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Abstract

This study investigates the application of generative models for synthetic data generation in pathway optimization
experiments within the field of metabolic engineering. Conditional Variational Autoencoders (CVAEs) use neural
networks and latent variable distributions to generate new, plausible data samples. We adapt this model by conditioning
the training process on the target flux to acquire increased performance.

Additionally, a baseline model, namely Probabilistic Principal Component Analysis (PPCA), was selected for a
comparative analysis to generate the underlying latent space to test the hypothesis that a type of Variational Autoen-
coder (VAE) can be used to learn a reduced-dimensional latent space for configurations of a kinetic pathway model. A
dataset comprising 5000 hypothetical configurations of a kinetic pathway model was utilized to extract relationships
between elements of a kinetic pathway.

The results indicate that PPCA can model the underlying distribution of the dataset when the latent space is large
enough. However, the traditional CVAE might struggle to capture the underlying distribution, resulting in an entangled
latent space. The study suggests that an implementation of 5-CVAE could lead to a better balance between parts of
the objective function during training, offering improved prospects for generating cost-efficient kinetic pathways for
combinatorial pathway optimization experiments.

Introduction
Background

In metabolic engineering, the primary aim is to design aligned biological systems with predefined specifications with
increasing precision using DNA technologies like CRISPR-CAS [1]. Combinatorial pathway optimization is employed
to craft a proof-of-principle strain leading to the progress toward developing an industrially relevant variant of the
strain. Within pathway engineering, this involves diversifying multiple pathway elements that directly or indirectly
impact the pathway and its flux [2].

Several costs are associated with engineering a strain to ensure its production yield is economically feasible on
an industrial scale. One crucial factor is the expense of generating data used to steer the engineering process. As
proposed in [3], we can use kinetic models to predict flux using a system of ordinary differential equations (ODEjs).
While kinetic models have proven useful for modeling metabolic processes and solving the problem of acquiring genes
from a physical host, they require deep expert insight into the modeled behavior of the reactions, which is often not
available. Another reason for the increasing costs of combinatorial pathway optimization is the library sizes that are
too large to process during the screening phase when conducting experiments [2].

We seek to employ strategies that allow us to reduce the dimensions of the data, by reducing the dependency between
all the parameters of a kinetic model to a smaller subset of those parameters. Probabilistic Principle Component
Analysis (PPCA) is one such strategy where data is reduced to the latent space, having fewer dimensions than the
original data. The Variational Autoencoder (VAE) is a generative model, a type of latent space model, comprising an
encoder for dimensional reduction and a decoder that generates synthetic data by sampling from a simple distribution,
like a Gaussian.

Research Focus

We hypothesize that a Conditional Variational Autoencoder (CVAE) can use a reduced-dimensional latent space model
to learn characteristics of strains for combinatorial pathway optimization experiments. To test this hypothesis, We
explore the dimensional reduction aspect as well as the generative aspect of the PPCA and the CVAE.

To compare the two models, we quantitatively measure the underlying latent space representations and generate
samples from this latent space. In this paper, we answer the question: Can a Conditional Variational Autoencoder be
used to learn the underlying distribution of the data such that a reduced-dimensional latent space representation of a
strain can be used to generate a synthetic dataset for combinatorial pathway optimization experiments?

To do this, we give an overview of the data and dive into the experimental design in Chapter 2. In Chapter 3 we
bring forward and analyze the results of the experiments. Finally, we conclude whether generative models can be
used for combinatorial pathway optimization experiments. Additionally, we reflect on the reproducibility and ethical
aspects of this study.

Experimental Design

In this study, we use a quantitative approach to evaluate how well generative models perform. We analyze and compare
the models, focusing on their ability to create a latent space representation. This section gives an overview of the data
used to train the generative models. We then discuss the implementation details of the Probabilistic Principal Com-
ponent Analysis (PPCA), the Variational Autoencoder (VAE), and the Conditional Variational Autoencoder (CVAE).
Subsequent sections cover the experimental variables, specifically the hyperparameters, and the research objective.



Our Dataset

Parameters of a kinetic model describe the quantities of metabolites and enzymes within a biological system or describe
reactions within those systems. The level of quantities relates to a pathway and directly influences the flux[4]. The
data used to train the models in this study includes parameters employed to create synthetic pathways and the predicted
flux, which can be integrated into a kinetic model of strains resembling E.coli (Escherichia coli).

This dataset comprises 5000 simulated pathways generated using 19 kinetic parameters with random settings within
specified ranges, based on an initial parameter configuration. The columns of our dataset represent the kinetic param-
eters, referred to as the features, and the flux, considered as the target values. Initially, the dataset included all pathway
configurations. However, retaining failed configurations would disrupt the model’s ability to learn valid pathways.
Consequently, unsuccessful configurations were filtered out from the data

Generative Models

For this study, we employ generative models that utilize the latent variable model to capture the structure and relations
between data points [5]. Points from this latent variable model can generate new data points with similar characteristics
to the original dataset [6]. In our case, the original dataset has 19 dimensions, corresponding to the number of kinetic
parameters. We aimed to reduce the number of features required to describe the essential characteristics of our dataset,
particularly focusing on its distribution.

A Pure Statistical Model

The first latent space model that was evaluated in this study was the Probabilistic Principal Component Analysis
(PPCA), which was initially chosen as a baseline model for this study. The benefit of the PPCA model is that it
enables us to make comparisons with other models more easily because it is a statistical model [7].

First, we had to derive the principal components of the dataset and project the dataset onto those principal compo-
nents. This allowed us to produce the projection matrix using the predefined methods of the PCA[8] implementation
in the Matrix decomposition module from the latest stable version(1.3.2) of the scikit-learn library.

Continuing, we calculated the mean of the data and the likelihood estimate for the variance and used the projection
matrix to generate a synthetic dataset. The reference implementation from a medium article ! was used to guide further
the implementation and analysis of the model.

Our Machine Learning Model

The second model is the Variational Autoencoder (VAE). It is formally based on the autoencoder architecture and
employs machine learning strategies to derive the latent space representation and subsequently transform samples
from the latent distribution to generate a dataset with a distribution similar to the original dataset.

The implementation of the VAE in this study is created using modules from the latest stable version (2.1) of PyTorch.
The model utilizes the unsupervised learning approach, eliminating the need for the target values column during
training. Functions from torch.nn are used to build the neural networks for the encoder and decoder. To efficiently
navigate the optimization landscape, we applied an Adam optimizer?, which employs adaptive learning with an initial
learning rate. The number of epochs was determined based on convergence towards better model performance. To
address overfitting issues, the L2 regularization technique, namely weight decay, was applied. The VAE can also be
modified to condition the generative model on additional information to solve more complex problems. This adapted
model is called the Conditional Variational Autoencoder (CVAE) [5].

To implement the CVAE, an extra node in the input layer of the encoder and decoder was added, which we used to
forward the target values through the neural network. A reference implementation® was used to guide the implemen-
tation step and subsequent analysis of the model.

'0. Ernst, ”The Simplest Generative Model You Probably Missed,” Accessed: November 20, 2023.  Available:
https://medium.com/practical-coding/the-simplest-generative-model-you-probably-missed-c840d68b704.

2"PyTorch documentation for torch.optim.adam,” https:/pytorch.org/docs/stable/generated/torch.optim.Adam.html, Accessed:
November 26, 2023.

3A. van de Kleut, ”Variational Autoencoders,” https://avandekleut.github.io/vae/, Accessed: November 27, 2023.
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(a) High-level diagram of the VAE. The features are passed
forward to the encoder to learn the parameters of the under- (b) High-level diagram of the CVAE. The difference be-
lying distributions. Using the parameters a latent variable is tween this model and the VAE is the same conditional in-
sampled and passed to the decoder. The decoder produces formation is passed to the encoder and decoder additionally
similar features as the input but with different values. to the features and latent variable.

Figure 1: Diagrams of the VAE and CVAE architecture. Adapted from [6].

Generative Model Parameters

To evaluate the PPCA model’s performance, we need to determine the number of principal components that effectively
describe the original data. This number should be lower than the number of features, as it governs the size of the latent
space. However, opting for a lower number of components could result in a loss of variance[9] captured by the PPCA
model from the original dataset. The results obtained from applying the general Principal Component Analysis (PCA)
to our original dataset led to the choices for the number of principal components (n_components) (Table 1) used to test
the model.

On the other hand, evaluating the VAE model’s performance involves several selected hyperparameters, categorized
into two groups. The first category includes architectural parameters, such as the number of hidden layers in the
encoder and decoder, the nodes in these layers, and the latent layer. The second category encompasses learning pa-
rameters: learning rate (LR), regularization techniques, epochs, and mini-batch size. Decisions regarding architectural
parameters were informed by the autoencoder architecture, utilizing the reparameterization trick to segregate the latent
layer into distinct layers to learn the parameters of the posterior distribution.

Both the encoder and the decoder were designed with one input layer with as many nodes as features in the dataset
(19) and a hidden layer consisting of 15 nodes. The learning parameters were set to values that yielded optimal
performance within a computationally feasible number of epochs to make it possible to run on a personal computer.
The findings from employing hyperparameter optimization using random search [10] also influenced the decision on
which values (Table 1) to use in developing the models and conducting the experiments in this study.

PPCA n_components: 3,5,7,9, 11, 13, 15
VAE & CVAE | latent_.dim: 3,5,7,9, 11, 13, 15
epoch: 100, 200, 300, 400,
mini-batch: 16, 32, 64, 128
Ir: 0.01, 0.001, 0.0001, 0.00001
weight_decay: 0.1, 0.01, 0.001, 0.0001

Table 1: In bold are the hyperparameters chosen when evaluating the PCA-reduced plots of the synthetic data for each
model.

Quantitative Metrics

The objective functions used by the model to capture the distribution and characteristics of the dataset are different;
however, we used the same quantitative metric, making comparisons easier. The PPCA model relies on maximum
likelihood estimation to derive the parameters of the original dataset[7]. In contrast, the VAE and the CVAE model
the two neural networks constituting the encoder and decoder are simultaneously trained by optimizing the Evidence
Lower Bound (ELBO) (3).



The Kullback-Leibler divergence (KL-div) is calculated (1) for each model in this study to quantitatively assess the
difference between the distribution of the original dataset and that of the synthetic dataset. Additionally, we use Mean
Squared Error (MSE) as the reconstruction loss (2) to measure how different the samples in the synthetic dataset are
compared to that of the original dataset[6]. For the underlying structure, we aimed to make a visual comparison by
plotting a PCA-reduction of the original dataset against that of the synthetic dataset.
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Insights from Principal Component Analysis Reduction

The PCA was useful for evaluating how many principal components are needed to capture the variance of the dataset.
This is important to determine in order to create a latent variable space with fewer dimensions than that of the original
dataset. To assess this, we plotted the total explained variance against the principal components of the dataset. Our
plot (Figure 2, panel B) indicates that we could use more than 11 components to capture at least 90% of the variance
in our data. This suggests that adding more dimensions would not lead to a significant increase in the accuracy of the
models.

The principal components were also employed to create a PCA-reduced plot of the dataset, visualizing the structure
that we aim for the latent space model to capture. The structure of the dataset resembles a slightly rotated square
(Figure 2, panel A). For a comparative analysis, we generated a synthetic dataset of 5000 samples, similar to the
original dataset.
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Figure 2: Diagrams of the VAE and CVAE architecture. Adapted from [6]

Comparisons between captured distributions

For our models, we aimed to determine whether the latent space models could accurately capture the distribution of
the dataset. To investigate this, we calculated the KL-divergence between the synthetic and the original dataset.

In the case of PPCA, we observed (Figure 3) a downtrend in KL-divergence for larger values of the latent space size.
By adding more principal components, we were able to capture the distribution of the original dataset more accurately.
However, as we increased the number of principal components, we approached the same number of features as in the
original dataset. This indicates that the PPCA model requires as many features as our original dataset to accurately
capture the distribution.

For the VAE, we observed (Figure 3) that the trend remains constant after a latent space size of 11, with values
for PPCA also declining after using 11 principal components. This suggests that the VAE effectively captures the
underlying distribution. In the case of the CVAE, we observed (Table 2) noticeable differences in the values compared
to the VAE values when measured with a precision of four decimal places.



Trendline for KL-div vs. Latent Dimension
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Figure 3: Trend line of computed KL-div on the logarithmic scale (y-axis) of the PPCA (green), VAE (red) and the
CVAE (blue) model with latent space sizes (x-axis) with intervals of two steps on the.

Comparisons between learned structure

Aside from the underlying distribution, we were also interested in the underlying structure of the original dataset. We
wanted to know if the synthetic dataset produced by our models retained this underlying structure. To investigate if
the structure of the original dataset was learned, we used a PCA-reduced plot to compare the synthetic and the original
dataset. The latent space size of 11 was chosen for this analysis based on the insights derived from the PCA reduction
(Figure 2, panel A).

For the PPCA model, we observed (Figure 4, panel A) that the synthetic dataset managed to model the underlying
structure with softer boundaries, likely due to outliers. This means that the PPCA does well at generalizing the
structure but cannot create precise boundaries present in the underlying structure of the dataset. For the VAE, we
observed (Figure 4, panel B) that the dataset forms a single clustering along a certain line, indicating that the VAE was
not able to capture the underlying structure.

In the case of the CVAE, we noticed (Figure 4, panel C) that the synthetic dataset has a rectangular structure along
the same line. In both the VAE and the CVAE, we observed that the synthetic dataset is centered around 0.0 as the
origin while applying some variance along the first and second principal components. This suggests that the models
are not able to capture the underlying structure effectively. These results prompt a discussion about the performance
of the CVAE and VAE models in comparison to that of the PPCA model.
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Figure 4: PCA-reduction of the original dataset (black) against the synthetic dataset (cyan) generated by the PPCA,
VAE and CVAE. The synthetic dataset has the same amount (50000) of data points as the original dataset.

Discussions

The measured KL-div for the VAE and the CVAE is low compared to the PPCA (Table 2). The VAE and CVAE models
heavily minimize the KL-div part of the objective function. The CVAE and VAE don’t require the latent space size to
be large to learn the parameters needed to model the underlying distribution of the original dataset.

However, the structure of the original dataset isn’t captured well by the VAE and CVAE models; the PPCA does this
effectively. When comparing the MSE measurements between the models, we observe that the VAE and the CVAE
might be prioritizing the modeling of the underlying distribution more than producing a dataset that is similar to the
original dataset (Table 2). This is because the VAE and CVAE do not prioritize the MSE part of the objective function
as much as the KL-div part.

Balancing the MSE and KL-div parts of the objective function can improve the implementation of the VAE and the
CVAE models. This can be achieved by adding a 8 parameter to the objective function, which is adjusted based on the
generated synthetic dataset to find the right value for the original dataset[6].

Latent 3 5 7 9 11 13 15
PPCA

MSE 0.2177 0.1754 0.1366 0.0974 0.0598 0.0291 0.0131
KL-div 2.0153 1.8956 1.7468 1.5181 1.0991 0.5015 0.2201

VAE

MSE  0.0586 0.0591 0.0586 0.0590 0.0594 0.0589 0.0593
KL-div 0.0013 0.0008 0.0013 0.0007 0.0006 0.0009 0.0006
CVAE

MSE  0.0545 0.0541 0.0548 0.0548 0.0549 0.0550 0.0548
KL-div 0.0009 0.0010 0.0004 0.0005 0.0003 0.0003 0.0003

Table 2: MSE and KL-div computed between synthetic data generated by the PPCA, VAE, and the CVAE model with
latent space sizes with intervals of two steps. These KL-div values were used to derive the trendline (Figure 3)

Responsible Research

In the field of computer science, massive innovations are taking place, and it might not be possible to keep up with
them in real time. That is why research needs to be conducted in a way that allows anyone who decides to approach a



particular study to enhance their understanding, and above all else, it can be replicated and used as a basis for any idea
to further innovation in this field.

Data: Data was provided to us and generated using a kinetic model, with a workflow described in [4], and is
openly available. The data can be challenging to understand and use; however, being open about this provides the
possibility for further interdisciplinary study in the future. The original dataset, the models implemented to perform
the experiments, and the results analysis of the study can be found by following the link here: https://github.
com/NeilAlwani/RP_23-24_models.git

Reproducibility: The use of Jupyter notebooks makes it easy to reproduce this study. After importing the notebook,
the data needs to be uploaded to the runtime of the notebook. Ensure that the path of the data file is given correctly in
the notebook. After the preparation, all cells can be run sequentially to produce the results presented in this study.

Conclusion

To conclude, the costs related to processing synthetic pathways within biological systems and the domain knowledge
required to develop novel pathways. We can approach this problem by deriving a generative model that uses a latent
space model to learn the underlying distributions of a dataset and subsequently use this to generate a novel dataset
with similar characteristics as the original dataset.

In this study, we perform a comparative analysis of Probabilistic Principal Component Analysis (PPCA), Variational
Autoencoder (VAE), and Conditional Variational Autoencoder (CVAE) to identify which of these models can be
employed during experiments for combinatorial pathway optimization. A purely statistical model like the PPCA can
generalize the underlying structure and model the distribution of the dataset; however, this requires the latent space
size to remain as large as the original dataset. Models that employ neural networks like the VAE and the CVAE can
model the underlying distribution with a latent space size using a fraction of the features of the original size. This is
possible due to the model heavily minimizing regularization instead of the reconstruction. This leads to the CVAE and
VAE not being able to capture the characteristics of the dataset.

A suggestion to improve this is the use of an extra parameter to balance the regularization and reconstruction
during the training process of the VAE and the CVAE [6]. To further investigate this, a colleague has conducted a
separate study [11] for the CSE3000 Research Project. This way of working together on projects, like the CSE3000
Research Project, leads us to insights that can be useful to make an impact on experiments for combinatorial pathway
optimization and the field of metabolic engineering as a whole.


https://github.com/NeilAlwani/RP_23-24_models.git
https://github.com/NeilAlwani/RP_23-24_models.git
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