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Robotic Auxiliary losses for Continuous Deep Reinforcement Learning

Teo Cherici * Thomas Moerland * Pieter Jonker *

Abstract
Recent advancements in computation power and
artificial intelligence have allowed the creation of
advanced reinforcement learning models which
could revolutionize, between others, the field of
robotics. As model and environment complex-
ity increase, however, training solely through the
feedback of environment reward becomes more
difficult. From the work on robotic priors by
R.Jonschkowski et al.[1] we present robotic aux-
iliary losses for continuous reinforcement learn-
ing models. These function as additional feed-
back based on physics principles such as New-
ton’s laws of motion, to be utilized by the re-
inforcement learning model during training in
robotic environments. We furthermore explore
the issues of concurrent optimization on several
losses and present a continuous loss normaliza-
tion method for the balancing of training ef-
fort between main and auxiliary losses. In all
continuous robotic environments tested, individ-
ual robotic auxiliary losses show consistent im-
provement over the base reinforcement learning
model. The joint application of all losses during
training however did not always guarantee per-
formance improvements, as the concurrent op-
timization of several losses of different nature
proved to be difficult.

1. Introduction
In reinforcement learning[2](RL), a type of machine learn-
ing 1, the learner is not told what to do or what is right,
but is instead placed in a closed loop system where it must
maximize a reward function by choosing what actions to
take. This is different than both supervised and unsuper-
vised learning: the learner (agent) must gather its own data
through the choices made during the learning phase. Fur-
thermore, the feedback to the agent, in the form of positive
or negative reward, is often delayed (i.e. not just the last

1Machine learning techniques are a field of computer science
that aims to have computers utilize data to learn (i.e. improve
performance) and perform tasks, usually by means of statistical
techniques.[3]

action, but a whole sequence of actions has led the agent to
the final reward).

The reinforcement learning field has made significant
progress in recent years, with algorithms now capable of
developing successful control policies in complex simu-
lated environments[4, 5, 6]. Thanks to the exponential im-
provements in computational power, reinforcement learn-
ing models can process millions of iterations to develop a
task-solving action policy without requiring any real-time
human assistance or guidance.

The application of such techniques in real-world robotic
tasks would allow the creation of flexible self-learning
robots that require minimal human hand-engineering and
that could be applied in a wide range of industrial, trans-
portation, security and service fields[7]. Robotics appli-
cation, however, are often characterized by a continuous
action space: the motion of a robot is usually brought
by applying varying voltage to its motors, and to do so
the algorithm must be able to output continuous values to
each of its motors instead of just choosing an action out
of a discrete set. Specific reinforcement learning models
must thus be utilized for tasks with continuous action space
[8, 9, 10, 11].

Reinforcement learning models must also deal with the
well-known issue of exploration vs. exploitation trade-off:
when taking an action, the agent is expected to maximize
the cumulative reward, by choosing an action that gave the
best results in the past. To discover the best action pos-
sible, however, the agent should also try new unexplored
actions, to possibly find a better solution. Because of this,
training in complex environments can often be slow and
unpredictable[12].

Recently, several papers introduced the concept of ’auxil-
iary tasks’. These tasks describe additional losses used as
feedback in parallel with the standard cumulative reward
objective, which may speed-up training by providing richer
training gradients. The underlying idea is that the reward
signal is usually sparse, which makes it an infrequent train-
ing signal. However, there is more significant information
present in a typical agent-environment interaction, which
may provide in itself gradients for representation learning.
The inclusion of such extra loss signals can speed up the
representation learning part of the task, and thereby speed-
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up the overall learning process.

Auxiliary tasks improved learning efficiency in discrete ac-
tion space domains[5, 13, 14], but have not yet been uti-
lized in continuous action space domains. Furthermore,
nearly all auxiliary losses utilized in reinforcement learn-
ing strive to make no assumptions about the type of envi-
ronments at hand, in order to be adaptable to all possible
tasks. Not making assumptions about the environment at
hand theoretically allows for reinforcement learning to be
applied in every possible context, but if we do have prior
knowledge about the environment available we can be more
data efficient by providing directed high-level guidelines.

When applying reinforcement learning to an agent (robot)
interacting with a real-life environment, basic principles of
physics, such as Newtown’s laws of motion, will be present
independently of the type of robot utilized and task to be
fulfilled, and ”understanding” such principles could help
the agent to generate a more consistent internal model of
its environment and its dynamics.

Introducing several auxiliary losses to be utilized in parallel
to the main reward feedback can however also create unbal-
ance in the training phase, as main and auxiliary losses can
differ in range and nature.

The goal of this paper is to develop auxiliary losses specifi-
cally designed for the application of reinforcement learn-
ing to robotic tasks with continuous action space. The
work from R.Jonschkowski et al.[1] is adapted to transform
its robotic priors (assumptions about the physical world
the robot interacts in) from state representation techniques
into robotic auxiliary losses for continuous action space.
Furthermore, different normalization techniques are intro-
duced, as an effort to mitigate unbalances in the model’s
training effort between main and auxiliary losses.

We show that each loss can have a positive effect on the
training depending on the type of task at hand, improving
the total reward obtained with respect to trainings without
auxiliary losses. For each environment tested, at least one
of the auxiliary losses proved to be of significant improve-
ment over the base model. Efforts to find an effective nor-
malization technique to balance the training effort between
the reinforcement learning losses and auxiliary losses, as
presented in chapter 6, did improve the effectiveness of
auxiliary losses. However, the application of several aux-
iliary losses concurrently often result in over-focusing on
specific losses which usually hurt the model’s performance.

We firstly introduce some preliminaries in chapter 2 and re-
lated work in chapter 3. In chapter 4 four robotic auxiliary
losses are presented, as well as a state prediction task to be
used as comparison for the losses’ evaluation. In chapter
5 the results of the application of auxiliary losses are pre-
sented. Afterwards, in chapter 6 we introduce and compare

several normalization techniques for the balancing of main
and auxiliary losses, and in chapter 7 the results thereof
are presented. Lastly we discuss the results, present some
conclusions and suggest possible directions of research in
future work in chapter 9.

2. Preliminaries
In this section we provide some background regarding re-
inforcement learning, neural networks and deep reinforce-
ment learning. We also present deep deterministic pol-
icy gradient (DDPG), the base deep reinforcement learning
model chosen for these experiments.

2.1. Reinforcement Learning

Reinforcement learning represent in general the princi-
ple of an agent learning to fulfill a task by means of
its own interaction with its environment. At the core of
the human and animal intelligence resides the capacity of
learning from interaction and experience, and reinforce-
ment learning is a goal oriented computational approach
to learning[2, 15].

In reinforcement learning an agent makes transitions be-
tween states s ∈ IRm by means of actions a ∈ IRn which
have an impact on its environment. Such actions are taken
following a policy π, which is updated by means of a re-
ward r that can be obtained when reaching specific states
(e.g. negative reward for a failure, positive reward for
reaching its goal).

This approach differs from standard supervised learning
techniques as the agent must learn, by itself and through
trial and error, how to correctly connect input and output
(state and action). Reinforcement learning’s goal is to re-
duce human effort to the minimum of defining the rewards
and the agent’s architecture, and through independent train-
ing an agent can find unusual solutions and outperform
human-aided control policies, especially in complex tasks.

Value-based reinforcement learning algorithms also in-
volve the estimation of a value function, that infers how
good it is for the agent to be in a certain state, or to per-
form an action from a given state. If the agent is following
a policy π, is in state s and takes action a, the action-value
function Q for policy π could be expected discounted sum
of all future rewards that will be obtained following the pol-
icy:

Qπ(s, a) = IEπ

[ ∞∑
k=0

γkrt+k+1 | st = s, at = a

]
(1)

where IEπ is the expectation given the policy, γ ∈ (0, 1] is
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the discount factor and r is the reward. The simplest rein-
forcement learning environments have small discrete state
and action spaces that can be represented as an array or ta-
ble. Here, the optimal solution for the task can be found
through dynamic programming [16], sweeping trough each
possible state and action multiple times. The algorithm can
then improve the action-value function every step with the
Bellman equation:

Qπ(s, a) =
∑
s′

Pa
ss′

[
ra
ss′ + γ

∑
a′

Qπ(s′, a′)

]
(2)

The action-value function for state s given action a is the
sum of, for each possible state we get to taking action a
(
∑
s′ P

a
ss′ ), the reward obtained plus the discounted sum of

each action-value for all possible actions a′ from state s′.
After training the agent can follow the optimal policy by
taking the action that will lead to the state with the highest
value every time.

This full sweep over each state and action is however only
feasible for trivial tasks, and in environments with large and
continuous state and action space the agent must instead be
able to generalize from a subset of the possible states (its
training iterations) to states it has never visited before.

This kind of generalization can be achieved with function
approximation. The most studied and applied reinforce-
ment learning function approximators are artificial neural
networks2.

2.2. Neural networks

Neural networks are a set of machine learning techniques
inspired by the anatomical analysis of the neural structures
of the brains. Created firstly as a mathematical model by
McCulloch et al.[17], neural networks have spiked in pop-
ularity in recent years thanks to several improvements and
diversification of the algorithms, as well as significant im-
provements in computational power and an exponential in-
crease in available data[18].

Training of neural networks happens by means of back-
propagation: in supervised learning an input x is fed
through the network and the network output ŷ is obtained:

ŷ = fθ(x) (3)

Where θ represents the network weights, parameters that
are changed during training to improve the network perfor-
mance. The network output ŷ is then compared to the cor-
rect output y, and its difference is used as loss function for
the correction of the weights of the last layer. Such correc-
tion is then back-propagated to the previous layer, which is

2Sutton and Barto[2] illustrate a general application of func-
tion approximators in reinforcement learning in Chapter 9.

then also corrected, and so on until all network layers have
updated their neuron’s weights. When presenting the same
input x to the network, the output will now better match the
correct output y, and performing this improvement several
times with different inputs (training) will iteratively adjust
the weights of network to be able to generally make cor-
rect predictions on input data similar to that used during
training.

In reinforcement learning, however, there is no known cor-
rect output y. Instead, the model makes use of the reward as
feedback for back-propagation and iterative improvement.

2.3. Deep reinforcement learning

Deep reinforcement learning models are characterized by a
several stacked layers of neurons, that in recent years have
shown generalization capabilities which allow the agent to
learn policies from high dimensionality states such as cam-
era input or a high DoF robotic arm’s joint states.

The first deep reinforcement learning model able to learn
an end-to-end control policy directly from visual input data
was the DQN model from V.Mnih et al.[4]. Inspired by the
success of deep neural networks in previous years, the au-
thors attempted to connect these deep models to reinforce-
ment learning. Their algorithm, deep Q-learning (DQN),
made use of convolutional layers to directly map a down-
sampled visual input (84x84 pixels) to a discrete set of pos-
sible actions to be taken. One crucial improvement for the
algorithm was the use of an experience replay mechanism,
which randomly samples its training data from all previous
transitions thus smoothing the training distribution. With-
out such a mechanism the model would train from subse-
quent, highly correlated steps, which creates training insta-
bility.

2.4. Deep deterministic policy gradient

Many control tasks, especially in the robotics field, have
continuous and highly-dimensional action spaces: the
agent’s policy is comprised of a real value for each of its ac-
tuators, instead of being a discrete choice between possible
actions to take. Discrete reinforcement learning algorithms
cannot be easily implemented for continuous control tasks,
and the discretization of a continuous action space is usu-
ally not feasible for domains with more than a couple of
degrees of freedom.

Silver et al.[10] approach this problem with a determinis-
tic policy gradient algorithm, an off-policy actor-critic al-
gorithm. Lillicrap et al.[11], with their deep deterministic
policy gradient method (DDPG), construct on their work
by also including the improvements from V.Minh et al.[4]
in the algorithm: the network is trained off-policy from a
replay buffer to decorrelate training samples, and making



Robotic Auxiliary losses

use of a slowly updating target Q-network.

Actor-critic models are comprised of an actor that deter-
mines the action to be taken, and a critic that evaluates the
resulting state-action value Q. Given an observation, the
model determines both the action to be taken (actor) and
the value of taking that action in that state (critic). As a re-
ward is then obtained, a better estimate of the state-action
value Q can be made, and its difference with the previous
guess is used as critic loss.

A key factor for the stability of training is the usage of tar-
get actor and critic networks. These are copies of the actor
and critic networks that are utilized to make the targetQ by
which to improve the network:

Qtarget,t = rt + γ ·Qtargetcritic(st+1, atargetactor,t+1)
(4)

The target actor and critic parameters are not improved di-
rectly through back-propagation as the original actor and
target networks, but are instead slowly updated to copy
their values after each training iteration:

θtarget = (1− τ) · θtarget + τ · θoriginal (5)

where tau ∈ (0, 1] is a hyperparameter that determines
how quickly the target networks copy their parameters from
the original actor and critic networks. Doing so brings sig-
nificant stability to the training, as it decorrelates target and
prediction Q values.

DDPG utilizes off-policy training, meaning that the train-
ing phase is decoupled from the interactions with the en-
vironment. A training run is performed in cycles of two
steps: firstly the model is utilized to perform actions given
observations, which are stored in the replay buffer. Sec-
ondly, a batch of random uncorrelated transitions from the
replay buffer is used to calculate the actor and critic loss
(and eventually also the auxiliary losses for both actor and
critic). The gradient of the loss is then calculated, and back-
propagated to improve the model’s parameters.

To improve exploration during training the action is taken
from a copy of the actor network with added parameter
noise: each neuron in the model receives a small stochastic
noise, thus changing the final action obtained. This has
been proven to be more effective than adding stochastic
noise directly to the policy determined by the model[19].

3. Related work
Here we present the main works that inspired this exper-
iment. We present state representation works and robotic
priors, which aid the reinforcement learning through a pre-
training phase, and auxiliary tasks, additional losses that
aim to improve the learning process during the reinforce-
ment learning training.

3.1. State representation and Robotic priors

Most research in the field of reinforcement learning for
robotics is still bound to virtual agents in simulated physics
environments. This is because of the prohibitive amount
of interactions of the agent in the environment that are re-
quired for the development of complex control policies.
Were, for example, a real-life robot to perform actions in
an environment for a million iterations at a frequency of
5Hz (a considerable speed), it would require a continuous
training time of ≈ 56h. It is thus necessary to speed up
and improve the reinforcement learning process, an effort
undertaken in several different ways, of which we discuss
some below.

Reinforcement learning from an high-dimensional state to
action requires an often prohibitive amount of iterations to
converge because of the high number of internal parameters
to train: the agent must be able to both gather task-relevant
features from the sensory observation s, and to infer from
these task-relevant features to the action a to take.

To reduce this need for long training times, it would be
convenient to first learn to convert this sensory observation
s to a pertinent internal state space z of lower dimension-
ality3 prior to utilizing such internal state z as input for the
reinforcement learning process.

While such mapping from visual input to internal state can
be developed as a separate hand-engineered step, doing so
would make the performance of the model highly depen-
dent on the intuition and capability of the engineer that
designs the feature extraction from observation to internal
state, and strongly hinders the flexibility of application of
these algorithms for different tasks and environments. State
representation learning methods are instead machine learn-
ing methods that try to map high-dimensional input states
into a compact and pertinent internal state space, with min-
imal or no human feature engineering involved.

Some representation learning methods only make use
of the input observation itself, or observations at previ-
ous steps, to maintain their application flexibility. Deep
AutoEncoders[20, 21, 22] are an unsupervised deep neu-
ral network architecture used for the encoding of high-
dimensional data. An AutoEncoder is usually composed
of several layers of decreasing size (encoder) followed by
as many layers of increasing size (decoder) to finally reach
an output layer of the same size as the input, creating an
”hourglass” shape (see Figure 1). The network is usually
trained to reconstruct in the last layer an output to be equal
to that of input layer, while having to pass through the bot-

3E.G. in navigation tasks this internal state z ideally represents
the location of the agent in a 2D mapping of the environment, as
such is the most compact and effective input state for navigational
purposes.



Robotic Auxiliary losses

Figure 1. Schematic of an AutoEncoder network[20]. The input x
on the right in RL is usually the state st, which gets transformed
by the encoder into a smaller representation zt, and then decoded
into x′, which can be either equal to the input or the next state
st+1.

tleneck of the center layer of reduced dimensionality. This
bottleneck will afterwards be used as low-dimensional in-
ternal state z, the effective input state for the reinforcement
learning model.

A similar approach, more effective for reinforcement learn-
ing models, is to predict the future observation st+1 from
the input observation s and the action a taken at that
state[23, 13, 24]. Doing so forces the state representation
network to ”understand” the dynamics of the environment,
in order to be able to predict the future state, and so do-
ing helps it encode action and task-relevant features in its
parameters.

R.Jonschkowski et al. expand the principle of state repre-
sentation in robotic reinforcement learning with the intro-
duction of robotic priors[1]. By making some assumptions
(priors) about the environment that the agent (robot) acts in,
a state representation can be learned that is consistent with
physics. The obtained state representation is especially ef-
fective for robotic tasks, and its application facilitates gen-
eralization in reinforcement learning.

The priors presented are inferred from Newton’s three laws
of motion[25], and in the paper the authors show that it
is sufficient for these priors to be generally true and the
resulting model will be robust to states that are inconsistent
with the some of the priors.

In their work, R.Jonschkowski et al. apply their robotic
priors to several navigation and control tasks with discrete
action space and a camera input as state, showing their ef-
fectiveness as state representation methods.

3.2. End to end learning

Standard deep reinforcement learning models make use of
the reward as only descriptor of the performance of the
model to map the high dimensional input space to the ac-
tion to be taken for such state. Furthermore the explo-
ration of the environment happens often slowly, generat-
ing highly correlated (and poorly defining) training data.
The utilization of state representation learning, on the other
hand, makes the effective reinforcement learning training
phase shorter, but it requires states’ data itself beforehand,
oftentimes defeating its purpose in real-life robotic appli-
cations, and introduces a two-phase training system that
makes training more difficult and more time consuming for
the engineer.

We define end-to-end systems as reinforcement learning
models where other added losses improve the model’s per-
formance in concurrency with the reinforcement learning
training, without requiring a two-phase training method.

In their recent work M.Jaderberg et al.[5] approach the is-
sue of inefficient data utilization by means of Auxiliary
Tasks: instead of focusing on attempting to map observa-
tions to task-relevant features in a separated state represen-
tation learning phase, they present several different Aux-
iliary Tasks whose losses continuously improve the model
even in reward-less state transitions. The model has a core
structure of a convolutional layer followed by an Long
Short-Term Memory (LSTM) layer4. This core structure
outputs directly the value and policy terms used by their
Actor-Critic algorithm[27], but is also used as core part of
the auxiliary tasks, and can thus be seen as the state rep-
resentation structure that would be trained in a state repre-
sentation phase.

In a similar work, E.Shelhamer et al.[13] explore the uti-
lization of other self-supervised losses to improve train-
ing time and accuracy for Deep Reinforcement Learn-
ing. Starting from an asynchronous advantage actor-critic
architecture[6], E.Shelhamer et al. explore the addition of
several auxiliary losses that make use of observation, ac-
tion and successors. In the paper the auxiliary losses are
tested both in concurrency with the reinforcement learning
and in state representation-like pre-training fashion, and the
authors show that concurrent utilization is easier to imple-
ment and gives more effective results, usually reaching the
performance of the base algorithm in just one-third of the
iterations.

The application of auxiliary tasks in reinforcement learn-
ing models has been explored by all aforementioned au-
thors with the objective of finding universal auxiliary tasks
the can be applied in any reinforcement learning setting,

4LSTM layers are a variant of the standard Recurrent layer
that has more long-term memory retention capabilities.[26]
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and their results shown that the addition of extra feedback
for the network can improve training duration and network
performance.

When applying reinforcement learning in robotic scenarios
in real life, however, the laws of physics dictate in great part
the nature of interactions of the agent with the environment,
and capturing these characteristics into auxiliary feedback
to guide the network’s training could provide richer and
more effective feedback and thus be more data-efficient.

4. Robotic Auxiliary Losses
In this chapter the main innovation of this paper is pre-
sented: robotic auxiliary losses.

4.1. Loss functions

In this section the state representation learning work of
R.Jonschkowski et al.[1] is re-adapted: The presented
robotic priors are transformed to be utilized as auxil-
iary losses in an end-to-end deep reinforcement learn-
ing training without requiring a state representation pre-
training. Furthermore, their application is specifically de-
signed for reinforcement learning models with continuous
action space, which is usually necessary for implementa-
tion in robotic tasks.

The aim of these losses is to provide the reinforcement
learning agent with extra feedback from which it can more
easily and effectively build an internal model of the physi-
cal world in which it acts.

The simplicity prior from R.Jonschkowski’s work was not
applied, as it would require creating a bottleneck in the
network: while this is necessary in state representation to
reduce the state dimensionality and accelerate the subse-
quent reinforcement learning training phase, in end-to-end
training the application of auxiliary losses is parallel to the
reinforcement learning training and no significant training
speed would be obtained. A prediction task is also imple-
mented, which does not involve robotic priors and can be
used comparatively to assess the robotic auxiliary losses’
effectiveness.

Temporal coherence loss Task-relevant properties of the
world change gradually over time.
This loss enforces a continuity in the agent’s internal state
space. Given two successive internal states:

zθ,t = gθ(st)

zθ,t+1 = gθ(st+1)
(6)

where gθ are the state representation layers (see Figure 2),
we can infer that they should differ in magnitude similar
to that of the action taken ||at||22. The auxiliary temporal

coherence loss ltc is composed of two terms, one that pun-
ishes the smallness in state changes ||∆z||22 for an action of
high magnitude, and the second that punishes high magni-
tude state changes given an action of little magnitude:

Ltc,1 = e−λ||∆zθ||
2
2 ||a||22

Ltc,2 = e−λ||a||
2
2 ||∆zθ||22

Ltc = Ltc,1 +Ltc,2

(7)

The exponential of the negative magnitude e−λ||x||
2
2 repre-

sents a similarity function: for limx→0 e
−λ||x||22 = 1 and

for values of x > 0 the similarity value quickly decreases
to 0. The λ coefficient determines the rate of descent of the
similarity value, and is set to λ = 10 for this research.
This loss should enforce a normalization of the internal
state placement, ensuring that changes in internal state
brought by actions have magnitude relative to the magni-
tude of the actions taken.

Proportionality loss The amount of change in the state
caused by an action should be proportional to the magni-
tude of the action taken.
When comparing two unrelated states, zθ,j and zθ,k, if the
actions taken in both states have similar magnitude then
the state change should also be similar. Note that this loss
is not about similarity between internal states, but rather
about similarity in amount of change caused by actions of
set magnitude. The auxiliary proportionality loss is con-
structed as follows:

f∆zmagdiff = (||∆zθ,j ||22 − ||∆zθ,k||22)2

fasim = e−λ||aj−ak||
2
2

Lprop = f∆zmagdiff fasim

(8)

The proportionality loss ensures that the magnitude of
change brought by an action is consistent across all states.
R.Jonschkowski et al. relate this prior to Newton’s second
law of motion: for every force (action) there is a resulting
proportional acceleration (change in state).

Causality loss The state and action together should de-
termine the reward obtained.
This loss enforces the state mapping to be task-relevant: if,
suppose, two observations are mapped to similar states and
the same action is taken from said states, then the reward
obtained from both states should be similar. If this is not
the case the mapping from observation to state failed to en-
code some task-relevant feature.
Thus given two unrelated states zj and zk, their state sim-
ilarity is punished relative to the similarity of the actions
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Figure 2. Overview of the DDPG model with Robotic auxiliary losses (and prediction task). The internal state z obtained by the state
representation, both for the actor and critic, is also utilized as input for the auxiliary losses. The auxiliary losses’ dependencies on action
and reward are not depicted for clarity.

taken and magnitude of the difference in obtained reward:

fzsim = e−λ||zθ,j−zθ,k||
2
2

fasim = e−λ||aj−ak||
2
2

frdiff = ||rj − rk||22
Lcaus = fzsim fasim frdiff

(9)

The causality loss is especially effective in environments
with descriptive rewards, but is mostly irrelevant in case of
sparse rewards, as most of the states compared will have
the same null reward, bringing the causality loss to 0.

Repeatability loss The state and action together deter-
mine the resulting change in these properties.
Similarly to the Causality loss, this loss enforces the change
in state caused by action to be consistent for similar states:
if two unrelated states zj and zk are similar and similar ac-
tion is taken for both of them then the resulting change in
state should also be similar, both in magnitude and in di-
rection:

fzsim = e−λ||zθ,j−zθ,k||
2
2

fasim = e−λ||aj−ak||
2
2

f∆zsim = e−λ||∆zθ,j−∆zθ,k||22

Lrepeat = fzsim fasim f∆zsim

(10)

This loss, together with the causality loss, enforces causal
determinism: if similar actions are taken in what the
agent considers similar states, they should lead to similar

changes. R.Jonschkowski et al. write that repeatability
prior and the causality prior together constitute the Markov
property of states.

State prediction task The state prediction task also has
as focus the encoding of environment dynamics in the state
representation layers of the network: given the internal
state zθ,t from an observation st and the action taken in
that time step, the network should be able to predict the
observation it will receive in the following step:

ŝθ,φ,t+1 = hφ(zθ,t, at)

Lpred = ||st+1 − ŝθ,φ,t+1||22
(11)

To do so, the action is concatenated to the internal state,
and two dense layers are attached that ”mirror” the state
representation sequence, with independent weights φ. The
last layer’s output matches the observation size, and the
task loss Lpred becomes the cross-entropy of the difference
between predicted and actual observation at the next time
step. This auxiliary task differs from the robotic losses in
that there are added model parameters to be trained φ, but
its validity is maintained as a good state representation zθ
is necessary to be able to correctly predict the future obser-
vation.

4.2. Experiments

The reinforcement learning platform used for this experi-
ment is the OpenAI Gym[28]5. The physics engine used

5https://gym.openai.com/
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Figure 3. Overview of the four openAI enviroments in which the robotic auxiliary losses will be evaluated. From left to right: Ant-V2,
Cheetah-v2, Humanoid-v2 and HumanoidStandUp-v2. For all environments, the input state is a vector of each joint’s angular position
and velocity and contact forces, and the action space is a vector of real values of activation of each joint.

is the MuJoCo engine, which is specifically designed for
model-based control[29]. Four robotic control environ-
ments with continuous action space from the Openai Gym
library, which make use of the MuJoCo engine, have been
utilized for these experiments: Ant-v2, HalfCheetah-v2,
Humanoid-v2 and HumanoidStandingUp-v2. A rendering
of the environments is visualized in Figure 3. For all these
tasks the observation consists of a vector with angular po-
sition and velocity of each joint of the agent, and the action
is a vector comprising the activation force for each joint’s
motor.

A conceptual visualization of the neural network architec-
ture with auxiliary losses can be seen in Figure 2. We de-
fine the first two fully connected layers as ”state representa-
tion” layers, as those layers’ parameters will be shared with
the auxiliary losses training in our implementation: during
training, their parameters will be updated firstly through the
back-propagation of their respective (actor or critic) loss,
and secondly through the back-propagation of the auxiliary
losses applied.

As the observations received by the environment are vec-
tors containing (normalized) real-valued numbers, both the
state representation layers and policy and value layers are
fully connected layers[30]. In case of visual observation
input convolutional layers should be used instead for the
state representation layers, whose output is then flattened
to form the internal state vector z.

The auxiliary losses’ gradients back-propagate through the
state representation part of the network only (i.e. the ac-
tion taken, although being obtained from the actor net-
work, is used as constant and has no gradient pass through
it). DDPG being an off-policy reinforcement learning algo-
rithm is especially apt to auxiliary losses: a training batch
is comprised of an uncorrelated set of state transitions from
the experience replay,Atari, which can also be directly used
as input to calculate the losses of the auxiliary losses. The
experience selection algorithm is modified to ensure that

when comparing transitions for the robotic auxiliary losses
such transitions are always uncorrelated6.

For all tests, 3 trainings are run with different seeds for
model parameters initialization and batch selection from
the experience replay. The continuous loss normalization
technique is implemented in all tests (see chapter 6 for fur-
ther details and implementation hereof).

The aim of the of the model evaluation if to answer the
following questions:

1. Should auxiliary losses be applied to the actor, critic
or both networks concurrently?

2. What robotic auxiliary losses improve training speed
or performance? Is the performance increase
environment-dependent?

3. How is training affected by the concurrent addition of
all robotic auxiliary losses?

5. Results of auxiliary losses
Here we present the results of the application of auxiliary
losses on the selected environments.

5.1. Actor, critic, or joint application

In a model with individual actor and critic networks we can
apply auxiliary losses for the improvement of the internal
state representation to either actor or critic, or jointly to
both. A visualization of the individual and joint applica-
tion of auxiliary losses can be seen in Figure 4. As seen
in the Figure, the application of the auxiliary loss to either
actor or critic improves performance over the base model.

6This was done in practice by selecting for each transition a
second transition randomly picked between 100 and 200 steps fur-
ther in the experience pool.



Robotic Auxiliary losses

Figure 4. Results of run on Humanoid-v2 environment with
causality loss applied to either actor, critic, or simultaneously to
both. A run with the same seed but no auxiliary loss has been
included for comparison.

However, the performance improves most when the auxil-
iary losses are applied to actor and critic jointly. We in-
fer from the results that the networks perform best if their
parameters are guided by the auxiliary losses in the same
”direction”, while instead resulting in unbalance between
actor and critic if the auxiliary losses are not applied to ei-
ther network.

The joint application of auxiliary losses to actor and critic
also mimic the implementation from M.Jaderberg et al.[5]
and E.Shelhamer et al.[13], whose asyncronous advantage
actor-critic model has a single network which outputs both
an action vector (actor) and a state value (critic).

Based on these results, all auxiliary losses are applied to
both actor and critic networks for the rest of the experi-
ments.

5.2. Individual losses

We investigate the performance impact of each individual
robotic auxiliary loss and compare it to the base model
without auxiliary losses and to the model with the added
auxiliary task of state prediction. The results for these
experiments is shown in Figure 5. What is firstly evi-
dent from the figure is that auxiliary losses have differ-
ent performance impacts for different environments: The
temporal coherence task, while not effective for Ant and
Humanoid, improve performance in HalfCheetah and Hu-
manoidStandUp; proportionality task addition is signifi-
cantly improving the performance of the model in Ant,
while not being effective in HumanoidStandUp and hurting
performance in HalfCheetah and Humanoid; The causal-

ity task addition hurts performance in the Ant environment,
but is very effective in HalfCheetah, Humanoid and Hu-
manoidStandUp; and finally repeatability is not very ef-
fective in Ant and HumanoidStandUp, significantly hurts
performance in HalfCheetah, but improves performance in
Humanoid.

Each auxiliary loss can improve the model’s performance
in at least one of the environments tested, but worsens per-
formance in other environments, thus there is no auxiliary
loss which guarantees an improvement across all environ-
ments.

5.3. Joint auxiliary losses implementation

Next we observe the results of applying all robotic auxil-
iary losses concurrently. In Figure 6 we can see that the ap-
plication of all auxiliary losses concurrently impedes some
of the losses from being optimized, with their loss value
remaining constant or even increasing during the training,
while other losses’ values quickly decrease as the networks
modify their parameters.

Which losses are or are not being optimized changes in our
tests depending on the initialization of the parameters: uti-
lizing a different seed usually results in different auxiliary
tasks being optimized or ignored, as shown in Figure 7. In
the Figure, a training is run with the same parameters and
all robotic auxiliary losses concurrently, only changing the
seed of the network parameter initialization and experience
replay batch selection. As shown, in the training with seed
1 the causality loss is being optimized and proportionality
loss is ignored, and the opposite happens in seed 2. Be-
cause of this, there is a significant difference in model per-
formance, as the optimization of causality loss performs
much better than proportionality loss on the selected envi-
ronment (Humanoid-v2).

A specific contrast between auxiliary losses is not present
either, as depending on seed all combinations of two sin-
gular losses can be optimized during training. Note that
this inability to optimize all auxiliary losses together is not
related to the continuous normalization method that is ap-
plied in the results shown, as these results are seen also
when applying the other kinds of loss normalization dis-
cussed below.

6. Loss normalization
When introducing several auxiliary losses to a reinforce-
ment learning algorithm, the goal is to improve training
by giving extra guidelines to the network. However, when
naively summing the auxiliary losses to the main reinforce-
ment learning loss the relative value of such losses cause
the training to often either ignore or over-focus on specific
losses. The first case will result in some auxiliary losses
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Figure 5. Individual auxiliary losses performance per environment. no aux: Base DDPG model. tc: with temporal coherence. prop: with
proportionality. caus: with causality. repeat: with repeatability. predict: with state prediction. (best viewed in color). The plot shows
the cumulative reward of the agent per epoch (higher is better). Each evaluation is shown with mean (solid line) and standard deviation
(light area of same color).

bringing no benefit to the training, the second case will of-
ten cause training failure as the network loses focus on its
main reinforcement learning objective.

Manually multiplying each loss by a constant to bring their
values to the same range is tedious and ineffective, as their
relative range can vary wildly, and would need to be ad-
justed per individual environment and loss specification,
adding several hyper-parameters to an already saturated
tuning list, and making thus their application defeat rein-
forcement learning’s principle of self-supervised training.

Furthermore, the main reinforcement learning losses for the
actor and critic differ in nature from the auxiliary losses
we present in this paper: the auxiliary losses presented
are applied in a supervised training fashion, with gradu-
ally decreasing losses as the model gets better at respect-

ing the auxiliary loss’ constraint. On the other hand, the
closed-loop characteristics of reinforcement learning cause
the agent to reach new, better states as it improves, and
the losses (especially those of the critic) are often increas-
ing instead of decreasing as newly found states must be
evaluated. Because of this, the auxiliary losses’ gradients
decrease during training while the main losses’ gradients
remain in the same range as at the start or even grow sig-
nificantly, resulting in the auxiliary losses’ gradients to be
ignored.

These issues make the parallel implementation of different
losses difficult and give unexpected results. We explore be-
low different techniques for the calibration of losses with
the focus of having each loss be of continuous relevance
during training, without ”overpowering” the state repre-
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Figure 6. Joint robotic auxiliary losses performance per environment. no aux: Base DDPG model. all: with all 4 robotic auxiliary losses.
(best viewed in color). The plot shows the cumulative reward of the agent per epoch (higher is better). Each evaluation is shown with
mean (solid line) and standard deviation (light area of same color).

sentation layers and negatively affecting the reinforcement
learning process.

6.1. Gradient clipping

A well known and often applied normalization technique
is that of gradient clipping. This technique aims to hinder
overshooting and exploding gradients by re-scaling them
when their l2 norm exceeds a given threshold:

δθclip =
δθ · λ
||δθ||2

(12)

We can apply this technique with a low threshold value
(e.g. unit value) to use it as a strong regularizer. As the
gradient norm is usually higher than the chosen threshold,
all gradients get re-scaled and should thus affect training

in similar matter. Note however that as the auxiliary losses
are added togheter before the gradient calculation this does
not affect individual losses.

6.2. Initial loss normalization

A simple normalization method would be to estimate the
values of each loss at the beginning of the training, and set
the inverse of it as a constant by which each loss is multi-
plied for the rest of the training:

Λinit = 1/L0

Lt,norm = L ·Λinit
(13)

Doing so would mean that each loss begins at the same unit
value, but is free to diverge during training.
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Figure 7. Joint robotic auxiliary losses comparison in Humanoid-v2 for two different seeds (best viewed in color). The top plot shows
the cumulative reward of the agent per epoch (higher is better). The four plots below it show the loss value during training for the four
different robotic auxiliary losses.
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6.3. Continuous loss normalization

An alternative to the above solution is to instead force all
losses to be of unit value during the whole training. In order
to do this, we divide each loss by its absolute value:

Lnorm =
L

[[ | L | ]] + ε
(14)

The absolute value of the loss is applied in the function as
a constant value, explicitly blocking the back-propagation
of the gradient. This is done with the stop-gradient identity
function [[x ]] = x (as used in the work by Z. Xu et al.[31]).
Were this not done, the lower and upper terms of the frac-
tion would match rendering the gradient null at all times.
Note that a small value ε is added to the denominator in
order to avoid division by zero for null losses.

By applying the continuous loss normalization to all aux-
iliary losses, as well as the actor and critic losses from the
reinforcement learning algorithm, it is also possible to set
a fixed ratio of loss between main and auxiliary losses. If
taking unit normalized losses for actor and critic losses, for
example, we can set the sum of auxiliary losses to be half
of that:

Laux =

∑n
k=1 Lk,norm

2 k
(15)

The goal of this loss normalization technique is to force
all auxiliary losses to remain relevant during training, by
matching their values to the main actor and critic loss
throughout the training.

7. Results of loss normalization
We evaluate the different loss normalization techniques by
comparing the gradients of each technique for actor, critic
and auxiliary losses , and by observing the change in per-
formance for each technique when applying an auxiliary
loss (see Figure 8).

From the figures we can see that of all techniques proposed,
only the continuous loss normalization technique applica-
tion results in a change of performance when applying aux-
iliary losses to the model.

The utilization of gradient clipping has as main conse-
quence the re-scaling of the critic gradient to be in the same
range as that of the actor and auxiliary losses. However,
the total auxiliary loss’ gradient quickly descends and be-
cause of this the final performance of the model remains
unaffected by auxiliary losses (see clipnorm’s cumulative
reward compared to that of nonorm in Figure 8).

The initial loss normalization technique, on the other hand,
results in the auxiliary loss’ gradients to be significantly
higher at the start, in a range similar to that of the critic

network. Nonetheless, the performance of the model is un-
affected by the addition of whichever auxiliary loss.

The closed-loop nature of reinforcement learning makes
the actor and critic losses to be significantly less prone
to decreasing in value during training, as opposed to the
auxiliary losses, which can be more quickly optimized and
become ineffective during training. With continuous loss
normalization, however, each auxiliary loss is re-scaled to
remain in the same range, thus continuing to provide im-
provements across the training.

Based on these results the continuous loss normalization
technique is applied throughout the experiment.

8. Discussion
The application of individual auxiliary losses and their im-
provement on the model’s internal state representation af-
fect performance mostly further in the run. This results
contrast with those by E.Shelhamer et al.[13], where the
auxiliary losses’ application accelerates the training but
does not significantly improve the maximum total reward
at the end of the training phase. This suggests that the ap-
plication of the right auxiliary losses can help the network
find better policies by forming a richer and more accurate
internal state representation.

Comparatively, it is clear that the prediction task is not able
to significantly impact the training performance. This is
most likely caused by the nature of the input state: input
state prediction has been mostly applied (with success) to
visual input, which is of larger size and whose information
density is significantly lower. This is also true of the robotic
priors application by R.Jonschkowski et al.[1], which was
tested solely on visual input.

If the agent is trained on all robotic auxiliary losses con-
currently, its performance change is dictated by the specific
losses that are being optimized with the given seed. A pos-
sible cause of the network’s inability to ”focus” on all aux-
iliary tasks jointly is the layers’ width of 64 neurons, which
may create a bottleneck that hinders the state representa-
tion capabilities of the network (comparatively, work from
M.Jaderberg et al.[5] and E.Shelhamer et al.[13] make use
of layers with width of 256). Further work could explore
the balance between layers’ width and auxiliary losses opti-
mization capabilities, and their effect on the reinforcement
learning performance.

The joint application of several auxiliary losses has proven
to be all but trivial: invariably, some auxiliary losses will
dominate the training phase, eclipsing other losses and
making their application unreliable. Efforts towards a nor-
malization technique that ensures the effective and bal-
anced application of auxiliary losses has shown promising
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Figure 8. Gradient norm and cumulative reward for the different types of normalization. The causality auxiliary loss and Humanoid-v2
environment were utilized for these figures. The values of the auxiliary gradients for all norm types except for the initial loss norm are
in the range of 1e− 6.

results with the application of continuous loss normaliza-
tion, which improves the effectiveness and impact of aux-
iliary losses added to the model in all environments tested.
Nonetheless, in the testing model, the application of mul-
tiple auxiliary losses was hindered by an inability of the
model to balance its training between all given auxiliary
losses. In future work, the gradients of each individual
auxiliary loss could be compared to better investigate the
relations and competitions between auxiliary losses. Fur-
thermore, gradient clipping or other gradient normalization
techniques could be explored for the each applied auxiliary
loss individually, instead of as a whole vs. the main rein-
forcement learning gradients.

The evaluation of the robotic auxiliary losses as imple-
mented in this paper was done on environments with a com-
pact and descriptive state vector and descriptive immediate

rewards, because of hardware and time limitations. We ex-
pect the robotic auxiliary losses to be of more prominent
and consistent impact in environments with visual input
and sparse or delayed rewards, and future work could ex-
plore their effectiveness in this kind of environments.

9. Conclusion
We have presented robotic auxiliary losses, functions that
provide extra feedback to the agent in continuous reinforce-
ment learning models applied to robotic tasks. Robotic
auxiliary losses focus on Newton’s principles of motion, in-
stead of trying to add meaningful feedback for any arbitrary
environment, and are thus specifically designed for appli-
cation in the physical world (or simulations thereof). As
auxiliary losses, they are applied concurrently to the rein-
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forcement learning losses during training, guiding the for-
mation of an internal state representation in the agent that
is consistent with the laws of physics.

The application of robotic auxiliary losses has shown
promising results: in each environment evaluated spe-
cific individual losses improved performance when applied
jointly to the actor and critic networks. Concurrent appli-
cation of all robotic auxiliary losses proved however to be
less successful, with some losses being optimized during
training and other losses being ”ignored”, possibly because
of the (insufficient) width of the network’s layers.

More research is needed to best manage the influx of multi-
ple losses on the network’s parameters, and to improve and
stabilize their application in robotic reinforcement learning
tasks. In future work, robotic auxiliary tasks could also
be applied to environments with sparser rewards, or envi-
ronments with visual state input, which may better benefit
from the additional losses’ feedback to create more consis-
tent internal state representation.
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Table 1. Model hyperparameters:

Hyperparameter Value

Layer normalization True Normalize layer parameters by re-scaling and re-centering its weights[32]
Observations normalization True Normalize input observations by re-scaling and re-centering its values
L2-regularization value 1e-2 L2 regularization is applied to the critic to avoid overfitting
Actor learning rate 1e-4 Learning rate for actor model
Critic learning rate 1e-3 Learning rate for critic model
Gamma (γ) 0.99 Discount rate for state-action value determination (see equation 1)
Tau (τ ) 0.001 Update rate for target actor and critic network (see equation 5)
Similarity coefficient (λ) 10 Steepness of descent factor of the similarity value in robotic auxiliary losses
Adaptive Noise 0.2 Desired standard deviation value of adaptive parameter noise for actor exploration
Epochs 500 Number of epochs to be run in a training
Cycles per Epoch 20 Number of cycles performed for each epoch
Rollout steps 100 Number of steps taken by the agent per epoch cycle
Train steps 50 Number of training iterations by the agent per epoch cycle
Batch size 64 Amount of state-action transitions to use at the same time for each training episode
Representation layers 2 Number of fully connected layers in the State Representation block (see Figure 2)
Layers’ width 64 Number of neurons in the neural network’s fully connected hidden layers

A. Experiment setup
The OpenAI Baselines implementation of the Deep Deter-
ministic Policy Gradient model is used as basis to which
add auxiliary losses7. This implementation is written in
Python, and makes use of the Google Tensorflow[33] Ma-
chine Learning library for the model building and train-
ing. All of the model hyperparameters hava been left un-
changed, to properly evaluate the implementation of the
robotic auxiliary losses against the accepted standard base
DDPG model. The choices for all hyperparameters can be
found in Table 1. For the robotic auxiliary losses back-
propagation the respective learning rate for actor and critic
networks has been used.

All tests are run for 500 epochs. Each epoch is comprised
of 20 cycles of: (1) 100 iterations of the agent acting in
the environment, which are stored in the experience replay
(2) 50 training iterations, with a batch size of 64. A total
of 1 million iterations are performed by the agent in the
environment in a single complete run.

The code necessary to run the experiments presented in this
paper can be found at:

https://github.com/TCherici/RoboticAuxiliaryLosses

7https://github.com/openai/baselines/tree/master/baselines/ddpg


