reinforcement

learning. In IEEE Int. Conf. on Rob. and Autom., pages 6015–6022, 2019.

[87] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye

Teh. Set transformer: A framework for attention-based permutation-invariant neural

networks. In Int. Conf. on Mach. Learn., pages 3744–3753, 2019.

[88] Yoonchang Sung and Pratap Tokekar. Algorithm for searching and tracking an

unknown and varying number of mobile targets using a limited fov sensor. In IEEE
Int. Conf. on Rob. and Autom., pages 6246–6252, 2017.

[89] Theodore Hill and Jack Miller. How to combine independent data sets for the same

quantity. Chaos: An Interdisciplinary Journal of Nonlinear Science, 21(3):033102 (1–8),
2011.

[90] Michael Schlichtkrull, Thomas Kipf, Peter Bloem, Rianne Berg, Ivan Titov, and Max

Welling. Modeling relational data with graph convolutional networks. In Extended
Semantic Web Conference, pages 593–607, 06 2018.

[91] Tuomas Haarnoja, Haoran Tang, P. Abbeel, and Sergey Levine. Reinforcement

learning with deep energy-based policies. In Proceedings of the 34th International
Conference on Machine Learning (ICML), 2017.

[92] Hai Zhu and Javier Alonso-Mora. Chance-constrained collision avoidance for mavs

in dynamic environments. IEEE Robotics and Automation Letters, 4(2):776–783, 2019.

[93] Logan Engstrom et al. Implementation matters in deep rl: A case study on ppo and

trpo. In Int. Conf. on Learn. Repr., 2020.

References 91

[94] Marcin Andrychowicz et al. What matters for on-policy deep actor-critic methods?

a large-scale study. In Int. Conf. on Learn. Repr., 2021.

[95] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter

Abbeel. Domain randomization for transferring deep neural networks from simula-

tion to the real world. In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pages
23–30, 2017.

[96] Dirk Helbing and Peter Molnar. Social force model for pedestrian dynamics. Physical
Review E, 51, 05 1998.

[97] Shital Shah, Debadeepta Dey, Chris Lovett, and Ashish Kapoor. Airsim: High-fidelity

visual and physical simulation for autonomous vehicles. In Field and service robotics,
pages 621–635. Springer, 2018.

[98] Makehuman community., 2022. http://www.makehumancommunity.
org.

[99] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. CoRR,
abs/1804.02767, 2018.

[100] TensorFlow 2 YOLOv3 Mnist detection training tutorial. pylessons, 2020. https:
//pylessons.com/YOLOv3-TF2-mnist.

[101] Alhayat Ali Mekonnen, Frédéric Lerasle, and Ariane Herbulot. Cooperative passers-

by tracking with a mobile robot and external cameras. Computer Vision and Image
Understanding, 117(10):1229–1244, 2013.

[102] Xinzhao Li, Yuanqi Su, Yuehu Liu, Shaozhuo Zhai, and Ying Wu. Active target

tracking: A simplified view aligning method for binocular camera model. Computer
Vision and Image Understanding, 175:11–23, 2018.

[103] Ian D Miller, Fernando Cladera, Trey Smith, Camillo Jose Taylor, and Vijay Kumar.

Stronger together: Air-ground robotic collaboration using semantics. IEEE Robotics
and Automation Letters, 7(4):9643–9650, 2022.

[104] Yang Zhou, JiuhongXiao, Yue Zhou, andGiuseppe Loianno. Multi-robot collaborative

perception with graph neural networks. IEEE Robotics and Automation Letters,
7(2):2289–2296, 2022.

[105] Javier Yu, Joseph A Vincent, and Mac Schwager. Dinno: Distributed neural network

optimization for multi-robot collaborative learning. IEEE Robotics and Automation
Letters, 7(2):1896–1903, 2022.

[106] Álvaro Serra-Gómez, Eduardo Montijano, Wendelin Böhmer, and Javier Alonso-

Mora. Active classification of moving targets with learned control policies. IEEE
Robotics and Automation Letters, 8(6):3717–3724, 2023.

[107] Yundong Guo, Zhenyu Liu, Hao Luo, Huijie Pu, and Jianrong Tan. Multi-person

multi-camera tracking for live stream videos based on improved motion model and

matching cascade. Neurocomputing, 492:561–571, 2022.

http://www.makehumancommunity.org.
http://www.makehumancommunity.org.
https://pylessons.com/YOLOv3-TF2-mnist.
https://pylessons.com/YOLOv3-TF2-mnist.

92 Bibliography

[108] Kha Gia Quach, Pha Nguyen, Huu Le, Thanh-Dat Truong, Chi Nhan Duong, Minh-

Triet Tran, and Khoa Luu. Dyglip: A dynamic graph model with link prediction for

accurate multi-camera multiple object tracking. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 13784–13793, 2021.

[109] Moonsub Byeon, Haanju Yoo, Kikyung Kim, Songhwai Oh, and Jin Young Choi.

Unified optimization framework for localization and tracking of multiple targets

with multiple cameras. Computer Vision and Image Understanding, 166:51–65, 2018.

[110] Ruiheng Zhang, Lingxiang Wu, Yukun Yang, Wanneng Wu, Yueqiang Chen, and Min

Xu. Multi-camera multi-player tracking with deep player identification in sports

video. Pattern Recognition, 102:107260, 2020.

[111] Alessio Xompero and Andrea Cavallaro. Cross-camera view-overlap recognition. In

European Conference on Computer Vision, pages 253–269. Springer, 2022.

[112] Xiaohua Ge, Qing-Long Han, Xian-Ming Zhang, Lei Ding, and Fuwen Yang. Dis-

tributed event-triggered estimation over sensor networks: A survey. IEEE transactions
on cybernetics, 50(3):1306–1320, 2019.

[113] Cristian Soto, Bi Song, andAmit K Roy-Chowdhury. Distributedmulti-target tracking

in a self-configuring camera network. In 2009 IEEE Conference on Computer Vision
and Pattern Recognition, pages 1486–1493. IEEE, 2009.

[114] Zhifei Li, Yan Liang, Linfeng Xu, and Shuli Ma. Distributed extended object tracking

information filter over sensor networks. International Journal of Robust and Nonlinear
Control, 33(2):1122–1149, 2023.

[115] Ahmed T Kamal, Jawadul H Bappy, Jay A Farrell, and Amit K Roy-Chowdhury.

Distributed multi-target tracking and data association in vision networks. IEEE
transactions on pattern analysis and machine intelligence, 38(7):1397–1410, 2015.

[116] Li He, Guoliang Liu, Guohui Tian, Jianhua Zhang, and Ze Ji. Efficient multi-view

multi-target tracking using a distributed camera network. IEEE Sensors Journal, 2019.

[117] Melanie Schranz and Torsten Andre. Towards resource-aware hybrid camera systems.

In International Conference on Distributed Smart Cameras, pages 1–7, 2018.

[118] Jing Li, Jing Xu, Fangwei Zhong, Xiangyu Kong, Yu Qiao, and Yizhou Wang. Pose-

assisted multi-camera collaboration for active object tracking. In AAAI Conference
on Artificial Intelligence, volume 34, pages 759–766, 2020.

[119] Juan-Carlos Trujillo, Rodrigo Munguía, Eduardo Ruiz-Velázquez, and Bernardino

Castillo-Toledo. A cooperative aerial robotic approach for tracking and estimating

the 3d position of a moving object by using pseudo-stereo vision. Journal of Intelligent
& Robotic Systems, 96:297–313, 2019.

[120] Niccoló Bisagno, Nicola Conci, and Bernhard Rinner. Dynamic camera network

reconfiguration for crowd surveillance. In International Conference on Distributed
Smart Cameras, pages 1–6, 2018.

References 93

[121] Kaiyang Zhou, Yongxin Yang, Andrea Cavallaro, and Tao Xiang. Learning generalis-

able omni-scale representations for person re-identification. Transactions on Pattern
Analysis and Machine Intelligence, 2021.

[122] Longhui Wei, Shiliang Zhang, Wen Gao, and Qi Tian. Person transfer gan to bridge

domain gap for person re-identification. In IEEE Conf. on Computer Vision and Pattern
Recognition, pages 79–88, 2018.

[123] Harold W Kuhn. The hungarian method for the assignment problem. Naval research
logistics quarterly, 2(1-2):83–97, 1955.

[124] Fangwei Zhong, Peng Sun, Wenhan Luo, Tingyun Yan, and Yizhou Wang. Ad-vat+:

An asymmetric dueling mechanism for learning and understanding visual active

tracking. IEEE Trans. on pattern analysis and machine intelligence, 43(5):1467–1482,
2019.

[125] Wenhan Luo, Peng Sun, Fangwei Zhong, Wei Liu, Tong Zhang, and Yizhou Wang.

End-to-end active object tracking and its real-world deployment via reinforcement

learning. IEEE transactions on pattern analysis and machine intelligence, 42(6):1317–
1332, 2019.

[126] Keni Bernardin and Rainer Stiefelhagen. Evaluating multiple object tracking perfor-

mance: Clear mot metrics. Journal on Image and Video Processing, 2008.

[127] Ergys Ristani, Francesco Solera, Roger Zou, Rita Cucchiara, and Carlo Tomasi. Perfor-

mance measures and a data set for multi-target, multi-camera tracking. In European
Conference on Computer Vision, pages 17–35, 2016.

[128] Brent Schlotfeldt, Dinesh Thakur, Nikolay Atanasov, Vijay Kumar, and George J.

Pappas. Anytime planning for decentralized multirobot active information gathering.

IEEE Robotics and Automation Letters, 3(2):1025–1032, 2018.

[129] N. Hughes, Y. Chang, and L. Carlone. Hydra: A real-time spatial perception system

for 3D scene graph construction and optimization. In Robotics: Science and Systems
(RSS), 2022.

[130] Amanda Prorok, M. Ani Hsieh, and Vijay Kumar. The impact of diversity on optimal

control policies for heterogeneous robot swarms. IEEE Transactions on Robotics,
33(2):346–358, 2017.

[131] Matteo Bettini, Ajay Shankar, and Amanda Prorok. Heterogeneous multi-robot rein-

forcement learning. In Proceedings of the 2023 International Conference on Autonomous
Agents and Multiagent Systems, AAMAS ’23, page 1485–1494, 2023.

[132] Eduardo Sebastián, Thai Duong, Nikolay Atanasov, Eduardo Montijano, and Carlos

Sagüés. Learning to Identify Graphs fromNode Trajectories inMulti-Robot Networks.

In IEEE International Symposium on Multi-robot & Multi-agent Systems, pages 1–7,
2023.

94 Bibliography

[133] Stefan Witwicki and Edmund Durfee. Towards a unifying characterization for

quantifying weak coupling in dec-pomdps. In 10th International Conference on
Autonomous Agents and Multiagent Systems 2011, AAMAS 2011, volume 1, pages

29–36, 01 2011.

[134] Kim Wabersich and Melanie Zeilinger. A predictive safety filter for learning-based

control of constrained nonlinear dynamical systems. Automatica, 129:109597, 07
2021.

[135] Brandon Amos, Ivan Jimenez, Jacob Sacks, Byron Boots, and J. Zico Kolter. Differen-

tiable mpc for end-to-end planning and control. In Advances in Neural Information
Processing Systems, volume 31, 2018.

[136] Yunlong Song and Davide Scaramuzza. Policy search for model predictive control

with application to agile drone flight. IEEE Transactions on Robotics, 38(4):2114–2130,
2022.

[137] C. F. Hayes, R. Rădulescu, E. Bargiacchi, and et al. A practical guide to multi-objective

reinforcement learning and planning. Autonomous Agents and Multi-Agent Systems,
36(26), 2022.

95

Curriculum Vitæ

Álvaro Serra-Gómez was born in October 1993 in Barcelona,

Spain. He received the M.Sc. (2019) degree both at the Polytechnic

University of Catalonia in Automatic Control and Robotics and at

the École Polytechnique de Paris in Data Science in the Computer

Science and Applied Mathematics Departments.

In July 2019, he became a Ph.D. candidate at the Department

of Cognitive Robotics, Delft University of Technology, Delft, the

Netherlands. In his Ph.D. project, he worked on motion planning

algorithms for the autonomous navigation of multi-agent systems

and active perception under the supervision of Dr. Javier

Alonso-Mora and Dr. Wendelin Böhmer. He was nominated for

IEEE MRS Best Paper Award in 2023.

His research interests include learning-based hierarchical control, reinforcement learn-

ing, deep learning, and multi-robot systems.

97

List of Publications

Published
7. W. Jansma

⋆
, E. Trevisan, Á. Serra-Gómez, J. Alonso-Mora, Interaction-Aware Sampling-Based

MPC with Learned Local Goal Predictions, in the International Symposium on Multi-Robot and

Multi-Agent Systems (MRS), Boston, MA, USA, 2023. Best paper finalist.

6. S. Casao
⋆
, Á. Serra-Gómez⋆, A. C. Murillo, W. Böhmer, J. Alonso-Mora, E. Montijano, Dis-

tributed multi-target tracking and active perception with mobile camera networks, in Computer
Vision and Image Understanding, 2023, doi: 10.1016/j.cviu.2023.103876. �

5. Á. Serra-Gómez⋆, H. Zhu, B. Brito, W. Böhmer, J. Alonso-Mora, Learning scalable and efficient
communication policies for multi-robot collision avoidance, in Autonomous Robots, vol. 8, no. 6,

pp. 3717-3724, 2023, doi: 10.1007/s10514-023-10127-3. �

4. Á. Serra-Gómez⋆, E. Montijano, W. Böhmer, J. Alonso-Mora, Active Classification of Moving
Targets With Learned Control Policies, in IEEE Robotics and Automation Letters (RA-L), vol. 8,

no. 6, pp. 3717-3724, 2023, doi: 10.1109/LRA.2023.3271508. �

3. S. Casao
⋆
, A. Otero, Á. Serra-Gómez, A. C. Murillo, J. Alonso-Mora, E. Montijano, A Frame-

work for Fast Prototyping of Photo-realistic Environments with Multiple Pedestrians, In IEEE

International Conference on Robotics and Automation (ICRA), London, United Kingdom, pp.

9083-9089, 2023, doi: 10.1109/ICRA46639.2022.9812190.

2. M. Lodel
⋆
, B. Brito, Á. Serra-Gómez, L. Ferranti, R. Babuska, J. Alonso-Mora,Where to Look

Next: Learning Viewpoint Recommendations for Informative Trajectory Planning, In International
Conference on Robotics and Automation (ICRA), Philadelphia, PA, USA, pp. 4466-4472, 2022,

doi: 10.1109/ICRA46639.2022.9812190.

1. Á. Serra-Gómez⋆, H. Zhu, B. Brito, J. J. Chung, J. Alonso-Mora, With whom to communicate:
Learning efficient communication for multi-robot collision avoidance, In IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, pp. 11770-11776,

2020, doi: 10.1109/IROS45743.2020.9341762. �

Under Review
2. M. Shi

⋆
, G. Chen, Á. Serra-Gómez, S. Yu, J. Alonso-Mora, Evaluating Dynamic Environment

Difficulty for Obstacle Avoidance Benchmarking, to be submitted to IEEE/RSJ International

Conference on Intelligent Robots and Systems, 2024.

1. M. Boldrer
⋆
, Á. Serra-Gómez, L. Lyons, J. Alonso-Mora, L. Ferranti: Rule-Based Lloyd Algo-

rithm for Multi-Robot Motion Planning and Control with Safety and Convergence Guarantees,
submitted to IEEE Transactions on Robotics, 2023.

� Included in this thesis.

