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Lay summary

In many areas of science and finance it can be useful to understand how different factors relate to each other,
whether they move together or independently. A way to express these relationships is through a correlation
matrix, where each entry shows how strongly a pair of variables is related. These matrices are widely used to
make predictions, for example, in understanding how different assets behave in financial markets. However,
what if not all of the data is available and we still want to make predictions or test models? In such cases we
need to simulate correlation matrices that are both realistic and mathematically valid. This thesis explores
two techniques for generating these matrices, along with extensions that allow the average correlation to be
fixed or controlled. The first method is based on square root decomposition, which builds the matrix step by
step from a set of unit vectors. An extension of this method allows us to fix the average correlation which is
useful in applications like financial risk management, where we may want to model scenarios with a known
level of average dependence between assets. The second method is based on probabilistic principles, rather
than geometric construction. This gives us more control over the statistical properties of the matrices. One
key extension is the ability to fix the expected correlation, making this method ideal for simulations where
we want to influence the average behaviour without enforcing it exactly. By comparing these two methods,
this thesis provides deeper insight into how they work, how they differ, and when one is more suitable. This
helps guide the choice of the right method for generating synthetic but realistic data structures in different
applications.
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Summary

Correlation matrices play a central role in multivariate modelling across fields such as finance and statistics. 
However, generating valid correlation matrices, remains a non-trivial problem due to the global positive defi-
niteness condition they must satisfy. This thesis investigates two methods for generating correlation matrices, 
with extensions on how to control or influence the average correlation.

The first method relies on square root decomposition of the correlation matrix, parametrizing it as the 
product of a matrix with unit-norm rows and its transpose. A recent extension of this by Tuitman et al. [14] is 
explored, which enables the generation of matrices with a fixed average correlation. This is achieved through 
iterative construction of the decomposition, ensuring the weighted sum of vectors has a prescribed norm, 
corresponding to the target average correlation. The algorithms geometric structure, feasibility conditions, 
and statistical properties are analysed.

The second method is based on the C-vine construction using partial correlations, as introduced by Joe 
and Kurowicka [10]. There exists a one-to-one mapping from a set of partial correlations to a full correlation 
matrix. This approach parametrizes the matrix through a structured sequence of partial correlations. The 
distribution from which these partial correlations are sampled can be adjusted to achieve specific properties 
in the resulting matrices, for example using specific Beta distributions we obtain matrices following the LKJ-
distribution. The extension by Joe and Kurowicka [10] is investigated, which allows the expected value of each 
correlation to be fixed across samples.

A comparison of both methods is provided in terms of construction, flexibility, numerical stability, and 
statistical properties of the resulting matrices. While the square root decomposition method offers strict 
per-matrix control over the average correlation, the C-vine approach provides greater flexibility, enabling 
finer control over marginal d istributions. The thesis concludes with a discussion on practical trade-offs and 
potential directions for future work.

All of the figures and data presented in this thesis was computed in R-studio. For access to the implemen-
tations or underlying code.
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1
Introduction

Correlation matrices C = [Ci j ]i , j=1,...,n are n × n symmetric matrices with ones on the diagonal and off-
diagonal elements in the interval [−1,1]. These matrices are also positive semi-definite, hence all eigenvalues
are non-negative. The positive semi-definiteness imposes a global constraint, not all combinations of off-
diagonal elements on [−1,1] leads to a valid matrix. As a result, the set of all correlation matrices form a

subset of the hypercube [−1,1]
n(n−1)

2 .

Correlation matrices are widely applied in probability and statistics to help visualize relationships, iden-
tify similarities and patterns within a data set. They can serve as an input to statistical models and methods
such as regression and factor analysis. In simulation-based methods, such as Monte Carlo analysis, it is often
necessary to generate random correlation matrices to study the behaviour of complex multivariate systems
[7]. This approach involves repeatedly simulating correlation structures to estimate quantities such as the
expected value, variance, and distributional properties of system outputs, thereby allowing for statistical in-
ference and pattern prediction under uncertainty. Different methods to generate correlation matrices can be
applied for these simulations, each with various properties and aims. A simple method to generate random
correlation matrices without underlying data is the construction proposed by Marsaglia and Olkin [12], who
found that C is a correlation matrix if and only if there exists T such that C = T T ′ , where T ′ is the transpose
and the rows of T must be unit vectors. In this construction, the correlation Ci j corresponds to the inner
product of the i -th and j -th row of T . Hence we can generate random correlation matrices by sampling rows
of T from the unit sphere.

In many practical situations, only partial information about the correlation structure is available, for in-
stance only some pairwise correlations are given. In such cases, a class of recursive algorithms can be used
to complete the matrix while preserving positive semi-definiteness. As discussed in the comparative study
by Flórez et al. [6], these methods construct the matrix by determining the feasible interval for each new
correlation entry based on the already specified values. These techniques are relevant in clinical research
for example, these matrices can allow researchers to explore the possible dependency structures and how
strongly a surrogate (such as laboratory result) predicts real health outcomes.

Another application is proposed by Hüttner and Mai [7], where correlation matrices that satisfy the perron
frobenius property are simulated. Matrices with this property possess the dominant eigenvector with strictly
positive entries. The positivity of the dominant eigenvector is important as the entries of this vector are used
to approximate the optimal choice of portfolio weights for correlated stocks[4].

In addition, methods exist for generating correlation matrices uniformly from a known distribution. A
notable example is the LKJ distribution, introduced by Lewandowski et al. [11], which defines a family of
distributions over the space of correlation matrices. In this approach, the joint density of the correlations in
the matrix is proportional to a power of the determinant of the matrix. This allows one to control how strongly
the samples are concentrated around the identity matrix. The LKJ distribution is particularly well suited for
simulation and Bayesian modelling, where structured priors over correlation matrices are often required.

In all of these methods, the main challenge is to ensure that the resulting matrices remain positive semi-
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definite while satisfying additional constraints. In high dimensions, the space of valid correlation matrices
is difficult to visualize, it becomes much more tractable in the low dimensional n = 3 case. By plotting the
off-diagonal elements C12,C13 and C23 of valid 3×3 correlation matrices, one can visualize points in the cube
[−1,1]3. However, due to the positive semi-definite constraint, the admissible set forms a convex subset of
this cube. This region is symmetric under permutations of C12,C13 and C23. [5] Every point within this space
satisfies the determinant condition:

det(C ) = 1+2C12C13C23 −C 2
12 −C 2

13 −C 2
23 ≥ 0 (1.1)

The set of valid correlation matrices, denoted S3 is presented in Figure 1.1.

(a) Horizontal cross-sections of the elliptical tetrahedron (b) Horizontal cross-sections of the elliptical tetrahedron

(c) Diagonal cross-sections of the elliptical tetrahedron (d) Diagonal cross-sections of the elliptical tetrahedron, angled view

Figure 1.1: Figures of elliptical tetrahedron for n=3 with horizontal and vertical cross-sections.

The set S3 is known as an elliptical tetrahedron or elliptope. It is convex body with 4 sharp vertices con-
nected by 6 curved edges. The surface is smooth along these edges. At the intersections with the planes
C12 = 0,C13 = 0 and C23 = 0, the elliptical tetrahedron intersects three orthogonal circles can be found [5].

Figure 1.1a shows that the cross-sections parallel to a coordinate plane are ellipses (here the case when
C23 = b with |b| ≤ 1 is shown). This is the situation we mentioned earlier, where only partial information
is available. When b = 0, the cross section is a circle. For positive b the major axis of the ellipse is in the
direction of C12 = C13, and minor axis in direction C12 = −C13, these roles reverse when b < 0[13]. This axis
swap is clearly visible in Figures 1.1a and 1.1b, where the direction of the major changes as b passes through
zero.

Figure 1.1c shows intersections between the elliptical tetrahedron with the planes C12 +C13 +C23 = d , for
|d | ≤ 3. The cross-sections appear as rounded triangles when d < 0, gradually becoming more circular as
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d increases. These planar slices correspond to sets of correlations with fixed average correlation, since the
plane C12 +C13 +C23 = d imposes the condition that all matrices have average correlation d

3 .

There exist different methods to find the matrices that satisfy an average correlation ρ. This can be done
by simply sampling all possible matrices with off-diagonal values between [−1,1] that satisfy the average
constraint and rejecting all matrices that are not positive semi-definite. However, Tuitman et al. [14] present
an efficient method to generate correlation matrices that lie on the hyperplane where average off-diagonal
correlation equals to a prescribed target value. Each such matrix can be considered as a parameter of a mul-
tivariate normal distribution of (X1, ..., Xn), where the average correlation directly determines the variance of
the sum

∑
Xi . This theory can be applied in risk aggregation as measures like Value-at-Risk depend on to-

tal variance [3] and help to study extreme dependence scenarios under Gaussian marginals Wang et al. [15].
There also exist more probabilistic approaches such as the method by Joe and Kurowicka [10] which extends
partial correlation c-vine parametrization so enforce a fixed expectation for marginals. This method can be
applied in Bayesian modelling to specify prior distributions whose average structure matches prior beliefs.

Different applications require different constraints on correlation matrices, which result in distinct geo-
metric structures. This thesis focuses on two approaches for generating valid correlation matrices, square
root decomposition parametrization and the extension of this by Tuitman et al. [14], and partial correlation
C-vine parametrization and extension by Joe and Kurowicka [10]. These methods operate within the space of
valid correlation matrices in different ways. Tuitman et al. [14] introduces an iterative procedure to generate
correlation matrices with a given average constraint, making it suitable for risk aggregation contexts. In con-
trast, using the partial correlation parametrization, we can sample matrices with prescribed expected value
of each correlation. Therefore, matrices for which the expected average correlation is specified can also be
simulated.

The goal of this thesis is to present these different methods, evaluate similarities and differences and
present possible extensions.

The outline of the thesis is as follows: In Section 2 the method of generation the correlation matrices based
of square root decomposition is presented. This method is then extended following Tuitman et al. [14] to
simulate matrices with specified average correlation. We examine the construction by presenting geometric
and probabilistic properties of the algorithm. In Section 3 the partial correlation parametrization method
is presented, which is then extended to fix the expectation of each correlation. In Section 4 a comparison
between the two methods is presented and possible extensions left as a future work are proposed.
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Generating correlation matrices using

square root decomposition
parametrization

In this section, we investigate the method of generating correlation matrices using thesquare root decompo-
sition parametrization, where the rows of T are unit vectors. We then introduce an additional constraint of
fixing the average correlation, as proposed by Tuitman et al. [14], and examine how this alters the construc-
tion. An algorithm for generating such matrices is presented, followed by an exploration of the geometric
properties of this space. Throughout this chapter square root decomposition will be referred to as SRD. We
begin by introducing notation that will be used throughout this chapter.

Table 2.1: Summary of notation used in the algorithm by Tuitman et al.

Symbol Meaning

n Dimension of the correlation matrix (n ×n)
σi user-defined weights assigned influence to each correlation coefficient
C Correlation matrix to be generated, Ci j is matrix element from row i and column j
T Matrix in Rn×n such that C = T T ⊤, with unit-norm rows
T ′ The transpose of matrix T
N j Standard normal random variable
Xi Random variable defined by σi

∑n
j=1 Ti j N j

s2 The variance of the sum of random variables Xi

ti i -th row of T , a unit vector in Rn

ui Partial weighted sum: ui =∑i
j=1σ j t j

li Norm of partial sum: li = ∥ui∥
s Target norm of the full weighted sum: s = ∥∥∑n

i=1σi ti
∥∥

ρ Desired average pairwise correlation in the matrix C
〈ti , t j 〉 Inner product of ti and t j , which is also Ci j

∥ · ∥ the euclidean norm

A key result from Marsaglia and Olkin [12] demonstrates that a matrix is positive definite if it can be rewrit-
ten as a product of two other matrices.

Theorem 1. Let C be a n by n symmetric matrix with ones on the main diagonal.C is positive definite if and
only if there exists T ∈ Mnxn(R) such that C = T T ′ and the rows of T must be vectors in Rn of length 1.

The inner product of row i and j of T hence give element Ci j . The decomposition above is unique if the
matrix T is a lower triangular matrix.

7



2.1. Unconstrained square root decomposition parametrization 8

2.1. Unconstrained square root decomposition parametrization
We can sample unit vectors ti uniformly and independently from the unit sphere and placed them as rows of
the matrix T . The correlation matrix C is then obtained by computing the matrix product T T ′. The algorithm
is presented below.

Algorithm 1 Generation of Random Correlation Matrix via SRD parametrization

1: Given: n ∈N
2: Generate: Correlation matrix C ∈Rn×n

3: Initialize T ← 0 ∈Rn×n

4: for i := 1 to n do
5: ti ← random in Rn of length 1
6: Set T [i , :] ← ti

7: end for
8: Compute C ← T T ′
9: Return: C

2.1.1. Example
A step by step application of the algorithm for n = 3 is presented. The vectors are sampled uniformly from
(-1,1) and normalized:

t1 =
−0.223
−0.816
0.533

 , t2 =
0.515

0.811
0.276

 , t3 =
−0.218

0.816
0.535


which yields the matrix:

T =
−0.223 −0.816 0.533

0.515 0.811 0.276
−0.218 0.816 0.535


The corresponding correlation matrix C = T T ′ is then:

C =
 1 −0.630 −0.333
−0.630 1 0.698
−0.333 0.0.698 1


2.1.2. Properties of the matrices generated using SRD parametrization
This subsection examines the behaviour of correlation matrices generated using Algorithm 1. We analyse
both the marginal distributions of the off-diagonal entries and the distribution of the matrices within the
feasible region.

Figure 2.1 confirms that the generated matrices indeed lie within the feasible region of 3×3 correlation
matrices. Furthermore, they appear to be uniformly distributed. This is expected, given that the vectors ti

are sampled uniformly from the unit sphere, and the resulting inner products Ci j = 〈ti , t j 〉 lie in the elliptical
tetrahedron. This is further supported by the behaviour marginal distributions in Figure 2.1c.
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(a) 1000 randomly generated correlation matrices (b) 1000 randomly generated correlation matrices

(c) Marginal distribution of Ci j

Figure 2.1: 3D scatter plots and marginal distribution for correlation matrices generated using SRD parametrization.

In Table 2.2, results regarding the empirical means, variances and pairwise correlations over 1000 samples
are summarized. The empirical means are all very close to zero. This is consistent with the fact that the
rows of matrix T are independent vectors sampled from the unit sphere, resulting in correlations that are
symmetrically distributed around zero. The small fluctuations can be attributed to the fact that we are using
a finite sample (N=1000).
The variances of the off-diagonal elements Ci j in Table 2.2 are all observed to be approximately 1

3 , this result
can be derived as follows:
The mean of each Ci j = 0, and the variance simplifies to the second moment:

Var(Ci j ) = E(C 2
i j )−E(Ci j )2 = E(〈ti , t j 〉2)
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Expanding the dot product, we obtain:

E

((
n∑

k=1
ti k t j k

)2)
=

n∑
k=1

n∑
ℓ=1

E(ti k tiℓ)E(t j k t jℓ)

Due to independence and spherical symmetry, all terms E(ti k ti l ) where k ̸= ℓ are equal to zero, and the terms
E(t 2

i k ) = 1
n . Thus we obtain:

n∑
k=1

E(t 2
i k )E(t 2

j k ) = n

(
1

n
· 1

n

)
= 1

n

This result holds for all n.

The pairwise correlation between off-diagonal elements are all near zero, indicating that these elements are
uncorrelated with each other. This is expected, as each row of T is sampled independently, and off-diagonal
entries are functions of independent unit vectors. Therefore, although the matrix is subject to the positive
semi-definite constraint, this does not introduce strong dependencies between off-diagonal elements.

Table 2.2: Simulation summary of 1000 matrices

Expected Correlation Variance Correlation between Elements
C12 C13 C23 C12 C13 C23 C12,13 C12,23 C13,23

0.004 -0.002 -0.008 0.337 0.317 0.338 0.009 -0.001 0.009

2.2. Generating correlation matrices with SRD parametrization and aver-
age correlation constraint

Construction by C = T T ′ offers flexibility, as specific properties of the correlation matrix C can be controlled
by carefully designing the structure of the rows of T . One example is the algorithm proposed by Tuitman et al.
[14], where the rows of T are constructed in such a way that the resulting matrix C has a prescribed average
correlation. This section will provide a detailed analysis of this algorithm. We begin by providing geometric
intuition behind the construction, then the method is formally presented. Next the implementation of the
method is presented and an example is show for n = 3. Finally, properties of generated with this method
matrices are studied.

2.2.1. Geometric intuition behind the algorithm
In order to impose an additional constraint, the construction of T in the square root decomposition requires
careful design. The (i , j )th entry of correlation matrix C is determined by the inner product of the i and j th
rows, the respective orientation of the vectors must be controlled. Tuitman et al. [14] propose a method to
construct these vectors such that the angles between them satisfy desired constraints. Indirectly an average
correlation can be achieved by controlling the length of the weighted sum of the rows of T . Geometrically this
corresponds to requiring the weighted sum of the vector to lie exactly on the surface of a sphere with a fixed
radius. The radius of the sphere corresponds to the average correlation: if the vectors are closely aligned then
the angles between them will be smaller and correlations in the matrix will be stronger. In this case the result
is that the sum of the vectors ti is longer. If the vectors are not aligned, the sum is shorter and the correlation
values are weaker. This can be interpreted as incrementally constructing the matrix within the feasible region
of valid correlation matrices, where each step is carefully constrained so that the final matrix lies exactly on
the hyperplane corresponding to the desired average correlation. Figure 2.2 shows an example of the process
of building up these vectors ti for n = 3.

The vectors ti must be so that successive vectors are not collinear, and attain the correct length. Hence ti

is constructed with two components. A component in the direction of the sum
∑i−1

j=1 t j is defined to control
the growth of the cumulative sum, ensuring the feasibility of reaching final norm s. The length of this new
vector lies between 1 and s. In addition, an orthogonal component to this direction prevents the vectors ti

from being collinear. Therefore, at each step the orientation and length are adjusted within precise bounds.
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Figure 2.2: plot of the vectors t1, t2 and t3 in blue for ρ = 0.5 and the resulting vector u3 in red with length s

The connection between s and ρ can be demonstrated in the 3x3 case:

C12 +C13 +C23

3
= 〈t1, t2〉+〈t1, t2〉+〈t2, t3〉

3
= ρ

The way that this algorithm ensures this happens is by constructing ti such that eventually ∥∑n
i=1 ti ∥2= s2

We aim for ρ = 〈t1, t2〉+〈t1, t3〉+〈t2, t3〉
3

Now consider: s2 = ∥t1 + t2 + t3∥2

= 〈t1 + t2 + t3, t1 + t2 + t3〉
= ∥t1∥2 +∥t2∥2 +∥t3∥2 +2〈t1, t2〉+2〈t1, t3〉+2〈t2, t3〉
= 3+2(〈t1, t2〉+〈t1, t3〉+〈t2, t3〉)
= 3+6ρ

⇒ 〈t1, t2〉+〈t1, t3〉+〈t2, t3〉
3

= ρ

2.2.2. Theoretical background
This section provides a theoretical explanation of the algorithm proposed by Tuitman et al. [14]. We begin by
reformulating the average correlation constraint in terms of the total variance of a weighted sum of Gaussian
variables. This leads to the geometric interpretation of constructing unit-norm vectors whose weighted sum
has a prescribed norm. We then present the necessary conditions and intervals that ensure the feasibility
of the construction, and explain the iterative procedure used to build the matrix T row by row, ultimately
producing the final correlation matrix C = T T ′.

The theory is presented for the weighted sum of Gaussian variables but in this thesis only the uniform
weights will be applied. The weights can be used when additional information about the quality of some
correlations in the correlation matrix are given.
Objective:

The aim of the algorithm presented by Tuitman et al. [14] is to generate correlation matrices with a given
average correlation value. This means that C ∈Mn×n(R) must be such that:∑

i< j σiσ j Ci j∑
i< j σiσ j

= ρ (2.1)

where σi , i = 1, ...,n denote the weights.
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The constraint can be reformulated in the following form:

ρ = s2 −∑n
i=1σ

2
i

2
∑

i< j σiσ j
, (2.2)

where s2 is the total variance of a linear combination of random variables Xi (defined in equation 2.3),
and the denominator is a fixed constant. This reformulation reveals that fixing the average correlation ρ is
equivalent to fixing the total variance s2 of a weighted sum of the Xi . The next step is to construct these
variables and show that this constraints are indeed equivalent.

To make this connection precise, observe the identity:

n∑
i , j=1

σiσ j Ci j =
n∑

i=1
σ2

i +2
∑
i< j

σiσ j Ci j ,

A key insight is that
∑

i , j=1σiσ j Ci j is equal to the variance (s2) of
∑n

i Xi for Xi ’s defined below.

Xi =σi

n∑
j=1

Ti j N j , i = 1, . . . ,n (2.3)

where N j ’s are independent standard Gaussian random variables.
We start with the following lemma.

Lemma 1. The total variance of the sum of random variables Xi is given by:

s2 =V ar (
n∑

i=1
Xi ) =

n∑
i , j=1

σiσ j Ci j

Proof. We have

Var

(
n∑

i=1
Xi

)
=

n∑
i , j=1

Cov(Xi , X j ).

Since

Xi =σi

n∑
k=1

Ti k Nk ,

where T ∈Rn×n has rows ti , and Nk ∼N (0,1) are independent standard normal variables. then

E[N j Nℓ] =
{

1 if j = ℓ,

0 if j ̸= ℓ.

Using this, the covariance between Xi and X j becomes:

Cov(Xi , X j ) =σiσ j

n∑
k=1

Ti k T j k =σiσ j 〈ti , t j 〉.

Since C = T T ⊤, this gives:

Var

(
n∑

i=1
Xi

)
=

n∑
i , j=1

σiσ j Ci j .

Corollary 1. By lemma 1 we can conclude that this problem can also be interpreted as generating matrices that
satisfy the variance constraint.

s2 =∥σ1t1 +σ2t2 +·· ·+σn tn ∥2 (2.4)
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Finally, if
∑n

i , j=1σiσ j Ci j = s2, then we can conclude using these results that average correlationρ satisfies:

ρ = s2 −∑n
i=1σ

2
i

2
∑

i< j σiσ j
. (2.5)

If σi = 1 for all i , then we have :

ρ = s2 −n

n(n −1)

Based on equation 2.5 we can already define a lower bound for the average correlation ρ. This is because
we know s2 > 0. Starting from the total variance expression:

s2 = 2
∑
i< j

σiσ jρ+
n∑

i=1
σ2

i > 0

2
∑
i< j

σiσ jρ >−
n∑

i=1
σ2

i

ρ >−
∑n

i=1σ
2
i

2
∑

i< j σiσ j

Since ρ ≤ 1 must also hold, we obtain the final bounds:

−
∑n

i=1σ
2
i

2
∑

i< j σiσ j
≤ ρ ≤ 1

Corollary 2. An important observation can be made from expression 2.4 by applying the triangle inequality.
Specifically, a matrix T exists if and only if:

max{σimax −
∑

i ̸=imax

σi ,0} ≤ s ≤
n∑

i=1
σi (2.6)

Where σmax denotes the largest value of σi . Note that if σi = 1 for all i , we have that

max{2−n,0} ≤ s ≤ n

Hence, the matrix T is constructed iteratively by constructing row vectors ti such that their weighted sum
eventually satisfies the condition in equation 2.4. In order to do this we must determine feasible lengths that

the cumulative sums
∑ j

i=1 ti can attain, ensuring that the final sum has norm s.
The problem thus reduces to generating a matrix T with unit-norm rows ti ∈Rn , such that the weighted sum∑n

i=1σi ti has squared norm equal to a prescribed value s2 (see equation 2.4).
Directly sampling such vectors is difficult due to the global constraint on their weighted sum. Which is why
we instead build vectors ti iteratively, ensuring at each step that the partial sums remain consistent with the

eventual goal of reaching norm s. Recall from table 2.1 that li :=
∥∥∥∑i

j=1σ j t j

∥∥∥ for i = 1, . . . ,n

These lengths li must be carefully constructed so that it is geometrically possible to reach final length s. If
you have two vectors, the length of their sum must lie between the difference and the sum of their individual
lengths. That is, the new length li must be somewhere between |li−1 −σi | and li−1 +σi .

The following theorem characterizes what constraints must be applied to such a sequence of vectors in order
to satisfy the final constraint on their lengths.

Theorem 2. Suppose that σ1 ≤ σ2 ≤ ·· · ≤ σn . Let 1 ≤ k ≤ n −2 be an integer, and let l1, . . . , lk be non-negative
real numbers satisfying:

l1 =σ1 and |li − li−1| ≤σi ≤ li + li−1 for all 2 ≤ i ≤ k.

Then the following two statements are equivalent:
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1. There exist non-negative real numbers lk+1, . . . , ln with ln = s such that

|li − li−1| ≤σi ≤ li + li−1 for all 2 ≤ i ≤ n.

2.

|s − lk | ≤
n∑

i=k+1
σi and s + lk ≥σn −

n−1∑
i=k+1

σi .

Proof. This proof is reproduced from Tuitman et al. [14, Proof of Theorem 2].
(1 ⇒ 2) If lk+1, ..., ln satisfying the conditions exist, then

|s − lk | = |ln − lk | ≤ |lk+1 − lk |+ · · ·+ |ln − ln−1| ≤σk+1 +·· ·+σn ,

s + lk = (ln + ln−1 + (lk − lk+1)+·· ·+ (ln−2 − ln−1) ≥σn − (σk+1 +·· ·+σn−1).

(2 ⇐ 1) We construct the li inductively for k +1 ≤ i ≤ n −1, by choosing

li ∈
[

max|li−1 −σi |, s −
n∑

j=i+1
σ j ,σn −

n−1∑
j=i+1

σ j − s,minli−1 +σi , s +
n∑

j=i+1
σ j

]

Corollary 3. If l1, ..., li−1 have been constructed such that

|l j − l j−1| ≤σ j ≤ l j + l j−1 for all 2 ≤ j < i

Then the next li must have length within the interval :

li ∈
[

max

{
|li−1 −σi |, s −

n∑
j=i+1

σ j ,σn −
n−1∑

j=i+1
σ j − s

}
,min

{
li−1 +σi , s +

n∑
j=i+1

σ j

}]
(2.7)

If σ j = 1 for all j = 1, ...,n the interval will be

li ∈ [max {|li−1 −1|, s −n + i +1,3−n + i − s} ,min {li−1 +1, s +n − i −1}] (2.8)

In order to make sure that the new cumulative sum has length li we must carefully control how ti aligns
with ui−1. Inner product 〈ti ,uk−1〉 determines how much of ti is pointing in the direction of ui−1. If ti points
towards ui−1 the resulting sum is longer, if it points away the sum is shorter.

The following lemma gives a useful condition: In order for the new cumulative vector ui = ui−1 +σi ti to
have desired length li , the inner product between ti and ui−1 must be equal to a specific value. This value is
determined by li , li−1 and σi .

Lemma 2. For ui =∑i
j=1σ j t j we have

∥uk∥ = ℓk ⇐⇒ 〈tk ,uk−1〉 =
ℓ2

k −ℓ2
k−1 −σ2

k

2σk

Proof. This proof is reproduced from Tuitman et al. [14, Proof of lemma 2]. We have

∥ uk ∥2 =∥ uk−1 +σk tk ∥2

=∥ uk−1 ∥2 + ∥σk tk ∥2 +2〈σk tk ,uk−1〉
= l 2

k−1 +σ2
k +2σk〈tk ,uk−1〉

Clearly the length of the sum of ti must eventually be s, however the construction of ti must be so that
the length of the vectors gradually attains s and not immediately, in addition the vectors created cannot be
collinear.

To achieve this, ti is written as the sum of two components:

ti = zi + yi (2.9)

where:
• z is a component in the direction of the previous sum ui−1 and contributes to the length

• y is a random component orthogonal to ui−1
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Constructing directional component zi

The vector z is constructed such that adding ti to ui−1 results in a new vector ui = ui−1+ti with squared norm
equal to a given value l 2

i .
In order for this to be achieved a scalar α must be found such that zi =αui−1 increases the length of ui−1 to
the target length li .
By lemma 2 we know the following:

∥ ui ∥= li ⇐⇒ 〈ti ,ui−1〉 =
ℓ2

i −ℓ2
i−1 −σ2

i

2σi

Hence we can use this result to find α

〈tk ,ui−1〉 = 〈αui−1 + y,ui−1〉
=α ∥ ui−1 ∥2

= l 2
i − l 2

i−1 −σ2
i

2σi

⇒α= l 2
i − l 2

i−1 −σ2
i

2σi ∥ ui−1 ∥2

Therefore:

zi = ui−1 ·
(

l 2
i − l 2

i−1 −σ2
i

2σi · ∥ui−1∥2

)
(2.10)

If σi = 1, for all i = 1, ...,n then

zi = ui−1 ·
(

l 2
i − l 2

i−1 −1

2 · ∥ui−1∥2

)
(2.11)

Constructing orthogonal component yi

yi is a random vector orthogonal to ui−1, To construct the orthogonal component yi , we begin by generating
a random vector x ∈ Rn . Then removing its projection onto ui−1 the resulting vector is orthogonal to the
current direction:

yi = x − 〈x,ui 〉
∥ui∥2 ·u1

This guarantees that yi ⊥ ui−1. To ensure that the full vector ti = zi + yi has unit length, yi must be rescaled,
hence it is multiplied by √

1−∥zi∥2

∥yi∥
This vector is necessary to ensure that the new direction of ti is not collinear with the previous vector. If
this were the case then the matrix T would have linearly dependent row, resulting in a low-rank matrix and a
correlation matrix C = T T ′ that is not positive-semi-definite. Furthermore, strong co-linearity between vec-
tors result in large pairwise inner product, hence satisfying a target average correlation constraint becomes
difficult.

Computing ti in this manner guarantees that vectors remain on the unit sphere while contributing the exact
amount required per iteration to control the total variance. Once the row vectors ti have been constructed,
the correlation matrix C = T T ′ is obtained and has the desired average correlation ρ.
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2.2.3. Implementation and results

Algorithm 2 Generation of series of admissible lengths

1: Given: σ1, . . . ,σn and s such that 0 ≤ s ≤ n
2: Generate: l1, . . . , ln

3: l1 ← 1
4: for i := 2 to n −1 do
5: li ← random in [max{s −∑n−1

j=i+1σ j ,σn −∑n−1
j=i+1σ j − s, |li−1 −σi |},min{s +∑n

j=i+1σ j , li−1 +σi }]
6: end for
7: ln ← s
8: Return: l1, . . . , ln

Algorithm 3 Generation of row vectors ti

1: Generate: t1, . . . , tn , given l1, . . . , ln

2: t1 ← random in Rn of length 1
3: u1 ← t1

4: for i := 2 to n do
5: x ← random in Rn of length 1

6: y ← x −ui−1 · 〈x,ui−1〉
∥ui−1∥2

7: z ← ui−1 ·
l 2

i − l 2
i−1 −σ2

i

2σi∥ui−1∥2

8: ti ← z +
(√

1−∥z∥2

∥y∥

)
y

9: ui ← ui−1 +σi ti

10: end for
11: Return: t1, . . . , tn

The computation times for generating correlation matrices using this implementation are summarized in
Table 2.3 below. Note that the first two rows, are only available for n = 5 and n = 10, since the lower bound
for the feasible average correlation is ρ >− 1

n−1 . It can be seen that the computation time increases with ma-
trix dimension n. This is expected, as the number of off-diagonal elements grows quadratically (specifically
n(n−1)

2 ), and the algorithm must ensure that the resulting matrix satisfies the average correlation and the pos-
itive semi-definite constraint. The target average correlation ρ does not appear to affect the computational
time.

Table 2.3: Computation time (ms) for generating a correlation matrix using the algorithm, for selected matrix sizes and average correla-
tion values ρ.

ρ Computation times for different matrix dimensions n

5 10 20 30 40 50 60 70 80 90 100

−0.25 0.0353 – – – – – – – – – –
−0.10 0.0360 0.0697 – – – – – – – – –
0.00 0.0341 0.0709 0.1969 0.2878 0.3911 0.5441 0.6866 0.9363 1.1308 1.4663 1.6152
0.20 0.0567 0.0835 0.1626 0.2737 0.3925 0.5597 0.7153 0.8739 1.2491 1.4702 1.5730
0.40 0.0347 0.0732 0.1633 0.3493 0.3932 0.5885 0.6985 0.8791 1.2223 1.4800 1.6479
0.60 0.0483 0.0775 0.1611 0.2606 0.4136 0.5925 0.7218 0.9688 1.1502 1.3776 1.7249
0.80 0.0343 0.0716 0.1693 0.2800 0.4420 0.5449 0.7058 0.9024 1.1302 2.3528 1.6491
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ρ = −0.4, corresponding to the
red surface in figure 1.1d

ρ = 0.0 corresponding to the
green surface in figure 1.1d

ρ = 0.4, corresponding to the
orange surface in figure 1.1d

ρ = 0.8, corresponding to the
brown surface in figure 1.1d

Figure 2.3: 3D scatter plots of pairwise correlations (C12,C13,C23) sampled from running the algorithm 1000 times ρ ∈ {−0.4,0.0,0.4,0.8}.
Each column shows a view from above and a rotated view of the same slice.

Figure 2.3 shows 1000 3×3 correlation matrices generated for different average correlations. The scatter
plots illustrate the structure of the feasible space. We indeed find that all of the matrices lie on a slice of the
elliptical tetrahedron as described for Figure 1.1.

From the scatter plots, it is clear that as ρ increases, the feasible region for the matrices becomes smaller.
For high average correlation the method requires vectors to align more closely, which restricts the freedom
when sampling vectors and can make it harder to maintain independence among the the rows of T . Further-
more, high average correlations corresponds to a smaller slice of the elliptical tetrahedron. As a result, this
alignment can lead to violation of positive semi-definiteness or the shrinking of the feasible region can cause
numerical instability.

2.2.4. Example
In this section a concrete example of generating a 3x3 matrix with average correlation ρ = 0.4 is presented

Step 1: Compute the target norm s. The overall norm s of the vector sum is derived from equation 2.2:

s2 = 2 ·ρ · n(n −1)

2
+n = 2 ·0.4 · 3 ·2

2
+3 = 5.4, so s = 2.324

Step 2: Compute the intermediate norms li . We begin with l1 =∥ t1 ∥= 1. The value of l2 must be chosen to
satisfy the constraints imposed by the constraints from Theorem 2. It is sampled from the interval 2.8:

l2 ∈ [max{0, s −3+2+1,3−3+2− s} ,min{1+1, s +3−2+1}]

l2 ∈ [1.324,2]

In this example, l2 = 1.988 is chosen uniformly from this interval, we set l3 = s = 2.324 by definition. We
now aim to find a set of unit vectors t1, t2, t3 such that:

ui =
i∑

j=1
t j , with ∥ui∥ = li , and ∥ti∥ = 1.

Step 3: Construct t1. We begin by sampling a random unit vector from Rn to begin the algorithm:

t1 =
 0.962

0.2196
0.161
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So u1 = t1, and by construction ∥u1∥ = l1 = 1.

Step 4: Construct t2. As we saw in the previous section, each ti is constructed as ti = z + y . Hence to con-
struct t2, we must find the orthogonal component y and deterministic component z. To find y we generate
another random unit vector from Rn :

x2 =
 0.947
−0.054
−0.317


Then this vector is projected onto u1 to remove its component in the direction of u1, ensuring orthogonality.
The projection coefficient is:

p = x2 ·u1

∥u1∥2 = 0.848

y = x2 −p ·u1 =
 0.131
−0.240
−0.453


This vector y is then normalized:

ynorm = 0.408 · y =
0.0535
−0.098
−0.185


Next, we compute the scalar α and vector z with equation 2.11:

α= l 2
2 − l 2

1 −σ2
2

2 ·σ2 · ∥u1∥2 = 1.9882 −12 −12

2 ·1 ·12 = 3.952−2

2
= 0.976

z =α ·u1 = 0.976 ·
 0.962

0.2196
0.161

=
0.939

0.214
0.157


t2 = z + ynorm =

0.939
0.214
0.157

+
0.0535
−0.098
−0.185

=
 0.993

0.117
−0.028


Step 5: Construct t3. The third vector is constructed similarly, ensuring orthogonality with the previous
vector sum u2 = t1 + t2, and ensuring that ∥u3∥ = s. A random unit vector x3 is sampled, projected orthogo-
nally to u2, and combined with a scaled u2 component (via z3) to form t3. The process mirrors that used for
t2.

x3 =
0.184

0.193
0.008

 , y3 =
−0.0893

0.146
0.945

 , z3 =
0.111

0.019
0.008

 , t3 =
0.018

0.193
0.964



T =
 0.962 0.2196 0.161

0.993 0.1166 −0.0279
0.0182 0.170 0.985


This concludes the construction. The final matrix is then given by stacking the ti vectors as rows of ti and
computing C = T T T . This guarantees a symmetric, positive semidefinite matrix with 1’s on the diagonal and
average off-diagonal correlation ρ.

C =
 1 0.9765 0.213

0.9765 1 0.0104
0.213 0.0104 1


Indeed when checking the average correlation value we do have ρ = 0.4.
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2.2.5. Properties of the matrices generated with the algorithm by Tuitman et al
This subsection examines the behaviour of the correlation matrices C generated by the algorithm described
in Section 2. The primary focus lies on the case n = 3, although higher-dimensional cases are also considered.
In particular, we study how the individual off-diagonal entries Ci j vary with different values of the average
correlation ρ. Additionally, we assess their variance and dependence structure.

The analysis proceeds as follows:

1. We simulate 1000 random correlation matrices using the Algorithms 2 and 3 with averageρ ∈ {−0.2,0.0,0.4,0.8}.

2. From each simulation, we extract and store the off-diagonal elements Ci j .

3. The marginal densities, box plots of the entries and summary statistics including means, variances, and
pairwise correlations are computed and presented in Table 2.5.

We expect that for higher values of ρ, the marginal distributions for each Ci j become increasingly re-
stricted. Furthermore, in higher dimensions, the feasible region for the correlation matrix becomes more
confined, leading to stronger structural constraints on the entries of C .

Figure 2.4 shows the marginal distributions of the off-diagonal elements C12,C13 and C23 for correlation
matrices generated using the algorithm. Several trends are evident from these plots:

• For small values of ρ such as −0.2 and 0.0, Figures 2.4a and 2.4b, the marginal distributions appear
wider. This indicates high geometric flexibility, a wide variety of Ci j values can satisfy the global average
correlation constraint. This agrees with the intuition presented for Figure 2.3, where the feasible region
of valid correlation matrices is larger for lower values of ρ.

• For larger values of ρ, see Figure 2.4c for ρ = 0.8, the marginal densities become sharply peaked and
concentrated near the upper bound of the correlation interval. This reflects the algorithm’s reduced
flexibility: as ρ increases, there are fewer admissible configurations that satisfy all constraints.

The behaviour described above is consistent with what was expected, as ρ increases, the space of ad-
missible matrices narrows and hence the diversity of correlation values reduces. This observation is further
supported by the box plots shown in Figure 2.5, where the range and variance of the correlation values visibly
shrink as ρ increases.
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(a) Marginal densities for ρ =−0.2 (b) Marginal densities for ρ = 0.0

(c) Marginal densities for ρ = 0.4 (d) Marginal densities for ρ = 0.8

Figure 2.4: Marginal densities at each position Ci j for C ∈M3×3(R) under different values of average correlation ρ ∈ {−0.2,0.0,0.4,0.8}.

The marginal densities do not appear to follow a specific distribution, this can be attributed to the geome-
try and constraints applied by this method. The matrices are generated by building T such that the constraint
s2 =∑

i , j Ci jσiσ j is satisfied. Early vectors are sampled with more freedom while later vectors are tightly con-
strained to achieve the final norm s. As a result the matrix elements are sampled under different conditions,
this construction introduces asymmetry, or n > 3. We can nevertheless test whether these matrices resemble
a uniform or shifted beta distribution. In three dimensions we can test only on C12, given that the elements
are invariant under permutations. This is because the constraints that form this region the matrices lie on
are:

det(C ) = 1+2C12C13C23 −C 2
12 −C 2

13 −C 2
23 ≥ 0

C12 +C13 +C23 = 3ρ.

These constraints are both symmetric in the variables C12,C13 and C23 which means they are invariant under
permutations, so the distribution of Ci j will be identical over the plane. The Kolmogorov-Smirnov test was
applied for the goodness-of-fit test to the uniform distribution on the empirical support, and the best-fit beta
distribution via maximum likelihood estimation. The results are presented in Table 2.4. Here we see that
uniform and beta distributions are rejected across all µ values. While the distributions in Figure 2.4 seem
to be fairly uniformly spread the KS test strongly rejects uniformity. For µ = −0.2 the beta fit is better as
it captures the left skew distribution seen in 2.4 better than uniform. However for high µ the beta p-value
gets larger, in Figure 2.4 we also no longer see a skewed behaviour but rather stronger peak near 1. Here the
uniform fits slightly better but still is rejected. Hence from these tests we do not see a distribution that fits
these margins exactly, which reflects the underlying geometric constraints of the construction.
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µ Beta Fit (α,β) KS p-value (Beta) KS p-value (Uniform)

−0.2 (0.89, 1.30) 0.0016 < 2.2×10−16

0.0 (1.51, 1.38) 5.3×10−5 1.6×10−10

0.4 (4.21, 1.79) 7.6×10−8 3.0×10−5

0.8 (16.26, 1.75) 3.0×10−8 2.9×10−3

Table 2.4: Goodness-of-fit testing of marginal distributions of C12 for different values of µ.
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(c) Box plots for ρ = 0.4
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(d) Box plots for ρ = 0.8

Figure 2.5: Box plots of the entries ci j for correlation matrices C ∈M3×3(R) generated under different target average correlations ρ.
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Table 2.5 summarizes the statistical properties of the 1000 simulations for various average correlations.
For each ρ, we report the empirical averages and variances of off-diagonal correlation elements, and the cor-
relation between these elements. This further gives us an insight on the structure of the generated matrices,
and how this varies for different values of ρ.

Table 2.5: Simulation summary per average correlation ρ

Avg ρ Expected Correlation Variance Correlation between Elements
c12 c13 c23 c12 c13 c23 C12,13 C12,23 C13,23

−0.2 -0.202 -0.187 -0.211 0.314 0.330 0.314 -0.499 -0.491 -0.510
0 0.014 -0.018 0.003 0.244 0.258 0.264 -0.487 -0.499 -0.514

0.4 0.400 0.409 0.391 0.106 0.107 0.102 -0.487 -0.499 -0.514
0.8 0.797 0.805 0.798 0.013 0.013 0.013 -0.500 -0.482 -0.518

• The first column shows the expected value of Ci j . It is clear that the algorithm successfully generates
matrices with given average correlation.

• The variance of each off diagonal elements reflects what we also saw in figures 2.4 and 2.5. For large ρ
the variance is very low, for ρ = 0.8 even as low as 0.013. At ρ =−0.2 the variance is much higher, 0.31,
which is what we saw in the plots.

• Another notable observation is that the correlation between off-diagonals is approximately the same
per value of ρ. In addition they are negative, this reflects that if one correlation increases, the other two
must decrease in order to satisfy the average correlation constraint. As mentioned earlier, C12,C13 and C23

are invariant under permutations, as result the off-diagonal elements are statistically equivalent. We
will show below why the correlation between entries of the correlation matrices in case n = 3 is −0.5.

Let C12,C23 and C13 be random variables. We have

Var(C12 +C23 +C13) = Var(C12)+Var(C13)+Var(C23)+2Cov(C12,C23)+2Cov(C12,C13)+2Cov(C13,C23)
(2.12)

As mentioned above, each off-diagonal element has the same variance and covariance due to symme-
try. Denote as r the correlation between these random variables and τ2 their variances.

Corr(Ci j ,Ckl ) = r, Var(Ci j ) = τ2, Cov(Ci j ,Ckl ) = rτ2 for all i , j ̸= (k, l ).

Then we get
Var(C12 +C23 +C13) = 3τ2 +6rτ2.

In addition we know that the sum of the off-diagonal elements is always equal to 3ρ by definition of the
algorithm, so the variance of the sum of these elements is equal to zero. Hence

3τ2 +6rτ2 = 0.

Solving this gives :

r =−1

2
.

Unlike for n =, in higher dimensions, there is no general closed form expression for the correlation be-
tween off-diagonal elements of the matrix C = T T ′. As the number of variables increases, the dependence
structure among entries becomes more complex due to the high dimensional geometry and global norm con-
straint imposed. In Table 2.6 some correlations between off-diagonal elements across 1000 simulations are
presented for n = 5. While elements that share an index often display positive empirical correlation, due to
shared dependence on a common unit vector, but this does depend on how they are aligned. Disjoint en-
tries tend to exhibit negative correlation due to the fixed average constraint. This pattern arises because a
change in a shared vector (for example t3) can simultaneously effect elements C34 and C35, as we see in the
table these have positive correlations. Whereas disjoint entries are not directly coupled but remain indirectly
constrained by the fixed average correlation. In order to achieve the target average correlation an increase in
one entry often requires a decrease in others. However these are empirical tendencies rather than strict rules.
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For example, in Table 2.6 the correlation between C12 and C13 is −0.154, illustrating that shared indices do
not always imply positive correlation.

Ci j Ckl Correlation

C12 C13 −0.154
C12 C34 −0.681
C12 C35 −0.707
C34 C35 0.399
C35 C45 0.395

Table 2.6: Selected correlations between off-diagonal entries of a 5×5 correlation matrix, illustrating both weak and strong dependencies.

Figure 2.6 shows the marginal densities for n = 5, when ρ = −0.2 and 0.4. When ρ = −0.2 the marginal
distributions seem relatively symmetric and broadly spread, consistent with the geometric interpretation
discussed above. For ρ = 0.4 the marginal distributions are more skewed and increasingly asymmetrical, this
indicated indeed that the feasible region is much more constrained for large values of ρ. Only a small section
of the feasible region satisfies the high average correlation constraint, and also adheres to the positive semi-
definite constraint.

(a) Marginal densities for C ∈M5×5(R), ρ =−0.2 (b) Marginal densities for C ∈M5×5(R), ρ = 0.4

Figure 2.6: Marginal densities at each position ci j for C ∈M5×5(R) for different values of ρ.

In higher dimensions, the feasible region we are sampling from is a hyperplane of dimension n(n−1)
2 −1.

The resulting intersection is a complex space which is difficult to visualize. However, we can investigate some
properties this space must have. While the average constraint treats all off-diagonal elements equally, the
positive semi-definite condition does not for d > 3. The behaviour seen in Table 2.6 for correlations between
off-diagonal elements can also be explained as a result of the positive semidefinite constraint. The condition
requires that all determinants of sub-matrices are non-negative. The result of this is that certain elements Ci j

appear more frequently, which means these are more tightly constrained. This is often the case for Ci j that
share an index. Disjoint pairs appear in larger sub-matrices and are hence less directly linked.

The deeper global structure can also be evaluated, whenρ is higher this means the vectors ti become more
aligned, resulting in similar directions. While this increases average correlation, this also means that eigen-
values become smaller as they become more collinear. This results in the fact that these matrices lie closer
to the boundary of the feasible region as they are close to breaking the positive semi-definite constraint. In
addition, for high-dimensional convex bodies, such as the hyperplane the matrices lie on, it is known that
most of the volume concentrates near the boundary. [1] As a result, variables introduced earlier in the con-
struction have more freedom, while those assigned later are more constrained and tend to lie closer to the
edges of the feasible region. This often corresponds to matrices where elements with higher indices have
with more extreme entries.This behaviour can be viewed empirically in Figure 2.6, where elements involving
higher indices show stronger skewness. This suggests that the marginal distributions concentrate near the
extremes not only due to the positive semi-definite and average constraint, but also as a consequence of the
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geometric properties of the high dimensional hyperplane. For smaller or negative average correlations, this
geometric effect is less pronounced. In these cases the intersection of the average-correlation hyperplane
and the space of correlation matrices defines a larger feasible region. So although the volume concentrates
near the boundary, the larger feasible region means there is also volume in the interior. This suggests an addi-
tional explanation, beyond the effect of the positive semi-definite constraint, for why marginal distributions
with lower ρ are less skewed than those for higher ρ.

2.2.6. Comparison of the results for matrices generated with and without average con-
straint by SRD parametrization

The SRD parametrization generates correlation matrices using random unit vectors. This construction guar-
antees positive semi-definiteness, but there is no further structure imposed on the distribution of the matri-
ces. As a result we see in Figure 2.1 that the marginal distributions are uniformly distributed and are uncor-
related, reflecting the independence of the sampled vectors. In contrast the approach by Tuitman et al. [14]
modifies the parametrization to impose an average correlation. This is achieved by iteratively constructing
vectors ti such that the norm of their weighted sum is fixed, indirectly enforces the desired average corre-
lation via a variance constraint. The matrices generated under this constraint have very different structural
behaviour, the matrices are located on a slice of the feasible region. The feasible region becomes highly
constrained for high values of ρ and n. The contrast in behaviour of the matrices highlights an important
trade-off. The unconstrained method allows for a fast and unbiased method to sample correlation matrices,
but lacks control over the dependency structure of the matrix. The Tuitman et al. [14] method allows for con-
trol over the average correlation of the matrices, however this comes at the cost of geometric complexity. This
motivated the exploration of alternative methods that can balance structural control with flexibility. In the
next chapter, a different approach based on partial correlation c-vine parametrisation is explored.
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Generating correlation matrices using

partial correlation parametrization

An alternative method to construct valid correlation matrices is to parametrize them in terms of partial corre-
lations, using C-vine decomposition. In this approach, the full correlation matrix is uniquely determined by a
structured sequence of partial correlations, each conditioned on a growing set of variables. This parametriza-
tion translates to a recursive construction: by sampling the partial correlations from appropriately chosen
distributions on (−1,1), and combining them via a specific recursion, the resulting matrix is a valid correla-
tion matrix. A key advantage is that the difficult positive definite constraint is replaced by a sequence of sim-
pler, local constraints that are straightforward to satisfy in simulation.This chapter introduces the method by
Lewandowski et al. [11], the algorithm and illustrative examples. We then examine an extension proposed by
Joe and Kurowicka [10], which shows how the first moment of the off-diagonal elements can be controlled by
sampling partial correlations from appropriately chosen Beta distributions. The properties and implications
of these extensions are also discussed.

Notation:
• Ci j : the correlation coefficient between random variables Xi and X j .

• Ci j ;S : the correlation between Xi and X j fixing variables indexed in S ⊂ {1, . . . ,n} \ {i , j }.

• If S =; then Ci j ;; =Ci j

The set of partial correlations used in this method can be described by the partial correlation C-vine. A
vine on n variables is a nested set of connected trees T1, ...,Tn−1 where the edges of tree Ti are the nodes of
tree Ti+1, i = 1, ...,n −2[11].

Definition 2: [16] Partial correlation Ci j ;1,...,k is defined as the Pearson (linear) correlation between residuals
from the linear regressions

Xi = ai +b′
i (X1, ..., Xk )+εi , X j = a j +b′

j (Xi , ..., Xk )+ε j

that is,
Ci j ;1,...,k = corr(εi ,ε j ).

The partial correlation ρi , j ;1...k measures the linear association between Xi and X j after removing the
linear effects of X1, ..., Xk from both variables. This partial correlation between Xi and X j with Xk , can be
calculated as follows:

Ci j ;k = Ci j −Ci kC j k√
(1−C 2

i k )(1−C 2
j k )

(3.1)
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The partial correlations between Xi and X j , with XL fixed where L ⊂ {1, ...,n} and k, i , j ∉ L can be calcu-
lated recursively:

Ci j ;kL = Ci j ;L −Ci k;LC j k;L√
(1−C 2

i k;L)(1−C 2
j k;L)

. (3.2)

The goal is to construct a valid n×n correlation matrix C = (Ci j )1≤i , j≤n . This will be achieved by parametriz-
ing this matrix using a partial correlation C-vine with the following independent parameters:

C12 C13 · · · C1n tree 1
C23;1 · · · C2n;1 tree 2

. . .
...

...
Cn−1,n;1,...,n−2 tree n −1

There is a one-to-one relationship between the set of partial correlations defined along the C-vine and
the entries of a valid correlation matrix [2]. Joe [9] introduced a recursive formula, which allows partial cor-
relations to be transformed into standard correlations in a structured manner. The algorithm for generating
these correlation matrices is based on these recursive relationships, which define how to construct a full cor-
relation matrix from a structured set of partial correlations equations (see Section 2 of Lewandowski et al. [11]
for detailed derivations).

The following recursion is built using equation 3.2 , see Joe and Kurowicka [10] section 2.1. The partial
correlations of row l given a set S = 1, ...,n can be computed as follows, with j > l for n > l :

Cl j ;1···l−2 =Cl j ;1···l−1

√
1−C 2

l−1,l ;1···l−1

√
1−C 2

l−1, j ;1···l−1 +Cl−1.l ;1···l−2Cl−1, j ;1···l−2

For 1 ≤ k < l −2,

Cl j ;1···k =Cl j ;1···k+1

√
1−C 2

k+1,l ;1···l
√

1−C 2
k+1,l ;1···l +Ck+1,l ;1···kCk+1, j ;1···k

and

Cl j =Clk;1

√
1−C 2

1l

√
1−C 2

1 j +C1l C1 j

Hence putting this all together we get:

Cℓ j =
{
ℓ−1∑
i=1

Ciℓ;1,...,i−1 Ci j ;1,...,i−1

i−1∏
k=1

√
1−C 2

kℓ;1,...,k−1

√
1−C 2

k j ;1,...,k−1 +Cℓ j ;1,...,ℓ−1

ℓ−1∏
k=1

√
1−C 2

kℓ;1,...,k−1

√
1−C 2

k j ;1,...,k−1

}

An advantage of this approach is that the partial correlations can be sampled independently from known
distributions, such as a Beta distribution transformed to the interval (−1,1). In principle any distribution
for partial correlations can be used but it is very convenient to pick a Beta distribution for this purpose. If
parameters of these beta distributions are chosen carefully then it was shown in Joe and Kurowicka [10] that
the resulting joint density of correlations in the correlation matrix is as follows:

fCn (C ) =
n−1∏
ℓ=1

n∏
j=ℓ+1

fCℓ j ;1:ℓ−1 (Cℓ j ;1:ℓ−1) ·
n−1∏
ℓ=1

n∏
j=ℓ+1

(1−C 2
ℓ j ;1:ℓ−1)−(n−ℓ−1)/2 (3.3)

If the partial correlations follow a symmetric beta distribution on (-1,1) with the correct parameters we achieve
the LKJ-distribution for elements of C . This specific beta distribution Z = 2W −1 has support on (−1,1), with
W ∼ Beta(0,1) and parameter αk =α+ n−k−1

2 , where k represents a tree in a C-vine. Then the resulting corre-
lation matrix follows the LKJ-distribution where the density is proportional to

det(C )α−1 (3.4)

Furthermore, the marginal distributions follow a known distribution, namely symmetric Beta on (-1,1) with
parameter α− 1+ n

2 . Hence, in the case where α = 1, which by 3.4 corresponds to a uniform distribution
over the space of correlation matrices, has marginal distributions distributed as Beta( n

2 , n
2 ). This allows for

straightforward computation of quantities such as the expectation and variance of the matrix entries, which
is not always the case if we sample partial correlations from other distributions.
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Expectation of matrix elements
If W ∼ Beta(a,b) on (0,1), then the transformation Z = 2W −1 maps the support to (−1,1) and the expectation
and variance are:

E(Ci j ) = 2a

a +b
−1

Var(Ci j ) = 4ab

(a +b)2(a +b +1)
(3.5)

So if indeed have that the correlation matrices are uniformly distributed, α = 1, then a = b = n
2 and we

find:

E(Ci j ) = 0,Var(Ci j ) = 1

n +1
.

However, in the case that the matrices are not uniformly distributed but still LKJ, the margins are Beta(α−
1+ n

2 ,α−1+ n
2 ) which gives:

E(Ci j ) = 0, Var(Ci j ) = 1

2α+n −1
. (3.6)

If the distributions of partial correlations are chosen to have different distributions than the case of LKJ dis-
tribution then the marginal distributions are not known. However, we can still compute the expectations of
Ci j recursively.

Since partial correlations in C-vine parametrization are independent and we assume that partial corre-
lations in the same tree have the same distribution, the following observation can be made. In tree 1 all
correlations are independent. Due to the recursive formula there are always only two variables from one tree
level used in the computation of give correlation. W denote them as Xi =Ciℓ;1...i−1 and Yi =Ci j ;1...i−1, where
ℓ is the tree level and j > ℓ is suppressed.
Then,

Cℓ j = Yℓ
ℓ−1∏
k=1

√
1−X 2

k

√
1−Y 2

k +
ℓ−1∑
i=1

Xi Yi

i−1∏
k=1

√
1−X 2

k

√
1−Y 2

k

Let E(Xi ) =µi , E(X 2
i ) = νi E((1−Xi )

1
2 ) = γi , E(Xi (1−X 2

i )
1
2 ) = ηi , and similarly for Yi .

Then the expectation of Cℓ j for j > ℓ is:

E(Cℓ j ) =µℓ
ℓ−1∏
k=1

γ2
k +

ℓ−1∑
i=1

µ2
i

i−1∏
k=1

γ2
k

This can also be written as: (starting with E(C12) =µ1)

E(Cℓ j ) = E(Cℓ−1, j )+ ([µ2
ℓ−1 −µℓ−1]+µℓγ2

ℓ−1)
ℓ−2∏
i=1

γ2
i ,ℓ≥ 2, (3.7)

The second moment and variances of the margins can also be computed, but will not further be discussed in
this paper. To see this computation see section 3.3 in the paper by Joe and Kurowicka [10].

Overview of the method
1. Sample partial correlations Ci j ;1,...,i−1 for 1 ≤ i < j ≤ n from a distribution of choice. For the LKJ-

distribution over matrices, choose symmetric Beta with parameter αl =α+ n−k−1
2 .

2. Use the recursive formula to compute Ci j from the partial correlations.

3. Assemble the matrix C = (Ci j )

Example of generating a 3×3 Correlation Matrix
We begin by constructing a 3×3 correlation matrix using the partial correlation C-vine method, we will use
beta distributions for the partial correlations. In this case, we require two levels of partial correlations:

C12 C13 tree 1
C23;1 tree 2

To transform C23;1 into C23 we can rewrite equation 3.1 to get:

C23 =C23;1

√
1−C 2

12

√
1−C 2

13 +C12C13
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Step 1: Determine Beta parameters per level
Here we will be using α= 1

Tree k a = b =α+ n−k−1
2

1 1.5
2 1

Step 2: Determine the partial correlations
The following partial correlations were sampled from the corresponding Beta distributions:

C12 C13 C23;1

0.786 -0.166 0.676

Step 3: Computing correlation matrix entries
Using the recursive formulas for the C-vine structure, we compute the remaining off-diagonal entry:

C23 =C23;1

√
(1−C 2

12)(1−C 2
13)+C12C13

= 0.676 ·
√

(1−0.7862)(1− (−0.166)2)+0.786 · (−0.166)

= 0.676 ·p0.383 ·0.972−0.131

= 0.676 ·0.610−0.131 = 0.282

Final 3×3 correlation matrix

C =
 1 0.786 −0.166

0.786 1 0.282
−0.166 0.282 1



Figure 3.1 shows 1000 randomly generated 3× 3 correlation matrices with α = 1, sampled from the LKJ
distribution using the partial correlation C-vine method. Compared to Figure 1.1 from the introduction, it is
evident that the sampled points are uniformly distributed within the feasible region. This confirms that,when
α= 1 and the Beta distributions are chosen according to the LKJ-parametrization, the partial correlation ap-
proach yields samples that are uniformly distributed over the space of valid correlation matrices. Further-
more, the marginal distributions illustrate that the off-diagonal entries are indeed distributed as Beta( n

2 , n
2 ),

consistent with the properties of the LKJ distribution.
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(a) 1000 randomly generated correlation matrices (b) 1000 randomly generated correlation matrices

(c) Beta( 3
2 , 3

2 ) distributed marginals

Figure 3.1: 1000 correlation matrices generated by the LKJ-method, α= 1

Extending to a 4×4 Correlation Matrix
To demonstrate how this nesting works we can extend the 3x3 example we did to four variables, we introduce
additional partial correlations at tree level 1, 2, and 3:

C12 C13 C14 tree 1
C23;1 C24;1 tree 2

C34;12 tree 3

Step 1: Determine Beta parameters per level and partial correlations
We continue using the same values from example 3,and we sample C14,C24;1 and C34;12 from the beta distri-
bution with parameters shown in the table below. Again, α= 1.

Tree k a = b =α+ n−k−1
2

1 2.0
2 1.5
3 1.0

The complete set of sampled partial correlations is:
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C12 C13 C14 C23;1 C24;1 C34;12

0.786 -0.166 -0.312 0.676 0.084 0.468

Step 2: Computing correlation matrix entries
We now compute the remaining off-diagonal entries using the recursive formulas:

Compute C24:

C24 =C24;1

√
(1−C 2

12)(1−C 2
14)+C12C14

= 0.084 ·
√

(1−0.7862)(1− (−0.312)2)+0.786 · (−0.312)

= 0.084 ·p0.382 ·0.903−0.245

= 0.084 ·0.587−0.245 = 0.049−0.245 =−0.196

Compute C34:

C34 =C34;12

√
(1−C 2

23;1)(1−C 2
24;1)(1−C 2

13)(1−C 2
14)

+C23;1C24;1

√
(1−C 2

13)(1−C 2
14)+C13C14

= 0.468 ·0.688+0.0568 ·p0.878+0.052

= 0.322+0.053+0.052 = 0.427

Final 4×4 correlation matrix

C =


1 0.786 −0.166 −0.312

0.786 1 0.282 −0.196
−0.166 0.282 1 0.427
−0.312 −0.196 0.427 1


3.1. Properties of the C-vine Partial correlation parametrization
In this section, we explore the statistical properties of the correlation matrices generated by this method. We
begin by examining the expectation of the off-diagonal elements. Following this we explore how the choice
of the LKJ- parameter α influences the distribution of samples over the space of valid correlation matrices.
We then consider the case outside LKJ distribution, hence when we sample partial correlations from non-
symmetric Beta distributions.

3.1.1. Scatter plots and marginal distributions of sampled correlation matrices with LKJ
distribution

To illustrate how the LKJ parameter α influences the structure of sampled correlation matrices, we visualize
the distribution of the off-diagonal elements in three-dimensions. We sample 1000 matrices from the C-vine
parametrization method using Symmetric Beta distributions such that the matrices have LKJ distribution.

• In Figure 3.2a , when α= 0.1, the samples are concentrated near the boundaries of the elliptical tetra-
hedron. This reflects that fact that matrices with strong positive or negative correlations are favoured,
hence clustering near the edges of the feasible region.

• Whenα= 2 , shown in Figure 3.2b a slight shift is seen, while the matrices are still spread out, they begin
to cluster more toward the origin. Hence these matrices tend to have slightly weaker correlations.

• This pattern continues in the following plots, clearly in Figure 3.2c, where α = 10, the matrices are
concentrated in the middle and the distribution strongly favours weak correlations. Finally, in Figure
3.2d where α= 50 the matrices are so concentrated in the middle that most of the generated matrices
are close to the identity matrix.

The parameterα serves to control the correlation strength. Lowα< 1 encourages strong dependence and
for α> 1 the matrices cluster around the identity matrix.
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(a) α= 0.1 (b) α= 2

(c) α= 10 (d) α= 50

Figure 3.2: 3D scatter plots of pairwise correlations (C12,C13,C23) sampled from running the LKJ-algorithm, 1000 times. Each subplot
shows samples generated with a different Beta parameter α.

As with the previous method, we can again examine the marginal distributions of the correlations gener-
ated. The marginal densities agree with the patterns observed in Figures 3.2.

• When α < 1 , Figure 3.3a, the distributions exhibit increased mass near the extremes, as expected for
such beta distributions, reflecting a higher likelihood of strong positive or negative correlations. This
behaviour is consistent with Figure 3.3a, where samples clustered around the boundary of the elliptical
tetrahedron.

• For larger values of α, Figures 3.3c and 3.3d, the densities concentrate around zero, indicating that the
matrices are close to the identity matrix. Additionally, from equation 3.5 that the variance decreases
as α increases, which can also be seen in Figures 3.2 and 3.3, which can be expected looking at the
variance equation in 3.6.
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(a) Marginal distributions for α= 0.1 (b) Marginal distributions for α= 2

(c) Marginal distributions for α= 10 (d) Marginal distributions for α= 50

Figure 3.3: Marginal distributions at each position Ci j for 1000 matrices C ∈M3×3(R) for different α.

Next we show an example of the method which does not conform to the LKJ distribution.

3.1.2. Example using asymmetric Beta partial correlations
Let us simulate partial correlations on C-vine which are asymmetric Beta distributions. The following corre-
lations and partial correlations are sampled independently from Beta(2,5). We get:

C12 =−0.412

C13 =−0.538

C23;1 = 0.105

Using the same recursive formula as Example 3 we find C23 = 0.302. Hence the resulting correlation matrix is:

C =
 1 −0.412 −0.538
−0.412 1 0.302
−0.538 0.302 1

 .

The resulting matrix C is symmetric, positive definite, and lies within the feasible region of valid correla-
tion matrices, however this correlation matrix does not follow the LKJ-distribution. The recursion guaran-
tees validity, but the distribution over the space of correlation matrices depends on the distributions used
for the partial correlations. Furthermore the marginals are no longer identically. This can be seen in the
marginal distributions in Figure 3.4. This can be seen in Table 3.1, this shows the empirical quantiles at
5%,25%,75% and 95%, so that we can compare the spread per Ci j . While the difference is subtle, it is clear
that since C12 and C13 are directly derived from the sampled partials, they exhibit symmetric marginal be-
haviour. However, C23 is computed via the recursive formula, as a result the distribution is different. Particu-
larly in the 5th and 95th percentiles we see a difference. Hence the asymmetry in the marginal distributions
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Figure 3.4: Marginal distribution of off-diagonal elements for correlation matrices sampled by partial correlations from Beta(2,5)

and the variation between them show that sampling from non-symmetric beta distributions breaks the ex-
changeability and symmetry observed when using LKJ-distribution parameters.

Quantile C12 C13 C23

5% −0.748 −0.761 −0.515
25% −0.375 −0.344 −0.201
50% −0.020 −0.007 0.000
75% 0.333 0.325 0.255
95% 0.712 0.698 0.524

Table 3.1: Empirical quantiles of marginal distributions for C12, C13, and C23 from sampled correlation matrices.

The method of sampling partial correlations and using recursive formula still works in this case but it is
very difficult to derive information about the margins beyond the level 1 correlations. For example, C23 is
distributed as follows, derived from equation 3: [10]:

fC23 (c23) =
∫ 1

−1

∫ 1

−1
(1− c2

12)−
1
2 (1− c2

13)−
1
2 fC23;1

( c23 − c12c13√
1− c2

12

√
1− c2

13

)
fC12 (c12) fC13 (c13)dc12 dc13. (3.8)

However this analytical approach to finding fC23 is intractable in closed form. Instead, statistical prop-
erties of the margins are best obtained through recursive formulas, such as the expectation formula 3.7 and
expressions for the second moment and variances as detailed in section 3.3 of Joe and Kurowicka [10].

3.1.3. Permutation-based symmetrization of correlation matrix entries
Above we saw that the algorithm causes complicated marginal distributions for the correlations generated
using the recursive formula with partials sampled without LKJ parameters. If one wants that all correlations
in the matrix have the same marginal distribution then the rows and columns of matrix C can be permuted.
In that case the distribution of correlations in the correlation matrices in three dimensions 3.3 becomes:

fC (c) = fC12 (c12) fC13 (c13) fC23;1 (c23;1)(1− c2
12)

1
2 (1− c13)

1
2
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and the marginal density of each correlation is:

fC (c) =
[

fC12 (c)+ fC13 (c)+ fC23 (c)
]

3
.

If we now again calculate the percentiles for the same example as Table 3.1 (matrices generated using Beta(2,5)
partials), we find that indeed the elements Ci j are now distributed the much more similarly.

Quantile C12 C13 C23

5% −0.687 −0.686 −0.689
25% −0.291 −0.323 −0.314
50% −0.004 −0.011 −0.015
75% 0.289 0.281 0.281
95% 0.682 0.678 0.650

Table 3.2: Empirical quantiles of marginal distributions for permuted C12, C13, and C23 with partial correlations sampled from Beta(2,5)

For these matrices the expectation is: Let Cπ be the correlation matrix after a random permutation π ,
then the expectation for any off-diagonal element Cπ

i j is:

E
[
Cπ

i j

]= 2

n(n −1)

n−1∑
ℓ=1

(n −ℓ)E
[
Cℓ,ℓ+1

]
(3.9)

3.2. Fixing the expectation of each correlation
In Chapter 2, we investigated a method that allows to generate matrices with fixed average correlation. In this
section, we extend our analysis of the method based on partial correlations by examining how we can control
the expectation of marginal distributions of correlations in correlation matrix, which also allows to control
the expectation of average correlation. We start with fixing the expectation of each off-diagonal element of
the correlation matrix. Then the properties of matrices generated with this approach are investigated.

Using recursion an expression can be found that holds if all expectations of correlations in the matrix
are equal (to µ1)[10]. We observe that the following relationship is satisfied between expectations of partial
correlations in different levels in this case.

µℓ =µℓ−1

[
1−µℓ−1

γ2
ℓ−1

]
,ℓ ∈ 3,4, ....

Naturally the following condition has to be satisfied: −1 <µℓ−1

[
1−µℓ−1

γ2
ℓ−1

]
< 1.

So if we have that Ciℓ;1...i−1 ∼ Bet a(a,bℓ) then µa,bℓ = a−bℓ
a+bℓ

and γa,bℓ = E[(1− X 2
ℓ

)
1
2 ]. When b > a then

µa,b < 0 and we have the following proposition from Joe and Kurowicka [10].
Proposition 1. Let X ∼ Beta(a,b) on (−1,1) with a > 0,b > 0. For all a ≤ b,

(1−µa,b)

γ2
a,b

≥ 1,

where µa,b = b−a
a+b and

γa,b = E[(1−X )1/2] = 2B(a +0.5,b +0.5)

B(a,b)
.

What this reveals is that if the initial partial correlations are sampled from a Beta distribution with a ≤ b (i.e.,

with negative mean), the factor
1−µa,b

γ2
a,b

is always at least 1, and typically larger. As the recursion proceeds, each

successive expectation µℓ can become more negative in magnitude. For sufficiently large ℓ, it is possible for
the recursion to reach or exceed the lower boundary, i.e., µa,bℓ ≤−1, which is not admissible.

In other words, in these cases it is impossible to find parameters for the partial correlations such that all
entries in the resulting correlation matrix have the same expectation, when that target expectation is suffi-
ciently negative. So, the recursive structure imposes a geometric constraint on the range of achievable expec-
tations as the dimension increases.
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To ensure that the expected partial correlations remain consistent across levels of the C-vine, the algo-
rithm adaptively constructs a sequence of Beta distributions with parameters (a,bk ) for each tree level k. The
partial correlations are drawn from a transformed Beta distribution on (−1,1) via

Wk ∼ 2Z −1, Zk ∼ Beta(a,bk ),

which yields an expected value

µk := E[Zk ] = 2a

a +bk
−1.

We want to ensure that this expected value remains approximately constant across tree levels, i.e.,

µ1 ≈µ2 ≈ ·· · ≈µk ,

In particular, when setting two consecutive means equal to each other we get the following equation:

µ2
k −µk +µk+1 ·γ2

k ≈ 0,

where γk = E[(1−Wk )1/2] can be computed using properties of the Beta distribution.
To find a value of bk+1 that satisfies this equation we hence need to minimize the following function:

g (b) :=
(
µ2

k −µk +
(

2a

a +b
−1

)
·γ2

k

)2

,

The algorithm minimizes this numerically. This is accomplished using R’s nlm function:

outsolve = nlm(giter, bvec[i])
bvec[i+1] = outsolve$estimate

Here, giter implements the function g (b) defined above, and nlm finds the value of b that minimizes it,
starting from an initial guess bk .

The result is a sequence b1,b2, . . . ,bk such that each Beta distribution Beta(a,bk ) produces partial corre-
lations that ensure the expectation of the resulting random correlations is fixed. Note that different values of
parameter a can be chosen.

This method can also be applied to partial correlations sampled from different distributions. In order to
do this we just need to replace the equation in 3.2 with the appropriate expression for the expectation. A
requirement however, is that the moments have closed form expressions.

The recursion used to compute the appropriate Beta parameters was implemented by Joe and Kurowicka
[10] and we applied this to generate correlation matrices with fixed expectations.

3.2.1. Empirical properties of correlation matrices fixed expectations
In this subsection, we investigate the behaviour of correlation matrices generated when fixing the expecta-
tion of off-diagonals. Figures 3.5 and 3.6 show 3D scatter plots and marginal histograms for 1000 randomly
generated (with permuted elements) 3× 3matrices with fixed expectation, µ ∈ {−0.4,0.0,0.4,0.8}. The Beta
parameters (a = 1, b1 and b2) we use to fix the expectation of the off-diagonals are given in the captions of
Figures 3.5.

• At µ= 0.0, the scatter plot 3.5b shows that the cloud of points fills the elliptical tetrahedron evenly. This
is consistent with the fact that to achieve a partial correlation 0.0 we sample partial correlations from
Beta(1,1). Therefore the partial correlations are symmetric around zero leading to approximately uni-
form coverage of the feasible region. The histogram 3.6b is flat , consistent with the uniform behaviour
of the scatter plots.

• For µ = −0.4 the partial correlations are sampled from Beta distributions b1 = 2.333 and b2 = 34.764.
The points in the scatter plot are found in the lower region of the feasible space. The shape observed in
3.6a is skewed but due to low a and b1 we still see variation in the values.

• For µ= 0.4 we have that b1 = 0.429 and b2 = 0.243. We see in Figure 3.5c that the points begin to cluster
toward the upper region of the elliptical tetrahedron, consistent with the positive target expectation.
Due to the small values of b1 and b2 we see a strong skew in the histograms in Figure 3.6a, so while
choosing a small a allows for variability, when µ becomes bigger the b values dominate to cause pro-
nounced skewed distributions.
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• When µ = 0.8 b1 = 0.111 and b2 = 0.001. The points cluster in the top corner to achieve the target
expectation, Figure 3.6d show highly skewed reflecting the extremely concentrated partial correlations.
We see some matrices distributed along narrow ridges, this is due to the small value for a, as smaller
values can still be attained.

The difference in the shape distribution in the scatter plots 3.5 for low µ and high µ can be attributed to
the geometry of the space of positive semidefinite matrices. For high correlations the region narrows and
collapses to a sharp corner. While for lower correlations the shape exhibits a curved surface and no corner,
seen in Figure 1.1

(a) 3D plot of samples µ=−0.4, a = 1,b1 = 2.333,b2 = 34.764 (b) 3D plot of samples µ= 0.0, a = 1,b1 = 1,b2 = 1

(c) 3D plot of samples µ= 0.4, a = 1, b1 = 0.429,b2 = 0.243 (d) 3D plot of samples µ= 0.8, a = 1,b1 = 0.111,b2 = 0.001

Figure 3.5: 3D scatter plots of sampled 3×3 permuted correlation matrices for different target expectations, a = 1.
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(a) Marginal histograms µ=−0.4, a = 1,b1 = 2.333,b2 = 34.764 (b) Marginal histograms µ= 0.0, a = 1,b1 = 1,b2 = 1

(c) Marginal histograms µ= 0.4, a = 1, b1 = 0.429,b2 = 0.243 (d) Marginal histograms µ= 0.8, a = 1,b1 = 0.111,b2 = 0.001

Figure 3.6: Marginal histograms of off-diagonal entries for sampled 3×3 permuted correlation matrices across different target expecta-
tions, a = 1.

So we have seen that if a is small (and b adjusted to match the target expectation), the variance increases,
resulting in a wider spread of partial correlations. The greater variability hence leads to a wider distribution
of the final correlation matrix entries.
Now we will look at scatter plots and marginal distributions where we keepµ the same but increase a. what we
expect is when a increases, the Beta distribution becomes more concentrated around its mean and produces
correlation matrices that cluster more tightly around the target expectation. In Figures 3.7 and 3.8 we take
µ= 0.4 and examine the behaviour for a ∈ {0.1,1,2,10} .

• When a = 0.1, the Beta distribution used is extremely U-shaped, with both a and bk near zero. This
causes most partial correlations to be sampled close to ±1, resulting in full correlation matrices whose
entries are pushed toward the boundaries of the feasible space. Ridges and corner clustering,can be
seen in Figure 3.7a , and the marginal distributions of the correlation entries are distinctly bimodal,
with peaks at −1 and +1.

• When a = 1, we have Beta(1,)the Beta distribution is skewed toward 1. This biases the partial correla-
tions toward high positive values but allows for greater variability. The resulting correlation matrices
are more spread out, with marginals that are peaked near +1 but no longer strictly bimodal.

• Finally, for a = 10, the Beta distribution becomes concentrated around the target mean. The partial
correlations in this case are tightly centred near 0.4, and the resulting full correlation matrices form
a concentrated cluster around the matrix for which all off-diagonals are equal to 0.4. The marginals
become smooth, bell-shaped distributions, and the 3D scatter plot no longer exhibits geometric ridges
or boundary effects.
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(a) 3D plot of samples µ= 0.4, a = 0.1, b1 = 0.04,b2 = 0.0014
(b) 3D plot of samples µ= 0.4, a = 1, b1 = 0.429,b2 = 0.243

(c) 3D plot of samples µ= 0.4 a = 2, b1 = 0.857, b2 = 0.802 (d) 3D plot of samples µ= 0.4, a = 10, b1 = 4.286, b2 = 5.261

Figure 3.7: 3D scatter plots of sampled 3×3 permuted correlation matrices with expectation 0.4 for different values of parameter a.
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(a) Marginal histograms µ= 0.4, a = 0.1, b1 = 0.04,b2 = 0.001 (b) Marginal histograms a = 1, b1 = 0.429,b2 = 0.243

(c) Marginal histograms a = 2, b1 = 0.857, b2 = 0.802 (d) Marginal histograms a = 10, b1 = 4.286, b2 = 5.261

Figure 3.8: Marginal histograms of off-diagonal entries for sampled 3×3 permuted correlation matrices with expectation 0.4 for different
values of parameter a.

3.2.2. Distribution of average correlation
Now we investigate the distribution of average correlation in the correlation matrix. Figure 3.9 shows the
histograms of the average correlation computed from 1000 simulations. Across samples, the expected value
of off-diagonal elements is fixed, µ= 0.4, and a is varied across {0.1,1,2,10} Let µ̂ denote the sample average
correlation and µ still the target correlation. Each subplot contains red dotted line, indicating the sample
average correlation µ̂ and a blue line indicating the target correlation, µ.

• For a = 0.1 we have that µ̂= 0.334. The distribution is extremely wide and U-shaped. This reflects the
distribution of the margins, which are also concentrated at the boundaries (Figure 3.8a) . Therefore, in
this case, the average correlation is lower than the target because the distribution is very broad.

• When a = 1, µ̂ = 0.387364. The histogram in Figure 3.9b is now more concentrated around the target
average correlation. The marginals are beginning to concentrate around the target expectation, but
variance still causes some mismatch between µ and µ̂.

• For a = 2 and a = 10, the sampled average correlation and target essentially coincide, and the distribu-
tion of the averages becomes sharply peaked. Which makes sense as this parallels the behaviour of the
marginal histograms in Figure 3.8.
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(a) a = 0.1 µ̂= 0.3336023 (b) a = 1 µ̂= 0.387364

(c) a = 2 µ̂= 0.3967276 (d) a = 10 , µ̂= 0.4034645

Figure 3.9: Distribution of the average matrix correlation for a = {0.1,1,2,10}

The expected value of the average correlation (µ̂ ) for n = 3 is given by:

E[C̄ ] = 2

3
µ1 + 1

3

(
µ2 ·γ2 +µ2

1

)
.

As we saw in the Figures 3.9, the algorithm sets bk based on µ and a to be such that the expectation of
the marginals are a fixed, but for low a the variance is high. As a result we saw that the average correlation
will not necessarily be the value that we fixed the expectations to. The entries are not symmetric, since C23 is
constructed as a non-linear function of the partial correlations. With the permutations, each Ci j is identically
distributed with probability 2

3 of being distributed as the first level correlation and 1
3 second level. The non-

linear term µ2 ·γ2 +µ2
1 is generally smaller than µ1 when a is small. This has an influence on the expectation

of the off-diagonals together. As a becomes bigger the beta distribution becomes increasingly concentrated.
The variance becomes smaller and the partials will be more concentrated around the expectation. As a result

of this µ2 ≈µ1 and γ≈
√

1−µ2
1 and so

µ2γ
2 +µ2

1 →µ1

this leads to E[C̄ ] →µ1.The matrix becomes nearly deterministic, the matrix will concentrate around the ma-
trix where all the off-diagonals are equal to µ1.

In this chapter, we explored the construction of correlation matrices through the partial correlation C-vine
parametrization. By leveraging the recursive structure of the C-vine, we showed how valid correlation ma-
trices can be efficiently generated by sampling independent partial correlations from suitable distributions.
We demonstrated how the marginals behave for both symmetric and asymmetric choices of the partial cor-
relation distributions. Furthermore, we discussed recent extensions that allow for direct control over the
expectation of the off-diagonal elements. Together, these results illustrate the power and adaptability of the
C-vine partial correlation framework for both theoretical analysis and practical modelling of random corre-
lation matrices.



4
Summary and discussion

The goal of this thesis was to compare two structured methods for generating correlation matrices, one based
on SRD parametrization with global constraints, and one based on partial correlations C-vine parametriza-
tion. The aim was to understand how each method controls global properties, marginal structure. We ex-
amined both unconstrained and extended variants, including the approach by Tuitman et al. [14], which
imposes a fixed average correlation through geometric constraints, and the extension by Joe and Kurowicka
[10], which samples partial correlations from asymmetric beta distributions to fix the expected value of off-
diagonal elements. Our comparison focused on theoretical construction, statistical behaviour and practical
implementation, highlighting the trade-off between global control and local flexibility.

4.1. Theoretical foundations and constraints
Each method defines a different parametrization of the space of valid correlation matrices and imposes dif-
ferent types of constraints- ranging from strict geometric conditions to recursive probabilistic structure.

Chapter 2 begins by looking at the SRD parametrization of the correlation matrix, C = T T ′, where T is a
matrix whose rows ti are independently sampled unit vectors. This method guarantees positive definiteness
by construction and explores the space of correlation matrices uniformly given that no additional constraints
are applied. The extension by Tuitman et al. [14] adds a global geometric constraint, the weighted sum of the
vectors ti must lie on a sphere of fixed radius, determined by the target average correlation ρ. This constraint
forces later vectors in the sequence to lie in a shrinking feasible region resulting in increasingly restricted
sampling space. The method guarantees that each matrix satisfies the average correlation exactly, but this
control comes at the cost of flexibility, particularly in higher dimensions or for extreme target values of ρ.

The C-vine method takes a fundamentally different approach, using a recursive construction based on
partial correlations Ci j ;1,...,k . These parameters are algebraically independent, any set of values (−1,1) yields a
valid, positive definite matrix through the recursive formula introduced in Joe [8]. Unlike the SRD parametriza-
tion, we do have some statistical control over the shape of the distribution of the matrices through the dis-
tribution of partial correlations chosen. Therefore although there is no explicit global constraint, like in the
Tuitman et al. [14] method, the C-vine does allow for parametric control over the the matrices through the
selection of distribution of the partial correlations.

An extension of the C-vine method allows the user to fix the expected value of each off-diagonal entry by
choosing asymmetric Beta distributions for the partial correlations, with specific parameters. The algebraic
independence of the parameters remains intact, but the distributions are no longer freely chosen: they must
be coordinated to achieve the desired statistical behaviour. Unlike Tuitman et al. [14] method, this does not
impose a hard constraint on the average correlation but rather concentrates the distribution around a chosen
target mean µ. This means that while in Tuitman et al. [14] we find matrices that lie exactly on the plane of
the desired average correlation, in this case we find matrices that concentrate around around the target value
in expectation.

The Tuitman method enforces strict global control at the cost of parameter dependence and constrained
sampling. The C-vine approach offers recursive, local flexibility and positive definiteness by design, with
control over distributional behaviour through the choice of distribution for partial correlations.
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4.2. Statistical properties of the matrices
The statistical properties provide an insight into how each method explores the space of valid correlation
matrices and how constraints affect concentration and structure.

The C-vine method we can select specific beta distributions such that we achieve certain properties. For
example if we choose Beta distribution with parameter a = b =α+ n−k−1

2 we achieve the LKJ distribution, for
which the matrices generated are distributed proportional to det(C)α−1. In addition, we can choose partial
correlations sampled from asymmetric beta distributions with specifically chosen beta distributions such
that the expectations of off-diagonals are fixed.

We begin by comparing unconstrained SRD parametrization and the C-vine method with LKJ parameters
with α= 1. In both cases the matrices are sampled uniformly from the space of valid correlation matrices. In
the n = 3 case, this behaviour was confirmed in Figures 2.1 and 3.1 for both methods.

When we add the constraints from the Tuitman et al. [14] method, the matrix is forced to lie on a hyper-
plane of a constant average correlation. This corresponds to a slices through the full feasible region as seen in
Figures 2.3. In contrast, the C-vine method fixes expectations by choosing specific beta distributions for par-
tial correlations. By adjusting the parameter a, the distribution can be concentrated around matrices whose
off-diagonal entries have expectation approximately equal to the target value µ, as illustrated in Figure 3.8.

The marginal distributions also display different properties. The unconstrained C = T T ′ method show
uniformly distributed marginals, Figure 2.1c, which make sense given that the vectors ti are sampled uni-
formly. On the other hand, the C-vine parametrization with LKJ(1) distribution sample matrices uniformly
from the feasible region but have Beta( n

2 , n
2 ) marginals, Figure 3.1c. Hence these two situations show similar

distribution withtin the space of valid correlation matrices but have different underlying marginal distribu-
tions.

In the Tuitman et al. [14] method, imposing a fixed average ρ compresses the marginal distributions. The
distribution remains unimodal but it more tightly centred aroundρ. In contrast, the C-vine method with fixed
expectationµ show Beta distributed marginals, while these marginals do not have the same beta distributions
as the partials, they are similar.

Hence each method navigates the geometry of the space differently:

• Unconstrained methods: full-volume sampling

• Tuitman: plane, fixed constant average

• LKJ: tunable concentration near identity

• C-vine with fixed µ: tunable concentration near matrix with off-diagonals µ

4.3. Numerical Stability, Implementation, and Control
Beyond the mathematical properties there are important differences in terms of numerical stability, ease of
implementation and level of control they offer over the matrices.

Both methods are computationally efficient, and scale well with matrix dimension n. This can be seen in
Table 2.3 for the Tuitman et al method and in Table 1 of chapter 4 in Lewandowski et al. [11] for the C-vine
parametrization.

The Tuitman et al extension has progressively tighter geometric constraints, which reduces numerical ro-
bustness when the target correlation ρ is high or the dimension is large. In such cases, the feasible region
for the final vectors becomes small, increasing sensitivity to floating-point precision. The C-vine method,
in contrast, constructs the matrix via recursive evaluation of closed-form expressions involving previously
sampled partial correlations. This construction is numerically stable and does not suffer from accumula-
tion of rounding error, like the Tuitman et al algorithm. When asymmetric Beta distributions are used (to
fix expected correlations), extreme values of the partial correlations can occasionally lead to near-singular
matrices, leading to reduced numerical stability.

The unconstrained C = T T ′ parametrization is conceptually simple and easy to implement. The Tuit-
man et al extension requires more caution to implement, as mentioned small numerical inconsistencies can
arise during the construction hence numerical safeguards must be considered, for example, to ensure values
within square roots were not negative. The C-vine method has a more complex recursive structure, but once
implemented, offers great flexibility. Partial correlations can be sampled independently, and the method
naturally supports sampling from a wide range of distributions. When targeting specific expectations, the
required parameters for the Beta distribution must be approximated numerically.
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The primary trade-off between the methods is control versus flexibility. The Tuitman et al method offers
strict control over the average correlation. Every matrix lies exactly on the hyperplane defined by the target
ρ. However, this control introduces dependence between parameters and reduces sampling flexibility. In
contrast, the C-vine method offers full local freedom in selecting the partial correlations. When using specific
distribution families, such as symmetric Beta distributions with LKJ-parameters, one can control the overall
structure of the generated matrices. With the extension, one can approximate a target average correlation
across samples, but not enforce it explicitly per matrix. This results in greater distributional flexibility.

This comparative study clarifies how two approaches relate in terms of structure, sampling behaviour,
and practical constraints. By analysing their theoretical properties and empirical output, we demonstrate
that while the methods can yield similar distributions in the uniform case, their constrained versions lead to
fundamentally different geometries and marginal behaviours. The Tuitman et al method is ideal when one
needs to enforce a specific global structure, such as in stress testing or simulations where a fixed average
correlation is required. The C-vine method is preferable when one needs statistical control over variability
and marginal behaviour, such as in Bayesian modelling.

4.4. Discussion
While this thesis provides a comparative analysis of two structured correlation matrix generation methods,
several theoretical and practical questions remain open.

One limitation of this study is that the analysis of Tuitman et al. [14] was conducted under the assump-
tion of equal weighting, while the method was presented with these weights. This assumption simplifies the
theoretical analysis and visualization. Extending the current analysis to incorporate this specific weights and
investigating what the geometric implications are of having these could make this more realistic.

Furthermore, while the analysis of the C-vine partial correlation parametrization in this thesis was re-
stricted to n = 3, the SRD parametrization was also explored for higher dimensions. A next step would be to
look at higher dimensions in the C-vine setting and look at the marginal distributions, however due to time
constraints, this was not presented in this thesis.

In hindsight these methods differ in aims. The Tuitman approach emphasizes hard constraints and ge-
ometric feasibility, making it well suited to stress testing and worst-case analysis. The C-vine method, by
contrast aligns with a Bayesian goal, where variability and tunable prior is important. Hence the appropriate
method depends on whether the user wants control over what is generated or flexibility in what is likely. This
makes these methods fundamentally different.

One potential extension could be to relax the fixed average correlation in the Tuitman et al method. Sup-
pose we would like the average correlation to fall within an interval, a solution is to generate matrices for a
range of ρ and aggregate the samples, effectively stacking the hyperplanes in the correlation space. This is
illustrated in Figure4.1, where 10 values of ρ were uniformly sampled from the interval ρ ∈ [0.15,0.25], and for
each value, 100 correlation matrices were generated. The resulting slices were then stacked to form a thick
disk. While this approach works in principle, it is not efficient and lacks theoretical elegance. A more inte-
grated solution might involve modifying the norm constraint to allow variability in the final norm s. However,
this introduces the risk of sampling infeasible vector lengths at intermediate steps or violating positive def-
initeness in the final matrix. Hence developing a consistent and feasible algorithm that produces matrices
with average correlation in a desired interval is an interesting challenge.
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Figure 4.1: 1000 matrices generated with average correlation ρ ∈ [0.15,0.25]

In the current construction by Tuitman et al, the lengths li of the vectors ti are sampled uniformly from 
their feasible intervals. Modifying this sampling method would change the distribution of the resulting corre-
lation matrices along the hyperplane. Alternative sampling strategies such as biased length distribution will 
affect the geometry and marginal behaviour of the generated matrices. Additionally one could modify the 
sampling of the first vector t1, either by drawing it from a specific distribution or by constraining its direction. 
Since all subsequent vector are conditioned on earlier ones, such as change would propagate through the 
construction and likely alter both the feasible region and the final d istribution. Analysing these dependen-
cies could offer further insight into how local sampling choices influence global matrix properties.

Another direction concerns the marginal structure of matrices for n > 3 for the Tuitman method. The 
marginal distributions of the off-diagonal entries exhibit asymmetry, as shown in Figure 2.6. This asymmetry 
arises from the fixed ordering of the vectors during construction. A straightforward remedy would be to apply 
random permutations to the matrix elements. It would then be interesting to study the resulting permuted 
distribution more closely to investigate whether known distributions, such as transformed Beta, can approx-
imate these marginals analytically.

Finally, while this thesis focused on the average correlation, a natural extension is to consider other global 
matrix statistics, such as the variance of off-diagonal elements. These quantities are non-linear functions of 
the matrix entries and therefore are more difficult to control directly. In the C-vine construction it is currently 
possible to influence the variance of the off-diagonal entries indirectly by adjusting the parameters of the 
partial correlation distributions. Similarly one can control the variability in the average correlation across 
matrices in expectation. However it would be an interesting direction to investigate whether the variance can 
be controlled more directly through a recursive formulation rather than distributional tuning.

All of the figures and data presented in this thesis was computed in R-studio. For access to the implemen-
tations or underlying code.
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A
Appendix A

ci j ckl Corr.

c12 c13 −0.154
c12 c14 0.134
c12 c15 0.126
c12 c23 −0.167
c12 c24 0.167
c12 c25 0.130
c12 c34 −0.681
c12 c35 −0.707
c12 c45 −0.572
c13 c14 0.041
c13 c15 0.028
c13 c23 −0.035
c13 c24 −0.488
c13 c25 −0.497
c13 c34 0.114
c13 c35 0.156
c13 c45 −0.333
c14 c15 0.160
c14 c23 −0.484
c14 c24 −0.096
c14 c25 −0.312
c14 c34 −0.053
c14 c35 −0.318

ci j ckl Corr.

c14 c45 −0.012
c15 c23 −0.513
c15 c24 −0.311
c15 c25 −0.122
c15 c34 −0.339
c15 c35 −0.095
c15 c45 0.143
c23 c24 0.051
c23 c25 0.032
c23 c34 0.144
c23 c35 0.128
c23 c45 −0.323
c24 c25 0.161
c24 c34 −0.064
c24 c35 −0.389
c24 c45 −0.020
c25 c34 −0.352
c25 c35 −0.111
c25 c45 0.125
c34 c35 0.399
c34 c45 0.271
c35 c45 0.395

Table A.1: Correlations between unique off-diagonal elements of a 5×5 correlation matrix.
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