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Abstract
Aiming to estimate extreme precipitation forecast quantiles, we propose a nonpara-
metric regression model that features a constant extreme value index. Using local
linear quantile regression and an extrapolation technique from extreme value the-
ory, we develop an estimator for conditional quantiles corresponding to extreme high
probability levels. We establish uniform consistency and asymptotic normality of
the estimators. In a simulation study, we examine the performance of our estima-
tor on finite samples in comparison with a method assuming linear quantiles. On
a precipitation data set in the Netherlands, these estimators have greater predictive
skill compared to the upper member of ensemble forecasts provided by a numerical
weather prediction model.
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1 Introduction

Extreme precipitation events can cause large economic losses, when large amounts
of water cannot be properly drained. For example, water boards in the Netherlands,
responsible for water management, need to take preventive action in the case of large
amounts of precipitation to prevent flooding. Accurate predictions are therefore vital
for taking preventive measures such as pumping the water out of the system.

Weather forecasting relies on deterministic forecasts obtained by numerical
weather prediction (NWP) models (Kalnay 2003). These models are based on non-
linear differential equations from physics describing the flow in the atmosphere.
Starting from an initial condition of the atmosphere and using so-called physical
parametrizations to account for unresolved physical processes, the NWP models are
used to forecast precipitation, among other weather quantities.

The uncertainty in these types of forecasts is attributed to uncertainty in the ini-
tial condition and in the physical parametrizations in the model itself. An ensemble
prediction system quantifies the uncertainty due to these two factors by applying
small perturbations to the original quantities and running the NWP model multiple
times subsequently. An ensemble forecast is to be viewed as a sample from the dis-
tribution of the predicted variable, where uncertainties in initial condition and model
parametrizations are taken into account. Therefore, it is natural to consider the empir-
ical distribution function of the ensemble forecast as an estimator of the distribution
of the predicted variable, in this paper precipitation.

While the NWP ensemble prediction systems are rather skilful in forecasting precipita-
tion for relatively short lead times, skill quickly decreases as lead time increases.
Using upper ensemble members for forecasting extreme precipitation appears to be
most challenging, due to the large spatial and temporal uncertainties of precipitation
forecasts. Most methods that have been proposed to post-process forecasts are instead
focussed on the bulk of the conditional distribution, see Wilks (2011).

For the upper ensemble members there are two serious problems. First, the upper
ensemble members tend to be not well calibrated, i.e. not reliable (Bentzien and
Friederichs 2014), especially for large amounts of precipitation, this is shown in
Bentzien and Friederichs (2012). Second, the highest probability level of the extreme
precipitation forecast is limited by the number of ensemble members, which is typi-
cally not large due to computational costs. In the ensemble prediction system of the
European Centre for Medium-Range Weather Forecasts (ECMWF), which we con-
sider in our case study, the system generates 51 ensemble members. Thus, the largest
probability level is given by 51

52 .
In this paper, we aim to develop a post-processing approach for predicting extreme

precipitation quantiles. More precisely, we focus on the problemof estimating the tail of
the conditional distribution FY |X, with X a precipitation forecast by the NWP model
and Y the observed precipitation. We are interested in the function x �→ QY |X(τ |x)

for τ close to one, where QY |X denotes the conditional quantile function.
Several estimators have already been proposed to estimate extreme conditional

quantiles. All these estimators have a similar structure consisting of two steps. First,
the quantile function QY |X is estimated for moderately high probability levels τ . In
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the second step, these estimated quantiles are used to extrapolate to obtain estimators
of extreme conditional quantiles.

For the first step, general quantile estimation techniques are used. Examples are
linear quantile regression in Wang et al. (2012) and Wang and Li (2013), a local
polynomial approximation to the quantile function (Beirlant et al. 2004), a k-nearest
neightbour approach in Gardes et al. (2010) and inverse of empirical conditional dis-
tribution functions smoothed in the covariates in Daouia et al. (2011), and Daouia
et al. (2013). For the second step two ‘types’ of approaches can be distinguished.
First, a local approach, where an extreme quantile estimator is applied to a sequence
of estimated quantiles for moderately high probability levels attained from the first
step. This method is used in (Wang et al. 2012; Wang and Li 2013; Daouia et al.
2011; Daouia et al. 2013; Gardes et al. 2010; Goegebeur et al. 2014) and Gardes
and Stupfler (2019). The second type, where the exceedances above a threshold esti-
mated in the first step are used to fit a generalized Pareto distribution, was introduced
in Davison and Smith (1990). An application of the result of Davison and Smith
(1990) to precipitation data is discussed in Bentzien and Friederichs (2012), where a
generalized Pareto distribution is fitted to the exceedances above an estimated linear
quantile. They showed skilful short-range forecasts of extreme quantiles.

Most methods allow for a varying extreme value index depending on the covari-
ates. The estimators of extreme value indices in such models are generally subject
to high variability. In the context of weather forecasting, this may lead to inconsis-
tent forecasts over the covariates. After carefully considering the trade-off between
the generality of the model and the efficiency of the estimation, we propose an addi-
tive model with a constant extreme value index for all covariates cf. Eqs. 1 and 2.
Moreover, we assume that the extreme value index is positive. This assumption is
supported by the result of our empirical study on summer rainfall in the Netherlands
as well as the existing literature on precipitation data including (Coles and Tawn
1996; Buishand et al. 2008) and Gardes and Girard (2010). Apart from this, our
model assumes that the conditional quantile of Y is a non-parametric function of the
covariate, thus no parametric structure is required. In our two step procedure, we first
estimate a non-stationary threshold, namely the non-parametric quantile function by
local linear quantile regression and then extrapolate to extreme quantiles based on
the exceedances of this threshold.

The scientific contribution of this paper is fourfold. First, we propose a model that
achieves a good balance between generality and estimation efficiency and it fits the
feature of post-processing data sets. Second, we derive asymptotic properties of the
estimators, by first showing uniform consistency of local linear quantile regression,
using a uniform Bahadur representation for the quantile estimator. Moreover, we
establish asymptotic normality of the estimators of the extreme value index as well
as the extreme conditional quantiles. Third, we address the issues such as selection
of the bandwidth and tuning parameters, which is highly relevant from the appli-
cation point of view. Fourth, our procedure yields skilful prediction outperforming
the upper ensemble member and showing similar skill to the linear estimator (Wang
et al. 2012) based on cross-validation. Besides, our procedure can extrapolate to an
extreme probability level that goes beyond the empirical quantile associated with the
upper ensemble member.
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The outline of the paper is as follows: Section 2 we present our proposed model
and develop the estimating procedures. The asymptotic properties of the estimator are
studied in Section 3. In Section 4 we propose a data driven approach for bandwidth
selection. We show with a detailed simulation study in Section 5 the finite sample
performance of our estimator and compare it with an existing method. In Section 6 we
apply our estimator to a dataset of precipitation observations and ensemble forecasts
in the Netherlands. Finally, in Section 7 we discuss future research directions. The
proofs of the theoretical results are provided in the appendix.

2 Model and estimation

We aim to estimate the conditional tail quantiles of Y given X, namely QY |X(τ |·) for
τ close to one. To this end, we assume that there exists a τc ∈ (0, 1) such that

QY |X(τ |x) = r(x) + Qε(τ) if τ ≥ τc, (1)

where r is a smooth continuous function and Qε denotes the quantile function of an
error variable ε, which is independent of X. In order to make the model identifiable,
it is assumed that Qε(τc) = 0. As a result, QY |X(τc|x) = r(x). Moreover, we assume
that the distribution of ε has a heavy right tail, that is there exists γ > 0 such that,

lim
t→∞

Qε

(
1 − 1

tx

)

Qε

(
1 − 1

t

) = xγ , x > 0, (2)

where γ is the extreme value index of ε. Note that Eq. 2 implies that the conditional
distribution of Y given that X = x also has a heavy right tail with the same extreme
value index γ .

It is important to note that this additive structure is only assumed for probability
levels τ exceeding τc, which allows us to model the tail of the conditional distri-
bution without assuming structure for τ < τc. On one hand, the quantile curve
x → QY |X(τ |x) for any τ ≥ τc has the same shape as r . On the other hand, the
distance between the two quantile curves, that is QY |X(τ1|x) − QY |X(τ2|x) for any
τ1 > τ2 ≥ τc, is determined by Qε only and thus does not depend on x. We will refer
to our model as the Common Shape Tail (CST) model.

We remark that various types of additive structures have been proposed in recent
studies on modeling extremes with covariates. InWang et al. (2012), a linear structure
is assumed for r , where two scenarios are considered: the slope of the linear function
is a nonparametric function of τ or it is constant. The latter scenario is a special case
of our model. In Wang and Li (2013), a linear structure is assumed for the conditional
quantile function after the power transformation. In both papers, r is estimated by
linear quantile regression. In Martins-Filho et al. (2018), a nonparametric location-
scale representation is assumed and local linear mean regression is used to estimate
the conditional quantile called α-CVaR in that paper, where the existence of the fourth
moment of the error variable is required. This requirement implies an upper bound
on the extreme value index: γ < 1

4 .
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Let (X1, Y1), . . . , (Xn, Yn) denote i.i.d. paired observations satisfying Eq. 1.
Based on this random sample, we construct a two step estimation procedure for
QY |X(τn|·), where for asymptotics, τn → 1 as n → ∞. We shall estimate r and
Qε(τn) respectively in each of the two steps.

First, for the estimation of r we choose to follow the local linear quantile regres-
sion approach studied in Yu and Jones (1998). An obvious advantage of the quantile
regression approach is that it does not impose a constraint on the moments of the
conditional distribution. Let h = hn denote the bandwidth. In a window of size 2h
around a fixed point x, we approximate the function linearly:

r(x̃) ≈ r(x) + r ′(x)(x̃ − x) =: α + β(x̃ − x), x̃ ∈ [x − h, x + h].
The function r and its derivative are estimated by the solution of the following
minimization problem:

(r̂n(x), r̂ ′
n(x)) = arg min

(α,β)

n∑
i=1

ρτc (Yi − α − β(Xi − x))K

(
Xi − x

h

)
, (3)

where ρτ (u) = u(τ − I (u < 0)) is the quantile check function, cf. Koenker (2005)
and K a symmetric probability density function with [−1, 1] as support.

Second, for the estimation of Qε(τn), we consider the residuals defined by ei =
Yi − r̂n(Xi), i = 1, . . . , n. Using the representation of Yi = QY |X(Ui |Xi), with
{Ui, i = 1, . . . , n} i.i.d. uniform random variables, and the model assumption (1),
the residuals permit a more practical expression as below.

ei =
{

Qε(Ui) + (r(Xi) − r̂(Xi)) if Ui ≥ τc

QY |X(Ui |Xi) − r̂(Xi) otherwise.
(4)

Denote the order statistics of the residuals by e1,n ≤ . . . ≤ en,n. Let kn be an
intermediate sequence depending on n such that kn → ∞ and kn/n → 0 as n → ∞.
Then a Hill estimator of the extreme value index is given by

γ̂n = 1

kn

kn∑
i=1

log
en−i+1,n

en−kn,n

.

The intuitive argument behind this estimator is that {en−i,n, i = 0, . . . , kn} are
asymptotically equivalent to the upper order statistics of a random sample from the
distribution of ε, i.e. for some δ > 0,

max
i=0,...,kn

|en−i,n − Qε(Un−i,n)| = op(n−δ);
see the proof of Theorem 2 in the Appendix. For the same reason, we use the well
known Weissman estimator of Qε(τn) based on the upper residuals:

Q̂ε(τn) = en−kn,n

(
kn

n(1 − τn)

)γ̂n

. (5)

Combining the estimator of r(x) given by Eq. 3 and the estimator of Qε(τn) given
by Eq. 5, we obtain the estimator of the conditional tail quantile:

Q̂Y |X(τn|x) = r̂(x) + Q̂ε(τn). (6)
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By construction, this estimator of the conditional tail quantile is continuous in x. We
shall refer to our estimator as CST-estimator.

3 Asymptotic properties

In this section, we present the asymptotic properties of the estimators obtained in
Section 2.We beginwith uniform consistency of r̂n in Eq. 3. We first state the assump-
tions with respect to our model (1). Let g denote the density of X, fY |X(·|x) denote
the conditional density of Y given X = x and c denote an arbitrary finite constant.

A1 The support of g is given by [a, b] and supx∈[a,b] |g′(x)| ≤ c.
A2 The third derivative of r is bounded, i.e. supx∈[a,b] |r ′′′(x)| ≤ c.
A3 The function x → fY |X(r(x)|x) is Lipschitz continuous and fY |X(r(x)|x) > 0

for all x ∈ [a, b].

Theorem 1 Let r̂n be the estimator defined in Eq. 3. ChooseK a symmetric Lipschitz
continuous probability density function supported on [−1, 1] and hn = O(n−δh),

with δh ∈
(
1
5 ,

1
2

)
. Under Assumptions A1-A3, there exists a δ ∈ (0, 1

2 − δh) such

that as n → ∞,

sup
x∈[a,b]

|r̂n(x) − r(x)| = op(n−δ).

This theorem quantifies the direct estimation error made in the first step of our
procedure. Note that the “error” made in the first step is transmitted to the second step
by the definition of the residuals. Thus, the uniform consistency of r̂ is important for
deriving the asymptotic property of Q̂Y |X(τn|·) not only because r̂ is a constructing
part of Q̂Y |X(τn|·), but it also influences the asymptotic behavior of Q̂ε(τn).

Remark 1 Although many studies have been devoted to the non-parametric quantile
regression, to the best of our knowledge, there is no existing result on the uniform
consistency for r̂n for an additive model. In Kong et al. (2010), a general uniform
Bahadur representation is obtained for local polynomial estimators of M-regression
for a multivariate additive model. A local linear quantile regression is one of the M-
regression and thus is included in the estimators considered in that paper. Corollary 1
in Kong et al. (2010) is our starting point for deriving the uniform consistency of r̂n.

For the asymptotic normality of γ̂n, we assume that Qε satisfies the following
condition, which is a second order strengthening of Eq. 2.

A4 There exist γ > 0, 	 < 0 and an eventually positive or negative function A(t)

with limt→∞ A(t) = 0 such that for all x > 0,

lim
t→∞

Qε

(
1− 1

xt

)

Qε

(
1− 1

t

) − xγ

A(t)
= xγ x	 − 1

	
. (7)
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As a consequence, |A(t)| is regularly varying with index 	.

Theorem 2 Let the conditions of Theorem 1 and A4 be satisfied. Let kn → ∞ and
kn/n → 0,

√
knA(n/kn) → λ ∈ R and k

γ+1
n n−(δ+γ ) → 0 as n → ∞, with δ from

Theorem 1. Then

√
kn(γ̂n − γ )

d−→ N

(
λ

1 − 	
, γ 2

)
as n → ∞.

Remark 2 When deriving asymptotic properties for extreme statistics, it typically
requires some regular conditions on kn, the number of tail observations used in the
estimation when the sample size is n. For the original Hill estimator, which is based
on i.i.d. observations, the asymptotic normality is proved under Assumption A4 and√

knA(n/kn) → λ ∈ R. The assumption of 	 < 0 is a technical condition, which
is common for heavy tailed data and it allows us to choose kn = nα for α > 0.
The condition limn→∞ k

γ+1
n n−(δ+γ ) = 0 is used to make sure that the upper order

residuals behave similarly to the upper order statistics of a random sample from the

distribution of ε. Suppose one chooses kn = nα for 0 < α < min
(

2	
2	−1 ,

δ+γ
γ+1

)
, it

satisfies all the conditions on kn. So in theory, there exists a wide range of choices
for a proper kn.In practice, it is challenging to choose a kn. In Section 5 we propose
to use a fixed choice of kn that worked well in several simulation studies.

The asymptotic normality of Q̂Y |X(τn|x) defined in Eq. 6 is now given below. To
simplify notation, we denote with pn = 1 − τn.

Theorem 3 Let the conditions of Theorem 2 be satisfied. Assume npn = o(kn),

| log(npn)| = o(
√

kn) and
√

knp
γ
n

nδ log
(

kn
npn

) → 0, then as n → ∞,

√
kn

log
(

kn

npn

)
Qε(τn)

(
Q̂Y |X(τn|x) − QY |X(τn|x)

)
d−→ N

(
λ

1 − 	
, γ 2

)
.

Remark 3 The condition npn = o(kn) guarantees that the conditional quantile is
an extreme one. It gives the upper bound for pn. And the condition | log(npn)| =
o

(√
kn

)
gives the lower bound on pn, which limits the range of extrapolation.

Clearly pn = O
(
n−1

)
satisfies both conditions. The asymptotic normality holds

even for some pn < 1
n
, which means it is beyond the range of the available data.

In the weather forecast context, predicting the amount of precipitation so extreme
that it never occurred during the observed period is also feasible. The assumption

limn→∞
√

knp
γ
n

nδ log
(

kn
npn

) = 0 is a technical condition we use to guarantee that the error

made in the first step does not contribute to the limit distribution.

The proofs for Theorems 1, 2 and 3 are provided in the Appendix.



J. Velthoen et al.

4 Bandwidth selection

The selection of the bandwidth is a crucial step in local linear quantile regression
cf. (3). The bandwidth controls the trade-off between the bias and variance of the
estimator. Increasing the bandwidth h decreases the variance, but tends to increase
the bias due to larger approximation errors in the local linear expansion.

In Yu and Jones (1998), the authors propose to estimate the optimal bandwidth for
quantile regression by rescaling the optimal bandwidth for mean regression. There is
a rich literature on bandwidth selection for mean regression. However, in our setting
this approach is not satisfactory because the scaling factor is difficult to estimate and
it also assumes the existence of the first moment, i.e. it limits us to the case γ < 1.

Instead we adopt a bootstrap approach, similar to the one proposed in Beirlant
et al. (2004) to estimate the global optimal bandwidth with respect to the mean
integrated squared error (MISE), i.e.,

hopt = arg min
h

E

[∫ b

a

(
QY |X(τc|x) − Q̂h

Y |X(τc|x)
)2

dx

]
=: arg min

h

S(h),

where Q̂h
Y |X(τc|x) denotes the τc quantile estimated by Eq. 3 with bandwidth h.

Let B denote the number of bootstrap samples. The bootstrap samples
(X

j

1 , Y
j

1 ), . . . , (X
j
n, Y

j
n ) for j = 1, . . . , B are sampled with replacement from the

original n data pairs. The optimal bandwidth is estimated by minimizing the bootstrap
estimator Ŝ(h) of S(h), which is given by the objective function in Eq. 8.

ĥ = arg min
h

1

B

B∑
j=1

∫ b

a

(
Q̂

h0
Y |X(τc|x) − Q̂

h,j
Y |X(τc|x)

)2
dx, (8)

where h0 is an initial bandwidth chosen by visual inspection and Q̂
h,j
Y |X(τc|x) denotes

the estimate of the conditional quantile function based on the j -th bootstrap sample.
In practice, the integral is approximated using numerical integration.

Two alternative approaches were attempted. First, a bootstrap approach, fixing the
covariates X and sampling for each covariate level an uniform random variable U .
For values of U ≥ τc a positive residual e is sampled and the bootstrap sample is
Yb = Q̂

h0
Y |X(X) + e. In the case U < τc a local linear quantile estimate is obtained

at the covariate level X with bandwidth h0 at probability level U . The bandwidth is
then estimated by the solution of the minimization in Eq. 8. Second, a leave-one-out
cross validation approach that minimizes the quantile loss function is used to obtain
the estimator of the optimal bandwidth:

ĥ = arg min
h

Ŝ(h) = arg min
h

n∑
i=1

ρτc (Yi − Q̂
h,−i
Y |X (τc|Xi)),

where Q̂
h,−i
Y |X denotes the conditional quantile estimate with bandwidth h and leaving

out the ith observation. Intuitively, the cross validation approach is attractive as it is
much faster compared to the bootstrap approach and it is based on the idea of scoring
the quantile curve with the same scoring function used for estimation. Yet, based
on a simulation study, the direct bootstrap procedure performed significantly better
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compared to these alternative approaches. This is in accordance with the conclusions
drawn in Beirlant et al. (2004).

5 Simulation

In this section, the finite sample performance of the CST-estimator is assessed using
a detailed simulation study. A comparison is made with the estimator proposed in
Wang et al. (2012), where also a two step procedure is used. The first step consists of
estimating a sequence of linear quantile curves for moderately high probability levels,
using quantile regression. And the second step then uses a Hill estimator for the
extreme value index based on the estimated quantiles. Extrapolation to the extreme
quantiles is done by a Weissman type estimator, similar to the one in Eq. 5.

Define the simulation model from which the data is drawn by,

Y = r(X) + σ(X)ε. (9)

We choose X uniformly distributed in [−1, 1] and independently, ε follows from
a generalized Pareto distribution with γ = 0.25, or a Student t1 distribution. For
the function σ , we consider two cases: σ(x) = 1 and σ(x) = 4+x

4 . Note that for
σ(x) = 1, our model assumption (1) is satisfied with τc = 0. For σ(x) = 4+x

4 , our
model assumption is not satisfied since the distribution of the additive noise depends
on x, which allows us to study the robustness of the model assumptions.

We consider three choices for the function r: linear, nonlinear monotone and a
more wiggly function,

r1(x) = x, r2(x) = exp(x), r3(x) = sin(2πx)(1 − exp(x))

Performance is compared for two sample sizes : n = 500 and n = 2500.
The estimation of the quantile curves x �→ QY |X(τ |x) with τ = 0.99 and

τ = 0.995 is assessed with an empirical estimator of the mean integrated squared
error: 1

m

∑m
i=1

∫ 1
−1(Q̂

(i)
Y |X(τ |x) − QY |X(τ |x))2dx, where m = 500 and Q̂

(i)
Y |X(τ |x)

denotes the estimate based on the i-th sample. The integral is approximated by
numerical integration. Tables 1 and 2 report the estimated MISE for different models
and different methods.

For the CST estimator, we choose τc = 0.5 while the model holds for any τc ≥ 0.
Simulations show that the results are not sensitive to the level of τc that is chosen.
The value of k is typically chosen by inspection at the point where the Hill plot, i.e
(k, γ̂ (k)), becomes stable. In the simulation study it is not possible to choose the
stable point for every simulation. Therefore, we choose a fixed k = [4n1/4], where
[.] denotes the integer part. From simulations we see that the estimate becomes stable
around this value of k.

For the estimator in Wang et al. (2012), it is proposed to choose k = [4.5n1/3].
Additionally, the probability sequence for which the linear quantile curves are
estimated is given by, n−k

n
, . . . , n−3

n
, trimming of the most extreme quantiles,

n−2
n

, . . . , n
n
. This is needed in order to obtain a Bahadur expression for the regression

quantiles. In Wang et al. (2012) it is suggested to trim off [nη] observations, with
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Table 1 Mean integrated squared errors based on samples from Eq. 9, with errors GPD(γ = 0.25) lowest
values are indicated in bold

σ(x) = 1 σ(x) = 4+x
4

r method 0.99 0.995 0.99 0.995

n = 500

r1 CST 2.62 9.16 5.28 14.42

r1 linear 9.04 18.53 7.75 15.66

r2 CST 2.78 9.51 5.64 15.04

r2 linear 8.69 18.92 8.57 18.47

r3 CST 2.66 8.01 5.27 13.95

r3 linear 9.05 18.83 8.98 18.55

n = 2500

r1 CST 0.64 1.59 3.23 5.91

r1 linear 2.04 6.14 1.88 5.53

r2 CST 0.71 1.70 3.24 5.85

r2 linear 1.95 6.09 1.86 5.64

r3 CST 0.75 1.56 3.42 6.04

r3 linear 2.15 5.98 2.12 5.91

Table 2 Mean integrated squared errors ×10−2 based on samples from Eq. 9, with errors from Student t1
lowest values are indicated in bold

σ(x) = 1 σ(x) = 4+x
4

r method 0.99 0.995 0.99 0.995

n = 500

r1 CST 3.41 31.69 3.33 28.83

r1 linear 4.69 26.66 4.74 26.82

r2 CST 3.83 38.35 4.40 43.25

r2 linear 5.19 30.44 5.01 29.81

r3 CST 3.97 40.56 3.44 29.47

r3 linear 4.78 27.62 5.32 30.30

n = 2500

r1 CST 0.69 5.14 1.20 6.49

r1 linear 1.30 10.68 1.35 10.94

r2 CST 0.82 5.98 1.26 7.31

r2 linear 1.27 10.70 1.24 10.31

r3 CST 0.83 6.03 1.17 7.10

r3 linear 1.38 11.30 1.32 10.90
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η ∈ (0, 0.2). In our simulation trimming off the three most extreme probabilities gave
the best performance. The estimator allows for varying extreme value indices as well
as a constant extreme value index. A constant extreme value index is used as this is
assumed in our setting. We refer to this estimator as the linear estimator. The model
assumption for this method is satisfied only when r = r1, the linear case.

For generalized Pareto errors, the mean integrated squared errors are shown in
Table 1. For the case σ(x) = 1, the CST estimator performs best, as expected, since
the data follow the model assumption (1). For the case σ(x) = 4+x

4 a similar conclu-
sion can be drawn for n = 500. Though, for a sample size of 2500 the linear estimator
does slightly better. The deviation from the model assumption clearly affects the
behaviour of the CST estimator, but not the linear estimator. The difference between
the methods becomes visible for larger sample sizes as the bias for the CST estimator
starts to play a bigger role in the MISE.

For Student t1 errors, the results are shown in Table 2. For sample size n = 500,
the CST estimator has smaller MISE for τ = 0.99 and larger MISE for τ = 0.995,
in comparison with the linear estimator. For a larger sample size n = 2500, the
CST estimator outperforms the linear method. For small sample size the r is subject
to high variance locally, this leads to errors in the residuals and as a result in the
extreme value index. This is shown in the extrapolation to the 0.995 quantile. When
the sample size is larger this is not an issue, which leads to better performance of
the CST estimator. The relative effect of the deviation from the model by choosing
σ(x) = 4+x

x
is lower now for a large γ = 1. As a result the CST estimator performs

better sometimes for large sample size and σ(x) = 4+x
x

.

Remark 4 The estimator that is proposed in Daouia et al. (2011) was also com-
pared to the CST estimator and the linear estimator and was outperformed clearly in
all instances by these methods, although it is the only method for which the model
assumptions are satisfied for all settings. The procedure does not assume any struc-
ture in the data and it allows for varying extreme value indices, which requires to
estimate the extreme value index locally by using a very limited amount of observa-
tions. As a consequence, the function γ̂ (x) fluctuates heavily and it further creates
large inaccuracies in the quantile extrapolation. From the simulation result, it is clear
that this method suffers severely from lack of efficiency for the sample sizes consid-
ered here. Therefore, the results were left out to focus on the comparison between the
CST and the linear method.

6 Post-processing extreme precipitation

Our dataset consists of observations and ECMWF ensemble forecasts of daily accu-
mulated precipitation at eight meteorological stations spread across the Netherlands
(de Bilt, De Kooy, Twente, Eelde, Leeuwarden, Beek, Schiphol and Vlissingen). The
data in this study is for the warm half year, namely 15th of April until 15th of October,
in the years 2011 till 2017. The lead time is defined as the time between initialization
of the ensemble run and the end of the day at 00 UTC for which the forecast is valid.
We consider lead times from 24 hours up till 240 hours with 12 hour increments. For
each lead time and location the number of observations is about 1287.
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For fixed lead time and location, an ensemble forecast consists of 51 exchangeable
members, which can be seen as a sample from the distribution of precipitation, where
the uncertainty in the initial condition and model parametrizations are accounted for.
As a result, quantile estimates for probability levels i

52 , for 1 ≤ i ≤ 51, are given by
the order statistics of the ensemble forecast. Note that the precipitation observations
are not used by the ensemble forecast as standard the amount of precipitation is set
to zero at initialization of the NWP model.

In practice, it is known that the upper ensemble member is not well calibrated
in the sense that it leads to underestimation of the extremes, see Bentzien and
Friederichs (2012). This is partly caused by a representatively error, because the fore-
cast is a grid-cell average and the observation is a station point value. Statistical
post-processing can correct this and other systematic errors (Wilks 2011). For long
lead times, a forecast, especially the upper ensemble member loses all predictive
skill, Bentzien and Friederichs (2012). We show that, by applying the CST estimator,
we can calibrate the upper ensemble member and obtain more skilful forecasts for
short and long lead times. To relate to the notation of Section 2, we denote the daily
accumulated precipitation by Y and the upper ensemble member by X.

For each lead time we pool data from all eight locations. These locations are spread
over the Netherlands and as most extreme events are caused by local deep convective
showers, the observations can be considered approximately independent. We com-
pare the performance of the ensemble method with the CST estimator as in Eq. 6 and
the linear estimator as explained in Section 5.

As precipitation is often modelled using a point mass on 0 for the dry days, we
model the point mass using a logistic regression with as covariate the number of
ensemble members equal to zero. The distribution function is then given by:

FY |X(y|x) = p0(x) + (1 − p0(x))FY |X,Y>0(y|x) (10)

Where the quantiles are given by:

QY |X(τ |x) =
{
0 if τ ≤ p0(x)

QY |X,Y>0

(
τ−p0(x)
1−p0(x)

)
if τ > p0(x)

(11)

We then apply the CST estimator to estimate QY |X,Y>0, where we choose τc =
0.95. This choice is based on best validation score, as explained below, based on one
year of data. The bandwidth h is determined using the bandwidth selection method
described in Section 4 and k = [4n1/4], the same as in the simulation study. Alter-
native to choosing X as the upper ensemble member we have also considered other
ensemble members and trimmed means of the ensemble members. Among these
choices the upper ensemble member showed best performance.

For the linear method we do not incorporate the point mass as the method already
takes this into account as all quantiles are estimated globally instead of the CST
estimator, which estimates the quantiles in a local manner. Incorporating the point
mass led to severely worse results for the linear method. The same hyper parameters
were chosen as in Section 5; changing these did not influence the results.

Note that for days that have a large point mass on 0 and the rescaled probability is
not extreme, in these cases we just use a local linear quantile estimator as described

in Eq. 3 as the estimator of QY |X,Y>0

(
τ−p0(x)
1−p0(x)

)
.
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The predictive performance of a quantile estimator Q̂i(τ ) can be quantified by the
quantile verification score and visualized by the quantile reliability diagram, which
are discussed in detail in Bentzien and Friederichs (2014). The quantile verification
score is defined as QVSτ (Q̂) = ∑n

i=1 ρτ (Yi −Q̂i(τ )), where ρτ is the quantile check
function. The score is always positive, where low scores represent good performance
and high scores bad performance. In Bentzien and Friederichs (2014) it is shown that
the score can be decomposed in three components: uncertainty, reliability and reso-
lution, where only the last two depend on the estimator itself. A reliable or calibrated
forecast has the same distribution as the underlying distribution that is estimated.

The quantile reliability diagram visualizes the reliability of the forecast quantile
by creating equally sized bins with respect to the forecast quantile and then graphing
the empirical quantile of the corresponding observations in the bin against the mean
forecast quantile in the bin. For the forecast to be reliable these points should lie on
the line y = x.

It is natural to compare the predictive performance of a quantile estimator to
some reference quantile estimator Q̂ref. For this we take the climatological empiri-
cal quantiles as the reference method, i.e. the empirical quantiles of the sample Yi ,
1 ≤ i ≤ n. Note that this is the simplest estimate we can obtain without making use
of a numerical weather prediction model. The quantile verification skill score, given

by QVSSτ (Q̂) = 1 − QVSτ (Q̂)

QVSτ

(
Q̂ref

) , is a relative measure of performance compared to

the reference method, taking values in (0, 1] when Q̂ improves on Q̂ref and values
below zero when the opposite is true.

The validation is carried out using a seven-fold cross validation, where, in every
iteration, one year is left out of the model estimation and used as the independent
validation sample. In Fig. 1 the QVSS is shown as a function of lead time. The bands
are obtained by calculating the QVSS for each location separately. The graph on the

Fig. 1 QVSS as a function of lead time for CST estimator in red, the ensemble in blue and the linear
estimator in green, on the left for the 51

52 quantile and on the right for the 0.995 quantile. The bands are
obtained by validating for each location separately
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Fig. 2 QVSS as a function of lead time conditioned on X > 5, for CST estimator in red, the ensemble in
blue and the linear estimator in green, on the left for the 51

52 quantile and on the right for the 0.995 quantile.
The bands are obtained by validating for each location separately

left shows the performance of the CST estimator in red, the linear estimator in green
and the ensemble in blue for τ = 51

52 . It can be observed that the CST and the linear
estimator improve upon the ensemble especially for short lead times and for very
long lead times. On the right side of the figure the performance of the τ = 0.995
quantile is shown for the CST and the linear estimators, showing that skilful quantile
estimates are obtained up till 144 hours. The CST estimator seems to have slightly
less spread in the scores than the linear method.

In practice the quantile estimates are of interest when the ensemble is already
high, i.e. X > t for t large. In Fig. 2 similar plots are shown as in Fig. 1, but now
the verification is done based on a subset of the data where we condition on X > 5,
which is the 60 percent quantile for a lead time of 24 hours. Note that this means that
also the reference climatological quantile has this conditioning. It can be seen in the
left panel of Fig. 2 that the ensemble method is outperformed by the CST and the
linear estimator for shorter lead times. For the extrapolation to τ = 0.995 in the right
panel of Fig. 2, the spread in skill of the different stations is much larger, but still
showing skilful forecasts for most stations for short lead times. Also here the CST
appears to have less spread than the linear estimator. In Fig. 3 two quantile reliability
diagrams are shown, for 24 hours lead time on the left and 192 hours lead time on the
right, using all data without conditioning. The ensemble clearly underestimates the
extremes generally for both lead times. The CST and the linear estimators improve
calibration for 24 hour lead time. For a lead time of 192 hours the CST estimator
looks a bit more unstable, though it remains close the the calibration line, where the
ensemble is consistently underestimating the upper quantile.

From all plots it can be concluded that the CST and the linear estimator are very
comparable, an assumption of linear quantiles is in this context also not strange. Even
though the CST estimator has a more flexible assumption on the quantile curves, it
does not influence the results.
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Fig. 3 Quantile reliability diagrams for the CST estimator in red, the ensemble in blue and the linear
estimator in green for the 51

52 quantile; on the left side for 24 hours lead time and on the right side 192
hours lead time

To conclude, we have shown that the CST estimator is comparable to the linear
estimator and has more skill than the upper ensemble member for both short and
long lead times. Additionally, it is able to extrapolate further into the tail and obtains
skilful estimates for higher quantiles than are available from the ensemble.

7 Discussion

We have estimated the conditional tail quantile curves, x �→ QY |X, using a two step
procedure. First we use local linear quantile regression to estimate a non-stationary
threshold and secondly, extrapolate to the tail using the exceedances of this thresh-
old. The assumption that γ > 0 fits to the application of summer precipitation in
the Netherlands, which is heavy tailed. There is a clear motivation for extending
the model to the cases of light tailed, γ = 0 and short tailed data, γ < 0. This
would enable also post-processing of extreme precipitation in winter periods, but also
temperature, wind speed and gusts and other weather phenomena.

It is clear from the simulation that the linear method from Wang et al. (2012) is
better able to deal with heteroskedastic data. Extending the model to allow for non-
homoskedastic errors would be a valuable addition, allowing it to model data from a
wider range of classes.

Finally, in the application we now calibrate tail quantiles of the ensemble, using
the statistical relation between the upper ensemble member and the observations. It
would be of interest though, to consider a wider range of covariates from the NWP
model. It would therefore be of value to extend the method to a multivariate covariates
setting.
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Appendix : Proofs

This section contains the proofs of Theorems 1–3 in Section 3. Throughout this
section, c, c1, c2, . . . denote positive constants, which are not necessarily the same at
each occurrence.

Proof of Theorem 1

The uniform consistency of r̂ relies heavily on the uniform Bahadur representation
for r̂ . We make use of the Bahadur representation obtained in Kong et al. (2010).

Let ψτ (u) = τ − I (u < 0), that is the right derivative of ρτ at u. Then by
Corollary 3.3 and Proposition 1 in Kong et al. (2010), we have

sup
x∈[a,b]

∣∣∣∣∣r̂(x) − r(x) + h2ncr
′′(x) − 1

nhn

n∑
i=1

ψτc(εi)Cn,i(x)K

(
Xi − x

hn

)∣∣∣∣∣

= Op

({
log n

nhn

}3/4
)

= Op

({
log n

n1−δh

}3/4
)

,

where Cn,i(x) is a Lipschitz continuous function and thus absolutely bounded in
[a, b]. Define

Δn(x) = 1

nhn

n∑
i=1

ψτc(εi)Cn,i(x)K

(
Xi − x

hn

)
.

Then, the triangle inequality leads to

sup
x∈[a,b]

∣∣r̂(x) − r(x)
∣∣ ≤ sup

x∈[a,b]

∣∣∣h2ncr ′′(x)

∣∣∣ + sup
x∈[a,b]

|Δn(x)| + Op

({
log n

n1−δh

}3/4
)

= O(n−2δh) + sup
x∈[a,b]

|Δn(x)| + Op

({
log n

n1−δh

}3/4
)
. (12)

The last equality follows from the fact that r ′′ is uniformly bounded by Assump-
tion A1.

Next, we show that, there exists a δC ∈ (0, 1
2 − δh) such that

sup
x∈[a,b]

|Δn(x)| = op(n−δC ). (13)

http://creativecommons.org/licenses/by/4.0/
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Define Ti(x) := hnK
(

Xi−x
hn

)
Cn,i(x). Then for any x, y ∈ [a, b], by the triangle

inequality and the Lipschitz continuity of K , we have

|Ti(x) − Ti(y)| = hn

∣∣∣∣K
(

Xi − x

hn

)
Cn,i(x) − K

(
Xi − y

hn

)
Cn,i(y)

∣∣∣∣

≤ hn|Cn,i(x)|
∣∣∣∣K

(
Xi − x

hn

)
− K

(
Xi − y

hn

)∣∣∣∣ + hnK

(
Xi − y

hn

)
|Cn,i(x) − Cn,i(y)|

≤ c1 |x − y| + c2hn|x − y| sup
u∈[−1,1]

K(u)

≤ c|x − y|.

Note that the constant c does not depend on i, that is, the Lipschitz continuity is
uniform in i for all Ti’s. Consequently, it follows from that |ψτ (u)| ≤ 1 that,

|Δn(x) − Δn(y)| = 1

nh2n

∣∣∣∣∣
n∑

i=1

ψτc(εi)(Ti(x) − Ti(y))

∣∣∣∣∣ ≤ c
|x − y|

h2n
.

Let Mn = nδC+2δh log n and {Ii = (ti , ti+1], i = 1, . . . , Mn} be a partition of (a, b],
where ti+1 − ti = b−a

Mn
. Then for t ∈ Ii ,

|Δn(t) − Δn(ti)| ≤ c(b − a)

Mnh2n
,

or equivalently,

Δn(ti) − c(b − a)

Mnh2n
≤ Δn(t) ≤ Δn(ti) + c(b − a)

Mnh2n
.

Therefore, for n sufficiently large,

P

(
sup

x∈[a,b]
|Δn(x)| > n−δC

)
= P

(
max

1≤i≤Mn

sup
t∈Ii

|Δn(t)| > n−δC

)

≤
Mn∑
i=1

P

(
sup
t∈Ii

|Δn(t)| > n−δC

)

≤
Mn∑
i=1

P

(
|Δn(ti)| > n−δC − c(b − a)

Mnh2n

)

≤
Mn∑
i=1

P

(
|Δn(ti)| >

1

2
n−δC

)

=
Mn∑
i=1

P

⎛
⎝

∣∣∣∣∣∣
n∑

j=1

Tj (ti)ψτc (εj )

hn

∣∣∣∣∣∣
>

1

2
hnn

1−δC

⎞
⎠ =:

Mn∑
i=1

Pi,
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where the third inequality is due to that c(b−a)

Mnh2n
< 1

2n
−δC for n sufficiently large.

Next, we apply Hoeffding’s inequality to bound Pi . Define

Wn,i,j := Tj (ti)ψτc (εj )

hn

= K

(
Xj − ti

hn

)
Cn,j (ti)ψτc (εj ).

For each i and n, {Wn,i,j , 1 ≤ j ≤ n} is a sequence of i.i.d. random variables. And
with probability one, |Wn,j,i | ≤ sup−1≤u≤1 K(u) supa≤x≤b Cn,i(x) =: c3. Moreover,
E

(
Wn,j,i

) = 0 because E(ψτc (εj )) = 0 and Xj and εj are independent. Thus, by
Hoeffding’s inequality,

Pi = P

⎛
⎝

∣∣∣∣∣∣
n∑

j=1

Wn,i,j

∣∣∣∣∣∣
≥ 1

2
hnn

1−δC

⎞
⎠ ≤ 2 exp

(
−n1−2δC h2n

8c23

)
= 2 exp

(
−cn1−2δh−2δC

)
.

Note that 1 − 2δh − 2δC > 0 by the choice of δC . Thus, for n → ∞,

P

(
sup

x∈[a,b]
|Δn(x)| > n−δC

)
≤ 2Mn exp

(
−cn1−2δh−2δC

)
→ 0.

Hence, Eq. 13 is proved. Now by choosing δ = δC , we obtain via (12) that,

nδ sup
x∈[a,b]

|r̂n(x)−r(x)| = O(nδC−2δh)+op(1)+Op

(
n− 3

4+ 3
4 δh+δC (log n)

3
4

)
= op(1),

due to that δh ∈ ( 15 ,
1
2 ) and δC < 1

2 − δh.

Proof of Theorem 2

The proof follows a similar line of reasoning as that of Theorem 2.1 in
Wang et al. (2012). The uniform consistency of r̂n given in Theorem 1 plays a crucial
role. Define Vn := ||r̂n − r||∞ = op

(
n−δ

)
.

Let Ui = FY |X(Yi |Xi) for all 1 ≤ i ≤ n. Then {Ui, i = 1, . . . , n} constitute i.i.d.
random variables from a standard uniform distribution. Recall the definition of ei :

ei = Yi − r̂n(Xi) = QY |X(Ui |Xi) − r̂n(Xi).

Thus, the ordering of {ei, i = 1, . . . , n} is not necessarily the same as the ordering
of {Ui, i = 1, . . . , n}. The main task of this proof is to show that the kn largest ei’s
correspond to the kn largest Ui’s; see Eq. 15. To this aim, we first prove that with
probability tending to one, en−j,n for j = 0, . . . , kn can be decomposed as follows,

en−j,n = Qε(Ui(j)) + r(Xi(j)) − r̂n(Xi(j)) for j = 0, . . . kn, (14)

where i(j) is the index function defined as ei(j) = en−j,n. In view of Eq. 4, it is
sufficient to prove that with probability tending to one, Ui(j) > τc jointly for all
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j = 0, . . . , kn. Define another index function, ĩ(j ) by U
ĩ(j)

= Un−j,n. Then it
follows for n large enough,

P
(
∪kn

j=0{Ui(j) < τc}
)

= P
(
∪kn

j=0{Yi(j) < QY |X(τc|Xi(j))}
)

= P

(
min

0≤j≤kn

(
Yi(j) − r(Xi(j))

)
< 0

)

= P

(
min

0≤j≤kn

(
Yi(j) − r̂n(Xi(j)) − r(Xi(j)) + r̂n(Xi(j))

)
< 0

)

≤ P

(
min

0≤j≤kn

en−j,n − sup
x∈[a,b]

|r̂n(x) − r(x)| < 0

)

= P
(
en−kn,n < Vn

) = 1 − P(en−kn,n ≥ Vn)

≤ 1 − P
(
∩kn

j=0{eĩ(j)
≥ Vn}

)

= 1 − P
(
∩kn

j=0

{
Qε(Un−j,n) + r(X

ĩ(j)
) − r̂n(Xĩ(j)

) ≥ Vn

})

≤ 1 − P
(
Qε(Un−kn,n) ≥ 2Vn

)
,

where the second equality follows from that QY |X(τc|Xi(j)) = r(Xi(j)) and the
last equality follows from (4) and the fact that Un−kn,n > τc for n large enough.

Then, limn→∞ P
(
∪kn

j=0{Ui(j) < τc}
)

= 0 follows from Qε(Un−kn,n) → ∞ and

Vn = op(1) as n → ∞. Hence, Eq. 14 is proved.
Next, we show that

lim
n→∞P

(
∩kn

j=0{en−j,n = Qε(Un−j,n) + r(Xi(j)) − r̂n(Xi(j))}
)

= 1, (15)

that is the ordering of k largest residuals is determined by the ordering of Ui’s. In
view of Eq. 14, it is sufficient to show that with probability tending to one,

min
1≤i≤kn

(Qε(Un−i+1,n) − Qε(Un−i,n)) ≥ 2 max
1≤i≤kn

|r(Xi(j)) − r̂n(Xi(j)|. (16)

By the second order condition given in Eq. 7 and Theorem 2.3.9 in De Haan and
Ferreira (2007), for any small δ1, δ2 > 0, and n large enough,

Qε(Un−i+1,n)

Qε(Un−i,n)
≥ W

γ

i +A0

(
1

1 − Un−i,n

)
W

γ

i

W
ρ
i − 1

	
−δ1

∣∣∣∣A0

(
1

1 − Un−i,n

)∣∣∣∣ Wγ+	+δ2
i , (17)

for i = 1, . . . , kn, where Wi = 1−Un−i,n

1−Un−i+1,n
and limt→∞ A0(t)/A(t) = 1. Observe

that logWi = log 1
1−Un−i+1,n

− log 1
1−Un−i,n

d= En−i+1,n − En−i,n with Ei’s i.i.d.
standard exponential variables. Thus, by Rènyi’s representation (Rényi 1953), we
have

{Wi, 1 ≤ i ≤ kn} d=
{
exp

(
Ei

i

)
, 1 ≤ i ≤ kn

}
.

From Proposition 2.4.9 in De Haan and Ferreira (2007), we have Un−kn,n

1− kn
n

P→ 1,

which implies that A0

(
1

1−Un−kn,n

)
= Op

(
A0

(
n
kn

))
. Using the fact that A0 is reg-
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ularly varying with index 	, hence |A0| is ultimately decreasing, we obtain for n

sufficiently large and any i = 1, . . . , kn,
∣∣∣∣A0

(
1

1 − Un−i,n

)∣∣∣∣ ≤
∣∣∣∣A0

(
1

1 − Un−kn,n

)∣∣∣∣

=
∣∣∣∣Op

(
A0

(
n

kn

))∣∣∣∣ =
∣∣∣∣Op

(
A

(
n

kn

))∣∣∣∣ =
∣∣∣∣Op

(
1√
kn

)∣∣∣∣ , (18)

by the assumption
√

knA
(

n
kn

)
→ λ.

For a sufficiently large u and any kn ≥ 1,

P

(
max

1≤i≤kn

Ei

i
≤ u

)
=

kn∏
i=1

(
1 − e−iu

)
= exp

(
kn∑

i=1

log
(
1 − e−iu

))

= exp

⎛
⎝−

kn∑
i=1

∞∑
j=1

j−1e−iuj

⎞
⎠ ≥ exp

(
−

kn∑
i=1

e−iu

)
= exp

(
1 − e−ku

1 − eu

)
,

which tends to one as u → ∞. This implies that

min
1≤i≤kn

W
	

i

d= exp

(
	 max
1≤i≤kn

Ei

i

)
= Op(1). (19)

Thus, combining Eqs. 17, 18 and 19, we have

min
1≤i≤kn

Qε(Un−i+1,n)

Qε(Un−i,n)
− 1

≥ min
1≤i≤kn

W
γ

i

(
1 −

∣∣∣∣Op

(
1√
kn

)∣∣∣∣
(

W
	

i − 1

	
+ δ1W

	+δ2
i

))
− 1

= min
1≤i≤kn

W
γ

i

(
1 −

∣∣∣∣Op

(
1√
kn

)∣∣∣∣
)

− 1
d= exp

(
γ

E1

kn

) (
1 −

∣∣∣∣Op

(
1√
kn

)∣∣∣∣
)

− 1

= γE1

kn

(
1 −

∣∣∣∣Op

(
1√
kn

)∣∣∣∣
)

,

where the third equality follows from that min1≤i≤kn

Ei

i

d= E1,k
d= E1

k
by Rènyi’s

representation. Thus, we obtain that

min
1≤i≤kn

(Qε(Un−i+1,n) − Qε(Un−i,n)) ≥
(

Qε(Un−kn,n)
γE1

kn

)(
1−

∣∣∣∣Op

(
1√
kn

)∣∣∣∣
)

=
(

n

kn

)γ

k−1
n |Op(1)|.

Thus, Eq. 16 is proved by the assumption k−1
n

(
n
kn

)γ

>> n−δ and

max1≤i≤kn |r(Xi(j)) − r̂n(Xi(j)| ≤ 2Vn = op

(
n−δ

)
. Intuitively, Eq. 16 means that

the difference between two successive upper order statistics of ε is larger than the
error made in the estimation of r(x).
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As aforementioned, Eqs. 14 and 16 together lead to Eq. 15, which further implies
that with probability tending to one,

max
0≤j≤kn

∣∣∣∣
en−j,n

Qε(Un−j,n)
− 1

∣∣∣∣ ≤ Vn

Qε(Un−kn,n)
= op

(
n−δ

(
kn

n

)γ )
. (20)

By the definition of γ̂n and Eq. 20, we can write the estimator as follows,

γ̂n = 1

kn

kn−1∑
i=0

log
en−i,n

en−kn,n

= 1

kn

kn−1∑
i=0

log
Qε(Un−i,n)

Qε(Un−kn,n)
+

⎛
⎝ 1

kn

kn−1∑
i=0

log
en−i,n

Qε(Un−i,n)
− log

en−kn,n

Qε(Un−kn,n)

⎞
⎠

=: γ̂H + op

(
n−δ

(
kn

n

)γ )
.

The first part is the well known Hill estimator and we have by Theorem 3.2.5 in
De Haan and Ferreira (2007),

√
kn(γ̂H − γ ))

d−→ N

(
λ

1 − 	
, γ 2

)
.

Therefore we can conclude,

√
kn(γ̂n − γ ) = √

kn(γ̂H − γ ) + op

(√
knn

−δ

(
kn

n

)γ )
d−→ N

(
λ

1 − 	
, γ 2

)
,

by the assumption that kγ+1
n n−γ−δ → 0.

We remark that the proof for Theorem 2.1 in Wang et al. (2012) isn’t completely
rigorous, namely, the proof for (S.1) in the supplementary material of that paper is
not right. We fix the problem while proving (20), which is an analogue to (S.1).

Proof of Theorem 4

Before we proceed with the proof of Theorem 3, we state the asymptotic normality
of Q̂ε(τn) defined in Eq. 5 in the theorem below.

Theorem 4 Let the conditions of Theorem 2 be satisfied. Assume npn = o(kn) and
log(npn) = o(

√
kn), then, as n → ∞,

√
kn

log(kn/(npn))

(
Q̂ε(τn)

Qε(τn)
− 1

)
d−→ N

(
λ

1 − 	
, γ 2

)
. (21)

Theorem 4 can be proved in the same way as that for Theorem 2 in Wang et al.
(2012). For the sake of completeness, we present the proof in this section.
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Recall that Q̂ε(τn) =
(

kn

npn

)γ̂n

en−kn,n =: d
γ̂n
n en−kn,n. First, note that from The-

orem 2, we have
√

kn(γ̂n − γ ) = Γ + op(1), where Γ is a random variable from

N
(

λ
1−	

, γ 2
)
. Therefore,

d
γ̂n−γ
n = exp

(
(γ̂n − γ ) log dn

) = exp

(
log dn√

kn

(Γ + op(1))

)

= 1 + log dn√
kn

Γ + op(
log dn√

kn

), (22)

where the last step follows from the assumption that log dn√
kn

→ 0. Second, by Theorem
2.4.1,

√
k

(
Qε(Un−kn,n)

Qε(1 − kn/n)
− 1

)
d−→ N(0, γ 2).

In combination with Eq. 20, we have

en−kn,n

Qε(1 − kn/n)
= en−kn,n

Qε(Un−kn,n)
· Qε(Un−kn,n)

Qε(1 − kn/n)
=

(
1 + op

(
n−δ

(
kn

n

)γ )) (
1 + Op

(
1√
kn

))

= 1 + Op

(
1√
kn

)
, (23)

by the assumption that k
γ+1
n n−γ−δ → 0. Last, by the second order condition given

in Eq. 7 and Theorem 2.3.9 in De Haan and Ferreira (2007),

Qε(1 − pn)

Qε(1 − kn/n)d
γ
n

= 1 + O(A(n/kn)) = 1 + O

(
1√
kn

)
. (24)

Finally, combing (22), (23) and (24), we have

Q̂ε(τn)

Qε(τn)
= d

γ̂
n en−kn,n

Qε(1 − pn)
= d

γ̂n−γ
n

en−kn,n

Qε(1 − kn/n)
· Qε(1 − kn/n)d

γ
n

Qε(1 − pn)

=
(
1 + log dn√

kn

Γ + op

(
log dn√

kn

))(
1 + Op

(
1√
kn

)) (
1 + O

(
1√
kn

))

= 1 + log dn√
kn

Γ + op

(
log dn√

kn

)
,

by the assumption that dn → ∞. Thus, Eq. 21 follows immediately.
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Proof of Theorem 3

By definition of Q̂Y |X(τn|x) and Theorem 1, we have,

√
kn

log
(

kn

npn

)
Qε(τn)

(
Q̂Y |X(τn|x) − QY |X(τn|x)

)

=
√

kn

log
(

kn

npn

)
Qε(τn)

(
Q̂ε(τn) − Qε(τn) + r̂n(x) − r(x)

)
,

=
√

kn

log
(

kn

npn

)
Qε(τn)

(
Q̂ε(τn) − Qε(τn)

)
+ Op

⎛
⎝

√
knn

−δ

log
(

kn

npn
p

−γ
n

)
⎞
⎠ .

Thus it follows from Theorem 4 and the assumption
√

kp
γ
n

nδ log
(

kn
npn

) → 0 that

√
kn

log
(

kn

npn

)
Qε(τn)

(
Q̂Y |X(τn|x) − QY |X(τn|x)

)
d−→ N

(
λ

1 − 	
, γ 2

)
.
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