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Summary

Motivations for sustainability are initiating an energy transition that is chan-
ging the European energy domain. The transition effectuated the adaptation
of large volumes of wind and solar based generation capacity. The intermit-
tent power-output of these Variable Renewable Energy Sources challenges the
balancing operation of the electricity network in particular. Despite the avail-
ability of different solutions like storage, smart applications and infrastructure
substitution, large investments in transmission capacity are inevitable.

While the need for additional transmission capacity is evident, the realization of
transmission capacity has become increasingly complex due to the uncertainty
surrounding the future landscape in which this expansion would take place. The
many possible pathways towards a sustainable future make it increasingly dif-
ficult to predict the development of generation and load profiles and thereby
complicate the identification of capacity requirements within the electricity net-
work. This raises the need for new approaches that address the high degree of
uncertainty present within the electricity domain.

Literature describes the framework of Decision Making under Deep Uncertainty
as an alternative approach to addressing the role of uncertainty in Transmission
Expansion Planning. In contrast to traditional scenario planning approaches,
this approach focuses on the computational evaluation of large numbers of scen-
arios that are sampled from a constrained uncertainty space. The idea is to
inform decision making by exploring the uncertainty space and identifying con-
ditions under which certain outcomes occur. Consequently, decision makers are
aware of the conditions under which interventions might succeed or fail and are
therefor able to design strategies that perform in different futures.

The potential of the framework of Decision Making under Deep Uncertainty in
the context of Transmission Expansion Planning is explored through a proof-
of-concept approach that focuses on Transmission Expansion Planning in the
context of The Netherlands. In this approach a simplified integrated market
simulation and network model are used to explore the effects of different quant-
ities of wind and solar based generation capacity on the required transmission
capacity within the electricity network. Instead of using merely three tradi-
tional scenarios, this thesis has evaluated and analyzed 20,000 different scen-
arios.

The results of these analyses have been reviewed by domain experts during two
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workshop sessions. These sessions established that approaches to Decision Mak-
ing under Deep Uncertainty could provide useful insights in relation to model
sensitivity, the reduction of dimensional complexity of the uncertainty space
and the development of scenarios that describe areas within the uncertainty
space. The sessions furthermore established that the application of Decision
Making under Deep Uncertainty in relation to Transmission Expansion Plan-
ning requires further development in order to become a viable alternative to
traditional scenario planning in a corporate environment.

Based on the assessment of the potential of the Decision Making under Deep
Uncertainty framework in relation to Transmission Expansion Planning, this
thesis recommends the further development of the approach within the policy
domain by establishing different comprehensible use-cases to gain experience,
and therewith confidence in the application of the framework. The potential of
the framework exceeds the demonstrated proof-of-concept and provides oppor-
tunities to improve risk assessments of investment projects or to inform agile
investment strategies that result a more robust transmission network configura-
tion. The approach might further complicate the decision making process, while
at the same time making the role of uncertainty in the decision making process
more visible.

The scientific community is furthermore urged to research the relationship between
the resolution of Transmission Expansion Planning models and the resolution
of the outcomes in relation to Decision Making under Deep Uncertainty ap-
proaches. This research might help to reduce the required computing time in
Decision Making under Deep Uncertainty approaches without having to neces-
sarily resolve to an increase in allocated CPU hours. Thereafter, more research
efforts could be directed towards the approach’s accountability aspects related to
regulated sectors, e.g. through the establishment of a framework that prescribes
best practices, therewith guiding the appropriate application of Decision Making
under Deep Uncertainty approaches. Thereafter, it is recommended that the sci-
entific community invests in comparisons between Decision Making under Deep
Uncertainty approaches and traditional scenario planning approaches to better
understand the attitudes and mindsets of analysts and decision-makers towards
the real-world application of Decision Making under Deep Uncertainty.

The application of Decision Making under Deep Uncertainty approaches within
the context of Transmission Expansion Planning provides a unique opportunity
to make the uncertainty space more visible for Transmission System Operat-
ors. The approach provides the building blocks to design adaptive investment
strategies which in turn are geared towards facilitating the energy transition in
a robust manner.
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Chapter 1

Introduction

1.1 Transmission expansion planning

The European Union (EU) supports motivations for sustainability which instig-
ated an energy transition that is changing the European energy domain and the
European electricity sector in particular. The large adaptation of Renewable
Energy Sources (RES) has increased the share of renewable electricity in gross
electricity consumption to 30.6% in 2017 (EEA, 2019). With an underlying
compound growth rate of 6.3% in gross electricity consumption over the last
decade, the share of renewable electricity is expected to grow even further and
marked a change in the European energy domain, redefining how power systems
are planned, operated and controlled (Pérez-Arriaga & Batlle, 2012).

1.1.1 Balancing electricity networks

The swift emergence of RES in the EU is primarily attributed to the accelerated
adaptation of wind and solar powered RES capacity which represented 37.2%
and 12.3% of the total installed RES capacity in 2017 respectively (EEA, 2019).
Due to the spatio-temporal intermittent nature of their respective power out-
put, wind and solar powered RES capacity are considered as Variable Renewable
Energy Sources (VRES). This classification distinguishes these resources from
their conventional fossil-based counterparts as they introduce the possibility of
a mismatch between generation and load in different regions at different times
(Rodriguez et al., 2014; Widén et al., 2015). This potential mismatch complic-
ates the balance responsibility of Balance Responsible Parties and therefore has
a potential impact on the availability performance of the electricity system as a
whole (Van der Veen & Hakvoort, 2009).

Propitious options like storage, smart applications and infrastructure substitu-
tions have been proposed to address the fluctuations in generation from VRES
by enabling shifts in generation and/or load over time (Verzijlbergh et al., 2017).
These options have demonstrated their potential to reduce the magnitude of im-
balance and are expected to play an important role in the electricity system as
the share of VRES increases over time. Their potential further improves in



combination with investments in transmission capacity, as capacity investments
address geographic variation between VRES production and electricity demand
(Bove et al., 2012). Transmission investment, therefore, has the ability to de-
crease the magnitude of potential imbalance in the electricity system (Spiecker
et al., 2013). The combined implementation of additional transmission capa-
city, together with generation and load shifting technologies therefore facilitate
a cost-reducing effect on electricity prices. The resulting availability of trans-
mission capacity enables electricity flows over long geographical distances. This
reduces the amount of backup capacity that is required to balance transmission
networks (Battaglini et al., 2009).

1.1.2 Contradicting investment incentives

Although investment in transmission capacity is desirable from a cost per-
spective, the regulatory structures that govern Transmission System Operators
(TSOs) complicate network investment. This framework implicitly assumes that
TSOs are able to decide on the optimal set of investments that ensure the cur-
rent and future functioning of the transmission network (Van Blijswijk, 2017).
Due to uncertainty inherent to future states, predicting ’the future’ becomes a
paradoxical process. Given the extensive lead times in Transmission Extension
Planning (TEP), consistently deciding on the optimal set of investments in the
face of substantial long-term uncertainty is therefore impossible (Blanco et al.,
2011). The current regulatory framework does not acknowledge this implication
of uncertainty, which leave TSOs at an impasse regarding their decision on the
amount of risk that should be taken to meet future network requirements. As
the regulatory framework penalizes overinvestment, TSOs seem to be incentiv-
ized to underinvest in transmission capacity, and to disregard the associated
social costs (EPRI, 1978; Van Blijswijk, 2017).

While the prospect of a revision of the regulatory framework is probable in
the long-term, in the short-term, TSOs are expected to find a balance between
societal needs and the current regulatory incentives in order to facilitate the
initiated energy transition (Van Blijswijk, 2017). A better understanding of
uncertainty and its implications on TEP seems critical in the bid for TSOs to
deliver the required network extensions.

1.2 Research problem

Uncertainty in relation to TEP has been extensively discussed in literature, espe-
cially in relation to the absence of information on generation extensions and load
growth after the liberalization of the European electricity sector (EPRI, 1978;
Van der Weijde & Hobbs, 2012; Van Blijswijk, 2017). The market liberalization
unbundled ownership of generation and transmission activities, redistributing
their responsibilities to energy producers and TSOs respectively. The separa-
tion of generation extension planning and TEP resulted in the fluctuation of
generation and load profiles becoming less predictable. Therefore, anticipating
future transmission capacity requirements became more complicated, marking



the rigorous shift from deterministic to probabilistic approaches in TEP.

1.2.1 Modelling transmission expansion planning

Wu et al. (2006) describe how the shift to probabilistic TEP resulted in the
emergence of more model-based decision making processes. As a result, different
TEP models have been developed over time. These models aim to further TEP
by focusing on different aspects in the context of network investment: Krause et
al. (2006) evaluate the effects of strategic behavior of certain network users on
the social costs related to network expansion, Jaehnert et al. (2013) researched
profit-based investments strategies for the Northwest European transmission
grid on the basis of congestion rents, while Van Blijswijk (2017) evaluated cross-

regional and inter-regional TEP by modelling the individual perspectives of
multiple TSOs.

In the context of uncertainty, Crousillat et al. (1993) were one of the first to
address the role of uncertainty in a quantitative study by adapting a distinction
between risk and uncertainty in their modelling approach. Oloomi Buygi et
al. (2004) and Zhao et al. (2009) apply similar approaches in their respective
models to what Van der Weijde & Hobbs (2012) describes as a single-stage
approach to one-period investment problems. More advanced models apply
Real Option Theory to address the limitations of the single-stage approach by
introducing the possibility of taking and ’action’, with the possibility of taking
and ’option’. This 'option’ can be reevaluated over time, as future changes might
affect the underlying investment logic of the option (Hedman et al., 2005; Fletten
et al., 2010). Van der Weijde & Hobbs (2012) expanded this idea by adding a
game-theory dimension to their model that enabled gaming mechanisms between
transmission and generation capacity planners. This resulted in a two-stage
optimization approach to TEP which aims to capture the multistage nature of
planning in uncertain environments.

1.2.2 An evolved understanding of uncertainty

As can be observed throughout the development of the different model-based
approaches to TEP, the perceived significance of uncertainty evolved over time.
The conceptual distinction between risk as a measurable and quantifiable un-
known and uncertainty as a limit to knowledge and predictability is introduced
by Knight in 1921. Quade (1989) expanded upon Knight’s concept of uncer-
tainty by distinguishing stochastic uncertainty from real uncertainty. Quade
(1989) describes stochastic uncertainty as uncertainty that includes frequency-
based and subjective probabilities, where real uncertainty includes uncertainty
that results from the strategic behaviour of other actors. Lempert et al. (2003)
and Ben-Haim (2006) refer to real uncertainty as deep uncertainty and severe
uncertainty respectively. They both describe uncertainty as something that in
principle is unknowable and thereby a source of disagreement. This contesta-
tion can derive from disagreements concerning anything from system functions,
to general expectations, to the future state of the world and on the relative
importance of different outcomes of interest.



Walker et al. (2003) build on the evolved understanding of uncertainty by pro-
posing a framework that categorizes uncertainty, recognizing that different types
of uncertainty require different types of approaches. Depending on the type and
severity of the identified uncertainty, Walker et al. (2013) suggest suitable ap-
proaches to address the respective uncertainty and therewith link the evolved
theoretical perception to uncertainty and the practical significance of uncer-
tainty in a modelling context. Different tools are available Within the context
of Decision Making under Deep Uncertainty (DMDU), e.g. scenario planning
(Quade, 1989), Robust Decision Making (Lempert et al., 2006) and Dynamic
Adaptive Policy Pathways (DAPP) (Haasnoot et al., 2013). To indicate the ap-
propriate application of the different concepts in which the various approaches
are founded, Kwakkel & Haasnoot (2019) propose a framework which allows
analysts to design context-specific approaches to support DMDU.

1.2.3 Knowledge gap

The evolved understanding of uncertainty is also evident within the develop-
ment of model-based TEP approaches as exemplified by Crousillat et al. (1993)
who applied Knight’s (1921) distinction between risk and uncertainty in their
modelling approach. Over time, as the level of uncertainty increased, TEP
models adopted scenario planning approaches in their models, which are sim-
ilar to the approaches used in the models of Van der Weijde & Hobbs (2012)
and Van Blijswijk (2017). Scenario planning, as an approach to deal with deep
uncertainty, is also applied by different TSOs. This is demonstrated in the
adoption of standardized scenarios in the 10-Year Network Development Plan
of The European Network of Transmission System Operators for Electricity

(ENTSO-E) (ENTSO-E, 2019b).

Therefore, the significance of uncertainty in TEP seems to be well-established.
Within the domain of TEP, the presence of deep uncertainty is implicitly recog-
nized, and scenario planning approaches are adopted in model-based decision-
making processes. Simultaneously, the electricity sector is rapidly changing
and TSOs are struggling to keep up with network extension investment which
is required in an increasingly dynamic transmission network (ENTSO-E, 2015).
The anticipated system integration between electricity and gas networks further
increase the amount of uncertainty in an already deeply uncertain investment
environment (ENTSO-E, 2018; Gasunie & TenneT, 2019). The combination of
the different observed trends suggest a potential disconnect between the nature
of uncertainty present in TEP and the established approach to decision making
in TEP, i.e. the link between DMDU and the deeply uncertain nature of TEP is
unestablished. Consequently, research is required to assess the value of DMDU
approaches in the context of TEP.

1.2.4 Research question

This thesis aims to establish the link between DMDU and TEP by exploring
the added value of DMDU approaches in the context of TEP. Through this
objective, this thesis consequently aspires to contribute, however small, to the



realization of a more sustainable energy system that is confided within the limits
of our planet’s carrying capacity. With these objectives in mind, this thesis seeks
to address the following research question:

What are useful insights that Decision Making under Deep Uncertainty ap-
proaches can provide in the process of Transmission Expansion Planning?

In addressing the research question, different aspects of the research question
are to be addressed. Therefore, the research question is broken down into three
sub-questions. In order to understand how DMDU approaches can be applied
in TEP, an understanding is required of the deep uncertain elements that affect
TEP. This results in the following sub-question:

[1] How is Transmission Expansion Planning affected by deep uncertainty?

Given the role of deep uncertainty in the process of TEP, the framework of
DMDU can be applied to examine how it addresses deep uncertainty in TEP.
This results in the following sub-question:

[2] How can Decision Making under Deep Uncertainty approaches be applied in
the process of Transmission Expansion Planning?

Provided that DMDU approaches can be applied in the TEP process, the use-
fulness of the resulting insights remains to be assessed. Within this assessment
the practical application in decision making is considered as well. This results
in the following sub-question:

[3] How useful are Decision Making under Deep Uncertainty approaches in the
process of Transmission FExpansion Planning?

Addressing the sub-questions provides insight in the deep uncertain elements
that are present in TEP, approaches that can be used to address deep uncer-
tainty in TEP and the (practical) usefulness of applying DMDU approaches in
TEP. Therefore, addressing the sub-questions provides the insights required to
address the research question.

1.3 Relevance

The relevance of the work presented in this thesis is twofold, it is rooted in
a scientific as well as a societal field. The scientific relevance of this work is
embedded in the application of the concept of DMDU in the context of TEP,
whereas the societal relevance of this work is seen in its effort to improve the
process of TEP.

1.3.1 Scientific relevance

This thesis explores the disconnect between the nature of uncertainty present
in TEP and the established approaches in TEP. To that end, this thesis applies
the framework of DMDU to TEP, and contrasts it to the current practice of
traditional scenario planning. Although DMDU approaches have proven to be
fruitful in different specific contexts, e.g. Popper et al. (2009) or Bloemen et al.



(2019), the framework of DMDU has yet to be applied in the context of TEP.
The work presented in this thesis aims to address this knowledge gap.

Furthermore, literature that contrast the application of DMDU configurations to
scenario planning approaches in expert environments is scarce, e.g. Gong et al.
(2017). This thesis assess the usefulness of an open exploration oriented DMDU
approach in workshop sessions with scenario domain experts in the field of TEP.
This helps to better contrast the perceived advantages and disadvantages of a
scenario planning approach versus DMDU approaches as perceived by domain
experts and hereby helps to identify focus areas for the further development of
DMDU.

1.3.2 Societal relevance

The previously described social costs resulting from imperfect TEP underline the
societal relevance of research that aims to better inform TEP. This is especially
relevant in the context of an energy transition in which the European electricity
system requires enormous investments to realize the societal desire to become
more sustainable. Through assessing the value of DMDU in TEP, TSOs might
be able to improve their investment strategies and reduce the risk of inadequate
TEP. The importance of these investments are for example underlined in the
United Nation’s Sustainable Development Goals (UN, 2018).

DMDU approaches are better suited to make the role of uncertainty visible in
the TEP decision making processes. The framework fosters scenario thinking
in terms of subspaces, rather than single points and hereby better addresses
the complexity of the uncertainty that grasps TEP. The additional information
gathered by approaching TEP through the framework of DMDU helps to optim-
ize network investments in terms of robustness and thereby helps to formulate
long-term investment strategies that are able to adapt as the future unfolds. In
the long-term DMDU facilitates more robust investment decisions and thereby
reduces the risk of underinvestment in the long-term.

1.4 Research methods

This thesis applies a mix of quantitative and qualitative approaches to address
the research question. Within this mix, different methods are used to create,
structure and analyze data and information. The methods applied in this thesis
are described in subsequent sections.

1.4.1 Case study

This thesis aims to assess the value of DMDU in the specific context of TEP.
The case study method is used to denote the context in which this analysis takes
place; in this case TEP in The Netherlands. Although the method limits the
ability to generally interpret the results of this thesis, a single case approach
provides the context-specific details required to analyze TEP within a limited
time schedule. The selection of the case is further specified in section 1.6. The



case study therefore provides the context in which each of the research questions
within this thesis is addressed.

1.4.2 Desk research

To address the first sub-question in the context of a specific catchment area,
information is required on the specifics of the TEP process. TenneT TSO B.V.
provided the opportunity of an internship during the execution of the work
presented in this thesis. This presented the possibility to gather expert know-
ledge that is directly applied in this thesis. The desk research approach is used
to address the first sub-question by detailing the TEP-process in The Nether-
lands.

1.4.3 Linear programming

Based on the locations of deep uncertainty in the TEP process that are described
in chapter 2, this thesis applies Linear Programming (LP) as a method to model
the physical network aspects in the TEP process. Linear programming is a
method to solve mathematical models consisting of linear equations. LP is used
to solve generation dispatch and load flow in the transmission model described
in chapter 3. Therefore, the method is used to address the modelling aspect of
the TEP-process in the second sub-question.

1.4.4 Exploratory modelling

Exploratory Modelling (EM) is used as a method for analyzing complex and
uncertain systems through computation experimentation (Bankes, 1993). EM
utilizes a comprehensive set of computationally generated what-if experiments
to support reasoning and decision making (Kwakkel & Haasnoot, 2019). Con-
sequently, this method facilitates searching through a vast set of possible model
outcomes and allows the use of optimization algorithms, global sensitivity ana-
lysis techniques, multi-model use and computational experiment design. EM
is used in combination with the LP-based TEP-model to approach the TEP-
process through the framework of DMDU and is therefor used to address the
DMDU aspect of the second sub-question.

1.4.5 Workshops

Workshops have been used as semi-structured interviews to asses the usefulness
of the applied DMDU approaches to experts in within the TEP-domain. The
workshop configuration was used as it facilitates active engagement resulting
in more in-depth discussions as opposed to traditional, highly structured inter-
views. The input collected during the workshops is used in assessing the results
of the application of DMDU approaches in the context of the TEP-process. The
workshop method is therefore used to address the third sub-question.



1.5 Research tools and data

The application of the LP and EM methods require the use of programming
and analytical tools to evaluate and analyze the multitude of computationally
generated what-if scenarios. The required tools are described in the subsequent
sections.

1.5.1 EM workbench

This thesis uses the Python language to model the physical network aspect
in TEP. The model implementation leans heavily on the PandaPower pack-
age (Thurner et al., 2018). Thereafter, the programming language is used to-
gether with the Exploratory Modelling Workbench and its extensive library of
analytical tools in the context of EM (Kwakkel, 2017). Furthermore, several
other packages are utilized for numerical operations and visualization. These
packages are listed in the README.md file in the GitHub distribution of the
model.

1.5.2 Data

The model uses input data from several different sources. The static grid model
representation of the transmission network of The Netherlands is available on
the TenneT website (TenneT, 2019). Load profiles are available at the ENTSO-
E data portal (ENTSO-E, 2019a). Capacity Factors are available at renew-
ables.ninja (Renewables.ninja, 2019). External bidzone price time series, in-
stalled generation capacities and technical specifications of trafos are based on
expert knowledge and on unpublished data sources. The generator types are
based on the Pan European Market Modelling Database (PEMMDB).

1.6 Case selection

This thesis has selected TEP in the context of The Netherlands as the case of
interest. Within this case, this research limits itself to the Extra High Voltage
(EHV) network that is located within the catchment area of Dutch TSO TenneT.
This selection includes the 380kV and 220kV network parts that are geographic-
ally located within The Netherlands. The selected demarcation includes inter-
connection and therefor cross-border power lines and electricity exchange.

With a targeted share of 70 percent renewable electricity production in 2030,
The Netherlands is faced with the adaptation of large volumes of VRES genera-
tion capacity (Government of The Netherlands, 2019). TenneT is furthermore a
member of ENTSO-E and is thereby committed to the European energy and cli-
mate agenda ENTSO-E (2020). The case of TEP in The Netherlands therefore
represents a typical case of TEP within the European Union.

Furthermore, TEP in The Netherlands is well demarcated as the catchment area
is geographically limited to the borders of The Netherlands, is operated by a
single T'SO, spans a single bidding zone and is topologically limited in relative



complexity and size. In addition, the internship at TenneT provided access to
expert knowledge related to the selected case. The accessibility of Dutch and
English technical documents combined with the author’s general understanding
of the Dutch electricity sector make for a compelling and thorough analysis of
TEP in the Netherlands.

1.7 Research scope

To focus on the research objective in the complex domain of TEP, this thesis
and its results are confined within the limits of its bounded context. The pre-
ceding section described the main contextual limitations of the selected case,
whereas the main quantitative limitations of this thesis are described in chapter
3. This thesis therefore evaluates the TEP process within a limited context.
Therefore, the applied DMDU approaches are tailored to the specific context of
The Netherlands. Although this limits the general applicability of the research
results, this thesis attempts to approach TEP through the framework of DMDU
as such, that it might be applied outside of the described research scope.

1.8 Thesis structure

This chapter described the increased significance of deep uncertainty in TEP
and the subsequent investment dilemma it poses for TSOs. This thesis argues
that research is required, linking TEP to modern approaches that address deep
uncertainty, and develops the required research in subsequent chapters. Chapter
2 describes the theoretical concepts in which DMDU and TEP are embedded.
Chapter 3 describes the TEP-model that has been applied in this thesis. Chapter
4 specifies the DMDU configuration that has been applied to the TEP-model.
Chapter 5 presents the model results. Chapter 6 presents the workshop results
and chapter 7 concludes this thesis by revisiting the research question. The co-
herence between the different chapters in this thesis is visualized in the research
flow diagram in figure 1.1.
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Chapter 2

Uncertainty in transmission
expansion planning

2.1 Uncertainty in policy analysis

The notion of deep uncertainty is embedded in the policy domain within the
framework of rational comprehensive policy analysis. Within this framework,
modelling and simulation provide computer based learning approaches to deeply
uncertain complex systems. The subsequent sections describe the link between
deep uncertainty and the framework of rational comprehensive policy analysis
in more detail.

2.1.1 Rational comprehensive policy analysis

Rational comprehensive policy analysis is an archetypal policy analysis style
that is rooted in the hexagon model of Mayer et al. (2004). The style entails
the consideration of possible consequences of different potential solution, i.e.
it comprises the assessment of different alternatives in relation to a specific
objective. Walker (2000) formalized this process into the framework that is
visualized in figure 2.1.

The framework utilizes system models to describe systems in terms of its ele-
ments and the interactions among these elements. The system model is defined
in relation to the boundaries, structures and operations of the system domain
that are relevant in the context of the identified problem. The outcomes of
the system model relevant to the considerations in the decision-making process
are specified as outcomes of interest. The (relative) weights of the outcomes
of interest are considered in relation to the objectives as agreed upon by the
problem’s decision-makers and stakeholders, thereby representing a subjective
value trade-off in the decision domain.

Decision-makers influence the outcomes of interest through policies, which rep-
resent alternatives to the status quo. Policies affect the system of interest,
aiming to affect the outcomes of the system in a desirable manner. Conjointly,
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the system is also affected by external factors that are outside the control of
decision-makers. External factors therefore simultaneously have an impact on
the outcomes of interest and thereby influence the effectiveness of policies.

Decision Arena

Decision-makers Stakeholders

Objectives,
Preferences

()

External
Factors

Outcomes
of Interest

System Model —>|

System Domain

Figure 2.1: Rational comprehensive policy analysis. Adapted
from Walker (2000).

2.1.2 Modelling and simulation

Proportional to the degree of complexity of a system domain, reasoning about
the system model and the effects of policies becomes increasingly complex and
thereby complicates the decision-making process. Decision making for complex
systems therefore requires the use of modelling approaches to assess the effects
of policies prior to implementing them.

Modelling approaches quantify system models by representing the relationships
in the system as mathematical functions. Implementing these functions into
computer code creates a simulation model which facilitates experimentation to
test the effects of policies before implementation. Although simulation models
are useful in the context of decision making for complex systems, the value of
simulation models is limited by the Law of Requisite Variety (Ashby, 1968).
This law entails that a model can only express something to the extent that the
model has sufficient internal variety to represent it.

The different interpretation steps involved in modelling approaches by defini-
tion result in a limited representation of the real-world system. This is what
Box (1976) referred to in his famous aphorism "all models are wrong, some are
useful”, recognizing that, despite the inability of models to be true, models can
be illuminating and useful. This means that a model’s usefulness is defined in
terms of its ability to help understand a problem rather than its ability to mimic
aspects of the real-world.
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2.1.3 Addressing deep uncertainty

To increase the usefulness of a model, its internal variety may be explored in
order to assess the effects of uncertainty in the model. From the perspective of
rational comprehensive policy analysis, locations of uncertainty are related to
(1) the representation of the system itself, (2) the impact of external factors, (3)
the outcomes of interest and (4) the weights attributed in the objective function.
This thesis primarily focuses on uncertainty related to the impact of external
factors.

Based on the framework of Walker et al. (2003), the level of uncertainty within
the model may be assessed. The identified level of uncertainty is relevant in the
context of the selected approach to address the uncertainty present in the model.
Walker et al. (2003) argue that the required method to address the uncertainty
is related to the level of uncertainty, specifying appropriate approaches based on
the identified level of uncertainty. In the case of deep uncertainty, the framework
of DMDU should be applied (Kwakkel & Haasnoot, 2019).

The framework of DMDU aims to facilitate learning about the understanding
of the problem and potential solutions. In that aim, the paradigm strives to in-
form policy design in terms of adaptiveness and relative robustness, i.e. policies,
by design, should be able to adapt to different circumstances, thereby ensuring
performance over time. Policies therefore should consider different possible fu-
tures and contain a degree of flexibility in order to adequately respond to future
events.

2.2 Decision making under deep uncertainty

The DMDU framework covers five building blocks which may be used in design-
ing custom approaches to address deep uncertainty in policy problems. The
building blocks in the framework are used to assess specific locations of uncer-
tainty or to assess any given combination of different locations of uncertainty.
The framework and its building blocks are visualized in figure 2.2. Each of the
building blocks is described in individually in the subsequent sections.

2.2.1 Policy architecture

The unpredictable nature of deep uncertainty means that static policies are
unlikely to succeed. This is due to the high costs required to protect them from
failure and their inability to seize opportunities as time progresses (Kwakkel
& Haasnoot, 2019). In order to facilitate flexibility in policies in terms of the
implementation of actions, DMDU approaches are centered around the concept
of adaptive policies.

Adaptive policies are policies that contain multiple actions. Actions within these
policies are subsequently informed based on signals provided by monitoring data
and the results of modelling and simulation studies. The signaling of these
actions is structured around a policy architecture that is either of a protective-
adaptive, or of a dynamic-adaptive nature (Kwakkel & Haasnoot, 2019). This

13



Policy architechture

Protecti daptivity Dy ic adaptivity
Protect basic plan against Protect basic plan against
contingencies contingencies

Generation of policy alternatives Generation of scenarios

Exploration Search Exploration Search
global or local (many objective) global or local (many objective)
sampling optimization sampling optimization
Prespecified Iterative Prespecified
expert opinion, Stress test and expert opinion,
standardized refine standardized

Robustness metrics

Regret Satisficing
comparing individual

alternatives

alternatives

Vulnerability analysis

Subspace partitioning
Scenario Discovery
(levers and/or uncertainties)

Sensitivity Analysis
Ranking of factors
(levers and/or uncertainties)

Figure 2.2: DMDU building blocks. Adapted from Kwakkel &
Haasnoot (2019).

means that the policy architecture is either structured around a ’base’ plan that
is protected by contingency measures or is structured around a base plan that
evolves as the future unfolds, i.e. a policy architecture that either consists of
actions that protect the base plan or actions that change the base plan. Both
architectures are visualized in figure 2.3.

2.2.2 Generation of scenarios and policy alternatives

In order to investigate the effects of uncertainties and policy interventions on
the outcomes of the model, the specification of the uncertainty and policy space
within the system domain is required. The generation of scenarios and policies
determines the logic to cover scenario and policy combinations within the input
space (Kwakkel & Haasnoot, 2019). There are multiple setups that can be
deployed to cover different aspects within the input space, thereby addressing
different types of analyses.

Exploration

Exploratory configurations systematically identify properties within the input
space through the use of sampling techniques such as Monte Carlo sampling,
Latin hypercube sampling or factorial designs. The configuration is therefore
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Figure 2.3: Protective actions versus dynamic actions. Adapted
from Kwakkel & Haasnoot (2019).

used to provide insight into the global properties of the specified uncertainty
and policy space.

Search

Search configurations use techniques to examine the uncertainty and policy
space in a more directed fashion. The configurations relies on (many-objective)
optimization techniques and is used to provide insight into particular points
within the input space of the system model.

Prespecified

The prespecified configuration uses prespecified scenarios and/or policies to
cover the uncertainty and/or policy space. In this type of analysis, pre-specified
policies can be evaluated over a multitude of scenarios or visa versa. This
configuration therefore aims to provide insight into the impact of the specified
uncertainty or policy space of policies or scenarios respectively.

Iterative

An iterative configuration entails a mixed strategy in which different techniques
are combined or deployed in an iterative fashion. Search could be used in com-
bination with exploration to zoom-in on particular regions that have been dis-
covered during the exploration phase. Subsequently, iterations could be used to
design policies that perform under a wide range of scenarios within the identified
region or entire uncertainty space.
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2.2.3 Robustness metrics

The robustness metric determines how the performance of policy alternatives
is measured in terms of robustness. There are different approaches to opera-
tionalize robustness that are derived from regret and satisficing definitions. The
selection of an appropriate robustness definition depends on whether policies are
scored individually or assessed in relation to one another and on the preferred
manner in which one wants to describe the distribution of the policy scores
(Kwakkel & Haasnoot, 2019).

Regret

Regret-based definitions consider the performance of policy options in relation
to a reference option. In this case robustness is expressed robustness in terms
of minimizing the maximum regret of a policy alternative over the different
scenarios in the analysis.

Satisficing

Satisficing-based definitions consider the performance of policy option in relation
to a minimum performance threshold. In this case robustness is operationalizes
in terms of maximizing the number of scenarios in the analysis under which the
policy option meets the performance threshold.

2.2.4 Vulnerability analysis

Vulnerability analysis covers the techniques that can be used to understand how
vulnerable model outcomes are to the uncertainty and policy space of the system
model’s input parameters (Kwakkel & Haasnoot, 2019). These analyses cover
sensitivity analysis techniques as well as subspace partitioning techniques.

Sensitivity analysis

Sensitivity analysis aims to establish the relative importance of uncertanties
and /or policy levers. This type of analysis can be used to reduce the dimen-
sionality of the uncertainty and policy space, therewith helping to focus on the
key sources of uncertainty and the most influential policy levers.

Subspace partitioning

Subspace partitioning can be used to identify particular subspaces within the
input space that results in particular model outcomes. The aim of most subspace
partitioning techniques is to partition the uncertainty space into distinct regions
that determine the success or failure of candidate policy options.

2.3 Transmission expansion planning

In The Netherlands, TEP is regulated in the Electricity Law 1998 and its subsidi-
ary administrative measures, ministerial regulations and regulatory guidelines.
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The framework prescribes mandatory elements within the TEP-process that
TenneT details in its biennial investment plan (TenneT, 2017). This process is
described in the subsequent subsections.

2.3.1 System outlook

Given the long lead times in TEP, TenneT’s investment strategy should take
into account network requirements over a time horizon of at least ten years.
This requirement entails that TenneT has to consider factors that could affect
future generation and load profiles. These factors include the high penetration
rates of VRES, but also trends in adaptation rates of electrical vehicles, heat
pumps or storage. As the electricity networks within Europe are interconnected,
international trends have to be considered as well. For example, the German
energiewende resulted in large transit flows that affected the operation of the
Dutch electricity network.

Based on these trends, TenneT details scenarios that describe different load
patterns and mixes of installed generation capacity. These scenarios are sub-
sequently quantified based on estimate values that are derived from monitoring,
reporting and research sources, e.g. sectoral and outlook reports. These data
sources are primarily used to quantify trends within The Netherlands, whereas
the quantification of foreign bidding zones is based on data that other European
TSOs provided to ENTSO-E.

2.3.2 Market simulation

The scenarios are used in a market simulation model to evaluate hourly dispatch
profiles for the different generation categories. Within the market simulation,
dispatch profiles are approximated on a price-based optimization that minimizes
dispatch costs given the technical properties of the different generation techno-
logies and the limitations that apply to cross-border power exchange. Therefore,
the market simulation aims to closely approximate the pricing-based dispatch
allocation mechanism within the European electricity sector.

Provided that the market simulation does not take into account network limita-
tions, the resulting dispatch profiles can be considered as ’optimal’ market out-
comes within the respective bidding zone. This means that generation dispatch
is economically optimized and is unaffected by capacity constraints. However, in
reality network congestion constrains optimal dispatch, resulting in sub-optimal
market outcomes through redispatch interventions. Furthermore, it must be
noted that constraints to interconnection are considered within the market sim-
ulation model.

2.3.3 Network calculations

Network bottlenecks can be identified in network simulations that evaluate load
flows under optimal generation dispatch. Within the load flow calculations, a
network model of the Dutch electricity network is subject to the load and dis-
patch profiles that are specified in each of the scenarios. Whenever a component
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within the network model overloads under the scenario input, the component
causes congestion within the network and is therefore identified as a bottle-
neck.

Since the electricity network is subject to regulatory performance constraints,
bottlenecks have to be considered under different network operation configura-
tions. Due to these regulatory criteria, network congestion is considered under
normal operation (n), single malfunction (n-1) and single malfunction during
maintenance (n-2). The severity of a bottleneck is defined as a weighted score
of the resultant of the frequency of overloading and the magnitude of overloading
in each redundancy configuration.

2.3.4 Risk assessment

The congestion based severity scores are evaluated in a risk assessment. This
assessment considers capacity bottlenecks together with other component re-
lated performance scores, e.g. component health, and assigns a weighed risk
score that is based on different corporate values. These values include safety,
quality of supply, finance and other indicators that represent corporate perform-
ance. The collection of the risk scores of all components form a risk profile that
provides an indication of the performance and quality of the Dutch transmission
network.

Risk scores within the risk profile that surpass a certain threshold initiate an
investment process within TenneT’s investment portfolio. This is a process that
entails different phases in which mitigation measures are identified, selected and
subsequently developed into detailed investment options. Within the investment
portfolio there is a special group of projects that are labelled Large Cluster
Projects and are coordinated by the central government. These projects are
understood in terms of national or European interest and are characterized by
their capital intensive and large scale scopes.

2.3.5 Strategy formulation

Aside from capacity related investments, TenneT’s investment portfolio also
includes projects that are related to network quality, client connections and
network reconstructions. Given that the resources available to TenneT are lim-
ited and the quantity of identified investments is substantial, the investments
within the investment portfolio are prioritized. This is a process that takes into
account the network’s risk profile and investment dependencies in order to for-
mulate an investment strategy aimed at optimizing network performance under
the limited availability of production factors.

2.4 Analysis

TenneT addresses the role of uncertainty within the TEP-process through the
development of traditional scenarios. This approach can be characterized as
scenario planning and to a certain degree addresses deep uncertainty within
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TEP. However, within the deep uncertain context of TEP, a scenario-planning-
based approach is considered to be too limited to adequately address the com-
plexity introduced by the uncertain context.

The development of investment strategies within TEP are thereafter based on a
system outlook that includes a limited number of discrete scenarios and there-
with resulting in the limited coverage of the uncertainty space. Thereafter, as
the quantification of scenarios is based on educated extrapolations of historic
data, the interval variety represented in the specified scenarios of the traditional
scenarios is fairly small as well. The scenarios used in the traditional scenario
planning approach therefore only cover a small and limited area within the
uncertainty space, thereby leaving many possible futures unexplored.

Furthermore, the specification of scenarios is primarily centered around expert
knowledge. The quantification of the different scenarios involves a number of
assumptions about, for example technology maturing curves, load development
patterns and economic forecasts. Given this prominent role of expert knowledge,
social dynamics between experts might result in processes that introduce blind
spots in either the development of scenarios or in the assessment of scenario-
based model analyses.

2.5 Discussion

Since the scenario planning approach is limited in the extend to which it can
address the uncertainty space in TEP, DMDU approaches to TEP could provide
additional insights. With regard to the specification of scenarios, exploratory
configurations might prove especially fruitful in order to better understand the
uncertainty space in TEP. The resulting insights could subsequently be used to
specify more diverse scenario narratives, to evaluate the robustness of investment
options or even to inform the design of adaptive investment strategies.

The uncertainty space addressed by DMDU approaches in the context of TEP
would primarily address the uncertainty related to market developments, as
these developments constitute the largest source of uncertainty within the TEP-
process. The availability of transmission capacity facilitates electricity markets
to connect generation and load in a market environment, whereas network con-
gestion constrains optimal dispatch and results in sub-optimal market outcomes
due to redispatch interventions. Therefore, to facilitate the realization of the
adequate availability of transmission capacity in the right place on the right
moment in time, generation capacities and the development of load profiles are
considered to be the main uncertainties within TEP.

19



Chapter 3

Model Specification

3.1 Modelling objective

The role of uncertainty in the TEP-process can be primarily attributed to the un-
certain development of load profiles and generation portfolios. Within the TEP-
processs, these developments are translated into scenarios that are used as input
in the market simulation and the subsequent network calculations. The combin-
ation of the market and network models are hereby describing the relationship
between uncertainty and the identification of network bottlenecks.

Given that the deployment of industry standard models in combination with
EM would prove to be a rather time-consuming and impractical approach in
the development of this thesis, another modelling approach is required to assess
the relation between uncertainty and bottleneck identification from the per-
spective of DMDU. Therefore, in relationship to the objectives of this thesis,
a python model was developed in order to describe a simplified relationship
between a scenario configuration and the identification of network bottlenecks.
The remainder of this chapter describes the functioning of the model itself,
whereas chapter 4 describes how the model is used in relation to the framework
of DMDU.

3.2 Model description

The model represents the EHV network of the Netherlands that consists of two
network parts operating at 380kV and 220kV respectively. These network parts
are represented as a collection of buses that are interconnected by power lines.
To include geographic variations in load and generation in the model, regional
aggregations representing the 150kV and 110kv HV networks are included as
single buses in the model. The network parts that operate at different voltage
levels are interconnected through transformers that are present at a select num-
ber of stations.

Load flows are determined by the location of generation and load volumes within
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a network. An imbalance between load and generation at any location within
the network causes power to flow from a generator source to the load location
in accordance with Kirchhoff’s circuit laws. The requested power volumes in
the load and generation elements are time dependent; within the model these
are derived from different time series. Loads within the model are derived
from an exogenous time series, whereas generation is evaluated by a simplified
endogenous allocation mechanism. The allocation mechanism minimizes the
costs of the generation volumes that are required to balance the network and
therewith provide the requested load.

The time dependent nature of the load and generation volumes within the model
result in line loads that are time dependent as well. When the quantities and
geographic locations of load and generation volumes vary over time, the center
point and magnitude of line loads vary as well. The combination of load, gener-
ation and the technical specification network lines is used to calculate load flows
which are in turn used to identify lines that are overloaded. Due to the dynamic
nature of the line loads, the severity is assessed by a metric that includes the
frequency and magnitude of line overloads over the year.

Exchange between different bidding zones through interconnection capacity is
also implemented in the model. The electricity prices in foreign bidding zones
are taken into account in the generation allocation mechanism. The exchange
volumes are limited based on the available interconnection capacity and are
represented as load and generation elements for export and import respectively.
The model’s network layout is visualized in figure 3.1.
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Figure 3.1: Modelled network layout
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3.3 Model components

The physical building blocks of the model include load and generation elements,
buses, lines and transformers. Due to the different network parts operating at
different voltage levels, variations of the core building blocks are used to rep-
resent different components in the model. These variations represent the com-
ponents that are present in the structure of the model and are visualised in
figure 3.2. The individual components are described in the subsequent subsec-
tions, whereas the values used in the parameterization of the components are
described in appendix A.
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Figure 3.2: Model components

3.3.1 Buses

Buses are the physical nodes in the network to which all other physical compon-
ents are connected. Each bus has its own voltage level at which it is operating.
The model differentiates three categories of buses that can be operated at dif-
ferent voltage levels.

Stations

Nodes represent station in the EHV network and are thereby the most simple
form of bustype present in the model. The model includes stations operating at
380, 220, 150 and 110kV. Stations operating at different voltage levels can only
be connected through a transformer.
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Network parts

Network parts in the HV network are depicted as buses in the model to reduce
the complexity of the modelled transmission network. The underlying structure
of a HV network part is aggregated to a single bus to which all model components
operating at HV voltage levels are connected. The inclusion of these network
parts enables the model to take transit flows into account. These network parts
are not modelled in detail and therefore the loading of the lines in the HV
network parts are not evaluated within this thesis.

External stations

External stations are bused in the EHV network that are connected to the
Dutch EHV network, while being located outside the borders of the Dutch
bidzone. These buses denote an aggregated representation of interconnected
foreign transmission networks in an effort to reduce the complexity of the mod-
elled transmission network. These buses are special cases as import and export
volumes are sourced or sinked at these network nodes. Furthermore, it must be
noted that the term ’external stations’ is a non-conventional classification within
electricity market modelling and is only used in the context of this thesis to limit
the extend into which foreign bidding zones are depicted in the model.

3.3.2 Lines

Power lines are the edges in the network which connect the different buses to
each other, thereby creating the network structure. Each line has its own length
and a set of technical parameters determining its performance. There are two
categories of lines included in the model:

AC lines

AC lines represent the most used line category in the model. The technical
parameters of the line category includes the line’s resistance, reactance and
maximum current. The former three are considered in the load flow calculation,
whereas the latter is considered in relation to the loading of the line.

DC lines

DC lines are a line category used for interconnection. The line category allows
long distance load flows and transfers power in a single configured direction.
Due to its configurable nature, the line cannot be overloaded as it only operates
up to its maximum capacity. Its technical parameters include a capacity and a
loss factor. By default, the lines are configured in an export direction within the
model, which can also be reversed in the model. The specification of the direc-
tional orientation of these lines is due to current limitations in the PandaPower
implementation.
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3.3.3 Transformers

Transformers are network components that connect buses operated at different
voltage levels. A transformer is thereby a conversion component of which its
technical parameters primarily consists of loss-related factors.

The rated apparent power of a transformer, however, is considered in the load
flow calculation. This factor is considered in relation to other transformers that
converge from and to the same voltage levels and determines the relative power
volume convergence at the respective transformers. Therefore, the technical spe-
cification of HV to EHV transformers is used to determine the transformation of
load flows from and to network parts operating at different voltage levels.

3.3.4 Load

Load is a network component that represents a power demand in MW at a given
point in time. Within the model, each network part has its own load element to
express the power demand within the network part. This enables the allocation
of different load volumes and/or patterns in different parts of the network. The
load patterns within the model are expressed as time series that are based on
historical Dutch load patterns. The total load is proportionally distributed over
the network parts based on allocation ratios used within TenneT.

3.3.5 Generation

Generation is represented through generator elements that have a power output
in MW at a given point in time. There are 13 different generator categories
included in the model which are connected to the different (E)HV network
parts. The default installed capacities of each of the generator categories are
derived from the scenarios used in TenneT’s latest investment plan (TenneT,
2017). The 13 generator categories are adapted from the PEMMDB generator
classes and represent the following 10 generation technologies:

e nuclear e onshore wind power
e hard coal e offshore wind power
e open cycle gas turbine e other RES

e combined cycle gas turbines e other non-RES

solar photovoltaic back-up

3.3.6 Capacity factors

Since the power output of VRES generators is dependent on weather related
factors, the available capacity in MW at a given point in time is determined
based on capacity factors. A capacity factor expresses the capacity utilization
of a VRES generators based on a combination of weather conditions and the
technological state of the installed technology (Pfenninger & Staffel, 2016; Staffel
& Pfenninger, 2016).
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The capacity factors for onshore wind and solar based generation capacity used
in the model, geographically distinguishes the 12 provinces in The Netherlands,
providing resolution at a NUTS-2 level with 12 different time series. The offshore
wind time series expresses an average capacity factor for the North Sea area in
The Netherlands. The technological state expressed in all capacity factors is
based on current generation technology. The technological state of the capacity
factors used in the model do not match with the state of technology in the year
analyzed in this thesis. The power output of VRES generation, which is based
on the state of technology in 2016, is therefore lower than could be expected
in 2030. Furthermore, the NUTS-2 regions do not fully match with the HV
network parts and therefore the capacity factors in the HV network parts are
expressed as the mean value of the geographically covered NUTS-2 regions of
the HV network part.

3.3.7 Bidding zones

Different foreign bidding zones are implemented in the model to include import
and export flows in the network calculation. The external bidding zones in-
cluded in the model are Belgium, Denmark, Germany, Norway and The United
Kingdom. Each of these zones has a time series based electricity price that
is considered in the allocation mechanism to determine if power is imported
or exported in the model. This mechanism is described in more detail in
Van Blijswijk (2017). The import and export volumes to and from the ex-
ternal bidding zones are maximized to respectively 60 and 100 percent of the
maximum capacity respectively, concerning the interconnected AC and DC lines
(TenneT, 2020).

3.4 Model functions

To determine the loading percentages of the lines in the network, the loads of
the component are to be set before evaluating the network flow. This process
consists of three steps: dispatch calculation, dispatch allocation and load flow
calculation. Each of these function evaluations is explained in detailed in the
subsequent sections.

3.4.1 Dispatch

A dispatch calculation is required to determine which generator classes are called
upon to supply the requested load. In line within the current practice within
the electricity market, the objective of the mechanism is to supply load at the
lowest generation costs. The allocation of generation capacity is based on the
costs function and the available generation power of each generator class during
each time-step in the model.

Generation is allocated through a linear solver that uses a static costs function
for all generation units within the Dutch bidding zone and a time series based
electricity price for generation and/or load requirements in external zones. The
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solver takes into account the total required power volume of each load and/or
generation related power element. This is expressed as the sum of all elements
in of each category and is mathematically represented in equation 3.1.

Pu() = 3 Po(t) (3.1)

rem

where:
P = power output
x = power element

m = collection of power elements

The solver constraints the maximum volumes of each category to the maximum
volumes of the generators in the network and the total sum of capacities within
the interconnected lines for each external bidding zone. Subsequently, the solver
sums each load, generation, import and export category to constrain the solution
space. This is expressed in equation 3.2.

Pioad(t) + Peap(t) = Pyen(t) + Pimp(t) (3:2)

where:
P = power output

m = collection of power elements

To determine the costs associated with generation dispatch and power exchange,
the costs of each generation category, as well as the costs and revenue of exchange
from each bidding zone are evaluated by multiplying the power volume with the
associated costs of a single power unit. This is expressed in equation 3.3.

Xmn(t) = ) Pu(t) * Gimlt) (3.3)

rem

where:
P = power output
X = dispatch costs
G = generation costs
T = power element

m = collection of power element
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This implementation ignores cross-bidding-zone transit flows and assumes that
imports do not influence the electricity price in other bidding zones. Exchange
volumes are thereby optimized based on the time-series-based electricity prices
in the different bidding zones and the available exchange capacity.

The objective function of the solver is defined as the sum of all costs minus the
revenue from exports. The objective of the solver is to minimize the total costs
of dispatch and return a combination of power volumes per generation category,
including import and export volumes, within the specified constraints. The
dispatch cost function is expressed in equation 3.4.

X(t) = Xgen(t) + Ximp(t) = Reap(1) (3-4)

where:
X = dispatch costs
R = dispatch revenue

m = collection of power element

It is important to note that the implementation of the dispatch mechanism is
fairly limited. Since all generation elements within a generation category have
the same standardized properties, dispatch is determined based on a generation
category instead of a single generation unit. In reality, the price functions of
generation capacity is dynamic, whereas the model assumes these are static.
Both limitations affect the magnitude of dispatch within the price-clearing gen-
eration category and thereby affect the accuracy of load dispatch within the
model.

3.4.2 Dispatch allocation

Based on the returned dispatch per category, the power volumes of the individual
generators and external stations have to be set. This step requires the allocation
of the dispatched power volume per category to the dispatched power volume per
generator and external station. Within the model, it is assumed that, the load
per generator is calculated by the division of the product of the total dispatch
of a generation category and maximum output of the respective generator by
the maximum generation volume of the category. This is expressed in equation
3.5.

(3.5)



where:
P = power output

() = maximum power output

x = power element

m = collection of power element

Equation 3.5 ensures that all fully utilised generation categories have generation
units dispatching at maximum output and that the generation units within
the market-clearing category are operating at output levels proportional to the
utilization level of that category. Generation units that are not called upon by
the allocation mechanism are set to have a power output equal to zero. Import
and export volumes are set in a similar fashion at the external nodes. When
bidding zones connected through DC lines are exporting to the Dutch bidding
zone, the orientation of the DC line is inverted.

The solver is configured to favour domestic generation over import when the
price of cross-zonal power exchange and generation are equal. This is imple-
mented by introducing a small wheeling charge, making import and export a
bit more expensive than domestic generation. Whenever price levels between dif-
ferent categories within the solver are equal, the solver allocates power volumes
proportionally based on the available capacity within the category. In cases of
cross-bidding-zone power exchange, the solver only considers the net exchange
position of the respective bidding zones, thereby excluding simultaneous import
and export over different exchange nodes within the network.

3.4.3 Network calculations

The dispatch procedures ensure that the network is balanced and the sum of
all power elements equals zero. Based on this state, the load flow calculation
in the network can be evaluated to determine the line loading percentages of
the power lines in the network. To evaluate the load flow, the model uses a
lossless DC load flow calculation. The DC load flow calculation is chosen over
an AC load flow calculation due to the latter’s computational intensity. AC
load flow calculation for a network of N nodes, requires the iterative solving of
2N non-linear power equations (Van den Bergh et al., 2014). Large numbers of
AC calculations also increase the probability of non-converging power equations,
interrupting the model evaluation. Van den Bergh et al. (2014) concluded that
for high voltage grids, the accuracy of DC load flows calculations introduces
an average error of around 5 percent compared to DC load flow calculations.
However, deviations in individual lines can be larger, making it harder to draw
conclusions about single lines in the network.
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3.5 Input parameters

The model is configured to accept a limited number of input parameters to
change properties of the different model components. Provided that the model
evaluates network bottlenecks over a scenario, the input parameters are con-
figured to describe configure a single scenario based on installed generation
capacity and variations to the default load profile.

3.5.1 Installed generation capacity

In its default state, the model uses the default generation categories and capa-
cities described in appendix A. The model’s input parameters, however, accepts
custom values that describe the installed generation capacities of different gen-
eration categories in different network parts.

3.5.2 Load profiles

The default load profiles in the model can be modified through the specification
of load variation values. These specifications add the specified variation value
to each hour in the default load profile. The model accepts the specification
of load variation values for the load profiles present in the different network
parts.

3.6 QOutcomes of Interest

The primary goal of the model is to evaluate the network flow and assess the
loading percentages of the individual power lines and the network in order to
gain insight in the required network investments. The assessment of required
network investments are based on different contextual aspects. The subsequent
sections specifies these contextual outcomes of interest and describes the network
aspect that they aim to capture.

3.6.1 Overload scores

The equation to determine the overload of an individual line is specified in
equation 3.6. Overloading at a single point in time is given by the magnitude
of overload, which is expressed as the loading percentage that exceeds the max-
imum loading percentage of the line. Therefore, whenever the line loading does
not exceed the maximum loading of the line, the overload of the line equals zero.
As the model evaluates the line loading in every time step, the overload score is
the sum of the overload scores of the line in every time step. The outcomes of
the each line can be considered in relation to each other, indicating the relative
position of a line in term of overloading.

{Lji/[(f), if Ll(t) > M, (3.6)

1, otherwise



tmaax

Hy,=> " Hyt) (3.7)

len t=1

where:
H = overload score
L = loading percentage
M = maximum loading percentage
= line element
n = collection of line elements

a, = dummy variable

Provided that different experiments are considered in relation to each other, the
overloading scores of the lines are aggregated to the network level by taking the
sum of the overload scores of the lines in the network. This aggregated score
makes it possible to assess the relative overloading of a network in comparison
with other networks configurations as is expressed in equation 3.7.

3.6.2 Costs of network investment

Similar to the approximation of the investment costs of generation capacity,
the investment costs of network expansion can be approximated. Based on the
magnitude of overload, different types of capacity measures can be considered.
The costs of addressing small overloads of a short, low capacity line are signi-
ficantly lower than the costs to address large overloads on long, high capacity
lines. Both the required length of the line and the required additional capa-
city of the line have to be considered in order to approximate the required line
investment costs. To calculate the capacity requirement of a single line, the
maximum capacity of a single line must be determined. The calculation of the
maximum capacity of a line is expressed in MVA in equation 3.8.

K =Vi«I;xV3 (3.8)

where:
K = loading capacity
V = voltage level
I = maximum rated current

| = line element

Through the subsequent multiplication of the maximum line capacity and the
maximum overload score of a line, the required additional capacity of the line can
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be calculated. Together with the length of the line, the associated investment
costs can be approximated based on capacity and length related costs constants.
The line investment costs are expressed in equation 3.9. Similar to the overload
score, the line investment cost can be aggregated to the network level by taking
the sum over all the individual lines.

Yi=5*xK;xc+ A;xd (3.9)

where:
Y = investment costs
S = maximum overload score
K = loading capacity
A = line length
[ = line element
c = capacity cost constant

d = length cost constant

3.6.3 Investment impact score

In an investment assessments, more factors are considered than the overloading
score of the line alone. Lines can run through densely populated areas or through
protected natural environments. In a trade-off between investment locations, the
impact of these aspects are relevant to consider as well. Therefore the model
allocates an impact score to each line representing social and environmental
impact per line; this is based on the line requirement expressed in MWkm
(Van Blijswijk, 2017). The investment impact score is expressed in equation
3.10. The investment impact score cannot be summed due its non-numeric
nature. Therefore, when aggregating, the score has to be interpreted in terms
of frequency counts. The described impacts scores are not based on real data
and are hereby not representative.

none, o< Sy« K;xA; <0.5
1 if 0.5 < S« KypxA; <5
Ji=bg, bp=4 . ' LR A= (3.10)
medium, if5 < S+ KA <50
large, otherwise
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where:
J = investment impact score
S = maximum overload score
K = loading capacity
A = line length
[ = line element

b, = dummy variable

3.6.4 Generation-related emissions

Based on the installed capacity in each generation category, it is possible to
assess the emissions related to the dispatch of generation capacity within the
network. The total emission per category is represented by the sum of all emis-
sions per generation unit within the category summed over the different time
steps in the model. The equation to calculate the emissions per generation class
is expressed in equation 3.11.

Em=>_ > (Pu(t) *em) (3.11)

where:
FE = total emissions
P = power output
e = emission constant
= power element

x
m = collection of power elements

In order to determine the emissions on the network level, the sum of the emis-
sions for all emission categories must be calculated. The emission on the net-
work level can be used to assess the sustainability of a network and is mainly
considered in relation to other outcomes of interest.

3.6.5 Costs of generation capacity

The additional required generation capacity per generation category can be
calculated as the difference between the generation capacity per generation cat-
egory in the network and the generation capacity per generation category in
a reference situation. Based on these differences, the costs associated with the
additional generation capacity can be approximated by the multiplication of the
required additional generation capacity with the corresponding overnight cap-
ital costs of the generation category. This calculation provides an rough insight
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into the investment involved with the generation side of the electricity system
and is expressed in equation 3.12.

T =Y (We=To) % fm (3.12)

rem

where:
Z = generation investment costs
W = installed capacity
T = reference capacity
f = overnight capital costs
r = power element

m = collection of power elements

Based on the costs per category, it is possible to determine the costs of the
additional generation capacity for the entire network by taking the sum of the
different costs of each category.

3.7 Exploratory modelling workbench

The EM workbench is used to perform different experiments on the model. In
this setup, the workbench is configured to sample experiment configurations
from the input space that is specified in chapter 4. Each of the sampled exper-
iments details the configuration of the input parameters under which the work-
bench calls upon the model. After evaluating the model under the configuration
of the experiment, the workbench stores both the experiment configuration and
the model’s outcomes of interest. This process is repeated until all experiments
have been evaluated, resulting in a dataset that links points in the model’s input
space to points in the model’s output space.

3.8 Representative days

To limit the evaluation time of the model, the model evaluates a limited number
of hours in relation to the selected reference year. Given the large number of
experiments that are inherent to the experiment design described in chapter 4,
the time required to evaluate the experiments would exceed the time budget
that is available for this research.

To reduce the number of evaluated hours, weighted representative days have
been selected to describe typical hours within the time series of the selected
reference year. Since the model uses different time series, the identification
of representative days requires an advanced approach that is able to capture
interaction effects between different time series. Therefore, the selection of ref-
erence days within this thesis is based on the hybrid reference day selection
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approach described by Poncelet et al. (2017). This approach randomly selects
a prespecified number of reference days that is followed by an optimization of
the relative weight that is assigned to each of the selected days. Based on the
method described by Poncelet et al. (2017), five weighted reference days have
been selected to represent the selected reference year. The selection process and
the resulting time series are described in appendix B.

3.9 Network redundancy

The calculations involving the assessment of the regulatory redundancy require-
ments described in chapter 2 scales exponentially over the different redundancy
criterion. Even under a limited number of scenarios, the redundancy require-
ment would introduce numerous of model evaluations that would each have to
be evaluated over the duration of a entire reference year.

To reduce the number of model evaluations within a single model configuration,
the redundancy calculations are limited to a simplified representation of the
normal operation criterion. The maximum line loading of each of the AC lines
in the model is set to 60 percent of the thermal capacity of the line to approxim-
ate network operation under the normal operation criterion. By excluding the
'single malfunction’ and ’single malfunction during maintenance’ redundancy
criterion, the network model is evaluated only once per configuration, reducing
the required computation time by n 4+ n? times, where n represents the number
of lines.

3.10 Verification and validation

Please note that the verification of the described model is limited to the assess-
ment of power volume balances. Based on the assessment of the power volumes
the model functions as intended. Barring small rounding errors, the summed
volumes of all power elements equals zero during each time step of a model eval-
uation. Thereafter, the power allocation mechanism allocates the appropriate
power volumes to the model’s generation, import and export elements given the
capacity factor, load and exchange related constraints in each time step.

The model is able to identify network bottlenecks through a simplified process
that resembles the market simulation and network calculation aspects of the
TEP-process as described in chapter 2. The system outlook aspect of the TEP-
process is an integral part of the DMDU and is addressed in chapter 4, while the
risk assessment and strategy formulation aspects are the results of the analyses
that are based on the model results. The latter two aspects, however, are not the
primary focus of this thesis. Even though the model has not been historically
validated, the model is able to conceptually represent the aspects of the TEP-
process that are relevant in the context of this thesis. The model is therefore
considered valid for the purpose of this thesis.
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Chapter 4

Experiments

4.1 Objective

The TEP-model described in chapter 3 provides the possibility to evaluate net-
work bottlenecks in relation to a prespecified scenario. However, within the
framework of DMDU the aim is to evaluate a model under a multitude of dif-
ferent configurations. In the case of bottleneck identification this in done by
exploring the uncertainty space through the evaluation of different unique scen-
arios.

This chapter therefore describes the configuration of the selected DMDU ap-
proach under which the model described in chapter 3 is evaluated. The EM
workbench is used to evaluate the described DMDU configuration and to sub-
sequently explore the effects of the specified uncertainty space in relation to the
identification of network bottlenecks. To reduce the dimensional complexity of
the analysis, the defined uncertainty space is limited to only include uncertain-
ties related to the development of installed VRES generation capacity and the
development of load profiles.

4.2 Uncertainty space

The main category of uncertainty within the TEP-model encompasses the in-
stalled capacity of VRES generation at different stations or network parts in
the (E)HV network. The model contains a total of 72 VRES parameters that
are related to installed generation capacity of which 42 are regarded to be un-
certain. The remaining 30 parameters represent stations or network parts that
are presumed unlikely to function as access points for certain VRES categories,
e.g. an offshore wind park that is connected to an HV network station in the
province of Limburg.

The different load profiles of the 12 network parts in the HV network are fur-
thermore regarded as uncertainties. The uncertainty related to these profiles
is expressed in the load variation input parameter of the TEP-model. Within
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the TEP-model, there are no load profiles specified that are directly connected
to stations in the EHV network itself. Therefore, there are no load variation
parameters specified for stations in the EHV network.

In total, the uncertainty space covers 54 uncertainty parameters. Each of the
parameter values is expressed in the number of MW on an integer-based ratio
scale. The uncertainty ranges of each uncertainty parameter are detailed in
appendix A and is briefly described in table 4.1. The ranges of the installed
capacity of VRES generation are specified as a 50 to 200 percent bandwidth of
their respective default parameter values.

Table 4.1: Summed uncertainty bounds in MW

Uncertainty Solar Wind Wind Load
Bound Photovoltaic Offshore Onshore Variation
Lower 15136 5628 3924 -998
Upper 60546 22513 15692 998

The uncertainty bandwidth spans an arbitrary range that covers extremes in the
uncertainty space of what is deemed possible in the realization of VRES capacity
towards 2030. Increasing or decreasing the range, or even the specification of
individual bandwidths per uncertainty parameter affect the degree in which
extremes in the uncertainty space are considered within the experiment. Given
the exploratory nature of the analysis, the initially analyzed uncertainty space
is specified over a relatively large range.

4.3 Open exploration

Given that the TEP-process aims to assess the effects of uncertainty, an open
exploration configuration is selected to explore the defined uncertainty space. To
this end, the selected open exploration approach combines the DMDU building
blocks of ’generation of scenarios’ and ’vulnerability analysis’. The subsequent
sections describe the configuration of the individual building blocks.

4.3.1 Generation of scenarios

The exploratory nature of the open exploration configuration aims to provide
insight in the global properties of the entire uncertainty space. Therefore Latin
hypercube sampling is selected as a method to sample scenario configurations
from the uncertainty space. The selection of Latin hypercube sampling ensures
that the set of sampled scenarios is representative of the real variability in the
uncertainty space and thereby also covers the ’extremes’ or ’edges’ within the
uncertainty space (McKay et al., 1979). A two-dimensional example of a Latin
hypercube sampled set is visualized in figure 4.1.

Establishing the required number of scenario configurations is somewhat of an
educated guess. Whether an appropriate number of scenarios has been evaluated
is retrospectively assessed in the different vulnerability analyses. Specifying the
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Uncertainty A

Uncertainty B

Figure 4.1: Example of Latin hypercube sampling

number of scenarios is therefore based on experience and trail-and-error. In this
thesis, a sample size of 20.000 scenarios is selected as a starting point.

4.3.2 Sensitivity analysis

Sensitivity Analysis (SA) is used to identify model uncertainties that have the
largest impact on the outcomes of interest. Therefore, SA is used to reduce
the number of uncertain input parameters and thereby to reduce the dimen-
sion complexity of the uncertainty space. The reduced number of uncertain
input parameters can subsequently be used to specify scenarios during subspace
partitioning.

Global sensitivity analysis

To determine the importance of each input parameter across the domains of all
other model parameters, a global SA approach is regarded as the most appro-
priate (Liu & Homma, 2009). Due to the large number of input parameters
that span the uncertainty space, a full variance-based Sobol analysis is too com-
putationally expensive. Screening methods like Morsis’ elementary effects and
feature scoring inspired by machine learning provide computationally less ex-
pensive alternatives. Based on Jaza-Rozen & Kwakkel (2017), the use of the
extremely randomized trees (Extra-Trees) configuration is selected to be used as
a global SA method. The decision-trees-based feature scoring method represents
an adequate trade-off between the number of uncertainties to be evaluated and
the provided accuracy that can be achieved within a limited time budget.

Factor prioritization

The global SA provides the relative importance for each of the uncertainty
parameters but does not specify which uncertainty parameters can be excluded
to reduce the dimensional complexity of the uncertainty space. To determine
the cut-off point between significant and insignificant uncertainty parameters,
this thesis uses the ’knee-point’ to classify the uncertainties in the respective
categories. The knee-point represents the point where the addition of another
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uncertainty parameter would result in a relatively small increase in explanatory
power. The point is based on the maximum curvature in a graph and therefore
represents an extreme point of the second derivative.

4.3.3 Scenario Discovery

Scenario discovery (SD) is used as a subspace partitioning technique. The tech-
nique is used to partition the uncertainty space into distinct regions that de-
termine a specific type of model outcome. These regions within the uncertainty
space represent the scenario conditions under which a desired or undesired out-
come occurs.

Regional sensitivity analysis

Based on the specified region of interest within a model outcome, the relative
sensitivity of the remaining uncertainty parameters can be assessed through a
regional SA (Pianosi et al., 2016). In the regional SA, the outcomes within the
model outcome are divided into two binary sets; a set that contains the outcomes
inside the region of interest, and a set that contains the remaining outcomes, i.e.
a '’behavioural’ and a 'non-behavioral’ set. The comparison of the sets provides
insight into the behaviour of the uncertainty parameter and helps to assess the
relative importance in relation to the specified region of interest. An uncertainty
parameter can thus be relevant to describe the model outcome in the global SA,
while being irrelevant when describing the region of interest within the model
outcome in a regional SA.

Patient-Rule Induction Method

The identification of subspaces within the uncertainty space requires a parti-
tioning method that is able to find the conditions under which a certain range
of model outcomes occurs. One of these methods is the Patient-Rule Induction
Method (PRIM). The method aims to identify concentrations of parameter con-
figurations within the uncertainty space that are within the region of interest
(Bryant & Lempert, 2010). The PRIM algorithm sacrifices "coverage’ of the spe-
cified outcomes of interest in that are inside the uncertainty space in a trade-off
resulting in an increase in ’density’ of outcomes of interest inside the identified
subspace by incrementally reducing the size off the subspace. This results in a
trade-off trajectory in which one can select a subspace that represents a desired
trade-off. The parameter ranges of the selected subspace describe the scenarios
under which the outcomes of interest are most likely to occur.
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Chapter 5

Model results

5.1 Model evaluation

The experimental design is evaluated on a high performance cluster. The gener-
ated dataset contains the configuration of each of the 20,000 sampled scenarios
and the model’s outcomes of interest in each configuration. The overload score,
the investment costs and the investment impacts scores are evaluated on a per-
line basis, whereas the carbon emissions and costs of generation capacity are
evaluated on a per-scenario basis. Since several of the outcomes of interest are
evaluated on a per-line basis, the generated dataset provides the possibility to
analyze the EHV network in various levels of detail.

Within this chapter, three levels of detail are discussed: a global network per-
spective, a station perspective and a line segment perspective. To demonstrate
the EM-process, the results of the analyses on the network level are discussed
in detail, whereas the results of the analyses on the remaining two levels are
discussed in a more concise manner. Furthermore, the analyses in this chapter
primarily focuses on the overload score as a means to demonstrate the analytical
possibilities of the different analyses, rather than providing a repetition of steps
for each individual outcome of interest.

5.2 QOutcomes of interest

The bandwidths of the outcomes of interest can be visualized in box plots. A box
plot is represents data in terms of quartiles, in which the colored and whiskered
areas respectively represents 50 and 99.3 percent of the confidence interval of the
probability density function of the data. The line in the colored area represents
the median of the data and the points outside the whiskers represents the 0.7
percent of the data points that are considered to be outliers. Each box plot in
this chapter contains 20,000 data points that are based on the line information
of the evaluated dataset of 20,000 scenarios.
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5.2.1 Line scores

The results of the outcomes of interest that are related to the lines in the network
are visualized in figure 5.1. The results are based on the sum or frequency of the
different types of outcomes of the individual lines. The spreads in the box plots
seem relatively narrow given the large spread in the uncertainty parameters
with high probability densities around their median values. Notable are the
investment impact scores of the lines, where around 25 lines seem to explain
the capacitylength demand in the results. Most lines require no capacitylength,
whereas there is a negligible amount of lines that requires small or medium
amounts of capacitylength. These outcomes would suggest that a select few
lines are being overloaded in the model.
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Figure 5.1: Line scores

5.2.2 Carbon emissions

The cumulative carbon emissions of the carbon-emitting generation categories
in the model is visualized in figure 5.2. Only the newest gas-based generation
plants within the model are responsible for emissions in the different scenarios,
meaning that the other generation categories are not being dispatched. The
spreads in the box plots suggest that the generation category is only dispatched
as a market-clearing generation category.
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Figure 5.2: Carbon emissions
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5.2.3 Overnight capital costs

The generation investment costs over the different scenarios are visualized in
figure 5.3. The results show that only the VRES categories within the uncer-
tainty space are varied over the different scenarios. Furthermore, there is no
technological investment between 2020 and 2030 other than 'gas CCGT new’,
thereby confirming the generation portfolio configuration detailed in appendix
A. Thereafter, the figure visualizes the distribution of installed VRES genera-
tion capacity samples as the outcomes are linearly scaled to the overnight capital
costs factors.
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Figure 5.3: Overnight investment costs

5.3 Topological overview

The line related outcomes are visualized based on the network configuration.
These types of visuals help to locate the geographic location of overloads and
help to identify whether multiple neighboring lines are affected as well. Within
the visualizations, the DC lines are depicted although their outcomes are not
considered, as it is impossible in the model to overload DC-lines. The overload
scores of the network are colour coded based on relative performance. The
darker coloured lines represent the relatively highest scoring lines. In order to
compare different topological overviews it is important to consider the absolute
line scores as well. The absolute scores of the lines can be derived from the
colourbars on the right side of the respective figures.

5.3.1 Average overload score

The calculated average overload scores is visualized in figure 5.4. The average
score of each line is calculated as the average of the maximum overload score in
each of the evaluated scenarios. The overload scores depicted in the colourbar
of the figure concerns the overload fraction. The overload scores in the network
are therefore on average mostly constrained within the range of 0 to 100 percent.
There are several outliers with high overload scores; these outliers are between
Ens and Diemen, between Dodewaard and Boxmeer, around station Dodewaard
and between Maasbracht and Eindhoven.
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Figure 5.4: Average line overload scores

5.3.2 Maximum overload score

Figure 5.5 depicts the maximum overload scores of each line. The maximum
overload score of each line is calculated as the maximum overload score of the
maximum overload score in each scenario. The maximum overload scores rep-
resent the worst-case scenario of each line; note that the selected maximum does
not include simultaneity of the score for each line. Notable areas with extremely
high overload scores are the lines between Geertruidenberg and Krimpen a/d
[Jssel, the lines between Ens, Lelystad and Diemen and the lines between Maas-
bracht and Eindhoven. Furthermore it is noteworthy that the absolute overload
scores go up to 800 percent with the (light) green areas representing overload
scores up to 300 percent.
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5.4 Network Sensitivity

The sensitivity of the model’s outcomes of interest in relationship to the specified
uncertainty space is expressed in feature scores. The feature score describes the
amount in which a parameter contributes to the specified outcome of interest.
The score is defined as a fraction of the total outcome of interest and therewith
represents a percentage score. Since the score is based on a statistical learning
algorithm, the reliability of the score is assessed based on replications. The
calculation of the feature score is replicated 100 times and visualized in box
plots to visualize the confidence intervals of the feature scores.

5.4.1 Aggregated feature scores

The aggregated feature scores of the different uncertainty categories is visual-
ized in figure 5.6. With a score of around 70 percent, the offshore wind power
uncertainty category explains most of the overload scores observed in the differ-
ent scenarios. The contribution of photovoltaic capacity is situated at around
20 percent, whereas installed onshore wind power volumes and load variations
seem to contribute almost nothing to the overload score. The small confidence
intervals of the box plots furthermore suggests an adequate number of samples
to produce reliable SA results.
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Figure 5.6: Aggregated feature scores

The high feature score of offshore wind power means that the magnitude of the
overload score is primarily attributed to offshore wind related power volumes.
Based on figures 5.4 and 5.5 this might be a rather surprising result, as the high
overload scores are not observed around the coastal offshore wind feed-in point
within the network. To further investigate the origin of the high feature score
attributed to the offshore wind category, one can look at the individual feature
scores of each uncertainty parameters.

5.4.2 Individual feature scores

The individual feature scores of the different uncertainty parameters are visual-
ized in figure 5.7. The results show that the overload score can almost entirely
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be contributed to the installed offshore wind capacities that are connected to
the 380kV stations in Beverwijk and Borssele at 30 and 25 percent respectively.
The remaining 45 percent is distributed more evenly over the other uncertainty
parameters with small peaks for offshore wind at the 380kV station in Maas-
vlakte and for solar photovoltaic in regional networks of Noord-Holland and
Limburg.
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Figure 5.7: Individual feature scores

The high feature score of offshore wind capacity in Borssele is especially notable
when considered in relation to the location of high overload scores in figures 5.4
and 5.5. The capacity connected to Borssele is not causing high overloads in the
power lines within the station’s immediate proximity, but rather elsewhere in
the network. Furthermore, the number of high impact uncertainty parameters
is limited, meaning that there are a lot of uncertainty parameters that can be
ignored when considering network overloading. Factor prioritization can thus be
applied to reduce the number of uncertainty parameters considered in relation
to overload scores within the network.

5.4.3 Factor prioritization

The application of the knee point criterion in relation to factor prioritization
is visualized in figure 5.8. This results in a cut-off point after 5 uncertainty
parameters, thereby reducing the uncertainty space with 49 uncertainty para-
meters, i.e. the uncertainty space is constrained to only include 5 dimensions.
The five relevant uncertainty scores are the five notable uncertainty parameters
discussed in the previous subsection, representing a cumulative feature score
over 65 percent.

The combination of global SA applied in this section demonstrate how the signi-
ficant uncertainty parameters within the specified uncertainty space are identi-
fied. This information can in turn be used to reduce the dimensional complexity
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Figure 5.8: Uncertainty cut-off point

of bottleneck identification can be reduced with factor prioritization and help
to focus an analysis. The global SA method therefore provides the tools to
identify relevant uncertainty parameters based on the effects observed in the
model, rather than on their estimated importance in traditional scenario plan-
ning approaches.

5.5 Scenario discovery

The reduced dimensional complexity of the uncertainty space reduces the num-
ber of uncertainty parameters that can be used to describe scenarios under which
certain types of outcomes occur. To eliminate the noise that is introduced to
the model evaluation dataset, the model is reevaluated under the reduced num-
ber of uncertainty parameters, fixing the irrelevant uncertainty parameters at
their default values. However, due to time limitations, the results in the sub-
sequent sections are based on the original dataset and include the aforemen-
tioned noise.

5.5.1 Cases of interest

This section describes the identification of a worst-case scenario and is thereby
interested in the worst-case overload scores. The worst-case overload scores are
defined as the scores that are greater or equal to the 90th percentile value of the
overload score and represent the tale of the distribution plot. The distribution
plot and the 90th percentile are visualized in figure 5.9.
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Figure 5.9: Distribution plot of overload score
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5.5.2 Regional parameter sensitivity

The regional sensitivity of the remaining uncertainty parameters is visualized in
figure 5.10. The results show that the outcomes of interest are most sensitive to
the scores of offshore wind power uncertainties and to a lesser degree to the scores
of photovoltaic-related uncertainties. The contributing effects of offshore wind
in Beverwijk and Borssele are almost completely opposite to each other. This
suggests that there might be an interaction effect between the two parameters
that results in worst-case outcomes.
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Figure 5.10: Regional sensitivity of uncertainty parameters

The interaction effects suggest a conditional overload in a single, or indeed
within in multiple lines in the network. The results in figure 5.10 suggest that
a high volume of installed offshore wind capacity in Beverwijk in combination
with a low volume of installed offshore wind capacity in Borssele might result
in a high network overload score. The relationship between both parameters
can be further explored through subspace partitioning helping to identify the
conditions under which the parameters result in high overload scores.

5.5.3 Subspace partitioning

The trade-off trajectory of the PRIM algorithm is visualized in figure 5.11. The
trade-off in the trajectory is fairly steep, as the algorithm was unable to identify
boxes with both relative high coverage and high density. The unfavorable trade-
off curve is potentially related to the noise introduced by the excluded uncer-
tainty parameters or to the relative orientation of uncertainty parameters and
PRIM’s ability to capture the outcomes of interest in a squared shape.

To explore the relative orientation of the uncertainty parameters, a box within
the trade-off trajectory of the PRIM algorithm is selected. The parameters
inside the box are plotted against each other in figure 5.12, where the red box
in the pair plots represents the dimensions of the selected PRIM-box, and the
orange dots the cases of interest.

Based on visual inspection, the orientation of the uncertainty parameters seems
not to favor being captured in a square shape. This means that the PRIM-
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Figure 5.11: PRIM trade-off trajectory

algorithm is unable to capture high concentrations of parameter configurations
that represent cases of interest. An alternative approach is required to bet-
ter orient the uncertainty parameters, and thereby improving the ability of the
PRIM-algorithm to identify boxes with higher concentrations of cases of in-
terest.
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Figure 5.12: Pair plots of a random PRIM-box

5.5.4 Dimensional rotation

Rotation of the uncertainty parameters can help to improve the orientation of
the uncertainty parameters. Dalal et al. (2013) describes how the Principle
Component Analysis (PCA) rotation based pre-processing of the uncertainty
parameters helps to improve the quality of the PRIM-algorithm. They further-
more suggest constraining rotations to groups of similar parameters in order to
improve the interpretability of resulting scenarios. Figure 5.13 visualizes the
constrained PCA (CPCA) PRIM trade-off trajectory.
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Figure 5.13: CPCA PRIM trade-off trajectory

Within the CPCA PRIM trajectory, the uncertainty parameters are grouped
based on their uncertainty categories: offshore wind power and photovoltaic.
Although still not representing an ideal trade-off, the trade-off trajectory im-
proved in comparison to the regular PRIM trade-off trajectory. As visualized
in figure 5.14, the orientation of the uncertainty parameters improved after the

CPCA rotation.
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Figure 5.14: Pair plots of a random CPCA PRIM-box

The two principal components visualized in figure 5.14 show that especially the
second wind component is able to capture a relatively large concentration of
cases of interest. The distribution curve of the first wind component is almost
identical to the distribution curve of the remaining cases, showing a relatively
small deviating peak.
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5.5.5 Network scenarios

Based on the improved CPCA PRIM trade-off trajectory, a coverage versus
density trade-off is made by selecting a box in the middle of the trajectory. The
selected box has a coverage and density score of 63 and 49 percent respectively.
Sacrificing more coverage for the purpose of increasing density would result in
more precise parameter bounds, while decreasing the number of cases of interest
that are described. The bounds of the selected box are visualized in figure
5.15.
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Figure 5.15: Worst-case scenario bounds

The resulting scenarios consists of two principal components that are based on
the grouped wind parameters. Both principal components are described in table
5.1. The first principle component primarily consists of the installed offshore
wind capacity that is connected to Borssele, whereas the second component
primarily consists of the installed offshore wind capacity that is connected to
Beverwijk.

Table 5.1: Loading values of principal components

Station Wind PC1 Wind PC2

BVW380 -0.394 -0.885
BSL380  -0.709 0.464
MVL380 0.585 -0.035

The scenario boundaries of each principle component are interpreted as a lin-
ear functions that consists of the uncertainty parameters and their respective
loading values. This function is described in equation 5.1. All parameter con-
figurations within the range of each scenario boundary describe the specified
cases of interest. The range of an uncertainty parameters is therefore described
in relation to other uncertainty parameters. A scenario is thus best explained
in terms of the parameter interactions that it describes.

Bjower <05*U1+,8*U2---V*Un<Bupper (51)

49



where:
a = loading value of uncertainty parameter
B = scenario bounds of principal component

U = uncertainty parameter in principal component

5.5.6 Scenario interpretation

To interpret the scenario visualized in figure 5.15, the directions and magnitudes
of the loading values in table 5.1 have to be considered. The first principle com-
ponent describes a relationship between the direction of installed offshore wind
capacity in Beverwijk and Borssele versus the installed offshore wind capacity
in Maasvlakte. Worst-case outcomes occur whenever the volumes of offshore
wind capacity in Beverwijk and Borssele increase in combination with a rel-
ative decrease of installed offshore wind capacity in Maasvlakte or vise versa.
The precise relationship depends on the rotation and the scenario boundaries
of the principal component. The second principle component describes a rela-
tionship between the installed offshore wind capacity in Beverwijk versus the
installed offshore wind capacity in Borssele, where the loading factor of offshore
wind capacity in Maasvlakte is considered too small to be significant. There-
fore, worst-case outcomes are also characterized by a correlation between the
installed offshore wind capacity in Beverwijk and the installed offshore wind
capacity in Borssele.

The locations of high overloads visualized in figures 5.4 and 5.5 help to for-
mulate a hypothesis about the aforementioned dynamics between the principal
components. The consistent high overloads of the lines between Ens, Lelystad
and Diemen is the result of the transmission of high volumes of electric power
and thereby a relationship between the location of load and the location of gen-
eration in the network. The DC line in Maasvlakte is historically an export
oriented line, which explains the negative impact of low volumes of offshore
wind capacity that are connected to this station. Export volumes thus have to
be transported in the network, causing overloads whenever offshore wind parks
output large power volumes. Thereafter, offshore wind capacity in Beverwijk
is probably exported towards Ens to be absorbed elsewhere in the network. A
relative small percentage of installed offshore wind capacity in Beverwijk would
then be compensated by offshore wind output that is generated in Borssele.
Transmitting these large power volumes over a relative large distance in the
network subsequently results in overloads throughout the network.

5.6 Local aggregation

Provided that the model evaluates the overload scores of each individual line, it
is possible to assess individual lines as well as aggregations of custom regions.
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Based on the results visualized in figure 5.4 and 5.5, the lines that are connec-
ted to Dodewaard and the line segment Ens-Lelystad-Diemen are interesting
candidates to further explore and assess the validity of the scenario hypothesis
formulated in the previous section. Exploring the line segments helps to verify
which power sources contribute to the overloads, whereas analyzing Dodewaards
helps to assess whether the overloads in that region can also be contributed to
offshore wind power load flows.

5.6.1 Station Dodewaard

There are four different 380 kV lines connected to station Dodewaard within the
TEP-model. The results of these lines have been aggregated to represent the
Dodewaard station perspective.

Regional sensitivity

The results of the global SA are similar to the results of the global SA of the
network level. The knee point criterion, however, reduced the number of rel-
evant uncertainties even further to only include the three offshore wind related
uncertainty parameters. However, as can be observed in figure 5.16, the regional
SA of station Dodewaard resulted in different outcomes. The regional sensitiv-
ity effects of Borssele and Beverwijk are now no longer opposite to each other.

1BSL380 WPoff mvL380 WPoff

BvW380 WPoff legend
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Figure 5.16: Regional sensitivity of uncertainty parameters

The presence of larger volumes of offshore wind capacities result in higher over-
loads around station Dodewaard. The relative spreads in the parameter scores
demonstrates that the installed capacity in Borssele has the largest effect on
the overload scores. The impact of Maasvlakte could be related to the degree
in which power flows from the offshore wind capacity in Borssele is absorbed in
the western region of The Netherlands, thereby decreasing the magnitude of line
overloads around Dodewaard. This relationship can again be further explored
through subspace partitioning.

Subspace partitioning

The trade-off trajectory in the subsequent worst-case PRIM analysis resulted in
a much more desirable outcomes in comparison with the network level trade-off
trajectory in figures 5.11 and 5.13. The trade-off trajectory could be further
improved through PCA pre-processing of the data. The resulting trajectory is
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visualized in figure 5.17. Since the trade-off trajectory is less steep, it is now
possible to select a box that has both a high coverage value and a high density

value.
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Figure 5.17: PCA PRIM trade-off trajectory

Scenario selection
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Within the trade-off trajectory, a box was selected with a coverage and density
score of 0.708 and 0.715 respectively. Both the coverage and the density are
relatively high and thereby describe a unique scenario that covers a high shares
of the worst-case outcomes. The uncertainty parameter boundaries that describe
the scenario are depicted in figure 5.18.
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Figure 5.18: Worst-case scenario bounds
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The resulting scenario again consists of two principal components and are de-

scribed in table 5.2.

The loads of both principle components describe the

connected capacity of offshore wind power, where the first component is pre-
dominantly attributed to the volume connected to station Maasvlakte and the
second component is predominantly attributed to the volume connected to sta-

tion Borssele.
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Table 5.2: Loading values of principal components

Station PC1 PC2

BSL380  -0.279 -0.952
BVW380 0.319 -0.154
MVL380 0.906 -0.241

Scenario interpretation

Based on equation 5.1, the principal components describe where large volumes
of offshore wind capacity in Maasvlakte in combination with small volumes of
offshore wind capacity in Borssele result in worst-case outcomes. The availab-
ility of offshore wind capacity in the western part of The Netherlands seems
to redirect offshore wind capacity power flows in Borssele via the power lines
connected to station Dodewaard. Whenever the volume of offshore wind capa-
city in Borssele increases, the overloads in Dodewaard increase as well. This
explanation strengthens the network scenario hypothesis, as it confirms that
there is a relationship between the ability of the western part of The Nether-
lands to supply its demand, and the location where overloads in the network
occur.

5.6.2 Line segment ENS-LLS-DIM

The line segment between Ens, Lelystad and Diemen consists of two segments of
two parallel lines. The results of these lines have been aggregated to represent
the ENS-LLS-DIM perspective.

Global sensitivity

The aggregated overview of the model sensitivity to the different uncertainty
categories resulted in a similar pattern in comparison to the network level over-
view. Offshore wind is the primary contributing factor that explains the overload
scores in the network. However, the individual feature scores in the ENS-LLS-
DIM line segment show much lower feature scores for the offshore wind capacity
that is connected to the stations Borssele and Beverwijk. Simultaneously, the
features scores for offshore wind capacity connected to the stations Maasvlakte
and Eemshaven Oude Ship have increased. The individual feature scores can be
seen in figure 5.19.

The feature scores suggest a relationship between the available capacity north of
ENS and the available capacity south of Diemen. Since the role of the installed
offshore wind capacity in Borssele is already associated with the availability of
generation surplus in the western part of The Netherlands, the high feature
scores for Maasvlakte and Beverwijk suggest that surplusses are exported north
through line segment ENS-LLS-DIM. The feature score of offshore wind capa-
city in Eemshaven Oude Schip would then be related to the degree of generation
shortage in the northern part of The Netherlands. To further examine the re-
lationship between these parameters, the number of non-significant uncertainty
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Figure 5.19: Individual feature scores

parameters can again be reduced through factor prioritization.

Factor prioritization

Based on the application of the knee point criterion, the cut-off point of the
relevant uncertainties remains at 5 uncertainty parameters. The combined ex-
planatory power, however, decreased to just over 50 percent. The relevant uncer-
tainty parameters include the offshore wind parameters in Borssele, Beverwijk,
Maasvlakte and Eemshaven Oude Ship and the load variation parameter of the
regional network in Noord-Holland. The application of the knee point criterion
is visualized in figure 5.20.
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Figure 5.20: Uncertainty cut-off point

With a reduced number of uncertainty parameters, the model can be reevaluated
to increase the resolution of the outcomes that relate to the high overload scores
in the line segment. However, due to time constraints, the results have not been
reevaluated. Based on the original data, the contribution of each significant
uncertainty parameter can still be assessed through a regional SA.

Regional sensitivity

The regional SA of the remaining uncertainty parameters can be seen in figure
5.21. The results demonstrate that the difference between the cases of interest

o4



and the other cases is not very large. This is also observed in the trade-off
trajectories and has resulted in very low density scores. Therefore it was im-
possible to subspace the uncertainty space and identify a meaningful scenario.
Reevaluating the experimental design with only the five uncertainties could help
to reduce the noise that is present in the dataset.
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Figure 5.21: Regional sensitivity

As a result of the inability to identify a meaningful scenario, it is not possible
to verify the relationship between the different offshore wind parameters and
the load deviation in Noord-Hollland. It can be observed that the direction of
the load deviation in Noord-Holland is opposite to the direction of the offshore
wind parameters, which would make sense given the hypothesis that electricity
is transported from the western part of The Netherlands to the northern part of
The Netherlands. Even though the spread is fairly small, offshore wind capacity
in Eemshaven Oude Schip spreads in the same direction as the other offshore
wind parameters. An opposite spread would have been expected if Eemshaven
Oude Schip would reduce the import of electricity from the western part of The
Netherlands. It might be that the power volumes in the western part of The
Netherlands are exported to Denmark, Norway or even Germany. This adjusted
hypothesis could be tested through similar analyses focused on the stations near
the interconnection capacity of the respective foreign bidding zones.

5.7 Scenario Narrative

Based on the results of the different analyses described in this chapter, a nar-
rative can be formulated that describes a worst-case scenario in terms of the
overload score in the network, e.g. as has been demonstrated in Greeven et
al. (2016). The narrative for the worst-case scenario can therefore be based
on the results observed in the worst-case subspace, which has been analyzed
in the preceding sections. These analyses demonstrated that the adaptation of
large volumes of offshore wind power is able to result in high overload scores
in the EHV network. The interpretation of the scenario results revealed that
there are interaction effects between the installed offshore wind capacities in
different locations in the southwestern and western parts of The Netherlands.
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A scenario narrative based on these results could be formulated in the following
sense:

Large volumes of offshore wind in the southwestern and western regions of The
Netherlands result in large volumes of offshore wind power related load volumes
that have to be transported to the northern part of The Netherlands. These
power flows are the result of the export oriented position of the Dutch electricity
market in relation to Denmark, Norway and Germany. As a result of the trans-
mission of high volumes of offshore wind power, the power lines that connect
the southern and northern parts of the Dutch transmission network are severely
overloaded.
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Chapter 6

Workshops

6.1 Objective

The main objective during the workshop sessions is to gather feedback from
the participating experts with regards to the perceived usefulness of an open
exploration approach in the context of TEP. Therefore, the workshops serve
as an assessment of the usefulness of DMDU configuration that was selected
in this thesis. Assessing the usefulness of DMDU configurations in contrast to
scenario planning approaches in expert environments is a topic that has been
rarely addressed in literature. Furthermore, the workshop sessions serve as an
introduction to DMDU and were meant to provide a demonstration of a practical
application of EM within the domain of TEP.

6.2 Design

Two workshop sessions were conducted with domain experts at TenneT in
Arnhem. Each workshop covered a duration of three hours during which res-
ults where presented and discussed in different rounds. The participating ex-
perts were selected based on their roles within the TEP-process, spanning dif-
ferent departments that covered different aspects of the TEP-process described
in chapter 2. The experts that attended during each sessions are listed in tables
6.1 and 6.2. Both workshop sessions were assisted by Martti van Blijswijk, in
which he helped to streamline the plenary discussions.

6.3 Results

The results of both workshop sessions were merged and structured based on con-
tent. As agreed upon with the participants, the workshop results are discussed
in accordance with the Chatham House Rule and direct quotes are indicated by
quotation marks. Since the workshop sessions were held in Dutch, quotes are
translations and therefore might include minor translation errors.
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Table 6.1: Participants first workshop session

Name Department

Andres Christoforidis Grid Development & Strategy
Bart van Hulst Grid Development & Strategy
Robert Kuik Grid Development & Strategy
Arno Haverkamp Long-term Grid Planning
Gert van der Lee Long-term Grid Planning
Rutger van Houtert Long-term Grid Planning
Willian Zappa Long-term Grid Planning

Table 6.2: Participants second workshop session

Name Department

Micha Weijnen Asset Owner

Alan Croes Long-term Grid Planning
Gerjan Emsbroek Long-term Grid Planning
Koen Gorrissen Long-term Grid Planning
Patrick van de Rijt Long-term Grid Planning
Bryan Brard North-Sea Infrastructure

6.3.1 Opportunities

In general, the potential to identify relevant uncertainties and narrow down
uncertainty ranges were perceived to be interesting options. The subsequent
sections describe the different opportunities that were identified during the work-
shop sessions.

Scenario building

A more promising application of open exploration was attributed to scenario
building. "It would be helpful to know about high impact variables while con-
structing scenarios". Feature scoring and subspace partitioning are methods
that help to focus the scenario building process and result in more ’stable’ scen-
arios, i.e. scenarios which are embedded within a known area of the uncertainty
space. This helps to strengthen the development of the scenario narratives that
are used during the TEP-process.

Vulnerability assessment

Given specific network calculation related sub-problems, the open exploration
approach could prove to be an interesting alternative to explore vulnerability
within (parts of) the electricity network. However, in relation to the specified
problem, the scenarios were not perceived as an approach that could result in
additional knowledge. The results of the global SA demonstrated a relationship
between generation volumes and line congestion that was already obvious to the
participants of the workshop sessions.
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Risk assessment

More diverse sets of scenarios were described to be potentially useful during
investment related risk assessments. Since the number of required investments
is often larger than the size of the available investment resources, the realization
of investments has to be prioritized. Assessing potential investments in relation
to scenarios could help to identify relative robust investment options and inform
investment strategies that consider interdependence and timing in relation to
investment options.

Validating expert knowledge

Participants recognized that exploratory modelling, whether or not in an open
exploration configuration, could help to validate expert knowledge. This process
could help to identify blind-spots that require attention. In this case, explorat-
ory modelling could be used in a more selective manner during the TEP-process
and other network or market related studies. The relation between different
scenarios is often presumed to be linear, whereas the identification of subspaces
helps to embed this assumption to specific parameter ranges.

6.3.2 Challenges

Participants also expressed reservations towards certain aspects of the DMDU
framework and the selected application of the framework. The subsequent sec-
tions describe each of the expressed reservations and are each followed by a brief
reflection in italics on how their hesitations could be addressed.

Uncertainty specification

It was noted that the specification of uncertainties and uncertainty ranges might
prove to be challenging due to the long lead times in the realization of TEP
investments. "A decade ago, nobody would have presumed the large quantities
of installed offshore wind power that the network is currently facing". Therefore,
the identification and specification of uncertainties was considered problematic.
The specification of "extreme" uncertainty ranges was furthermore considered
to impact the analysis due to over-representation of certain parameters in the
subsequent analyses, e.g. the feature scores of the uncertainty parameters that
were used to reduce the number of uncertainties.

The core aspect of the applied open exploration configuration is to explore the un-
certainty space and identify subspaces that result in desirable or undesirable out-
comes. The idea is that infrastructure investment requirements related to large
quantities of offshore wind capacities would have been identified in an earlier
stage, providing the opportunity for an earlier intervention or response. Explor-
ing extremes that are regarded as infeasible by experts is therefor inherent to open
exploration. This reasoning also applies to the perceived danger of parameter
over-representation, as these parameters should incentivize further exploration
that helps to understand the high feature scores.
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Uncertainty sampling

It was noted that the configuration of the uncertainty ranges might result in
sets of input parameters that are unrealistic, e.g. scenarios in which generation
capacity consistently exceeds the total load in the network. These scenarios
are considered implausible within liberalized markets and introduce noise in
the data. It was suggested to scrub these data points from the data after
the experiment evaluation or by constraining the uncertainty sampling itself.
Alternative suggestions included an intermediate step which splits the market
simulation from the network calculation to limited the number of evaluated
scenarios in the load flow calculations.

The suggested approaches provide possibilities to remove infeasible samples from

the analyses. However, it is not ideal to evaluate configurations that are sub-

sequently removed from the dataset. An alternative possibility would be to check

the configuration of a sample before subsequent evaluations and determine whether
it is feasible or mot. This could be done within the model through an investment

module or possibly within the sampling algorithm itself. However, the author

is unaware of methods that constrains sample configurations of sampling al-

gorithms, providing a window for further research.

Required resources

Several participants questioned the usefulness of an exploratory modelling ap-
proach based on the required computational resources. Models that reflect
higher precision regarding market simulation and network calculations are likely
to require more computing power. This becomes even more apparent when con-
sidering resilience calculations based on component redundancy as well. Within
the time constrained TEP-process, the trade-off between the desired model res-
olution and the required number of model evaluations is perceived to become
to steep to consider EM as a viable addition to the TEP-process.

In contrast to the perceived computational bottleneck, additional computing power
could resolve the trade-off problem and provide the possibility to increase both
model resolution and the number of model evaluations. The availability of cloud
platforms have reduced the costs per cpu hour significantly and have provided
flexible and scalable computing solutions (AWS, 2020). The costs associated
with the required cloud configuration are expected to be negligible in an invest-
ment portfolio that covers network investments costing billions of euros. Another
option could be to assess the desired resolution of network models in relation to
the long-term scope of the investment problem. It might not be necessary to use
the highest possible model resolution in exploratory setups that eramine long-
term effects (Walker et al., 2013).

Limited impact

Given the required resources, the upfront costs of the exploratory modelling
approach were considered high. It was questioned whether these efforts would
have a large enough impact on the realization of network capacity. The TEP
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objective set-out in the regulatory framework is clear and does not provide much
flexibility in approaching bottleneck resolution in manners other than additional
capacity investments. Furthermore, it was mentioned that based on traditional
scenarios and expert knowledge, most uncertainties could already be sufficiently
explained.

This reservation relates to the reservation on uncertainty specification. DMDU
approaches can be used to explore the uncertainty space and identify under which
conditions certain network investments might fail or succeed. In the current
scenario planning approach, network investment is optimized over a limited num-
ber of scenarios of which it is unknown which area within the uncertainty space
they cover, the conditions under which investments succeed or fail are therefor
unknown. Thereafter it was mentioned that nobody could have foreseen the large
shares of offshore wind adaptation; an open exploration approach would at least
have been included as a sample in the uncertainty space.

Informing decision making

Participants mentioned that it was unclear how the presented results would
facilitate a decision-making process, as knowledge about exploratory modelling
would be required to interpret the results. "How can data be transformed
into information that facilitates the decision-making process?". However, it
was recognized that more knowledge about the network might be required to
translate sensitivity scores and different scenarios into investment options that
could be considered in further (EM) analyses.

The application of DMDU approaches within the context of TEP definitely re-
quires further development. The open exploration configuration is a relatively
small setup that should be part of a broader analysis. Configurations in which
multiple investment options are compared would already result in an analysis
that relates more to policy analysis and decision making.

Accountability and transparency

The extensive and theoretical nature of the method raised concerns with regard
to accountability towards shareholders, regulatory bodies and other stakehold-
ers. Participants noted that they themselves already had a hard time under-
standing the method and wondered how to build trust in the method. "How are
we expected to convince our stakeholders of an approach that by many would
be considered to be a black-box?".

There is definitely a learning curve in understanding the DMDU paradigm. This
s a process that requires time to familiarize oneself with the framework. The
same reasoning naturally also applied to the adaptation of what is now called tra-
ditional scenario planning. Developing different use-cases might help to further
understanding of DMDU and thereby build confidence in the method.
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6.3.3 Other applications

During the workshop sessions, participants identified several applications of
DMDU that are not directly related to TEP. These applications are detailed
in the subsequent sections.

Advocacy

The possibility to assess different governance structures is another exploratory
modelling application that was often mentioned by participants. These ex-
ploratory studies would help to assess the adequacy of the current regulatory
framework(s) and inform policy positions that investigate different regulatory
configurations. Studies could for example assess more integrated approaches of
generation and transport capacity implementation in relation to system costs.
Other options could review bidding zones, capacity mechanisms or other market
organization related aspects.

Offshore wind projects

Participants also mentioned that offshore projects might be an interesting do-
main to apply exploratory modelling. Government control on offshore wind pro-
jects is decreasing as offshore wind projects are increasingly tendered without
government subsidies. This introduces uncertainty with regard to the realization
of offshore projects, as it becomes uncertain whether and when projects will be
(completely) realized. This uncertainty impacts network planning related to the
feed-in of offshore wind generation capacity in the electricity network. An open
exploration configuration that combines policy and scenario sampling could be
useful to inform feed-in strategies for offshore wind projects.

6.3.4 Observations

While observing the discussions during the workshop, several notable obser-
vations were made. These observations are described in the following subsec-
tions.

Theoretical dimension

The presented results are embedded in the extensive framework that described
DMDU. This research presents only a limited configuration within this frame-
work which is hard to position without knowledge of the DMDU framework
and the concept and role of exploratory modelling within this framework. It
is relatively hard to introduce participants to the framework while maintaining
focus on the open exploration configuration within the three hour duration of a
session as participants felt a bit overwhelmed at some points.

Model versus method

The results presented in the sessions were based on a network model that was
not validated. It proved hard to distinguish the model from the EM results
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as the EM results were often contested based on the expert knowledge of par-
ticipants on the electricity network. Although this underlined the importance
of the role of expert knowledge in the interpretation phase of the EM results,
it simultaneously distracted from the more theoretical objective set out in the
workshops, i.e. participants were sometimes inclined to validate the EM results,
rather than to assess their usefulness.

Complex nature of uncertainty

Participants were perceived to be critical with regard to addressing uncertainty
through modelling, as they were skeptical whether more model evaluations
would suffice to capture the complex nature of uncertainty. Since the TEP-
process is already substantial, participants doubted how evaluating more scen-
arios in itself would facilitate the TEP-process. Reverting to expert knowledge
therefore was perceived to serve as an imperfect but adequate coping mech-
anism. It however remained unclear whether the limitations in the current
scenario planning-bases approach therefor sufficiently recognizes and ’owns’ the
consequences of uncertainty in the TEP-process.

Complementary configurations

During the workshops, the role of exploratory modelling was often contrasted
with the role of expert knowledge. It is notable that complementary or sup-
plementary properties were often overlooked. Expert opinions could be based
on insight in the electricity system that have been fostered through DMDU ap-
proaches. Thereafter, as mentioned by participants, DMDU approaches can be
used to test expert knowledge and help to identify blind spots.

Genuine interest

Participants were genuinely interested in the DMDU framework with a partic-
ular interest in EM. Some participants were already somewhat familiar with
potential applications relating to scenario building and adaptive policy archi-
tectures. This genuine interest translated to active participation during the
discussions and thereby helped to better position the DMDU framework in re-
lation to the TEP-process.

6.4 Analysis

The main aim of the workshops was to establish the usefulness of an open explor-
ation approach within the TEP-process. During the workshops the participants
recognized the type of results and were able to relate the results to their own
role within the TEP-process. The usefulness of the open exploration approach,
however, depended on the context in which the configuration was applied. The
usefulness of the analyses is thus recognized provided that certain surmountable
reservation were expressed.
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Furthermore, the workshops reconfirmed that the role of uncertainty within the
TEP-process is widely recognized. However, opinions differed concerning the
extend to which uncertainty should and could be addressed. This was voiced in
several reservations that related to the ability of modelling approaches to capture
the complex nature of uncertainty. The more fathomable but limited nature of
the scenario planning approach was preferred over the increased complexity
introduced in a DMDU approach. This is especially interesting in relation to
the results described in Gong et al. (2017), where participants tended to opt
for robuster interventions in scenario approaches versus probabilistic oriented
forecasting approaches. The human tendency to ignore the consequences of
smaller risks could prove to be a hazardous approach in terms of effectuating
the adequate long-term functioning of the transmission network.

The workshops did furthermore establish several use-cases for DMDU approaches
within the domains of TSOs. However, the number of identified use-cases
within the process of the investment plan were fairly limited as a result of
a regulatory framework that constrains TenneT’s policy space. These con-
straints affect the impact of DMDU approaches as opportunities to divert from
scenario-planning-based investment strategies are limited. The adaptive nature
of DMDU-informed strategies can therefore not be well reflected in network in-
vestment strategies within TenneT’s biennial investment plan. The framework
needs to be adapted to fully utilize the strengths of DMDU approaches, al-
though the framework can already be deployed to analyze sub-problems within
the process. The aforementioned development of bottom-up scenario narratives
as described in Greeven et al. (2016) would already help to embed the ’tradi-
tional’” scenarios within the uncertainty space.

Thereafter, the workshops indicated that more developed use-cases are required
to build trust and confidence in the DMDU framework. The tooling used in
EM is based on advanced computer and data science applications that tend to
resemble "black-boxes’. Use-cases should aim to unpack these black-boxes in
order to demonstrate their functionality and build experience in the adequate
application of the tooling. This active effort for transparency helps to build trust
in the application of these advanced applications and thereby the confidence to
apply them within the context of TEP. As such, this thesis is already an attempt
to provide insights into the black-boxes and demonstrate how these tools can
be used in the context of TEP.

6.5 Discussion

Based on the provided feedback it could be concluded that DMDU approaches
provide useful insights in the context of TEP. The limitations of the scenario
planning approach are recognized, as well as the potential of DMDU approaches
to overcome these limitations. This was especially recognized in the possibility
of the open exploration configuration to develop scenario narratives in relation
to subspaces within the uncertainty space. More advanced configurations of the
DMDU framework would help to better understand the robustness of investment
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options in relation to these scenario narratives and thereby improve the risk
assessment of the respective investment. As a result, it becomes possible to
develop an investment portfolio in terms of robust investments or even in terms
of adaptive investment strategies.

Although the traditional scenario planning approach might be considered a more
fathomable approach to address uncertainty, the risks resulting from this ap-
proach are not always explicitly expressed or 'owned’. DMDU approaches are
better suited to make the role of uncertainty visible within the decision making
process, while simultaneously making the process more complicated. The lim-
ited context that is provided in scenario planning approaches should be more
explicitly expressed to foster thinking in terms of subspaces, rather than single
points, i.e. the uncertainty in which TEP is embedded cannot be adequately
captured in merely three discrete scenarios. Failing to recognize the full uncer-
tainty space is doing an injustice to the complexity that grasps TEP.

There are furthermore several ’hurdles’ that have to be overcome to fully utilize
the potential of DMDU approaches within the TEP-process. Linking the many
analytical steps within the process in an overarching DMDU informed invest-
ment strategy requires a long-term commitment during which the method is
increasingly applied in TEP related analyses. This could also help to overcome
the regulatory limitations to fully utilizing the potential of DMDU approaches
within the development of the biennial investment plan. The development of
use-cases helps to build the required trust and confidence that is required to
convince regulators and lawmakers of the added value of DMDU approaches in
comparison to traditional scenario planning.

Lastly, more resources should be allocated towards the adaptation of (hybrid)
cloud solutions that would facilitate the approach of TEP through the frame-
work of DMDU. At a rate of 0.224 dollar per cpu hour, a cloud setup of the
TEP-model detailed in chapter 3 would cost 56 cores * 18 hours * 0.224 dollar =
226 dollar (AWS, 2020). The model would probably even need less computing
time provided that High Performance Cluster used in this thesis runs on older
hardware. Even when considering models that run at higher resolutions, requir-
ing a thousand times more CPU power and a thousand times more run hours,
the associated computing costs in the context of an investment portfolio con-
cerning billions of Euros. The costs of realizing inadequate network investments
are therefor far higher than the costs of the required computing power.
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Chapter 7

Conclusion and
recommendations

7.1 Conclusion

This thesis established a proof-of-concept approach to assess the potential of the
DMDU framework in the context of TEP in The Netherlands. In this approach,
a simplified integrated market simulation and network model are used to explore
the effects of different quantities of wind and solar based generation capacity
in relation to the identification of bottlenecks within the electricity grid. A
dataset containing 20.000 data points is evaluated and analysed the results of
which have been reviewed by domain experts in two workshop sessions. In this
approach this thesis aims to answer the research question:

What are useful insights that Decision Making under Deep Uncertainty ap-
proaches can provide in the process of Transmission Expansion Planning?

Given the increased significance of uncertainty within the energy domain, DMDU
approaches provide useful insight in the TEP-process. As established in chapter
2, the scope of scenarios in traditional scenario planning approaches are lim-
ited when attempting to meaningfully address the role of uncertainty in TEP.
Therefore, scenario planning approaches when exploring the criteria under which
network investments succeed in addressing long-term network capacity require-
ments. In contrast, the inherent exploratory scope of DMDU approaches ad-
dresses these limitations by considering investments in relation to the full un-
certainty space in which TEP is embedded, thereby providing the possibility to
inform more robust investment strategies that specify boundary conditions in
advance.

The development of the research question confirms the potential of DMDU
approaches in the context of TEP. DMDU approaches have provided the oppor-
tunity to address uncertainties within the domain of TEP through a modelling
approach that explores the uncertainty space of the model’s input paramet-
ers. An open exploration oriented DMDU configuration is able to establish
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model sensitivity, reduce the dimensional complexity of the uncertainty space
and identify subspaces within the uncertainty space that are described as scen-
arios. The results thereby provide a broader understanding of the uncertainty
space in comparison to scenario planning approaches. This potential is fur-
thermore recognized by experts in the field of TEP and can be further utilized
through the development of additional use-cases in the context of TEP.

[1] How is Transmission Expansion Planning affected by deep uncertainty?

The role of uncertainty in the context of TEP is, as established in chapter 2,
primarily embedded in the assessment of market developments. The availability
of transmission capacity facilitates electricity markets to connect generation and
load in a market environment, whereas network congestion constrains optimal
dispatch and results in sub-optimal market outcomes due to redispatch inter-
ventions. Therefore, to facilitate the realization of the adequate availability of
transmission capacity in the right place at the right time, generation capacities
and the development of load profiles are considered to be the main uncertainties
within the process of TEP.

[2] How can Decision Making under Deep Uncertainty approaches be applied in
the process of Transmission Expansion Planning?

It is feasible to apply DMDU approaches in the context of TEP. The application
of the proof-of-concept approach described in chapters 3 and 4 demonstrates how
uncertainty with regard to the development of VRES generation capacity and
load profiles can be linked to the identification of capacity bottlenecks within
the electricity network. Latin hypercube sampling techniques can be used to
sample scenarios from the vast uncertainty space in which TEP is embedded,
while screening techniques like Extra-Trees in combination with factor prior-
itization can subsequently be used to process the large number of uncertainty
parameters and reduce the dimensional complexity of the transmission capa-
city investment problem. The use of regional SA in combination with CPCA
PRIM thereafter provided the possibility of identifying subspaces within the
uncertainty space that can be used to develop scenario narratives. The applied
methods are fully scalable and can thereby be applied in larger models with
higher model resolutions. Together with the availability of large amounts of
affordable computing power through (hybrid) cloud platform solutions, there
are no inherent technical barriers that prevents the adaptation of DMDU ap-
proaches in relation to real-world TEP processes.

[3] How useful are Decision Making under Deep Uncertainty approaches in the
process of Transmission Expansion Planning?

The domain expert review of the results described in chapter 3 confirmed the
usefulness of DMDU approaches in the context of TEP. The TEP-experts were
able to identify different use-cases for DMDU approaches that are related to
TEP, offshore wind projects, advocacy and outlook studies. They recognized
the potential of DMDU approaches in constructing scenario narratives, per-
forming vulnerability and risks assessments and in validating expert knowledge.
However, as discussed in chapter 6, the application of the framework of DMDU
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within the context of TEP requires further development to overcome several
reservations expressed by the experts.

Domain experts perceived traditional scenario planning to be a more compre-
hensible approach in addressing deep uncertainty. In combination with expert
knowledge, traditional scenario planning was perceived to provide an adequate
enough understanding of the complexity in which infrastructure investment de-
cision should be made. This perception overestimates the robustness of current
investment options and underestimates the consequences of overlooking scen-
arios that are perceived to have lower risks, thereby marking a hazardous ap-
proach to addressing deep uncertainty. To effectuate the ambition of ensuring
the long-term robust functioning of the transmission network, this hazardous
mindset should be reconsidered and aim to do more justice to the complexity
of the uncertain environment in which TEP is embedded. In this reconsid-
eration DMDU approaches could actually help identify blind-spots of domain
experts.

Other reservations relate to the more practical application of DMDU in the con-
text of TEP. The utilization of the full potential of the DMDU framework is, in
some cases, constrained by the regulatory framework, e.g. in the development of
the biennial investment plan. Thereafter, the adaptation of DMDU approaches
requires the establishment of trust and confidence in order to further the scopes
of the different analyses and DMDU configurations. Experimentation with the
actual application of DMDU approaches in more use-cases would help to over-
come these practical reservations and build the trust and confidence to convince
regulators and policy makers to change the regulatory framework, while simul-
taneously gaining the required experience in the deployment of (hybrid) cloud
computing solutions.

7.2 Recommendations

The conclusions provide the foundation required to recommend further research.
The recommendations are grouped under policy recommendations and scientific
recommendations.

7.2.1 Policy recommendations

The implementation of DMDU approaches within the TEP process requires a
long-term effort that requires extensive experimentation. The development of
different comprehensible use-cases would help deepen the knowledge about the
method by providing learning opportunities. The experience gained during the
development of these use-cases would therewith help to establish trust in the
underlying methods of DMDU approaches and thereby open up the 'black box’.
This gradual approach would thereafter help T'SOs to acquire more experience
with cloud platform based computing solutions to support the underlying ana-
lyses within TEP-processes.

The experience that TSOs would gain during the development of different use-
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cases could also be deployed towards more advanced DMDU configurations.
Open exploration is a relatively small DMDU configuration, whereas the frame-
work of DMDU can also be used to assess investment decisions and thereby
improve, for example, risk assessment. Knowing under which conditions cer-
tain investments succeed or fail could inform investment strategies that are able
to respond to developments that deviate from expected transition paths. This
would make the network investment portfolio more agile and thereby result in
a network design that is more robust when faced with 'unexpected’ outcomes.
The scenario narrative described in chapter 5 already demonstrated an inter-
action effect between the realization of different offshore wind parks and the
location of network overload in the EHV.

Lastly, the impact of uncertainty in the decision making process in TEP should
be recognized more explicitly. Exploring scenarios through either scenario plan-
ning, or through the framework of DMDU does not eliminate the presence of
uncertainty. The framework of DMDU should therefore not be used to make
decision making more convenient, but rather to make the role of uncertainty
in the decision making process more visible. Formulating the right investment
strategy might therefore become even more difficult as the uncertain context
in which the decision becomes much more visible. As is described in chapter
6, failing to recognize the full extend of the uncertainty space is doing an in-
justice to the complexity in which the TEP-process is embedded. Investment
decisions should therefore better recognize the role of uncertainty in reflecting
the conditions under which the decision is considered a viable option.

7.2.2 Scientific recommendations

During the development of the TEP-model used in this thesis, several trade-
offs were made to reduce the computing time that was required to evaluate
the model. Based on the low costs of CPU hours, cloud computing platforms
are often recommended as options to improve the trade-off between resolution
and number of runs. However, the trade-off between the (minimal) required
model resolution in relation to the number of runs has not been explored in the
context of TEP. In the current TEP practices, the resolution in the network
models is often very high, whereas it can be doubted whether this resolution is
required in exploratory settings. Therefore, research efforts should be directed
towards informing this trade-off, e.g. through a comparison of DMDU results
in the context of multi-resolution models. As a result, TSOs would be able to
better inform the selection of a certain model resolution in the context of a given
(sub-)problem within the TEP-process.

Furthermore, research efforts could be directed towards the accountability as-
pect of the application of the framework of DMDU in relation to the decision
making processes. While the methods within the framework itself are scien-
tifically validated, communicating the adequate application of the methods can
be quite challenging. It might prove especially hard to convince a regulator
that the tooling has been used correctly and that the resulting investment de-
cision(s) are adequately justified. This complexity is naturally inherent in the
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process of making uncertainty more visible, but could possibly be structured
around a framework of ’'best practices’. More research that compares DMDU
approaches to traditional scenario planning approaches is hereby also desirable.
This research would help to better understand the mindsets of analysts and
decision-makers and thereby help to pinpoint errors or fallacies in the applica-
tion of uncertainty addressing approaches.

Lastly, research could be directed towards conditional sampling possibilities.
The possibility of sampling configurations in which the Dutch electricity mar-
ket would be severely oversaturated did not represent viable extremes. These
oversatured samples were caused by the bottom-up samples of capacity volumes
that described the overall generation portfolio of The Netherlands. The local
differences between the sampled capacity volumes were an essential aspect of the
uncertainty space in the context of the developed TEP-problem and therefore
cannot be aggregated to resolve the problem. Introducing an investment module
could bypass the problem, but might introduce other conceptual or conditional
difficulties. It would be convenient to consider the sampling of individual para-
meter values in consideration with already sampled parameter values in order
to reflect constraints in the overall scenario configuration.

7.3 Reflection

Through its mandate and as the ‘guardian’ of the electricity sector, TenneT
is confronted with the complexity of this problem. Internally, numerous prob-
lems are studied at TenneT, aimed at providing the information that players
within the electricity sector require to understand the landscape in which they
operate. I have come to know TenneT as an organisation that faces these chal-
lenges with an open mind, while also realising that change requires a long-term
commitment.

The most striking observation during the internship relates to the level of de-
tail in which TenneT addresses mid-term and long-term studies. The drive to
understand every aspect of the electricity sector fascinated me; though I did
wonder whether the level of detail was relevant given the large amount of un-
certainty in which the resulting outcomes have to be interpreted. Given the
complex nature of the challenge that TenneT is currently facing, I initially ex-
pected TenneT to be more conceptually conscious of the uncertainty aspects of
the problem and the conditionality under which the resulting outcomes could
be interpreted.

I expected analyses that addressed the uncertainty space in a broader sense, as
this type of analyses would bring forward the position of the sector’s regulatory
framework in relation to its uncertainty space. Through these insights, a better
understanding of the different positions of the players within the electricity sec-
tor would be gained, thereby informing discussions about the conditions under
which they could contribute to facilitating the energy transition. Through this
approach, the logical assumptions about expected developments and responses
could thereby be assessed and validated. Through interventions in the regulat-
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ory framework, the uncertainty space could subsequently be reduced.

The framework presented in this these facilitates these kinds of these kinds
of discussions. Even though the implementation of the method requires high
upfront investment costs in terms of learning processes and development of the
required scripts and model code, the adaptation of DMDU approaches are the
next natural evolutionary step in approaching uncertainty in TEP. Thereafter,
the development of a TSO specific workbench could also be deployed in other
infrastructural network configuration in collaboration with Distribution System
Operators, ENTSO-E or even GasUnie. The required tools and potential use-
cases are readily available to be adapted by TSOs.
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Appendix A

Model parameters

A.1 Lines

The assumed cost components of network investment are specified in table A.1

(Van Blijswijk, 2017).

Table A.1: Cost components in billion of euros

Component Costs
Cost of additional capacity 0.15
Cost of addition length 1.50

A.2 Generators

The assumed technical properties of each generator class are specified in table
A2 (U.S. Energy Information Services, 2020). The default values of installed
generation capacity per generation category are specified in table A.3. The
2020 reference values for installed generation capacity per generation category
are specified in table A.4.
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Table A.2: Technical properties per MW generation

Carbon Overnight Generation
Category . . .

emissions capital costs costs
Nuclear 0 6.00 2
Hard coal new 94 3.80 35
Hard coal old 2 94 3.50 25
Gas CCGT old 1 57 1.00 62
Gas CCGT old 2 57 1.00 59
Gas CCGT new 57 1.00 55
Gas OCGT new 57 0.85 80
Other non RES 0 1.50 0
Other RES 0 1.50 0
Solar Photovoltaic 0 1.80 0
Wind Offshore 0 1.60 0
Wind Onshore 0 6.50 0
Backup 0 0.00 1000
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A.3 Uncertainty bounds
The uncertainty bounds of the experimental design are specified in table A.5.

Table A.5: Uncertainty bounds

Region Solar Photovoltaic Wind Offshore Wind Onshore Load Variation

code lower upper lower upper lower upper  lower upper
FRL110 1195 4782 0 0 324 1297 -32 32
GRD110 1330 5318 0 0 338 1353 -53 53
ONO110 1156 4624 0 0 270 1078 -69 69
NHL150 1749 6995 114 456 403 1610 -188 188
GFU150 4008 16034 0 0 1222 4887 -179 179
ZHL150 1186 4744 40 161 368 1473 -103 103
LIE150 237 949 8 32 74 295 -34 34
DORI150 237 949 8 32 74 295 -34 34
BOT150 237 949 8 32 74 295 -34 34
BRA150 1823 7291 0 0 138 553 -157 157
LIM150 902 3608 0 0 18 72 -78 78
ZEE150 831 3322 0 0 349 1396 -37 37
BSL380 0 0 1700 6800 0 0 NaN NaN
BVW380 0 0 1050 4200 0 0 NaN NaN
EOS380 0 0 650 2600 0 0 NaN NaN
MVL380 0 0 1350 5400 0 0 NaN NaN
MEE220 148 592 0 0 36 144 NaN NaN
VVL220 25 102 0 0 0 0 NaN NaN
DKG380 9 35 0 0 72 287 NaN NaN
WEW220 63 252 0 0 164 657 NaN NaN
EHA220 0 0 0 0 0 0 NaN NaN
LLS380 0 0 350 1400 0 0 NaN NaN
DIM380 0 0 350 1400 0 0 NaN NaN
MBT380 0 0 0 0 0 0 NaN NaN

A.4 Time Series

The time series of the selected reference days are visualized in figures A.1, A.2,
A3, A4 and A.5.
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Figure A.1: Offshore wind power curve of reference days
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Figure A.2: Onshore wind power
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Appendix B

Reference Days

B.1 Objective

To limit the evaluation time of the model, the model evaluates a limited number
of hours in relation to the selected reference year. Given the large number of
experiments that are inherent to the experiment design described in chapter 4,
the time required to evaluate the experiments would exceed the time budget
that is available for this research.

To reduce the number of evaluated hours, weighted representative days have
been selected to describe typical hours within the time series of the selected
reference year. Since the model uses different time series, the identification of
representative days requires an advanced approach that is able to capture inter-
action effects between different time series. Therefore, the selection of reference
days within this thesis is based on the hybrid reference day selection approach
described by Poncelet et al. (2017). The hybrid approach randomly selects a
prespecified number of reference days that is followed by an optimization of the
relative weight that is assigned to each of the selected days.

B.2 Implementation

The hybrid method described by Poncelet et al. (2017) is implemented in python
scripts. These python scripts are included in the model repository described in
appendix C. The scripts select a fixed number of random days and extracts
the corresponding time series values from all the available time series. Both
the sampled time series as the original time series are subsequently binned in a
fixed number of bins. Thereafter, the data is normalized, making it possible to
compare each of the subsetted datasets to the original time series dataset.

The goal of the optimization is to find relative weights for each of the reference
days, such that the total error resulting from the comparison is minimized.
This is achieved through an LP-based optimization that determines the relative
weight. However, as the number of days and the number of bins are user-
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selected the optimization might not be optimal. Increasing the number of bins,
increases the accuracy of the calculated error, whereas the selected number of
days provides the weight optimization with more combinations to weigh the
selected reference days. Thereafter, the sampled reference days might not be
suitable, where the total error could be reduced by selecting a different sample
of reference days.

To address the sampling issue, the pseudo-optimization in the hybrid approach
prescribes replication of the weight optimization under different samples of an
equal number of reference days and bins. Based on the replications it is possible
to select the reference day sample that has the lowest error score and there-
with most accurately describes the different time series. An optimal outcome is
achieved by evaluating all possible samples, but is computationally very expens-
ive, whereas the pseudo-optimization should approach the optimal result.

B.3 Optimization configuration

Since the selection of the number of reference days and the number of bins is
user-specified, selecting an appropriate configuration requires a bit of trail-and-
error. To make a more informed decision, the trade-off for the time series used in
this thesis is visualized in figure B.1. In the set-up, the number of bins has been
varied between 5 and 10 bins and the number of sampled number of reference
days has been varied between 1 and 30 days, resulting in 180 experiments. Each
of the experiments has subsequently been replicated 1000 times to approximate
the minimal error.

2.00 A legend
175 —— 5 bins
' - 6 bins
1.50 —— 7 bins
— 8 bins
s 1251 —— 9 bins
@ = 10 bins
= 1.00 1
2
= 0.75 A
0.50 A
0.25 A
1
0.00 A !
0 5 10 15 20 25 30

Number of representative days

Figure B.1: Trade-off between number of bins and number of
reference days

Based on the results in figure B.1 it is concluded that an increase in the number

of reference days results in a lower total error score, whereas an increase in the
number of bins results in a lower total error score. Therefore an increase in the
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number of bins requires an increase in the number of reference days to achieve
a similar total error score in comparison to a lower number of bins. The ’ideal’
number of reference days is determined based on the knee point of the lines in
the graph, visualized as dotted lines. The knee point criterion is discussed in
more detail in chapter 4.

Given that the objective of the selection of reference days is to reduce the
computation time of the TEP-model, selecting a minimum number of reference
days most significantly reduces the computation time. Therefore, the number
of reference days has been set to 5 days and the number of bins to 10. In
this trade-off the total error is relatively low compared to fewer days, while
being optimized under a stricter 10 bin accuracy criteria. The reference day
configuration is optimized over 10.000 unique samples.

B.4 Results

The results of the optimization configuration are described in table B.1. The
resulting time series profiles are visualized in appendix A. The optimization
resulted in a total error of 0,530, therewith performing slightly better than was
expected based on figure B.1. The resulting reference days represent 120 hours,
reducing the total number of hours that has to be evaluated in a single model
evaluation with 98,6 percent.

Table B.1: Reference days and relative weights

Reference day Relative weight Representative days

84 0,223 82
101 0,294 107
108 0,126 46
172 0,192 70
359 0,165 60
Total 1,000 365
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Appendix C

Model Repository

The model repository is available on GitHub under the MIT license via https://
github.com/robcalon/transmission-expansion-planning.

The repository contains the code for the model itself, as well as several scripts
and notebooks that have been developed to perform the different analyses de-
scribed in this thesis. It is possible to contact me for any further questions via
https://www.linkedin.com/in/robcalon/.
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